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Seismograms are convolution results between seismic sources and the media that seis-
mic waves propagate through, and, therefore, the primary observations for studying
seismic source parameters and the Earth interior. The routine earthquake location
and travel-time tomography rely on accurate seismic phase picks (e.g., P and S arrivals).
As data increase, reliable automated seismic phase-picking methods are needed to ana-
lyze data and provide timely earthquake information. However, most traditional auto-
pickers suffer from low signal-to-noise ratio and usually require additional efforts to
tune hyperparameters for each case. In this study, we proposed a deep-learning
approach that adapted soft attention gates (AGs) and recurrent-residual convolution
units (RRCUs) into the backbone U-Net for seismic phase picking. The attention mecha-
nism was implemented to suppress responses from waveforms irrelevant to seismic
phases, and the cooperating RRCUs further enhanced temporal connections of seismo-
grams at multiple scales. We used numerous earthquake recordings in Taiwan with
diverse focal mechanisms, wide depth, and magnitude distributions, to train and test
our model. Setting the picking errors within 0.1 s and predicted probability over 0.5, the
AG with recurrent-residual convolution unit (ARRU) phase picker achieved the F1 score
of 98.62% for P arrivals and 95.16% for S arrivals, and picking rates were 96.72% for P
waves and 90.07% for S waves. The ARRU phase picker also shown a great generali-
zation capability, when handling unseen data. When applied the model trained with
Taiwan data to the southern California data, the ARRU phase picker shown no cognitive
downgrade. Comparing with manual picks, the arrival times determined by the ARRU
phase picker shown a higher consistency, which had been evaluated by a set of repeat-
ing earthquakes. The arrival picks with less human error could benefit studies, such as
earthquake location and seismic tomography.

Introduction
Seismograms generated by natural or man-made seismic
sources and recorded as time-series data by seismometers are
the most fundamental observations, both for studying the
mechanisms of earthquakes (Aki and Richards, 2002) and for
imaging the internal structure of the Earth (Iyer and Hirahara,
1993). On a typical seismogram, information about the seismic
source and the Earth structure is unevenly distributed.
Seismologists have long recognized that the dominant majority
of useful information on a seismogram is concentrated on a
handful of seismic phases (Storchak et al., 2003, 2011), which
are categories of waveform segments whose shapes and arrival
times at the seismometer depend primarily upon the location
and mechanism of the source, as well as the Earth structure
sampled by the wavepath from the source to the seismometer.
For regional seismic studies, such as those in Taiwan (Fig. 1a),

the two most important seismic phases on a seismogram are
the first-arrived “P” (i.e., primary or pressure) wave (Aki and
Richards, 2002) and the “S” (i.e., secondary or shear) wave (Aki
and Richards, 2002) (Fig. 2a). A primary task in seismic data
processing involves identifying the arrival time (i.e., time for
the beginning) of each seismic phase on the seismogram.
In the past few decades, rapid advances in seismic instrumen-
tation, especially in earthquake-prone regions such as Taiwan
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(Shin et al., 1996, 2013), have led to an exponential growth in
the volume of continuously recorded seismic data. It has
become increasingly unrealistic to expect well-trained seismol-
ogists to manually mark the arrival times of seismic phases rap-
idly and reliably in such a massive, ever-increasing dataset. The
only feasible approach forward is to automate the seismic

phase-picking task using com-
puter algorithms that can offer
comparable robustness and
accuracy as well-trained seis-
mologists.

Conventional algorithms for
automatic seismic phase picking
often rely upon detecting abrupt
changes in the time series using
statistical methods. A com-
monly adopted approach is to
transform the seismogram into
a time-dependent characteristic
function that is more sensitive
to abrupt changes, such as the
ratio of short-term and long-
term averages (STAs/LTAs;
Allen, 1982), envelope functions
(Baer and Kradolfer, 1987),
autoregressive Akaike informa-
tion criterion (AR-AIC;
Sleeman and Van Eck, 1999),
kurtosis (Saragiotis et al., 2002;
Baillard et al., 2014), skewness
(Nippress et al., 2010; Ross
and Ben-Zion, 2014), filtering
(Lomax et al., 2012), and par-
ticle-motion polarization
(Jurkevics, 1988; Cichowicz,
1993; Baillard et al., 2014).
After applying some postpro-
cessing steps on the characteris-
tic function to reduce false
detection rate, the arrival times
of seismic phases are then
picked automatically, based
upon the temporal positions of
local extrema on the character-
istic function. Depending upon
the signal-to-noise ratio (SNR)
of the seismogram, the mecha-
nism of the seismic source, as
well as the physics of subsurface
wave propagation, the arrival
times of certain seismic phases
may not always correspond to
abrupt changes that can be

easily identified using the commonly adopted statistics. For seis-
mograms with poor SNR, the picks generated by conventional
algorithms still need to be reviewed and updated by seismologists
before being used in other seismic applications. Moreover, some
conventional phase-picking algorithms based on statistical meth-
ods often require considerable amount of human effort in

Figure 1. Basic information (P and S separations and signal-to-noise rations [SNRs]) and spatial
distribution of data used in this study. (a) The map shows the tectonic settings of Taiwan, and
distributions of earthquakes and stations used in this study. Dots represent earthquake locations
and colored by depths; blue triangles denote seismic stations; yellow stars show the earthquakes
with ML larger than 6.0. (b) Histograms show distributions of the P- and S-arrival residuals, and
SNRs of P and S waves in our train and test datasets. (c) The map shows the distributions of
earthquakes and stations of southern California (SC) used for examining model generalization in
this study. (d) Histograms show distributions of the P- and S-arrival residuals, and SNRs of P and S
waves in the SC dataset. The color version of this figure is available only in the electronic edition.
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parameter tuning before being applied to different datasets, and
inappropriate parameter settings can easily cause high false-
positive results. On the other hand, the recently widely used
template-matching algorithm (TMA) uses waveforms of P
and/or S waves of confirmed earthquakes as templates for
detecting earthquakes in continuous recordings (e.g., Mu et al.,
2017; Ross et al., 2019; Lee et al., 2020). Because the TMA uses all
the features, the complete waveforms, of P and/or S waves, the
TMA can be very robust to avoid false positives. However, the
TMA is limited to detecting events with similar focal mecha-
nisms and very close to the template earthquake. Also, the TMA
can be computationally expensive and requires an earthquake
catalog for phase templates.

The choice of the characteristic function used in conven-
tional phase-picking algorithms can be considered as statis-
tic-based feature selection in the context of machine
learning (Guyon and Elisseeff, 2003). The purpose of feature
selection is to reduce the redundancy in the input data to those
variables that have the strongest relationship with, therefore
are most predictive of, the target. Unlike conventional
phase-picking algorithms, in which the feature is prespecified
by human based on statistic presumptions, the artificial neural
network (ANN) allows automatic learning of the most predic-
tive features through data-driven training. The features learned
by the ANN are adapted to the specific task and the given data-
set, thereby, offering the potential of improved accuracy and
robustness. Early attempts of applying the ANN to automatic
seismic phase picking (Dai and MacBeth, 1995a,b, 1997; Wang
and Teng, 1995, 1997; Zhao and Takano, 1999) were con-
strained by the limited computing capability of desktop com-
puters and the lack of large amount of high-quality training
data. The majority of the early ANNs had only one or two

hidden layers, and the number of neurons in each hidden layer
was often less than 10. The number of seismograms in training
datasets varied from a few dozens to a few hundreds. Some of
the early ANN-based automatic seismic phase-picking imple-
mentations produced large numbers of false picks (i.e., noise
was picked as regular seismic phases) and inaccurate arrival
times. The overall performance of the early ANNs was not
much better than that offered by the conventional algorithms
based on characteristic functions, and the anticipated advan-
tages of ANNs were not materialized.

Recent advances in parallel computing technology, in par-
ticular, the wide adoption of the graphic processing unit for
general-purpose computing (Chetlur et al., 2014), have sub-
stantially increased the computing capabilities of modern com-
modity computers, thereby, opening up the possibilities of
using deep neural networks with tens to hundreds of hidden
layers for practical applications (Hinton et al., 2012;
Krizhevsky et al., 2012; Goodfellow et al., 2016). If we treat
the time axis of the seismogram as one spatial axis, seismo-
grams can be considered as 1D images and the various deep
neural networks designed for 2D image processing, such as
the convolutional neural network (CNN) and its variants,

Figure 2. Training data templates and components of confusion
matrix. (a) An example of input three-component seismograms
and its target functions. (b) The criteria and examples of different
cases in the confusion matrix. When an arrival residual between
the manual arrival and its corresponding predicted arrival is less
than 0.1 s, it is considered a true pick. A predicted phase pick
with a probability larger than 0.5 is viewed as a positive pick. The
color version of this figure is available only in the electronic
edition.
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can be adapted to analyze seismograms (Perol et al., 2018;
Ross, Meier, and Hauksson, 2018; Ross, Meier, Hauksson,
and Heaton, 2018; Kong et al., 2019; Zhu et al., 2019; Zhu
and Beroza, 2019). Compared with the early implementations
based on shallow ANNs, the overall performance of this new
generation of CNN-based deep-learning systems for automatic
seismic phase picking is highly encouraging (Zhu et al., 2019;
Zhu and Beroza, 2019). In this report, we document our recent
progress in adapting the U-Net (Ronneberger et al., 2015), a
CNN-based encoder–decoder architecture with long skip con-
nections designed for semantic image segmentation (Chen
et al., 2017), to automate the seismic phase-picking task. In
particular, we report the performance improvement in the
robustness and the accuracy of our autopicking system brought
by incorporating the soft attention gate (AG; Schlemper et al.,
2019) and the recurrent-residual convolution unit (RRCU;
Liang and Hu, 2015) into the baseline U-Net architecture.

Methods
Some of recent deep-learning studies on seismograms (Perol
et al., 2018; Ross, Meier, and Hauksson, 2018; Ross, Meier,
Hauksson, and Heaton, 2018; Kong et al., 2019; Zhu et al.,
2019; Zhu and Beroza, 2019) have mainly focused on the appli-
cation of the CNN and its variants by treating the seismogram
as a 1D image. However, a fundamental difference between the
seismogram and an ordinary 2D image is that there are no
preferential directions on an ordinary image, whereas, the time
axis of the seismogram represents a natural direction of the
flow of information, and the different seismic phases appear
along the time axis in a specific order that is dictated by
the physics of subsurface seismic wave propagation. The sim-
ilarity between seismograms and sounds (Holtzman et al.,
2013; Paté et al., 2016, 2017; Boschi et al., 2017) suggests that
the seismogram data are amenable to various machine-learn-
ing techniques designed for sequential data (Graves et al., 2006,
2013; Foggia et al., 2015; Chan et al., 2016; Jaitly et al., 2016;
Chiu and Raffel, 2017; Adavanne et al., 2018; Mousavi et al.,
2020). One of the motivations for our work is to provide an
alternative scheme, to account for long-range dependencies
among small-scale features on the seismograms for phase pick-
ing. In the U-Net architecture, the long-range context is
obtained by going to the deeper layers, where units have larger
receptive fields, and the small-scale features are preserved
through skip connections. However, this approach decouples
the two considerations: scale and range, and may not be opti-
mal if long-range context is important for recognizing small-
scale features at the same level. The recurrent neural network
(RNN) and its variants provide the complementary approach
for building long-range context, without compromising
small-scale information. By incorporating recurrent units into
the U-Net architecture, we can capture the “same-level”
context without going into the deeper levels. This approach
does not decouple range from scales. The RNN serves a similar

purpose as, but is more general than the autoregressive mod-
eling technique that has already been adapted in some conven-
tional automatic seismic phase-picking algorithms, such as
AR-AIC (Sleeman and Van Eck, 1999). Compared with the
conventional autoregressive process, the RNN introduces non-
linearity into the model and removes the need for specifying
the lags for predicting the next value, thereby, offering the
potential for modeling sophisticated time-dependent patterns
of a variety of seismic waveforms.

Input and output of the neural network
We denote the input seismogram data to our neural network as
x�s;r;c��t�, in which the triplet �s; r; c� represents a unique com-
bination of the seismic source index s, the receiver (seismom-
eter) index r, and the component index c (i.e., the ground
motion at the receiver r at a given time t is often recorded
as a vector with three components: east–west, north–south,
up–down). The temporal index t can be represented as inte-
gers, if we introduce a fixed time sampling interval Δt, which
can be determined based upon the sampling intervals of the
seismometers. The input seismogram data can then be repre-
sented as a matrix X, with its columns of a certain row x�t�
representing the recorded ground-motion amplitudes at all
components of the receiver(s) (arranged according to a prespe-
cified order) at a given temporal index t and with its rows of a
certain column representing the recordings of a component of
a certain receiver at all temporal indexes t ∈ �t0; t0 � T�, in
which t0 is the beginning temporal index, and T is the duration
of the recordings.

The output sequence of our neural network y�t� is aligned
with the input seismogram data along the time interval
�t0; t0 � T �. We denote each element of the output vector
y�t� as y�s;r�D �t� � Pr�t � t̄�s;r�D jX;H�, which is the conditional
probability of temporal index t being equal to t̄�s;r�D , that is, the
true arrival time of the seismic phase D ∈ V for the source–
receiver pair �s; r�, given the input seismogram data X and the
hidden state (i.e., memory) H of the neural network. The
vocabulary V is the set of all seismic phases we are trying to
pick. For regional seismic studies, we can choose
V � fP; S; noiseg, in which the “noise” category (Zhu and
Beroza, 2019) is equivalent to the null category (Graves et al.,
2006) used in speech recognition. A direct consequence of this
definition is that for a given source–receiver pair �s; r�, the
summation of corresponding elements in the output vector
at every temporal index t should be unity, that is,P

Dy
�s;r�
D �t� � P

D Pr�t � t̄�s;r�D jX;H� � 1, which can be
implemented by passing the logits of the last layer through
the softmax activation function before output. If the arrival
times of more seismic phases (e.g., the surface wave) need
to picked, we can expand the vocabulary set V , accordingly.
For a given source index s, the number of elements in vector
y�t� is then Nr × ND, in which Nr is the number of receivers,
and ND is the number of categories in the vocabulary V . The
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ordering of the elements in y�t�, with respect to the receiver
index r, is identical to that used in the corresponding input
seismogram data x�t�. The estimated arrival time of phase
D for the source–receiver pair �s; r� can then be obtained from
the temporal index that maximizes the corresponding
conditional probability, that is, t�s;r�D � argmaxt∈�t0 ;t0�T�y

�s;r�
D �t�.

Multiscale and long-range linkages among seismic
phases
For a given source–receiver pair �s; r�, the appearances of dif-
ferent seismic phases along the time axis follow a predictable
order that is determined by the physics of subsurface seismic
wave propagation. For regions with well-calibrated subsurface
Earth structure models, such predictability has been demon-
strated to a remarkable level of accuracy (Lee, Chen, and
Jordan, 2014; Lee, Chen, Jordan, et al., 2014; Chen and Lee,
2015). In particular, synthesized seismograms obtained using
a method-of-lines technique, such as the time-domain finite-
difference method for solving the 3D elastodynamic partial-
differential equation, can reliably predict the actual observed
seismograms, wiggle-for-wiggle, before the actual occurrences
of the earthquakes (Lee, Chen, Jordan, et al., 2014). Such pre-
dictability of the sequential ordering of the seismic phases
exists at multiple scales (i.e., frequencies or periods when con-
sidering data on the time axis). For regional seismic studies, an
example of large-scale sequential ordering of seismic phases is
that the P wave always appears earlier than the S wave, that is,
y�s;r�S �t� � 0; ∀ t ≤ t̄�s;r�P . In the reverse time direction, we have
y�s;r�P �t� � 0; ∀ t ≥ t̄�s;r�S . Examples of small-scale sequential
ordering of seismic phases may involve scattered waves that
form the coda waves (Aki and Richards, 2002) following the
direct-arriving waves, for example, waves scattered once usu-
ally arrive at the receiver earlier, with larger amplitudes, than
waves scattered twice, and so on. In our current study, we do
not consider the possibility of picking the scattered waves auto-
matically using neural networks. However, we point out that,
in a previous study (Lee and Chen, 2013), we were able to
automatically pick scattered seismic phases by exploiting the
multiscale nature of seismic phases using the continuous wave-
let transform and the topological watershed (Vincent and
Soille, 1991) image segmentation algorithm.

The temporal separations among different seismic phases
depend upon the source–receiver distance, as well as the subsur-
face Earth structure sampled by the wavepaths of those phases.
For a uniform structure, the temporal separation between the P
and S waves is t̄�s;r�S − t̄�s;r�P � d�1=vS − 1=vP�, in which d is the
distance between source s and receiver r, vP, and vS are the
speeds of the P and S waves, respectively. For regional seismic
studies, in which d can reach hundreds of kilometers, the sep-
aration between P and S waves can easily exceed tens of seconds
for typical wavespeeds in the crust (e.g., vP � 6:5 km=s,
vS � 3:5 km=s). Compared with the arrival times, which are
abrupt waveform changes with a time scale ∼0:1 s, the temporal

separation between P and S waves is about two orders-of-mag-
nitude larger. In the framework of the CNN, long-range linkages
among different parts of data can be accounted for by increasing
the depth of the network, but at the expense of losing small-scale
resolution in the deeper layers due to the expansion of the recep-
tive field with network depth and downsampling in the pooling
layers. For seismic phase picking, small-scale features are highly
important for the accuracy of the estimated arrival times. As an
example, under certain scenarios for d larger than ∼200 km, the
first-arriving P wave may become the headwave (Pn), which is
usually a small-scale (short-period), low-amplitude (poor SNR)
wave propagating along the interface between the crust and the
mantle (i.e., the Mohorovičić discontinuity; Aki and Richards,
2002). The temporal separation between the Pn and the S waves
can be even larger than that between the ordinary P and S waves
for the same source–receiver distance, because a major portion
of the Pn propagation wavepath is in the mantle, which usually
has a higher vP value than the crust. It is not uncommon, even
for experienced seismologists, to completely miss the Pn phase
and misidentify a scattered wave as the first-arriving P wave,
when picking the phases manually for such difficult scenarios.

The CNN provides an efficient hierarchical framework for
representing multiscale information in a wide variety of data,
including the seismogram data. However, it is often cumber-
some to use the CNN alone for capturing long-range linkages
among small-scale or mixed-scale features, which are important
for automatically picking seismic phases that are intimately
related with each other through the underlying physics, but have
large separations among them along the time axis. In the CNN,
the layers responsible for recognizing small-scale features may
not be aware of the long-range linkages among them, whereas
the layers capable of capturing the low-level features may not
have sufficient resolution to detect small-scale features. A
straightforward approach for addressing this shortcoming of
the CNN is to incorporate the RNN, or its variants, into each
convolutional layer of the CNN architecture, to extend its
capability of recognizing long-range linkages among features
of different scales (Fig. 3a). In this study, we adapt the 2D for-
mulation of the recurrent-residual convolutional network devel-
oped for image classification or segmentation (Liang and Hu,
2015; Alom et al., 2018) to the 1D seismogram data, by treating
the time axis of the seismogram as a spatial axis. For the ith unit
on the kth feature map in a recurrent convolutional layer l, the
net input z�q�1�

kl �i� for recurrent iteration q� 1 is

EQ-TARGET;temp:intralink-;;320;171 z�q�1�
kl �i� � �WF

kl�Txl−1�i� � �W�q�
kl �Th�q�kl �i� � bkl;

in which xl−1�i� is the i-centered patch inside the feedforward
input from the previous layer l − 1, and h�q�kl �i� is the i-centered
patch inside the recurrent input of the current layer l, WF

kl and
W�q�

kl are the corresponding weights for the feedforward and
recurrent connections, and bkl is the bias term. The first term
in the equation is identical to the one used in the standard
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CNN. The second term is induced by the recurrent connections,
and the state h�q�kl evolves with recurrent iteration q (Liang and
Hu, 2015). A more detailed formulation for our 1D seismic
application is given in the Appendix.

Localization around arrival times of target seismic
phases
The accuracy and robustness of the automatic seismic phase-
picking algorithm depends upon how to treat the noises that
interfere with the onset signals of the seismic phases. The

noises can come from a variety
of sources, which may have a
wide range of frequencies
(i.e., scales). In the actual seis-
mic phase picking, seismolo-
gists focus on observing the
changes (in amplitude and/or
frequency) in seismograms,
instead of keeping a consistent
focus on entire recordings. The
attention mechanism is widely
used in deep learning to utilize
the input information effi-
ciently. There are two main
attention mechanisms. The
general attention can assign
different weights to input fea-
tures, to highlight the impor-
tant parts (e.g., Schlemper
et al., 2019), and the self-atten-
tion can learn the important
relationships between different
parts in input data (e.g.,
Mousavi et al., 2020). To sup-
press the interference of noises
at different scales and improve
localization that highlights the
onset signals of seismic phases,
we adapted in our neural net-
work the grid-based soft-atten-
tion gating module (Schlemper
et al., 2019) that had been inte-
grated into the CNN and its
variants, such as, the U-Net,
for image classification and
segmentation applications.
However, a fundamental dif-
ference in our adaptation is
that both the input features
and the gating signals, which
is gathered from a coarser level
used by the AGs in our neural
network (Fig. 3b) are generated

from the recurrent-residual convolutional layers, rather than
the standard convolutional layers. In particular, the kth chan-
nel in the feature map xl�1�i� can be written as xk�l�1��i� �
xkl�i� � f �z�Q�kl �i��, in which f �·� is the activation function,
and z�Q�kl �i� has contributions both from the feedforward con-
nections and from the recurrent connections when Q > 1
(equation A1). To separate the contribution of the recurrent
connections to the calculation of the attention coefficients, we
split the feature map into two components, that is, xl�1�i� �
x�0�l�1�i� � x�Q�l�1�i�, in which x�0�k�l�1��i� � xkl�i� � f �z�1�kl �i�� is the

Figure 3. The seismic phase-picking model constructed in this study. (a) Recap of attention
recurrent-residual U-Net (attention gate [AG] with recurrent-residual convolution unit [ARRU]-Net)
model. The recurrent-residual convolution operation is conducted following every convolution
block. AGs re-adjust weightings of feature maps passing through skip connection, which are
processed by recurrent-residual modules. The shape of input data and feature maps are shown in
rectangles, representing length × number separately. (b) Schematic diagram of attention recurrent-
residual convolution (ARRC) module. In this study, we iterate the recurrent-residual convolution
blocks by three times (i.e., q � 3 in equation A1). The soft AG module adjusts the weightings of
the recurrent-residual convolution unit (RRCU) output feature maps passing though long skip
connection in backbone U-Net, with gating signal referring to high-level feature maps from the
decoder. The color version of this figure is available only in the electronic edition.
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feature map without the recurrent connections and
x�Q�k�l�1��i� � f �z�Q�kl �i�� − f �z�1�kl �i�� is the contribution to the fea-
ture map made by the recurrent connections, and, we have
x�Q�l�1�i� � 0, when Q � 1.

One of the main difficulties in fully automating the seismic
phase-picking task using conventional algorithms is in separat-
ing the interference of various seismic noises (e.g., ocean waves,
human activities, winds), which are usually multiscale and
nonstationary. An example is the STA/LTA algorithm based
on the ratio of the short-time and long-time moving averages
for detecting abrupt changes on the seismogram. In practice,
the widths of the short-time and long-time moving windows
need to be carefully selected, based on the common spectral
characteristics of the seismogram data under study. In particu-
lar, the width of the short-time window needs to be wide
enough to smooth out high-frequency noises (e.g., anthropo-
genic activities, wind), whereas the width of the long-time win-
dow needs to be narrow enough to reject long-period noises
(e.g., tidal waves, teleseismic waves). Many of the preprocess-
ing procedures used in conventional algorithms are designed to
suppress multiscale seismic noises and often require the most
amount of human effort in parameter turning. Some of the
studies have been focusing on adapting conventional time-
domain algorithms for phase picking to the time–frequency
domain (Zhang et al., 2003; Galiana-Merino et al., 2008; Lee
and Chen, 2013; Lee et al., 2019), to remove some of the pre-
processing steps aimed at suppressing multiscale noises. The
grid-based soft AG (equations A2 and A3) coupled with the
U-Net encoder–decoder architecture (i.e., the attention U-Net;
Schlemper et al., 2019) provides a natural, automatic, trainable,
and efficient mechanism, for focusing on the onset features of
target seismic phases while suppressing the interference from
noises at each scale. In particular, the grid-based gating signal
at the coarse scale encodes the context in a temporal neighbor-
hood surrounding the onset signal, and the additive attention
(equation A3) enhances onset features that are consistent with
the gating signal across scale, whereas noises that tend to be
incoherent across scale are being suppressed. The attention-
gated feature map x

l contains only activations that are relevant
to the onset signal and is then concatenated into the decoder
through the skip connection (Fig. 3a).

Data
In this study, seismograms of earthquakes that occurred
around Taiwan and recorded by Central Weather Bureau
(CWB) network and Broadband Array in Taiwan for
Seismology are used as the waveform dataset for our
machine-learning algorithm. Taiwan is located at an ongoing
arc–continent collision zone, where the Philippine Sea plate
(PSP) converges to the Eurasian plate (EP) with a rate of about
56–82 mm=yr (Yu et al., 1997). In the north end, the PSP sub-
ducts northward below the EP along the Ryukyu trench, and
the back-arc rifting basin, Okinawa trough, has also extended

into northern Taiwan. In the south end, the oceanic South
China Sea plate subducts eastward below the PSP along the
Manila trench. High seismicity reflects the complex tectonic
settings near Taiwan (Fig. 1a,b). The abundance of earthquake
recordings with diverse focal mechanisms, wide ranges of mag-
nitudes as well as hypocenter depths, and relatively noisy
recording environments in Taiwan (e.g., anthropogenic activ-
ities and natural ambient noises such as tides, surface runoffs,
and so forth) enable to examine the reliability and robustness
of our phase-picking algorithm. We gathered and chronologi-
cally split 1,052,675 sets of three-component seismograms
from year 2012 to 2019 (Fig. 1); seismograms gathered from
2012 to 2017 are used for model training (603,054; about
57.29%) and validation (150,764; about 14.32%), the rest from
2018 to 2019 are utilized for model testing (298,857;
about 28.39%).

In this study, the input three-component seismograms are
20 s long, with one set of P- and S-phase labeling (Fig. 2a).
To ensure P and S waves’ features could be captured by the algo-
rithm, we keep, at least, 3-second-long waveforms before labeled
P arrivals and 5-second-long waveforms following labeled S
arrivals. The position of the phase arrivals is randomly distrib-
uted within a 20 s waveform, to prevent the influence of the
windowing during training. The longest allowable P- and S-
arrival differential time is 12 s, and the length of time is sufficient
for most recordings of regional earthquakes (Fig. 1). Under the
scheme of training a deep neural network, quality and consis-
tency of inputs (P and S picks) play essential roles in model per-
formance. The P and S arrivals used in this study are manually
picked by well-trained experts in CWB, and the picks are
divided into four levels according to their picking qualities.
In this work, we only selected the seismograms with the top
qualities of P and S picks as data for method verifications.
We apply Z-score standardization to the seismograms to reduce
the wide variances in the amplitude. Each input waveform first
removes its mean and then is divided by the standard deviation.
Data standardization restricts the range of data values by their
means and standard deviations, and ensures that the dataset is
internally consistent. In machine learning, data standardization
could make input data have similar contributions during train-
ing and could speedup model convergence.

Target function prototypes
To adapt the U-Net architecture to address the automatic seis-
mic phase-picking task, we design our neural network to map
the input seismogram to a set of probabilistic target functions
(Graves et al., 2006). Each target function is a time series with
the same dimension as the input seismogram and indicates the
probability of occurrence of a particular seismic phase as a
function of time (Graves et al., 2006). The maximum of the
target function is the arrival time of the corresponding seismic
phase. We classify the probability at each time sample on the
seismogram into three categories: a P-wave arrival, an S-wave
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arrival, and the other waves. The probability summation of the
three target functions at each time sample must be one, which
can be implemented using the softmax activation function in
the output layer of our neural network.

The ground-truth target functions of the P- and S-wave
arrivals used in training, validation, and test datasets are con-
structed by the manual arrival picks provided by CWB. In this
study, the target function is a zero-padded truncated Gaussian
distribution, with its peak located at the arrival time of the seis-
mic phase (Fig. 2a). The loss function used for training can
then be defined in terms of the cross entropy between the soft-
max normalized predicted target functions and the corre-
sponding ground-truth target functions (Zhu and Beroza,
2019). The confusion matrix is adapted to compare the perfor-
mances among models. In our confusion matrix, both the
absolute time residual between a manual pick and its corre-
sponding predicted arrival, R̃ � jt�s;r�D − t̄�s;r�D j, and the probabil-
ity of a phase at its predicted arrival, ỹ � y�s;r�D �t�s;r�D �, are
considered. When a pick with R̃ < 0:1 s, it is regarded as a true
pick; when a pick with ỹ > 0:5, it is regarded as a
positive pick.

The width (i.e., standard deviation) of the truncated
Gaussian distribution is closely related to the label-smoothing
regularization technique for tackling overfitting and overcon-
fidence (Goodfellow et al., 2016; Szegedy et al., 2016). If the
Gaussian is too narrow, the model will be less adaptive and
overly confident about its predictions, which can lead to over-
fitting. In principle, the width of the Gaussian functions for
different seismic phases should be determined from the uncer-
tainties of their manually picked arrivals. However, in practice,
we usually do not have independent estimates of such uncer-
tainties. To properly estimate the width of Gaussian functions

for a seismic phase, we adopt a model calibration approach that
takes into account the prediction performance metrics, includ-
ing the picking rate and the arrival residual R. The picking rate
is defined as the rate of true-positive picks, and arrival residual
refers to the time residual of true-positives picks universally
categorized by all models under comparison. We built 15 sets
of models using U-Net, with width of the truncated Gaussian
distribution from 0.05 to 1.0 s for both P and S target functions
(Fig. 4). Let O be the set of models constructed, JoD as picking
rate of model o ∈O, and J̄OD the mean value of all models’ pick-
ing rate on seismic phase D. Picking rate threshold KD is
defined as: KD � MEDIAN�fJoDj ∀ JoD ⩾ J̄ODg�. Optimal width
LD is decided by general residual ιoD, which can be expressed
as: LD � argmin�fιoDj ∀ JoD ⩾ KDg�. The calibrations show that
the optimal standard deviation of Gaussian functions is 0.2 s
for the P picks and 0.3 s for the S picks in our dataset (Fig. 2a).
The calibration results are consistent with our common sense
that S picks usually have larger uncertainties than that of P
picks due to the perturbations of P coda or converted waves
during picking S arrivals.

Figure 4. Decision of truncated Gaussian distribution width
centering at target seismic phases. (a) Truncated Gaussian
functions with standard deviations ranging from 0.05 to 1.0 s
used for P and S target function tests in this study. (b) The F1
scores (top), picking rates (middle), and mean arrival residuals
(bottom) of P (left) and S (right) arrivals on tested target func-
tions. The picking rate threshold is the median of all testing
results. The one with the smallest mean arrival residual among
the qualified candidates is selected as the target function of the
phase. The color version of this figure is available only in the
electronic edition.
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Results
Training and learning curves
In this study, the Rectified Adam optimizer was used with a con-
stant learning rate (1 × 10−4) for optimizing the models, and we
did not implement model regularization nor data augmentation
techniques. In the model training, we set the dropout rate to 0.1
for all dropout layers, and the early stopping criterion was that
the validation loss did not improve for 20 successive epochs. The
training times per each epoch with 603,054 training and 150,764
validation data using single NVIDIA RTX 2080Ti were 1034 s
for the standard U-Net, 3526 s for the U-Net with AGs (AU),
2640 s for the U-Net with RRCU (RRU), and 5006 s for U-Net
with both AGs and RRCU (ARRU). Figure 5 shows the train and
validation learning curves of a standard U-Net, AU, RRU, and
ARRUmodels over training epochs of the seismic phase-picking
task. In this study, we stop the model training when the valida-
tion loss is no longer improving, and the U-Net stops at the
174th epoch, AU stops at the 44th epoch, RRU stops at the 81th
epoch, and ARRU stops at the 166th epoch. Generally speaking,
a model should be first checked whether it is overfitting, which
indicates that a model fits training data too well but cannot gen-
eralize to unseen data, validation dataset. Though there is no
strict definition, the intuitive phenomenon for overfitting turns
to be condition that training loss keep decreasing with increasing
validation loss. The difference between training and validation
loss implies the performance gap of a model between training
and validation datasets. In general, a good-fit model is identified
by stably decreasing, both in training and validation loss, to a
convergence point with a minimum gap. Among the models,
the ARRU has the lowest loss value, and the minimum loss
gap between its train and validation learning curves, showing
the outstanding capability of fitting training data.

Model performances
Table 1 lists the seismic phase-picking results of machine-
learning algorithms tested in this study, including the
U-Net, AU, RRU, and ARRU models and the AR-AIC picker,
which is a conventional automatic phase-picking method com-
bining STA/LTA and AIC for seismic phase picking, imple-
mented by ObsPy (Sleeman and Van Eck, 1999; Krischer
et al., 2015). The precision, recall, and F1 score are computed
for evaluating machine-learning-based models. The picking rate
is defined as the number of phase picks detected by the algo-
rithm (true-positive picks for the machine-learning-based mod-
els), divided by the total number of manual picks in the test
dataset. The means and standard deviations of arrival-time
residuals between the detected and manual picks for models
are also calculated for model evaluations. Overall, all the meth-
ods show that the performance on picking P arrivals is better
than that on picking S arrivals. In this work, we use the same
criteria (i.e., phase residual<0:1 s) for both P- and S-phase-pick-
ing evaluations. However, the S picks usually have higher uncer-
tainties due to perturbations (e.g., P coda waves) during picking S
arrivals in practical phase-picking tasks. This phenomenon was
also found in the tests for the width of P and S target functions
(i.e., the optimal target function of S is wider than that of P). It is
likely that the uncertainties in S arrivals have been internalized
in the machine-learning-based models during model training.

Figure 5. Learning curves of U-Net, attention U-Net (AU-Net),
recurrent-residual U-Net (RRU-Net), and ARRU-Net built in this
study. Solid lines represent training loss, and dashed lines indi-
cate validation loss The color version of this figure is available only
in the electronic edition.
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Among the U-Net-based implementations, the models with AGs
and/or RRCUmodules have better performances in picking both
P and S arrivals than that of the U-Net model. These improve-
ments are not only shown on precision, recall, and F1 score, but
also reflect on the picking accuracy (i.e., lower means and stan-
dard deviations of arrival residuals).

To further explore the influence of the AGs and/or RRCU
functions on the seismic picking task, we applied the methods
to test dataset grouped by the SNR of the P and S waves. In
this study, the SNR is based on the root mean square of 3 com-
ponent seismograms. For the SNRs, the noise is a 10 s wave-
form end at 0.5 s before its manual P arrival, the signal of P
phase is a 3 s waveform start at 0.5 s before its manual P arrival,
and the signal of S phase is a 4 s waveform start at 0.5 s before
its manual S arrival. Figure 6 shows the performances of the
model in different SNR conditions. As expected, the results
show that as SNR increase, the models perform better on
picking both P- and S-phase arrivals. Under similar SNRs,
all models perform better on picking P arrivals than on picking
S arrivals (Fig. 6). Comparing the performances between the
U-Net and AU in picking P and S arrivals, the improvements
are more significant when the SNRs of the phases are relatively
low (Fig. 6). The improvements mainly come from the increase
of true-positive picks, and the decrease of true-negative and
false-positive picks (Fig. 6). When the U-Net was incorporated
with the RRCU function, further increases in the F1 score for
both picking P and S arrivals at different SNR ranges could be
found (Fig. 6). Probably, the RRCU function can incorporate
dynamic changes on a time series (i.e., seismograms), and,
therefore, the features on temporal waveform changes could
be “learned” for phase-picking tasks, especially on S arrivals.
When the AGs are added to the RRU, the performances in

picking P arrivals are about the same. However, comparing
the performances of the RRU and ARRU in picking S arrivals,
the ARRU shows notable improvements at different SNR
ranges. Since picking S arrivals from seismograms are more
complicated than picking P arrivals, probably the combination
of AGs and RRCU can better demonstrate their performance,
when the data are complicated.

In model comparisons, the ARRU always performs better
than the U-Net, especially for picking seismic phases at low
SNRs (Fig. 6). Figure 7a–c shows some waveform examples that
P and/or S arrivals can be predicted by ARUU but the U-Net. In
the examples, the amplitude changes at P and/or S arrivals are
relatively nuclear, and, therefore, the incorporated AGs and
RRCU demonstrate their effects. To some extent, routine phase
picking is a laborious and monotonous job, and the quality of
manual picking may be affected by different factors, such as
accumulated experience, subjective judgments, professionalism,
work status, and so on. In addition to providing more reliable
predictions of P and S arrivals at low SNRs, the ARRU can also
provide more stable quality on phase picking. Figure 7d–f shows
the obvious mistakes of manual phase picking, and the ARRU
can provide more reasonable phase picks.

Model generalization
In machine learning, the model generalization, a trained model
has about the same performance for unseen data, is one of the
most important considerations in practical use. In this work,
the trained models are validated using the validation dataset, a
set of unseen seismograms recorded in the same time period of
training data. Because the seismograms in the validation and
training datasets have the same recording period, we, therefore,
randomly selected about the same amount of seismograms in

TABLE 1
Model Performances on Taiwan Test Dataset (298,857 Sets)

Mean (s) St. Dev. (s) Precision Recall F1 Score MAE (s) MAPE (s) Picking Rate

P phase AR-AIC −0.0952 0.1840 — — — 0.1318 0.0245 0.7695

U-Net 0.0027 0.0248 0.9749 0.9659 0.9704 0.0180 0.0032 0.9251

AU-Net 0.0068 0.0239 0.9755 0.9865 0.9810 0.0179 0.0032 0.9519

RRU-Net 0.0073 0.0219 0.9803 0.9952 0.9877 0.0162 0.0029 0.9714

ARRU-Net 0.0043 0.0203 0.9797 0.9929 0.9862 0.0129 0.0023 0.9672

S phase AR-AIC −0.2351 0.4849 — — — 0.4429 0.0420 0.3242

U-Net 0.0024 0.0436 0.8296 0.9656 0.8925 0.0346 0.0033 0.7675

AU-Net 0.0008 0.0420 0.8449 0.9707 0.9034 0.0325 0.0030 0.7896

RRU-Net 0.0029 0.0411 0.8532 0.9858 0.9147 0.0322 0.0030 0.8232

ARRU-Net 0.0107 0.0350 0.9131 0.9934 0.9516 0.0280 0.0026 0.9007

Mean and standard deviation (st. dev.) of the differences of manual picked arrivals minus model predicted arrivals in seconds. MAE and MAPE are mean absolute difference and
mean absolute percent difference, respectively. Bold values represent the best performance. AR-AIC, autoregressive Akaike information criterion; ARRU, attention gate with
recurrent-residual convolution unit; AU-Net, attention U-Net; RRU-Net, recurrent-residual U-Net.
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the test dataset, which have no time overlap with training data,
for a further model generalization test. The differences of F1
score between the two datasets for models on P- and S-phase-
picking tasks show the generalization capabilities of models
(Fig. 8). In general, the F1 score differences on the P-phase
picking are usually smaller than that of the S-phase picking,
which means the P-phase picking has a better generalization.
Among the models, the ARRU has the smallest F1 score
differences on both P- and S-wave picking, and reveals the
great model generalization of ARRU.

To test the generalization capabilities on a distinct dataset,
we applied the trained model to earthquake recordings in
Southern California (SC). We randomly select 153,055 record-
ings of earthquakes archived in Southern California
Earthquake Data Center catalog (SCEDC, 2013) that occurred
between 2010 and 2019 as a dataset for testing our trained
models (Fig. 1c,d). The seismograms in SC dataset are proc-
essed in the same way as waveforms in the Taiwan dataset.
Table 2 shows the performances of the AR-AIC picker, U-
Net, and ARRU on the SC test dataset. Even if the U-Net
and ARRU models are trained by only using the seismograms
in Taiwan data, the models still can achieve remarkable per-
formances on SC dataset. In fact, the performances of models
in SC dataset are better than that in the test dataset of Taiwan,
especially the ARRU model. The tests show that the machine-

learning-based models, especially the ARRU, are able to learn
the principles of picking P and S arrivals from seismograms,
and the excellent generalization capabilities of models give
us confidences in practical seismic phase-picking tasks.

In addition to the SC dataset, we also tested the ARRU
phase picker to the STanford EArthquake Dataset (STEAD)
—a global dataset of labeled P and S arrivals for earthquake
recordings (Mousavi et al., 2019). Our following tests are car-
ried out according to the dataset classification in STEAD. We
used the same criterion of a true-positive pick (predicted and
ground-truth absolute arrival differences less than 0.5 s and the
probability a phase larger than 0.3) in Mousavi et al. (2020) in

Figure 6. Performance comparisons of different models in picking
P (left) and S (right) arrivals for data in the test dataset with
different SNRs. The top shows the confusion matrix components,
and the middle shows the F1 scores of U-Net, AU-Net, RRU-Net,
and ARRU-Net models under different scenarios. The bottom
shows the distributions of data in different SNRs. Including AGs
and/or recurrent-residual convolution (RRC) functions in U-Net
can improve model performances, especially for data with rel-
atively low SNRs. The ARRU model shows significant perfor-
mance improvements in picking S arrivals at different SNR levels.
The color version of this figure is available only in the electronic
edition.

2420 Seismological Research Letters www.srl-online.org • Volume 92 • Number 4 • July 2021

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/92/4/2410/5351037/srl-2020382.1.pdf
by University of Illinois Urbana-Champaign user
on 01 October 2021



the following comparisons. To examine the model generaliza-
tion, we applied the ARRU model trained only by the Taiwan
waveform dataset to about 90% of waveforms that satisfied our
model framework (jtS − tPj < 12 s) in STEAD test dataset. The
ARRU model obtained similar performances on both P and S
picking tasks as the performances of EQTransformer, which is
trained by the STEAD dataset (Table 3). To investigate the per-
formance of our algorithm on another independent dataset, we
train and test another ARRU model using waveforms in
STEAD. The new model uses 1-second-long waveforms
before P and 3-second-long waveforms after S arrivals

Figure 7. Examples of ARRU-Net predictions compared with U-Net
predictions and manual picks. (a–c) Comparison of P (red
curves) and S (blue curves) probability functions made using the
ARRU-Net and U-Net. Solid and dashed lines indicate the
qualified phase arrivals predict by the ARRU-Net and U-Net. (d–
f) Examples of some problematic manual picks. The comparisons
of manual picks (dashed lines) and arrivals predicted by the
ARRU-Net (solid lines), based on the P (red curves) and S (blue
curves) probability functions. The color version of this figure is
available only in the electronic edition.
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(jtS − tPj < 16 s) during training and testing, to include more
waveforms in STEAD. Data with the length before P arrival less
than 1 s in STEAD are also included by slicing 20-second-long
waveforms from the beginning. The newmodel uses 90% of the
STEAD training data for training and 95% of the STEAD test
data for testing. The ARRU model trained by STEAD wave-
forms used the same training parameters for the Taiwan
model, and Table 3 shows the performances of the model.
Noted that we did not use the data augmentation, which
can potentially improve the model performance (Zhu et al.,
2020), used by EQTransformer during training. The ARRU
model trained with STEAD data mainly reduces the means
and standard deviations of the differences between ground
truth and predicted arrivals in STEAD. The performances
of the EQTransformer and ARRU phase picker were roughly
performed at a similar level. The experiments proved that

different deep-learning archi-
tectures could achieve a similar
performance level in seismic
phase picking.

Discussions
To better understand what the
model has learned from data,
we applied techniques of
Gradient-weighted Class
Activation Map (Grad-CAM;
Selvaraju et al., 2017), to
extract information from the
last convolutional layer before
softmax activation. The Grad-
CAM portraits show the
mapped weightings toward
the final decision for desig-
nated class. Figure 9 shows
Grad-CAMs of ARRU and
U-Net for the same three-com-

ponent seismograms. On deciding P arrival, U-Net model
tends to misidentify S arrival as P arrival, whereas, ARRU is
quite confident on making decision around the real P arrival.
On deciding S arrival, ARRU pays most attention around real S
arrival. U-Net model gives the lowest weightings around P
arrival, but not as confidential as ARRU does on S arrival.
This example demonstrates that ARRU is more capable of dis-
criminating features on deciding P and S arrivals comprehen-
sively than U-Net does.

In practical earthquake locations or tomographic inver-
sions, the consistency of seismic phase pickings will affect
the accuracy of the results. Here, we select some earthquakes
with high-waveform similarities, and compare the manual
picks and phase arrivals made by ARRU (Fig. 10). In compari-
son, we can find that both P and S arrivals picked by ARRU
show higher consistency. The manual picks are likely affected

Figure 8. Comparisons of model generalization capability for unseen seismograms in the test
dataset. The F1 score differences between the validation and test datasets for P (blue bars) and S
(gray bars) indicate that the ARRU model has a better model generalization. The color version of
this figure is available only in the electronic edition.

TABLE 2
Model Performances on Southern California Dataset (153,065 Sets)

Mean (s) St. Dev. (s) Precision Recall F1 Score MAE (s) MAPE (s) Picking Rate

P phase AR-AIC −0.0990 0.1403 — — — 0.1095 0.0213 0.8139

U-Net 0.0012 0.0210 0.9850 0.9822 0.9836 0.0148 0.0028 0.9604

ARRU-Net 0.0025 0.0160 0.9895 0.9954 0.9924 0.0093 0.0018 0.9829

S phase AR-AIC −0.2866 0.4296 — — — 0.4221 0.0376 0.3311

U-Net 0.0010 0.0439 0.8520 0.9650 0.9050 0.0348 0.0031 0.7963

ARRU-Net 0.0109 0.0325 0.9538 0.9963 0.9746 0.0261 0.0023 0.9473

Mean and standard deviation (St. Dev.) of the differences of manual picked arrivals minus model predicted arrivals in seconds. MAE and MAPE are mean absolute difference and
mean absolute percent difference, respectively. Bold values represent the best performance. AR-AIC, autoregressive Akaike information criterion; ARRU, attention gate with
recurrent-residual convolution unit; AU-Net, attention U-Net.
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by background noise and subjective judgments, and similar
cases have also been reported in other data centers (e.g., SC;
Shearer, 1997). For a group of waveforms with high similar-
ities, the waveform cross correlations could be used to find
accurate relative arrivals for earthquake relocations and/or
tomographic inversions (Shearer, 1997; Waldhauser and
Ellsworth, 2003; Zhang and Thurber, 2003). However, in most
cases, the P and S arrivals are directly used for inversions. If the
criteria for seismic phase picking are inconsistent, the picking
errors introduced by subjective judgments will affect the inver-
sion results. In general, the seismic phase arrivals picked by
ARRU show better consistency and may reduce the human
errors in inversions.

In this study, we made a full comparison of U-Net models
on seismic phase-picking tasks and found that additional

modules such as AGs and recurrent-residual blocks could pro-
vide performance gain. The model trained by the Taiwan data-
set has been applied to various unseen datasets, including the
Taiwan test dataset, SC dataset, and STEAD global dataset
(Mousavi et al., 2019). The performances of the model are
not much different (Tables 1–3), showing the good generali-
zation of the model. In addition, benchmarking is commonly
used in machine learning to compare and evaluate machine-
learning algorithms. The datasets in STEAD are utilized as an
independent benchmark test for our algorithm. Table 3 shows
the performance of our ARRU phase picker, and the perfor-
mances of our algorithm on different datasets are quite con-
sistent. In machine learning, various techniques have been
used to improve the performance of an algorithm, such as data
augmentation and hyperparameter optimization (Li et al.,

TABLE 3
Model Performances on STanford EArthquake Dataset (STEAD) (True Pick Threshold = 0.5 s, Positive Pick
Threshold = 0.3)

Model Mean (s) St. Dev. (s) Pr Re F1 MAE MAPE Training Data Testing Data Remarks

P phase ARRU (TW) −0.03 0.07 0.99 1.00 0.99 0.04 0.01 Taiwan, 603K STEAD, 112K jtS − tP j < 12 s

ARRU (STEAD) 0.00 0.06 1.00 0.99 0.99 0.03 0.01 STEAD, 1.08M STEAD, 120K jtS − tP j < 16 s

EQTransformer 0.00 0.03 0.99 0.99 0.99 0.01 0.00 STEAD, 1.2M STEAD, 126K Mousavi et al. (2020)

PhaseNet −0.02 0.08 0.96 0.96 0.96 0.07 0.01 North California, 780K

GPD 0.03 0.10 0.81 0.80 0.81 0.08 0.01 South California, 4.5M

PickNet 0.00 0.09 0.81 0.49 0.61 0.07 0.02 Japan, 740K

PpkNet −0.01 0.15 0.90 0.90 0.90 0.10 1.90 Japan, 30K

Yews 0.07 0.13 0.54 0.72 0.61 0.09 0.02 China, 1.4M

Kurtosis −0.03 0.09 0.94 0.79 0.86 0.08 0.01 —

FilterPicker −0.01 0.08 0.95 0.82 0.88 0.14 0.02 —

AIC −0.04 0.09 0.92 0.83 0.87 0.09 0.01 —

S phase ARRU (TW) −0.04 0.11 0.98 0.99 0.99 0.08 0.01 Taiwan, 603K STEAD, 112K jtS − tP j < 12 s

ARRU (STEAD) −0.01 0.10 0.98 0.98 0.98 0.06 0.01 STEAD, 1.08M STEAD, 120K jtS − tP j < 16 s

EQTransformer 0.00 0.11 0.99 0.96 0.98 0.01 0.00 STEAD, 1.2M STEAD, 126K Mousavi et al. (2020)

PhaseNet −0.02 0.11 0.96 0.93 0.94 0.09 0.01 North California, 780K

GPD 0.03 0.14 0.81 0.83 0.82 0.10 0.01 South California, 4.5M

PickNet 0.08 0.17 0.75 0.75 0.75 0.10 0.03 Japan, 740K

PpkNet 0.02 0.15 1.00 0.91 0.95 0.10 1.85 Japan, 30K

Yews −0.02 0.13 0.83 0.55 0.66 0.11 0.01 China, 1.4M

Kurtosis −0.10 0.13 0.89 0.39 0.55 0.11 0.01 —

FilterPicker −0.05 0.13 0.61 0.41 0.49 0.10 0.01 —

AIC −0.07 0.15 0.87 0.51 0.64 0.12 0.02 —

Mean and st. dev. (standard deviation) of the differences of manual picked arrivals minus model predicted arrivals in seconds. MAE and MAPE are mean absolute difference and
mean absolute percent difference, respectively. Bold values represent the best performance. ARRU, Attention Recurrent-Residual U-Net presented in this study; GPD, generalized
phase detection; AIC, Akaike information criterion.

Volume 92 • Number 4 • July 2021 • www.srl-online.org Seismological Research Letters 2423

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/92/4/2410/5351037/srl-2020382.1.pdf
by University of Illinois Urbana-Champaign user
on 01 October 2021



2017; Golovin et al., 2017; Sculley et al., 2018; Zhu et al., 2020).
In seismic phase picking, the data augmentation has been
tested, and the results show improvements on both the model
performance and generalization. The hyperparameter optimi-
zation has not been fully examined in seismic phase-picking
methods and is probably a research direction worth consider-
ing in future work.

Figure 9. Examples of Gradient-weighted Class activation Maps of
(a) the ARRU-Net and (b) the U-Net predictions. Colors indicate
the strength of confidence, and dotted lines show the manual
arrivals. The color version of this figure is available only in the
electronic edition.

Figure 10. An example shows the differences between the arrivals
determined by the ARRU model (solid lines) and the manual picks
(dash lines) on a set of earthquakes with high-waveform simi-
larities on the three component seismograms (HHE, HHN, HHZ) at

station NACB in BATS. Compared with the manual picks, the
arrivals determined by the ARRU model are more consistent. The
color version of this figure is available only in the electronic
edition.
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Conclusions
Accurate seismic phase arrivals play an important and essential
role in understanding earthquake sources and the Earth interior.
Many efforts have been paid to develop reliable and accurate
picking algorithms. Compared with the analysis-based phase-
picking approaches, the machine-learning-based methods could
learn how to pick seismic phases directly from seismograms,
without tuning the complex parameter settings. In this study,
we tested different U-Net-based machine-learning methods
for seismic phase picking and found that the ARRU phase picker
has the best performance. The ARRU phase picker is built on an
efficient U-Net architecture and then included the AGs that
increase the weights of seismic phases on seismograms during
training and RRCU, strengthening the temporal linkages of
features in multiple scales. The included functions show
remarkable improvements in both picking P and S arrivals, espe-
cially on the cases with low SNR. In addition, the seismic phase
picks provided by ARRU phase picker also show more consis-
tency at different noise levels (Fig. 10). More accurate seismic
phase picks could benefit both the earthquake location and
tomographic inversions. The ARRU phase picker also general-
izes well by examining model performance using unseen data
(Fig. 1a,b; Table 1) and data from a distinct region (Fig. 1c,d;
Table 2). The great model generalization allows the ARRU phase
picker to apply to routine seismic picking tasks in different
regions. The ARRU phase picker can be further combined with
earthquake location methods for rapid and accurate earthquake
locations (Lee et al., 2020).

Data and Resources
The seismograms of earthquakes occurred in Taiwan used in this
study are from the Geophysical Database Management System
(GDMS) operated by the Central Weather Bureau (CWB) and the
Broadband Array in Taiwan for Seismology (BATS) operated by the
Institute of Earth Sciences, Academia Sinica (IES). The Southern
California Seismic Network (SCSN) earthquake catalog website is
http://service.scedc.caltech.edu/eq-catalogs/date_mag_loc.php (last
accessed October 2020). The seismic waveforms in southern
California used in this study were obtained from the Southern
California Earthquake Data Center (SCEDC) through the
Seismogram Transfer Program (STP), and the website of STP is
https://scedc.caltech.edu/data/downloads.html (last accessed March
2021). The attention gate with recurrent-residual convolution unit
(ARRU) phase picker is available to download from https://
github.com/tso1257771/Attention-Recurrent-Residual-U-Net-for-ear
thquake-detection (last accessed February 2021).
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Appendix
Here, we adapt the 2D formulation for recurrent convolutional
layer, in particular equations (1)–(4) in Liang and Hu (2015),
to the 1D seismic data used in our study. To aid the under-
standing of the formulation, we refer to the left panel of figure 3
in Liang and Hu (2015) for the unfolded representation of the
recurrent connections. For the 1D seismic data used in our
study, the rectangles used for representing 2D images in fig-
ure 3 of Liang and Hu (2015) can be replaced with 1D line
segments, and the two spatial axes can be replaced with one
time axis. To avoid confusion with the discrete time sampling
of the seismic data, we introduce the recurrent iteration index
q � 0;…;Q − 1, in which Q ≥ 1, to replace the notion of "time
step” t used in figure 3 of Liang and Hu (2015).

For the lth recurrent-residual convolutional layer, we define
the net input to the ith unit on the kth channel of the feature
map at the �q� 1�th recurrent iteration as

EQ-TARGET;temp:intralink-;dfa1;308;210

z�q�1�
kl �i� �

Xi�LF

j�i−LF

�WF
kl�j − i� LF��Txl�j�

�
Xi�LR

j�i−LR

WR
kl�j − i� LR�h�q�kl �j� � bkl; �A1�

in which i and j are temporal indices, xl�j� ∈ RKl is the feed-
forward input from the previous layer with Kl channels, and
x0 � X, h�q�kl is the recurrent input from the state H at the qth
iteration,WF

kl andW
R
kl are the shared weights corresponding to

the feedforward and recurrent inputs, respectively, and bkl is
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the bias. In this equation, the summation over the input
temporal index j corresponds to the convolution operation.
The number of rows (temporal dimension) and columns of
the shared weights WF

kl is 2LF � 1 and Kl, respectively. As j
ranges from i − LF to i� LF , the index j − i� LF into WF

kl

ranges from 0 to 2LF . The number of rows (temporal dimen-
sion) and columns of the weightsWR

kl is 2LR � 1 and 1, respec-
tively. As j ranges from i − LR to i� LR, the index j − i� LR
into WR

kl ranges from 0 to 2LR.
For a given output temporal index i, the rows i − LF to i� LF

in xl and the rows i − LR to i� LR in h�q�kl are selected. The
widths of the receptive fields of the ith unit for the feedforward
and recurrent connections are 2LF � 1 and 2LR � 1, respec-
tively. Increasing the recurrent iteration index q by 1 will extend
the width of the recurrent receptive field of each unit in the kth
feature map of layer l by 2LR � 1, and the depth of the longest
path will also increase by 1. However, because of weight sharing,
the number of parameters will not increase with q.

The state at iteration q � 0 is h�0�kl � 0 and the net input z�1�kl

is identical to that in the standard CNN. The state at the
�q� 1�th iteration is computed from z�q�1�

kl , that is,
h�q�1�
kl �j� � gff �z�q�1�

kl �j��g, in which f �·� is the rectified linear
(ReLU) activation function, and gf·g is the local response
normalization function (Krizhevsky et al., 2012; Liang and
Hu, 2015), for preventing the state from exploding.

To ease the training of our network, which can be deeper
than the one without the recurrent iterations, we make use of
residual connections (He et al., 2016; Alom et al., 2018), that is,
the net input is passed into the activation function, to produce
the residual output and the net output of layer l is
xl�1 � xl � F �xl�, in which the function F �·� represents all
transformations within the layer that produce the residual out-
put from the input xl.

To compute the grid-based attention coefficients αl�i� for
the input feature map xl�i�, we need the feature map at a

coarser level xg�j� ∈ RKg as the gating signal. The gating signal
at the same position as the input feature map xg�i� can be
obtained through temporal linear interpolation (Schlemper
et al., 2019). In our implementation, we adopt the additive
attention (Bahdanau et al., 2014; Schlemper et al., 2019)

EQ-TARGET;temp:intralink-;dfa2;320;678αl�i� � σfΨTf �y�0�l �i� � y�Q�l �i�� � bΨg; �A2�

in which

EQ-TARGET;temp:intralink-;dfa3;320;627y�0�l �i� � WT
l x

�0�
l �i� �WT

g x
�0�
g �i� � blg �A3�

is the contribution from the feedforward connections and is
identical to previous studies (Schlemper et al., 2019) and

EQ-TARGET;temp:intralink-;dfa4;320;574y�Q�l �i� � VT
l x

�Q�
l �i� � VT

g x
�Q�
g �i� �A4�

is the contribution from the recurrent connections. Here,
Wl;Vl andWg ;Vg are trainable weight matrices that transform
the corresponding feature vectors into vectors of the same
dimension as the bias vector blg . In our current implementa-
tion, we choose Vl � Wl and Vg � Wg , the ReLU activation
function f �·� produces a vector of the same dimension as the
trainable parameter vector Ψ, bΨ is a scalar bias, and σf·g is
the sigmoid activation function. Once the attention coefficient
αl�i� is computed for every temporal index i, using
equation (A2), we can obtain the attention-gated feature
map through the element-wise scalar multiplication, that is,
x
l�i� � αl�i�xl�i�. The attention-gated feature map x

l is then
concatenated into the corresponding level of the decoder
through the skip connection in the attention U-Net architec-
ture (Schlemper et al., 2019; Fig. 3a).
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