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Map Phase: Each node k, using the Map functions, com-

putes all IVs from a set of locally available files Mk ⊆
{w1, . . . , wN}. That is for each wn ∈ Mk, node k computes

v1,n, . . . , vQ,n.

Shuffle Phase: Each node k aims to collect all IVs

vq,1, . . . , vq,N for each assigned output function φq : q ∈
Wk ⊆ [Q] where Wk is the set of indexes of the output

functions assigned to node k. The nodes transmit codewords

derived from locally computed IVs such that, after the shuffle

phase, each node k can recover all necessary IVs of the

assigned output functions.

Reduce Phase: With the collected IVs from the shuffle

phase, each node k uses Reduce function hq to compute

uq = hq(vq,1, . . . , vq,N ) for q ∈ Wk.

Assume that each node computes all Q IVs from each of

its locally available file. We define the computation load of

the system as r = 1
N

∑K
k=1 |Mk|, which is the total number

of IVs computed normalized by QN . Note that r represents

both the average number of times that an IV is computed,

and the average number of times that a file is mapped across

the network. Then, the communication load L, where 0 ≤
L ≤ 1, is defined as the total number of bits transmitted by

all nodes normalized by the total number of bits of all IVs,

QNT . In other words, L = 1
QNT

∑K
k=1 lk, where lk is the

number of bits transmitted by node k.

Moreover, in this work, we assume that each Reduce

function is assigned to an average of s nodes, where

s = 1
Q

∑K
k=1 Wk. We say (r, s, L) is feasible if there exist

1) a file mapping such that each file is mapped to an average

of r nodes 2) a function assignment such that each function

is assigned to an average of s nodes and 3) a shuffle phase

design such that at most QNTL bits are transmitted on the

multicast channel and each node can decode all requested

IVs for the assigned fucntions. Then, we define the optimal

communication load as follows.

Definition 1: The optimal communication load is defined

as

L∗(r, s) Δ= inf{L : (r, s, L) is feasible}. (2)

Remark 1: In general, r and s can take different values.

However, in this work, we consider the case where r = s.

This is motivated by the fact that r and s can be a design

choice. For example, in [3], for s = 1, the authors discuss

picking an optimal r to reduce the overall execution time on

a real distributed computing platform. For s > 1, we note

that, while allowing more (r, s) pairs may help optimize the

execution time, limiting the pairs to r = s can still leave

a sufficient number of viable operating points. Hence, in the

remainder of the paper, we will focus on the case where r = s.

Nevertheless, we will keep both variables r and s because they

each have a different meaning.

III. HYPERCUBOID APPROACH FOR CASCADED CDC

In this section, we present the proposed combinatorial

design for general cascaded CDC networks that apply to both

heterogeneous and homogeneous networks. We will begin

with a simpler, two-dimensional example to introduce the

basic ideas of the proposed approach. This is followed by

Fig. 1. (left) Lattice points that represent the file mapping and function

assignment of the hypercube design with r = 2, s = 2 and K = 4. Each

lattice point represents a file and a function and each node maps files and is
assigned files based on a line of lattice points. (right) The linear combinations

of packets received by node 1 in round 2 after cancelling out locally computed

packets.

a description of the general scheme that includes four key

components: Generalized Node Grouping, Node Group Map-

ping, Cascaded Function Mapping, and Multi-round Shuffle

Phase. We then present two three-dimensional examples of

the proposed hypercuboid design, one for a homogeneous

network, and one for a heterogeneous network, to further

illustrate details of the proposed design and compute the

achievable communication rates.

A. 2-Dimensional Homogeneous Example

Example 1: Consider K = 4 nodes that map N = 4
files and are assigned to compute Q = 4 functions. Fig. 1

and Table I show the file mapping and functions assignment.

In Fig. 1, the nodes are aligned along a 2-by-2 lattice and then

horizontal or vertical lines define the mapping and assignment

at the nodes. For instance, node 1 maps files w1 and w2 and is

assigned functions 1 and 2 represented by the top horizontal

line of lattice points. Similarly, node 3 maps files w1 and

w3 and is assigned functions 1 and 3 represented by the left

vertical line of lattice points. As each lattice point intersects

2 lines, one vertical and one horizontal, then we find each file

is mapped at 2 nodes, r = 2, and each function is assigned to

2 nodes, s = 2.

In the Map phase each node computes all IVs from each

locally available file as shown in the third column of Table I.

For example, node 1 computes v1,1, v2,1, v3,1, and v4,1 from

file w1 and v1,2, v2,2, v3,2, and v4,2 from file w2. The IVs

can be classified by the number of nodes that request them

in the Shuffle phase. For instance, IV v1,1 is only needed by

nodes 1 and 3, but these nodes computes this IV from the

locally available file w1. Therefore, we say v1,1 is requested

by 0 nodes. Similarly, v2,2, v3,3, and v4,4 are requested by

0 nodes. Then, since nodes 1 and 3 are the only nodes that

are assigned function 1, we see that v1,3 is only requested

by one node (node 1) because w3 is available at node 3, but

not at node 1. Similarly, v1,2 is only requested by one node

(node 3) because w2 is available at node 1, but not at node 3.

On the other hand, v1,4 is requested by 2 nodes, nodes 1 and

3, because neither node maps file w4.

There are 2 rounds in the Shuffle phase where the nodes

shuffle the IVs that are requested by 1 and 2 nodes,
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TABLE I

FILES, FUNCTIONS, IVS AND TRANSMISSIONS OF EXAMPLE 1

respectively. The messages transmitted by each node are

shown in last two columns of Table I. In round 1, each

node includes 2 IVs in a coded message to 2 other nodes.

For instance, node 1 computes v1,2 and v2,1, where v1,2 is

requested by node 3 and is available at node 4, and the opposite

is true for v2,1. Therefore, node 1 transmits v1,2⊕v2,1 to nodes

3 and 4.1 In this example, each node transmits a coded message

to serve 2 independent requests of nodes aligned along the

other dimension.

In round 2, we consider all IVs requested by 2 nodes which

are v1,4, v4,1, v2,3 and v3,2. These IVs are each available at

the 2 nodes that do not request them. Each IV is split into

3 disjoint equally sized packets. For instance, for the IVs

requested by node 1, v1,4 is split into v
(1)
1,4 , v

(2)
1,4 and v

(3)
1,4 and

v2,3 is split into v
(1)
2,3, v

(2)
2,3 and v

(3)
2,3. Each node sends two linear

combinations of its available packets.2 Accordingly, each node

will receive a total of 6 linear combinations to solve for the

6 requested packets. The linear combinations are shown in

the last column of Table I. We can see, for instance, after

subtracting out available packets, node 1 receives the linear

combinations shown by the matrix-vector multiplication on

the right side of Fig. 1. Since, the matrix A is invertible, node

1 can solve for its requested packets and therefore all requested

IVs. The messages of round 2 are deliberately designed so that

the received messages at each node can be represented by a

full rank matrix similar to matrix A for node 1. One can verify

from the the table of Fig. 1, that each node can recover all

requested packets from round 2.

We compute the communication load, Lc, by counting

all transmitted messages and considering their size. There

are 4 messages of length T bits (size of a single IV), and

8 messages of length T
3 bits. After normalizing by the total

bits over all IVs, QNT , the communication load is

Lc =
1

QNT

(
4T + 8

T

3

)
=

1
16

(
4 +

8
3

)
≈ 0.417. (3)

With an equivalent, r, s and K , we can compare Lc to the

fundamental bound and scheme of [3] where the communica-

1Note that, each IV corresponds to an element in the field F2T . To perform
the bit-wise XOR operation, “⊕”, we translate each IV into an array of T
bits in the field F

T
2 and then perform XOR with each bit of each IV.

2We assume that T is large enough to allow for a large range of coefficients

in the linear combinations.

tion load is

L1 =
3
(
K
3

)(
1

r−1

)(
r

3−s

)
r
(

K
r

)(
K
s

) +
4
(
K
4

)(
2

r−1

)(
r

4−s

)
r
(

K
r

)(
K
s

)
=

3 · 4 · 1 · 2
72

+
4 · 1 · 2 · 1

72
=

32
72

≈ 0.444. (4)

Ultimately, we find Lc < L1, and our new design has a

reduced communication load.

Remark 2: To the best of our knowledge, this is the first

homogeneous example of CDC that has a communication load

less than L1. In [3], L1 was shown to be the smallest achiev-

able communication load given r, s and K , under an implicit

assumption of the reduce function assignment that every set

of s nodes must have have a common reduce function. This

assumption was made in the proof of [3, Theorem 2]. Note

that our proposed design does not impose such an assump-

tion. For instance, neither node pairs {1, 2} nor {3, 4} in

Example 1 have a shared assigned function. Example 1 shows

that the more general function assignment proposed in this

work allows us to achieve a lower communication load that

is less than L1, even for homogeneous networks. Similar

observations were made for a heterogeneous network with

s = 1 in [10], [11].

B. General Achievable Scheme

Next, we present the proposed general achievable scheme

and describe its four key components. in detail.

1) Generalized Node Grouping: The Generalized Node

Grouping lays the foundation of the proposed hypercuboid

design. It consists of Single Node Grouping (equivalent to

Node Grouping 2 in [9]), and Double Node Grouping. The

latter is specifically designed for the cascaded CDC networks

considered in this work.

Consider a general network of K nodes with varying storage

capacity. To define a hypercuboid structure for this network,

divide these K nodes into P disjoint sets, C1, . . . , CP , each

of size |Cp| and
∑P

p=1 |Cp| = K . Nodes in the same set Cp

have the same storage capacity and each stores 1/mp of the

entire file library. Furthermore, assume that nodes in Cp map

the library rp times so that
∑P

p=1 rp = r. Apply the hypercube

design in [9] to each Cp by splitting nodes in Cp into rp disjoint

subsets {Ki, i ∈ Ip} of equal size mp, where |Cp| = rpmp,
and the index set Ip = {i : np−1 + 1 ≤ i ≤ np} and nj =∑j

i=1 ri, j ∈ [P ]. The entire network is comprised of r node
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sets, K1, . . . ,Kr. Nodes in Ki, i ∈ [r] are aligned along the

i-th dimension of the hypercuboid, and they collectively map

the library exactly once.

2) Single Node Grouping: Given a subset A ⊂ [r], we say

that S ⊂ [K] is an (A, 1) node group if it contains exactly one

node from each Ki, i.e., |S ∩Ki| = 1, for every i ∈ A. In par-

ticular, consider all possible ([r], 1) node groups T1, . . . , TX

of size r that each contains a single node from every node

set K1, . . . ,Kr, here X =
∏r

i=1 |Ki| =
∏P

p=1 m
rp
p . Denote

Tj,i = Tj ∩Ki, ∀j ∈ [X ] and ∀i ∈ [r], as the node in Tj that

is chosen from Ki.

3) Double Node Grouping: Given a subset A ⊂ [r], we say

that S ⊂ K is an (A, 2) node group if it contains exactly two

nodes from each Ki, i.e., |S∩Ki| = 2, for every i ∈ A. Hence,

the size of an (A, 2) node group is |S| = 2 · |A|. Double Node

Grouping is essential for the design of the Multi-round Shuffle

phase.

4) Node Group (NG) File Mapping: Given all ([r], 1) node

groups T1, . . . , TX , we split the N files into X disjoint sets

labeled as B1, . . . ,BX . These file sets are of size η1 ∈ Z
+ and

N = η1 X . Each file set Bi is only available to every node in

the node group Ti. It follows that if node k ∈ [K] belongs to

a node group Ti, then the file set Bi is available to this node.

Hence, by considering all possible node groups Ti that node

k belongs to, its available files, denoted by Mk, is expressed

as

Mk :=
⋃

i:k∈Ti

Bi. (5)

Note that, since each file belongs to a unique file set Bi and

is mapped to a unique set of r nodes (in the node group Ti),

we must have 1
N

∑K
k=1 |Mk| = Nr

N = r.

The function assignment is defined as follows:

5) Cascaded Function Assignment: Given all ([r], 1) node

groups T1, . . . , TX , the Q files are split into X disjoint sets

labeled as D1, . . . ,DX and file set Di is assigned exclusively

to nodes of set Ti. These function sets are of size η2 ∈ Z
+

and Q = η2 X . For k ∈ [K], define

Wk :=
⋃

i:k∈Ti

Di (6)

as the set of functions assigned to node k.

Remark 3: Note that the proposed Cascaded Function

Assignment follows the same design principle as that of the

NG File Mapping. As each file is mapped to r nodes in the

network, the proposed design ensures that each reduce function

is also mapped to r nodes. Thus, we assume that r = s in our

design. The proposed Cascaded Function Assignment serves

as a building block for consecutive rounds of MapReduce

iterations, where the reduce function outputs become the file

inputs for the next iteration.

6) Map Phase: Each node k ∈ [K] computes the set of IVs

{vi,j : i ∈ [Q], wj ∈ Mk}.

7) Multi-Round (MR) Shuffle Phase: We consider a

Multi-round Shuffle Phase with r rounds, where in each round

we use one of two methods termed the Inter-group (IG) Shuffle

Method and the Linear Combination (LC) Shuffle Method.

In the γ-th round, the nodes exchange IVs requested by γ
nodes. The IG Shuffle Method is designed for 1 ≤ γ ≤ r − 1

and forms groups of 2γ nodes. A node outside of each node

group multicasts coded pairs of IVs to this node group. For

the LC Shuffle Method, nodes also form groups of 2γ nodes;

however, nodes of this group multicast linear combinations

of packets among one another. The LC Shuffle Method is

designed only for the r-th round.

8) Inter-Group (IG) Shuffle Method (1 ≤ γ ≤ r − 1):
Consider A ⊂ [r] such that |A| = γ. For each A, let S be a

(A, 2)-node group with |S| = 2γ and S′ ⊂ S be a (A, 1)-node

group with |S′| = γ. Assume Ac = [r] \ A and let Y be a

(Ac, 1)-node group with |Y| = r − γ. An arbitrary node in Y
will multicast a summation of two sets of IVs, one for nodes

in S′ and one for nodes in S \ S′. To ensure that each node

in S′ (or S \ S′) can decode successfully from the multicast

message, the set of IVs intended for nodes in S′ (or S \ S′)
must be available to nodes in S \ S′ (or S′ ). To determine

these IVs, letting Tα = {S\S′}∪Y and T� = S′∪Y , we define

VS\S′

T�
:= {vi,j : i ∈ Dα, wj ∈ B�} (7)

and

VS′
Tα

= {vi,j : i ∈ D�, wj ∈ Bα

}
. (8)

By the definition of the NG File Mapping, nodes in T� have

access to files in B�. However, since nodes in S \ S′ are not

in T�, they do not have access to files in B�. Thus, the set

VS\S′

T�
contains IVs that are requested by nodes in S \ S′ and

can be computed at every node in T�. Similarly, VS′
Tα

contains

IVs that are requested by nodes in S′ and can be computed

at every node in Tα. The IVs of VS\S′

T�
are concatenated

to form the message U
S\S′

T�
and similarly the IVs of VS′

Tα

are concatenated to form the message US′
Tα

. For all possible

choices of A,S,S′,Y , an arbitrary node in Y multicasts

U
S\S′

T�
⊕ US′

Tα
(9)

to the 2γ nodes in S.

9) Linear Combination (LC) Shuffle Method (γ = r): This

shuffle method is used for the r-th round only. Let S denote

a ([r], 2)-node group with |S| = 2r. Each node k ∈ S will

multicast linear combinations of IVs to the other 2r−1 nodes

in S. These IVs are defined as follows. Given k ∈ S, let

T� denote a ([r], 1)-node group such that k ∈ T� ⊂ S. Let

Tα�
= S \ T�, which is also a ([r], 1)-node group. Define

VTα�

T�
= {vi,j : i ∈ Dα�

, wj ∈ B�}, (10)

which are IVs requested by the r nodes in Tα�
and are avail-

able at the r nodes in T�. For each VTα�

T�
we concatenate the IVs

of this set into the message U
Tα�

T�
and split it into 2r−1 equal

size, disjoint sub-messages denoted by U
Tα�

T�,1, . . . , U
Tα�

T�,2 r−1.

Let Lk = {� : k ∈ T� ⊂ S}. Then node k multicasts 2(r−1)

random linear combinations of the sub-messages in⋃
�∈Lk

⋃
i∈[2r−1]

U
Tα�

T�,i (11)

to the other 2r − 1 nodes in S.3

3In Appendix B, we prove that each node can decode its requested

sub-messages with high probability.
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10) Reduce Phase: For all k ∈ [K], node k computes all

output values uq such that q ∈ Wk.

Remark 4: The two Shuffle methods each have their own

advantages. With the IG Shuffle Method, as shown in (9),

a node outside a node group S transmits a coded message

containing 2 IVs, one intended for γ nodes in S′, and one

for γ nodes in S. Hence, each transmission serves 2γ nodes.

Moreover, the IG Shuffle Method does not require the use of

linear combinations or packetization of the IVs, and the sets of

IVs can simply be XOR’d together. However, the IG Shuffle

Method cannot be used in r-th Shuffle round since the node

set Y would be empty. With the LC Shuffle Method, the node

group shuffles linear combinations among one another and

2γ − 1 nodes are served with each transmission. Then, after

a node receives all the transmissions from other nodes of the

node group, it can solve for all its requested IV packets. While

the LC Shuffle Method can be generalized for any round γ,

since we only use it for γ = r, its generalized form is not

presented here.

Remark 5: While the proposed design only operates for

r = s, it will be interesting to explore the possibility of

expanding the proposed design to r �= s. The main challenge

stems from taking advantage of IVs that are requested by

multiple nodes. In the shuffle method, it is ideal to group

nodes which have similar requests as we have shown here

for r = s and as done in [3]. If the relationship between the

file placement and function assignment is arbitrary, as in the

case when r �= s, this becomes a combinatorial optimization

problem. There may not exist a systematic scheme to find a

shuffle phase that minimizes the communication load.

Remark 6: When considering arithmetic complexity, we see

the benefits of using bit-wise XOR for most of the Shuf-

fle rounds. Here, we define arithmetic complexity as the

number of addition and multiplications in the field F2T for

encoding or decoding. Encoding or decoding bit-wise XOR

has a complexity of 1 since two packets are simply added

together. Then, in the final round, for a given shuffle group,

a node generates 2(r−1) linear combinations and decodes

by solving a linear system of size (2r − 1)2(r−1). Using

Gaussian elimination, solving such a system has an arith-

metic complexity of O(r323r). Considering all shuffle groups,

the per node encode complexity for the first r − 1 rounds is

O
((

K
r

)2r−2
)

and the decode complexity is O
(
r
(

K
r

)2r−2
)

.

Then, for the last round, the encode complexity at each

node is O
((

K
r

)2r−1
2r−2

)
and the decode complexity is

O
(
r3

(
K
r

)2r−1
22r

)
.

C. 3-Dimension Homogeneous Example

Example 2: To demonstrate the general scheme, we con-

struct a computing network using a 3-dimensional hypercube

(or a cube) as shown in Fig. 2. First, we present the NG File
Mapping.4 Each lattice point in the cube represents a different

file Bi = wi, i ∈ [27] where η1 = 1. The network has

K = 9 nodes, partitioned into three sets: K1 = {1, 2, 3},

4While the File Mapping in this example is the same as that in [9], it is

included here for completeness.

Fig. 2. The input files and output functions assigned to each node are

represented by planes of lattice points from a cubic lattice. (a) planes assigned

to nodes of a set T26 = {3, 5, 9}. (b) planes assigned to a set of nodes
S = {2, 3, 5, 6} in the 2nd round of the Shuffle phase and (c) lattice points

which intersect 2 planes of from nodes in S . (d) the lattice points which

intersect 3 planes of nodes in set S = {2, 3, 5, 6, 8, 9}. (e) legends for (a)-(d).

K2 = {4, 5, 6}, and K3 = {7, 8, 9}, aligned along each of

the r = 3 dimensions of the cube. For example, the three

nodes in K1 = {1, 2, 3} are represented by three parallel

planes, e.g., node 3 is represented by the green plane. For

file mapping, each node is assigned all files indicated by

the 9 lattice points on the corresponding plane. For instance,

node 5, represented by the red plane, is assigned the file set

M5 = {w2, w5, w8, w11, w14, w17, w20, w23, w26}. For each

i ∈ [3], the size of Ki is K
r = 3, which is the number of

lattice points in the i-th dimension. Since the three nodes in

each set Ki are aligned along dimension i, they collectively

stores the entire library of 27 files. Nodes compute every IV

from each locally available file and therefore r = 3.

Next, we illustrate the Cascaded Function Assignment. The

reduce functions are assigned to multiple nodes by the same

process as the file mapping. The planes representing the reduce

functions (and files) for 6 of 9 nodes are shown in Fig. 2.

Each lattice point represents η2 = 1 function (in addition

to a file). For instance, node 2 stores files {wi} for all

i ∈ {4, 5, 6, 13, 14, 15, 22, 23, 24} (purple plane), and is

assigned to compute reduce functions for all i in the same set.

A depiction of these planes are shown in Fig. 2 (a) and (b).

IVs can be categorized by the number (γ) of nodes which

request them. Any IV of the form vi,i is only needed by nodes

that can compute this IV themselves and are thus requested

by γ = 0 nodes. Next, we consider round γ = 1 in which IVs

which are requested by only 1 node and use the IG Shuffle

Method. These IVs can be identified by considering node

group Tα (α ∈ {1, 2, · · · , 27}), consisting of 1 node from

each set K1, K2 and K3. An example is Tα = {3, 5, 9} whose

planes are depicted in Fig. 2(a). Lattice points which fall on

the intersection of exactly two of these planes represent input

files that 2 out of the 3 nodes have available to it. As these

3 nodes are the only nodes that compute the 26-th reduce

function, we see that v26,23 is requested only by node 3 and

available at nodes 5 and 9. Next, consider another node group
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T� = {2, 5, 9} that differs from Tα by only in the first node

(from K1). By observing the planes representing the nodes

of T� = {2, 5, 9}, we find v23,26 is requested only by node

2 and available at nodes 5 and 9. Therefore, either node 5 or

9 can transmit v26,23 ⊕ v23,26 to nodes 2 and 3 which can

recover their requested IV. To match the description of the

general scheme, we say A = {1}, S = {2, 3}, S′ = {3} and

Y = {5, 9}.

Next, we consider Shuffle round γ = 2 in which IVs

requested by 2 nodes are exchanged using the IG Shuffle

Method. Given T26 = {3, 5, 9}, whose planes are depicted

in Fig. 2(a), we consider lattice points which intersect only

1 out of these 3 planes. For instance, w24 is available to node

9 and not nodes 3 or 5. Therefore, nodes 3 and 5 are the only

nodes that request IV v26,24. Since node 9 has this IV, it can

multicast this IV to nodes 3 and 5. However, there is a way to

serve two more nodes without increasing the communication

load, recognizing that there are 2 other nodes, {2, 6}, that

have input file w24. Given S = {2, 3, 5, 6}, there is a set

of 4 files {w23, w24, w26, w27} such that each file is only

available to 2 nodes in S and all of these files are available

to node 9. We define S′ = {3, 5} and Y = {9}. Therefore,

V{3,5}
{2,6,9} = {v26,24}, V{2,6}

{3,5,9} = {v24,26} and node 9 transmits

v26,24⊕v24,26 to nodes {2, 3, 5, 6}. Keeping Y = {9}, we can

also define S′ = {3, 6} to obtain V{2,5}
{3,6,9} = {v23,27} and

V{3,6}
{2,5,9} = {v27,23} and node 9 also transmits v23,27⊕v27,23 to

nodes {2, 3, 5, 6}. Continuing with S = {2, 3, 5, 6}, consider

lattice points which are in the planes parallel to plane of

node 9. These planes are defined by nodes {7, 8} ∈ K3.

The lattice points of interests in regards to S are highlighted

in Fig. 2(c). We see that when Y = {8}, node 8 transmits

v17,15 ⊕ v15,17 and v18,14 ⊕ v14,18. When Y = {7}, node 7
transmits v5,9⊕v9,5 and v6,8⊕v8,6. Each node of S has locally

computed one IV and requests the other IV from each of the

transmissions from nodes 7, 8 and 9.

Finally, we consider the last Shuffle round in which IVs

requested by γ = 3 nodes are exchanged by the LC Shuffle

Method. We see that none of the nodes in T26 = {3, 5, 9} have

access to file w15 and therefore, they all request v26,15. All

3 nodes in T15 = {2, 6, 8} have computed v26,15, but request

v15,26 which nodes of T26 have computed. In fact, any node

in a ([γ], 1) node group S′ ⊂ S = T26 ∪ T15 computes an IV

that nodes in S \ S′ request. We consider the following sets

of IVs: V{3,5,9}
{2,6,8} = {v26,15}, V{3,6,9}

{2,5,8} = {v27,14}, V{2,5,9}
{3,6,8} =

{v23,18}, V{2,6,9}
{3,5,8} = {v24,17}, V{2,6,8}

{3,5,9} = {v15,26}, V{2,5,8}
{3,6,9} =

{v14,27}, V{3,6,8}
{2,5,9} = {v18,23}, and V{3,5,8}

{2,6,9} = {v17,24}. The

planes associated with each node of S = {2, 3, 5, 6, 8, 9}
are highlighted in Fig. 2(d). The IVs are split into 5 packets

so that each node requests 20 unknown packets. Every node

multicasts 4 linear combinations of its computed packets so

that every node receives transmissions from 5 nodes and a

total of 20 linear combinations to solve for the 20 requested

packets. As proved in Appendix B, at the end of 3 shuffle

rounds all node requests are satisfied.

In this example, each IV is computed at 3 nodes and r = 3.

For round 1 (γ = 1), there are 9 node groups and nodes outside

Fig. 3. A 3-dimensional lattice that defines the file availability and reduce

function assignment of 8 nodes in a heterogeneous CDC network. Each lattice
point represents both a file and a function. Nodes are assigned files and

functions represented by planes in the lattice.

each group transmit an equivalent of 9 IVs. This results in

9 · 9 = 81 transmissions. For round 2 (γ = 2), nodes form

27 groups of 4 nodes and nodes outside each group transmit an

equivalent of 6 IVs and leads to 27·6 = 162 transmissions. For

round 3 (γ = 3), nodes form 27 groups of 6 nodes and each

node in every group transmits an equivalent of 4
5 IVs. This

leads to 27 ·6 ·4/5 = 129.6 transmissions of IVs. Collectively,

the nodes transmit (81 + 162 + 129.6)T = 372.6T bits and

thus L = 372.6
729 ≈ 0.5111.

D. A 3-Dimensional (Cuboid) Heterogeneous Example

Example 3: Consider a heterogeneous network with K = 8
computing nodes where nodes C1 = {1, 2, 3, 4} have double

the memory and computation power compared to nodes C2 =
{5, 6, 7, 8}. By General Node Grouping, nodes are split into

3 groups: K1 = {1, 2}, K2 = {3, 4} and K3 = {5, 6, 7, 8}.

By NG File Mapping and Cascaded Function Assignment,

there are X = 16 sets of functions and files and node

assignments are represented by a lattice structure (a cuboid)

in Fig. 3. Let η1 = η2 = 1 so that each file set only contains

1 file and each function set only contains 1 function. In the

Map phase, every node computes every IV for each locally

available file.

Next, we consider the Shuffle phase. In round 1 (γ = 1),

we use the IG Shuffle Method and consider pairs of nodes

that are from the same set Ki and aligned along the same

dimension. Let S = {1, 2},S′ = {1}, and Y = {3, 8}.

We then have S′ ∪ Y = {1, 3, 8} = T7, and (S \ S′) ∪ Y =
{2, 3, 8} = T8. Note that node 1 is the only node that requests

v7,8 and node 2 is the only node that requests v8,7. Hence,

either node 3 or 8 from Y can transmit v7,8 ⊕ v8,7 to nodes

1 and 2 in S. Continuing this process, we see that all IVs

requested by a single node are transmitted in coded pairs.

Next, for round 2 (γ = 2) we use the IG Shuffle Method

and consider groups of 4 nodes where 2 are from Ki and

2 are from Kj where i �= j. For instance, let S = {3, 4, 6, 8}.

If we let S′ = {3, 6}, and Y = {1}. We then have
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S′ ∪Y = {3, 6, 1} = T3, and (S \ S′ ) ∪ Y = {4, 8, 1} =
T15. Thus, node 1 from Y will transmit v3,15 ⊕ v15,3 to

S. For the same S = {3, 4, 6, 8},S′ = {3, 6}, if we let

Y = {2}, then we have S′ ∪ Y = {3, 6, 2} = T4, and

(S \ S′) ∪ Y = {4, 8, 2} = T16. Thus, node 2 from Y will

transmit v4,16 ⊕ v16,4 to S. Hence, IVs requested by 2 nodes

can also be transmitted in coded pairs.

Finally, for 3 (γ = 3) we use the LC Shuffle Method and

consider groups of 6 nodes that contains 2 nodes from each set

K1, K2 and K3. For instance, consider S = {1, 2, 3, 4, 5, 6}.

If we choose S′ = {1, 3, 5} = T1, then we have

S \ S′ = {2, 4, 6} = T12. We observe that v1,12 is requested

by three nodes in S′ and is computed by all three nodes

in S \ S′. Similarly, we consider the other three cases:

S′ = {1, 3, 6} = T3, S \ S′ = {2, 4, 5} = T10; S′ =
{1, 4, 5} = T9, S \ S′ = {2, 3, 6} = T4; and S′ = {1, 4, 6} =
T11, S \ S′ = {2, 3, 5} = T2. In this way, we identify 8 IVs

which are requested by 3 nodes of S and locally computed at

the 3 other nodes of S. These IVs are: v1,12, v12,1, v3,10, v10,3,

v4,9, v9,4, v2,11 and v11,2. Each IV is then split into 2 r−1 =
2 · 3− 1 = 5 equal size packets and each node of S transmits

2r−1 = 22 = 4 linear combinations of its locally available

packets. Each node collectively receives 4 · 5 = 20 linear

combinations from the other 5 nodes in S which are sufficient

to solve for the requested 4 IVs or 20 unknown packets.

In this example, the computation load is r = 3 because

every file is assigned to 3 nodes and every node locally

computes all possible IVs. In order to compute the

communication load, we can see that IVs requested by

0 nodes do not have to be transmitted. IVs requested by

1 or 2 nodes are transmitted in coded pairs, effectively

reducing the communication load by half to shuffle these

IVs. Hence, the number of transmissions in round 1 and

2 are given by 80
2 = 40, and 112

2 = 56, respectively. The

number of transmissions in round 3 is 6 · 6 · 4
5 = 28.8 because

there are 6 choices of S of size 6 and each node transmit

effectively 4
5 of an IV. The communication load is thus given

by L = 40+56+28.8
256 = 0.4875 where QN = 16 · 16 = 256.

IV. ACHIEVABLE COMMUNICATION LOAD AND

OPTIMALITY

In this section, we present the achievable communication

load of the proposed design for general cascaded CDC net-

works and discuss the optimality of the design given the

proposed file and function assignment. An example is provided

to illustrate the key steps in finding an information theoretic

lower bound on the achievable communication load.

A. Achievable Communication Load

Theorem 1: Assume r = s. For the proposed hypercuboid

scheme with NG File Mapping, Cascaded Function Assign-

ment, and Multi-round Shuffle Phase, the following commu-

nication load is achievable

Lc =
X − 1
2X

+
1

X(4r − 2)

r∏
i=1

(|Ki| − 1), (12)

where X =
∏r

i=1 |Ki|. An upper bound on Lc is obtained

from (12) as

Lc <
1
2

+
1

4r − 2
=

r

2r − 1
≤ 2

3
. (13)

Proof: The proof of Theorem 1 is given in Appendix A.

Corollary 1: When setting |Ki| = K
r and X = (K

r )r, (12)

gives the Lc of a homogeneous network with parameters K
and r.

B. Optimality

In this section, we will show the optimality of the proposed

hypercuboid approach for cascaded CDC. Note that, the funda-

mental computation-communication load tradeoff of [3] does

not apply to the cascaded CDC design since it has a different

reduce function assignment compared to that of [3]. We start

by presenting the optimality of a homogeneous network using

our proposed design and then for the more general heteroge-

nous design.

Theorem 2: Consider a homogeneous system with parame-

ters K and r. Let L∗ be the infimum of achievable communi-

cation load over all possible shuffle designs given the proposed

NG File Mapping and Cascaded Function Assignment. Then,

we have

L∗ ≥ 1
2 − 1

4m−2 −
(∑m−1

m̂=1
m̂2r

4m̂2−1

)
m−2r, (14)

where m = K
r ≥ 2. Furthermore, given Lc in (12), it follows

from (14) that Lc is within a constant multiple of L∗

Lc ≤
64
29

· L∗ ≈ 2.207 L∗, (15)

for general K, r.

Proof: Theorem 2 is proved in Appendix C.

Remark 7: For the homogeneous network in Example 2,

we have Lc = 0.5111. This is compared to the lower bound

of (14) that gives L∗ ≥ 0.3937. In this case, we have Lc ≤
1.2982 L∗, achieving a better constant than that of the general

case given in (15).

Theorem 3: Consider a general heterogeneous system with

parameters K and r. Let L∗ be the infimum of achievable

communication load over all possible shuffle designs given the

proposed NG File Mapping and Cascaded Function Assign-

ment. Let xi = |Ki|. Without loss of generality, assume that

x1 ≥ x2 · · · ≥ xs. Then, we have

L∗ ≥ max(LP1, LP2), (16)

where

LP1 =
x1 − 1
2x1

,

LP2 =
1

X2

r∑
i=1

(
i−1∏
j=1

x2
j

)
xi∑

m̂=xi+1+1

i∑
�=1

(m̂ − 1)2�−1m̂2(i−�).

(17)

Furthermore, for general K and r, we show that Lc is within

a constant multiple of L∗,

Lc <
8
3
· L∗. (18)
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Proof: Theorem 3 is proved in Appendix D.

Remark 8: The two lower bounds LP1 and LP2 in (17)

correspond to two different choices of permutations used to

evaluate the right side of (29) of Lemma 2 in Appendix C.

Extensive simulations suggest that the permutation used in

LP2 is optimal in achieving the largest lower bound using

Lemma 2. For instance, consider Example 4, we get LP1 =
0.375, which is less than LP2 = 0.3945. However, due to

the complexity of (17), we use the simpler LP1 to determine

the constant in (18). Note that the permutation used for LP2

matches with the permutation used in the homogeneous case to

derive (14). Since LP1 is in general weaker than LP2, we see

that the constant in (18), derived using LP1, is larger than that

of (15) for the homogeneous case.

C. Optimality Example

Example 4: This example shows how to find a lower bound

on the achievable communication load given the proposed NG

Filing Mapping and Cascaded Function Assignment. Here,

we use the homogeneous file mapping and function assignment

of Example 2. Our approach builds upon an information

theoretic lower bound (29) (see Lemma 2 and the notations

therein in Appendix C), originally designed for s = 1 in [9],

and extend it to the case of s > 1 for the case of cascaded

CDC.

Lemma 2 requires that we pick a permutation of nodes and

then use file and function counting arguments. The permuta-

tion we use here is {1, 7, 6, 2, 8, 5, 3, 9, 4}. To achieve a tighter

bound, this permutation contains 3 sequential node groups

where each node group contains one node aligned along each

dimension of the cube. In order to calculate the terms of (29),

for each node ki, we count the number of files not available

to the first i nodes of the permutation. This set of files is

MK \M{k1,...,ki}, called file of interests for node ki. We also

count the number of functions assigned to the i-th node of the

permutation that are not assigned to the previous i− 1 nodes.

This set of functions is Wki \W{k1,...,ki−1}, called functions

of interests for node ki. The product of these file and function

counts represents the number of IVs of interests in Lemma 2.

Moreover, since the IVs are independent and of size T bits,

we have

H
(
VWki

,:|V:,Mki
, Y{k1,...,ki−1}

)
= T ·

∣∣MK \M{k1,...,ki}
∣∣ · ∣∣Wki \W{k1,...,ki−1}

∣∣ , (19)

where H(·) is the entropy function. In Fig. 4, we highlight the

lattice points representing the sets of files and functions which

are used to obtain the bound. Lattice points representing the

files are highlighted in red and lattice points representing the

functions are highlighted in green. First, we consider every

function assigned to node 1 and every file not available to

node 1, where node 1 is the first node in the permutation.

This is shown in Fig. 4(a). We see that H (VW1,:|V:,M1) =
T · 18 · 9 = 162T since in this case each lattice point only

represents 1 file and 1 function (η1 = η2 = 1).

Similarly, for node 7, we are count functions it computes

and files it does not have locally available, except this

time we do not count files available to node 1 or functions

Fig. 4. A representation of Example 4 for a given permutation
{1, 7, 6, 2, 8, 5, 3, 9, 4}. In (a)-(g), the i-th subfigure shows the functions

of interests and files of interests for node ki, highlighted in green and red,

respectively. For instance, (c) shows the functions and files of interests for
node 6, after accounting for functions and files of interests for node 1 (see

(a)) and node 7 (see (b)). From (a)-(g), i increases by 1 at each step, and the

lattice shrinks in one dimension by one unit. Refer to Fig. 2 for the definition

of file mapping and function assignment.

assigned to node 1. Fig. 4(b) shows the files and functions we

counting. Note that, we disregard the top layer of the cube

which represents the files and functions assigned to node

1. We see that H
(
VW7,:|V:,M7 , Y{1}

)
= T · 6 · 12 = 72T.

By continuing this process, from Fig. 4(c-f), we see that

H
(
VW6,:|V:,M6 , Y{1,7}

)
= 32T, H

(
VW2,:|V:,M2 , Y{1,7,6}

)
=

16T, H
(
VW8,:|V:,M8 , Y{1,7,6,2}

)
=

4T, H
(
VW5,:|V:,M5 , Y{1,7,6,2,8}

)
= T. Finally, only 1 lattice

point remains in Fig. 4 (g), representing a function assigned

to node 3. However, there are no lattice points representing

files node 3 does not have locally available. This occurs

because the other two nodes aligned along the same

dimension, nodes 1 and 2, have already been accounted

for, and they collectively have all the files that node 3 does

not have. Therefore, H
(
VW3,:|V:,M3 , Y{1,7,6,2,8,5}

)
= 0.

Similarly, for the last two nodes of the permutation, nodes

9 and 4, there are no remaining files that are not locally

available to them. In fact, there are also no functions

assigned to nodes 9 and 4 which have not already been

accounted for. Therefore, H
(
VW9,:|V:,M9 , Y{1,7,6,2,8,5,3}

)
=

H
(
VW4,:|V:,M4 , Y{1,7,6,2,8,5,3,9}

)
= 0.

By taking the sum of (29), we directly compute the bound

of (31) and find that

L∗ ≥ 287T

QNT
=

287
27 · 27

≈ 0.3937. (20)

V. DISCUSSION

In this section, we compare the performance the proposed

scheme with the state-of-the-art scheme of [3] and discuss

design considerations of the proposed CDC scheme.

First, we compare the required number of files and functions

for homogeneous designs. The scheme of [3] requires N1 =(
K
r

)
η1 input files and Q1 =

(
K
s

)
η2 reduce functions. The
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proposed scheme requires Nc =
(

K
r

)r
η1 input files and

Qc =
(

K
s

)s
η1 output functions. Assuming r = Θ(K),

by using Stirling’s formula and a similar analysis found in [9],

we directly compare the required number of input files to find

N1

Nc
= Θ

(√
K

2πr(K − r)
·
(

K

K − r

)K
)

= Θ

(√
1
K

·
(

K

K − r

)K
)

. (21)

Since (21) grows exponentially with K , the proposed

scheme reduces the number of required files exponentially.

By a similar analysis, we can show that the proposed scheme

also allows an exponential reduction in the number of Reduce

functions.

Next, we compare the communication load of the proposed

CDC scheme with that of [3]. While the proposed design

applies to heterogeneous networks, the design in [3] only

applies to homogeneous networks. Hence, to facilitate fair

comparisons, we compare with an equivalent homogeneous

network of [3] with the same r, N, Q, for appropriate choices

of η1 and η2. The scheme of [3] achieves the communication

load as a function of K , r and s as

L1(r, s) =
min{r+s,K}∑

γ=max{r+1,s}

γ
(
K
γ

)(
γ−2
r−1

)(
r

γ−s

)
r
(

K
r

)(
K
s

) . (22)

Corollary 2: Let Lc(r) be the resulting communication

load from using the NG File Mapping, Cascaded Function

Assignment and MR Shuffle Method, and L1(r, r) given

by (22) for an equivalent computation load r and number of

nodes K and r = s.

(a) When r = s = 2, for both homogeneous and heteroge-

neous hypercuboid designs, we have Lc(2) < L1(2, 2).
(b) When r = s ≥ 6 and K > r − 1 + 4r3, there exists

a heterogeneous hypercuboid design where Lc(r) <
L1(r, r).

(c) In the limiting regime, when r = s = o(K),5 we have

limK→∞
Lc(r)

L1(r,r) ≤ 1.

Proof: Corollary 2 is proven in Appendix E.

A. Homogeneous Cascaded CDC

In this section, we provide numerical results to confirm the

findings in Corollary 2 for homogeneous cascaded CDC.

In Fig. 5a, we compare Lc(r) with Lc(r, r) for large

homogeneous networks (K = 96, 120) as r increases. For

s = r, we observe that Lc(r) with Lc(r, r) are close when

r 
 K , verifying Corollary 2 (c), but begin to deviate when

r = Θ(K). We see that for most (but not all) values of K and

r that Lc = 1
2 + ε where ε > 0. The intuition behind this is

for most of the Shuffle phase, IVs are included in coded pairs.

5We will use the following standard “order” notation: given two functions

f and g, we say that: 1) f(K) = O (g(K)) if there exists a constant c and
integer N such that f(K) ≤ cg(K) for n > N . 2) f(K) = o (g(K))

if limK→∞
f(K)
g(K)

= 0. 3) f(K) = Ω (g(K)) if g(K) = O (f(K)). 4)

f(K) = ω (g(K)) if g(K) = o (f(K)). 5) f(K) = Θ (g(K)) if f(K) =
O (g(K)) and g(K) = O (f(K)).

Fig. 5. Comparisons of communication load Lc of the proposed design and

L1 of [3] for homogeneous networks.

Meanwhile, from (22) and Fig. 5a, we see that L1(r, r) can

have a communication load less than 1
2 .

Fig. 5 compares Lc(r) and L1(r, r) as a function of K for

fixed r = s = 2. This corresponds to the limiting regime of

r = o(K). Moreover, consistent with Corollary 2 (a), Fig. 5

shows the proposed design achieves a lower communication

load than that of [3]. This is because while both the proposed

scheme and that of [3] handle IVs that are requested by

1 or 2 nodes with the same efficiency, the former has a

greater fraction of IVs which are requested by 0 nodes. The

optimality of the scheme in [3] is proved under the key

assumption on function assignment that every s nodes have

at least 1 function in common. In contrast, we do not make

such an assumption in the proposed design. This allows greater

flexibility in the design of function assignment and enables a

lower communication load than that of [3].

By the proposed NG File Mapping and Cascaded Function

Assignment, the minimum requirement of N and Q is
(

K
r

)r

where η1 = η2 = 1. While the minimum requirements of N
and Q in [3] are

(
K
r

)
and

(
K
s

)
. Hence, it can be observed that

the proposed approach reduces the required numbers of both

N and Q exponentially as a function of r and s.

B. Heterogeneous Cascaded CDC

We consider the following two cases of heterogeneous

network.
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Fig. 6. Comparisons of the communication load achieved by the proposed
heterogeneous design to equivalent homogeneous designs including the pro-

posed design and the design from [3].

• Case 1: Assume 2
5 of the nodes have 3 times as much

storage capacity and computing power compared to the

other 3
5 of the nodes. Here, we set P = 2, r1 = 2, m1 =

0.2 K, r2 = 1, m2 = 0.6K . Note that m2 = 3 m1.

• Case 2: Assume 1
5 of the nodes have 4 times as much

storage capacity and computing power compared to the

other 4
5 of the nodes. Here, we set P = 2, r1 = 2, m1 =

0.1 K, r2 = 2, m2 = 0.4K . Note that m2 = 4m1.

We compare these two cases to equivalent homogeneous

schemes including the homogeneous scheme described in this

paper and the scheme of [3]. Here, equivalent means the

schemes are compared with the same r, s and K . Fig. 6

confirms Corollary 2 (b) that for fixed r and large K , there

exists a proposed heterogeneous design with Lc(r) < Lc(r, r).
There appears to be an advantage of having a set of nodes with

both more locally available files and assigned functions. In this

way, less IV shuffling is required to satisfy the requests of

these nodes. As discussed before, an extreme case of this can

be observed where a subset of nodes each have all files locally

available and compute all assigned functions. Furthermore,

for the given simulations, the communication load of the

heterogeneous designs approaches the communication load of

the homogeneous designs as shown in Corollary 2 (c).

VI. CONCLUSION

In this work, we introduced a novel combinatorial hyper-

cuboid approach for cascaded CDC frameworks with both

homogeneous and heterogeneous network scenarios. The pro-

posed low complexity combinatorial structure can determine

both input file and output function assignments, requires sig-

nificantly less number of input files and output functions, and

operates on large heterogeneous networks where nodes have

varying storage space and computing resources. Surprisingly,

due to a different output function assignment, the proposed

scheme can outperform the optimal state-of-the-art scheme

with a different output function assignment. Moreover, we also

show that the heterogeneous storage and computing resource

can reduce the communication load compared to its homoge-

neous counterpart. Finally, the proposed scheme can be shown

to be optimal within a constant factor of the information

theoretic converse bound while fixing the input file and the

output function assignments.

APPENDIX A

PROOF OF THEOREM 1

Let xi = |Ki| be the size of the i-th dimension of the

hypercuboid. Note that if Ki ∈ Cp, then xi = mp, as defined in

General Node Grouping of Section III-B. The communication

load can be calculated by considering all r rounds of the

Shuffle phase. For γ ∈ {1, . . . , r − 1}, in the γ-th round we

use the IG Shuffle Method. We consider a node group S of

2γ nodes where there are 2 nodes from Ki for all i ∈ A ⊆ [r]
such that |A| = γ. Given A and S we identify all node sets

Y which contain r− γ nodes, 1 node from each set Ki for all

i ∈ [r] \ A. Given A, there are
∏

i∈[r]\A
xi possibilities for Y .

Furthermore, there are 2γ possibilities for choosing a subset

S′ ⊂ S such that |S′| = γ. Therefore, there are

2γ
∏
i∈A

(
xi

2

) ∏
i/∈A

xi = 2γ
∏
i∈A

xi(xi − 1)
2

∏
i/∈A

xi

= X
∏
i∈A

(xi − 1) (23)

unique pairs of Y and S′ given A. For each unique pair

of Y and S′, we define a set of IVs VS\S′

S′∪Y which only

contains IVs vi,j such that i ∈ Dα and wj ∈ B� where

{{S \ S′} ∪ Y} = Tα and S′ ∪ Y = T�. Since |B�| = η1

and |Dα| = η2, we see that |VS\S′

S′∪Y | = η1η2. All of the IV

sets are transmitted in coded pairs, effectively reducing the

contribution to the communication load by half. Therefore,

given A, there are η1η2X
2

∏
i∈A(xi − 1) transmissions of size

T bits, the number of bits in a single IV. A can range in size

from 1 to γ − 1. Accounting for all possibilities of A, we

obtain the total number of bits transmitted as

η1η2XT

2

r−1∑
γ=1

⎛
⎝ ∑

{A:A⊂[r],|A|=γ}

(∏
i∈A

(xi − 1)

)⎞
⎠ . (24)
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Finally, in the r-th round, we use the LC Shuffle Method.

We consider all node groups of 2r nodes, S, such that |S ∩
Ki| = 2 for all i ∈ [r]. There are

∏r
i=1

(
xi

2

)
possibilities for a

node group S. Furthermore, given S, there are 2r possibilities

for a node group S′ ⊂ S such that |S′∩Ki| = 1 for all i ∈ [r].
We see that S′ = T� and {S \ S′} = Tα�

for some � which

determines α�. Therefore, |VS\S′

S′ | = |B�| · |Dα�
| = η1η2. Each

node of S transmits 2r−1 linear combinations of size η1η2T
2r−1

bits and the total number of bits transmitted in the r-th round

is

2rη1η22r−1T

2r − 1

r∏
i=1

(
xi

2

)
=

rη1η2TX

2r − 1

r∏
i=1

(xi − 1). (25)

Next, we need to add (24), (25), and normalize by QNT =
η1η2X

2T to get Lc. The summation can be simplified using

Lemma 1 below.

Lemma 1: Given a set of numbers a1, a2, . . . , ac ∈ R,

the sum of the product of all subsets, including the empty

set, of this set of numbers is∑
C⊆[c]

∏
i∈C

ai = (a1 + 1) × (a2 + 1) × · · · × (ac + 1). (26)

Lemma 1 easily follows by considering the expansion of

the right side of (26). Using Lemma 1, the communication

load (12) is given by

Lc =
1

2X

(
r∏

i=1

|Ki| − 1 −
r∏

i=1

(|Ki| − 1)

)

+
r

X(2r − 1)

r∏
i=1

(|Ki| − 1)

=
X − 1
2X

+
1

X(4r − 2)

r∏
i=1

(|Ki| − 1)

<
1
2

+
1

4r − 2
. (27)

APPENDIX B

CORRECTNESS OF HETEROGENEOUS CDC SCHEME

Consider r = s sets of IVs, where the γ-th set includes

IVs requested by γ nodes. For each set, we prove that Shuffle

Methods from Section III-B satisfy the following: 1) all IVs

from that set are included in a coded transmission, 2) nodes

can decode IVs they request from that set and 3) nodes only

transmit IVs from that set which are computed from locally

available files. Then by using the specified Shuffle Method for

each γ ∈ {1, . . . , s}, each node will receive all its requested

IVs and be able to compute all assigned functions in the

Reduce phase.

We first prove criterion 1) for the IG and LC Shuffle

Methods. For γ ∈ {1, . . . , r − 1}, in the γ-th round we see

|Tα ∩ T�| = |Y| = r − γ. Also, any T� is possible and given

T� any Tα is possible given that |Tα ∩T�| = r− γ. Therefore,

the set of IVs transmitted is

{vi,j : i ∈ Dα, wj ∈ B�, |T� ∩ Tα| = r − γ}. (28)

This is the set of all IVs requested by γ nodes and this

proves 1) for the IG Shuffle Method. Similarly, for the r-th

round, in the LC Shuffle Method, we consider all possible

pairs T� and Tα� such that |Tα ∩T�| = 0 and the sets have no

nodes in common. The IVs included in the linear combinations

in the r-th are then {vi,j : i ∈ Dα�
, wj ∈ B�, |T� ∩ Tα�

| = 0}.
which represents all IVs requested by r nodes and this proves

1) for the LC Shuffle Method.

Next, for the IG Shuffle Method, consider an arbitrary node

z ∈ S that receives a multicast message from node y ∈ Y
where z /∈ Y . The message is of the form VS\S′

T�
⊕VS′

Tα
, given

in (9), where Tα = {S \ S′} ∪ Y and T� = S′ ∪ Y . Note

that z is either in S′ or S \ S′. If z ∈ S′, then since z ∈ T�,

it has access to B� and thus can compute all IVs in VS\S′

T�
and

then subtract these off from the coded message to recover its

desired IVs in VS′
Tα

. The same reasoning applies to the case

when z ∈ S \S′. This confirms 2). To confirm 3), we see that

for any node y ∈ Y , since y is in both T� and Tα, by the NG

File Mapping node y has access to both B� and Bα and thus

can compute IVs in both VS\S′

T�
and VS′

Tα
.

For the LC Shuffle Method in the r-th round, for a given

S, there are 2r choices of T� in (10) which determines the

node group Tα�
. Fix a node z ∈ S. Since half of these T�

include node z, we see that z can compute exactly half of

these IVs, and requests the other half of them. These leads to

2r−1 unknown IV sets VTα�

T�
requested by node z. Since these

IVs are further divided into 2r−1 disjoint subsets, node z will

request a total of (2r−1)2r−1 unknown packets. Node z will

receive transmissions from the other 2r−1 nodes in S in which

each node transmits 2r−1 random linear combinations of its

known IV sets of interest. Therefore, node z can recover the

(2r− 1)2r−1 unknown packets since it receives (2r − 1)2r−1

linearly independent combinations with high probability as the

field size goes to infinity, which is shown below.

For the LC Shuffle method, we consider a (2r − 1)2r−1

square coefficient matrix A = (ai,j) for the requested packets

of a node z ∈ {S \S′}∩Ki. The first 2r−1 rows contain only

non-zero elements since z receives linear combinations of all

requested packets from the node k ∈ S′∩Ki. We consider the

other 2r − 2 nodes in pairs as {k1, k2} = S ∩ Kj for j �= i.
Nodes k1 and k2 send LCs with half of the requested packets

by node z, and they complement each other such that k1 and k2

do not have any transmitted packets in common. Therefore, A
contains (2r − 2)2r−1 rows with half non-zero elements and

each half-zero row has a compliment row with the position

of the zero and non-zero elements swapped. If we randomly

generate the non-zero elements, we can show that at least one

term of the determinant computation is non-zero. Therefore,

by the Schwartz-Zippel Lemma [12], the probability of this

matrix being invertible is high as the field size goes to infinity.

We create a matrix A′ = (a′
n,m) by re-arranging the rows of

A such that a′
n,n > 0. Consider the half-zero rows of A which

we will place as the first and last (2r−2)2r−2 rows of A′. For

each n ∈ [(2r−2)2r−2], consider some unplaced half-zero row

of A which we label as row i and whose unplaced compliment

row is row i′. If ai,n > 0, then we let a′
n,m = ai,m and

a′
(2r−1)2r−1−n+1,m = ai′,m, where m spans the length of each

row. Otherwise, if ai,n = 0, we place the rows in the opposite

places. Note that, for n ∈ [(2r − 2)2r−2], there will always

be an unplaced compliment row pair {i, i′} such that the
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ai,n > 0 and a′
i′,(2r−1)2r−1−n+1 > 0. After this, the 2r−1

entirely non-zero rows of A are placed in the remaining

rows of A′. This matrix has no non-zero elements along the

diagonal and at least one term of the determinant computation

is non-zero.

This proves criterion 2) for the LC Shuffle Method. To con-

firm 3) for LC Shuffle Method, we see that since node k ∈ T�,

it has access to B�, and thus can compute all IVs in VTα�

T�
.

APPENDIX C

PROOF OF THEOREM 2

The proof of Theorem 2 utilizes Lemma 2 in [9] which

is based on the approaches in [3], [13] and provides a lower

bound on the entropy of all transmissions in the Shuffle phase

given a specific function and file placement and a permutation

of the computing nodes.

Lemma 2: Given a particular file placement and function

assignment {Mk,Wk, ∀k ∈ [K]}, in order for every node

k ∈ [K] to have access to all IVs necessary to compute

functions of Wk, the optimal communication load over all

achievable shuffle schemes, L∗, is bounded by

L∗ ≥ 1
TQN

K∑
i=1

H
(
VWki

,:|V:,Mki
, Y{k1,...,ki−1}

)
, (29)

where k1, . . . , kK is some permutation of [K], VWki
,: is the

set of IVs necessary to compute the functions of Wki . Here,

the notation “:” is used to denote all possible indices. V:,Mki

is set of IVs which can be computed from the file set Mki

and Y{k1,...,ki−1} is the union of the set of IVs necessary to

compute the functions of
⋃i−1

j=1 Wkj and the set of IVs which

can be computed from files of
⋃i−1

j=1 Mkj . �
Proof of Theorem 2: We pick a permutation of nodes by

first dividing the K nodes into m = K
r disjoint ([r], 1)

node groups {G1, . . . ,Gm}, each containing a node from

{Ki, i ∈ [r]}. Note that each Ki contains m nodes aligned

along i-th dimension of the hypercube, and each Gi has size

r. In particular, each Gi, i ∈ [m] is an element in the set of

all possible ([r], 1) node groups {T1, · · · , TX} as defined in

Single Node Grouping of Section III-B with P = 1. Then the

permutation is defined such that G1 contains the first r nodes,

G2 contains the next r nodes and this pattern continues such

that Gm contains the last r nodes of the permutation. In other

words, {k(j−1)r+1, . . . , kjr} = Gj for all j ∈ {1, . . . , m}.

Given this permutation, to compute the i-th term of (29),

we will show

H
(
VWki

,:|V:,Mki
, Y{k1,...,ki−1}

)
= η1η2Tm̂

(2r−2�i)
i (m̂i − 1)(2�i−1), (30)

where m̂i = m − � i−1
r � and �i = i − r� i−1

r �. Note

that nodes {k1, k2, · · · , ki−1} consists of all nodes in

{G1,G2, · · · ,G
 i−1
r �}, �i−1 nodes in G
 i−1

r �+1, and no nodes

in any of the m̂i − 1 node groups in {G
 i−1
r �+2, · · · ,Gm}.

In particular, ki is the �i-th node in Gni where ni = � i−1
r �+1.

Since the IVs are assumed to be independent, we will take

two steps to count the number of terms in (30). In Step 1,

we count the number of functions that are in Wki , but not

in {Wk1 , · · · ,Wki−1}. These are referred to as functions of

interests. By the definition of cascaded function assignment,

this is equivalent to counting the number of ([r], 1) node

groups Tl such that Tl includes ki, but none of nodes in

{k1, k2, · · · , ki−1}. Now, consider the first �i nodes in Gni .

Without loss of generality, assume that these nodes are taken

from Kj , j = 1, · · · , �i, respectively. Then, for any dimension

r0 ∈ {�i+1, · · · , r}, Tl,r0 can be any of the m̂i elements from

{Gj,r0 , ni ≤ j ≤ m}. Here, Tl,r0 (or Gj,r0) denotes the element

in Tl ( or Gj) that is chosen from Kr0 . Similarly, for any

r0 ∈ {1, · · · , �i − 1}, Tl,r0 can be any of the m̂i − 1 elements

from {Gj,r0 , ni + 1 ≤ j ≤ m}. When r0 = �i, we must

have Tl,r0 = ki. This gives a total of m̂r−�i

i (m̂i − 1)�i−1

choices of such Tl. In Step 2, we count the number of

files that are not in {Mk1 , · · · ,Mki}. These are referred

to as files of interests. This step is equivalent to counting

the number of ([r], 1) node groups Tl that do not include

any of the nodes {k1, k2, · · · , ki}. By replacing the case of

r0 ∈ {1, 2, · · · �i−1} in Step 1 by r0 ∈ {1, 2, · · · �i}, we obtain

a total of m̂r−�i

i (m̂i−1)�i choices of Tl. By taking the product

of the results as in (19) from both steps and accounting for

the number of files, η1, and functions, η2, assigned to a node

group Tl, we obtain (30). The counting principle described

above can be visualized in Example 4. For instance, in Step 2,

when considering node ki after some “layers have been peeled

off” (previous nodes were considered), the hypercuboid has �i

dimensions of size m̂i − 1 and r − �i dimensions of size m̂i.

It follows from (29) that we can sum (30) over all nodes

{ki, i = 1, · · · , mr} to calculate the lower bound correspond-

ing to this permutation. Note that summing over the right side

of (30) from i = 1 to i = mr is the same as summing over

all possible mr pairs of (m̂i, �i), where m̂i goes from 1 to m,

and �i goes from 1 to r. For instance, nodes in Gj all have

the same m̂i = m− j + 1 but different �i that goes from 1 to

r. In the following, for brevity, we drop the subscript i in the

double summation over {(m̂i, li)}, with the understanding that

the first summation goes through all node groups G1, · · · ,Gm,

and the second summation goes through each of the r nodes

in a given node group.

L∗QN

≥ η1η2

m∑
m̂=1

r∑
�=1

m̂(2r−2�)(m̂ − 1)(2�−1)

= η1η2

m∑
m̂=1

m̂2r−2(m̂ − 1)
r−1∑
�=0

(
m̂ − 1

m̂

)2�

= η1η2

m∑
m̂=1

(m̂ − 1)
m̂2r − (m̂ − 1)2r

m̂2 − (m̂ − 1)2

= η1η2

(
m∑

m̂=1

m̂2r − (m̂ − 1)2r

2
−

m∑
m̂=1

m̂2r − (m̂ − 1)2r

4m̂ − 2

)

= η1η2

(
m2r

2
−

m∑
m̂=1

m̂2r

4m̂ − 2
+

m−1∑
m̂=0

m̂2r

4m̂ + 2

)

= η1η2

(
m2r

2
− m2r

4m − 2
−

m−1∑
m̂=1

m̂2r

4m̂2 − 1

)
. (31)

By normalizing (31) by QN = η1η2m
2r, we obtain (14).
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Moreover, we can loosen the bound of (14) to find

L∗ ≥ 1
2
− 1

4m − 2
− 1

4

(
m−1∑
m̂=1

m̂2r−2

)
m−2r

≥ 1
2
− 1

4m − 2
− 1

8m
+

1
8m2

≥ 29
96

. (32)

The last inequality in (32) follows from the left side of being

an increasing function of m when m ≥ 2, and the minimum

is achieved at m = 2. Combining (32) with (13), we obtain

(15).

APPENDIX D

PROOF OF THEOREM 3

In the following, let xi = |Ki| be the size of the i-th
dimension of the hypercuboid. WLOG, assume x1 ≥ x2 ≥
. . . ≥ xs−1 ≥ xs. First, we take a similar approach to Exam-

ple 4 and the proof of Theorem 2 to derive LP2. With each

node of the permutation we remove a layer of the hypercuboid.

Through this process, the hypercuboid reduces in size as we

disregard files available and functions assigned to nodes of the

previous nodes of the permutation. In particular, we design

the permutation such that the next node is aligned along the

dimension with the largest remaining size (accounting for

layers previously removed). For example, if after accounting

for some nodes the remaining sizes of the dimensions are

x̂1, . . . , x̂r, we pick the next node from the set Kn such that

x̂n is the largest dimension. Then, we count the number of

files of interests which is η1(x̂n − 1)
∏

j �=n x̂j and number of

functions of interests η2

∏
j �=n x̂j .

L∗QN

≥ η1η2

r∑
i=1

×

⎛
⎝

⎛
⎝i−1∏

j=1

x2
j

⎞
⎠ xi−xi+1∑

j=1

i∑
k=1

(xi−j)2k−1(xi − j + 1)2(i−k)

⎞
⎠

= η1η2

r∑
i=1

⎛
⎝

⎛
⎝i−1∏

j=1

x2
j

⎞
⎠ xi∑

m̂=xi+1+1

i∑
�=1

(m̂−1)2�−1m̂2(i−�)

⎞
⎠ .

(33)

After scaling (33) by QN = η1η2 X2, we obtain the desired

expression for LP2.

Next, we derive LP1 using a different permutation that

includes only the x1 nodes aligned along the largest dimen-

sion. Note that since nodes aligned along the same dimension

collectively compute all functions, the remaining nodes of the

permutation are irrelevant. Each of the x1 nodes computes

η2
X
x1

functions and there are η1X
x1−1

x1
files which are not

available to it. For the first node of the permutation there are

η1η2X
2
(

x1−1
x2
1

)
IVs of interest using the bound of Lemma 2.

Since nodes aligned along the same dimension do not have

any assigned functions in common, the number functions of

interest remains the same for the following nodes. However,

the number of files of interest decreases by η1
X
x1

for each

following node of the permutation. Since nodes aligned along

the same dimension do not have any available files in common,

the number of files of interest decreases by the same amount

with each node in the permutation. Thus,

L∗QN ≥
x1∑
i=1

η1η2

(
X

x1

) (
X

x1 − 1
x1

− (i − 1) · X

x1

)

= η1η2
X2(x1 − 1)

2x1
. (34)

By combining (34) and (13), we obtain (18).

APPENDIX E

PROOF OF COROLLARY 2

For (a), given that r = s = 2, we obtain L1 = 2(K−2)
3(K−1)

from (22), and Lc = 2
3 − 1

2X
K+2

3 from (12) using |K1| +
|K2| = K and |K1| · |K2| = X . Since Lc is the largest

when X is maximized to be X = (K
2 )2 (corresponding to the

homogeneous network), we have Lc ≤ 2(K+1)(K−2)
3K2 < L1.

Next, for (b), when r = s ≤ K
2 such that

there exists an achievable hypercuboid design, then

min{r + s, K} = r + s = 2r. By only considering the

last term of L1(r, r) in (22) we derive the following lower

bound.

L1(r, r) >
2r

(
K
2r

)(
2r−2
r−1

)(
r
r

)
r
(

K
r

)2

=
r

2r − 1
· (K − r)(K − r − 1) · · · (K − 2r + 1)

K(K − 1) · · · (K − r + 1)

>
r

2r − 1

(
1 − r

K − r + 1

)r

=
r

2r − 1
· (1 + o(1)).

(35)

Next, we derive an upper bound on Lc. For a given r and

K , let |K1| = · · · = |Kr−1| = 2 and |Kr| = K − 2(r − 1).
Then by (12)

Lc =
X − 1
2X

+
K − 2r + 1

2r−1(K − 2r + 2)(4r − 2)

<
r

2r − 1

(
1 − 1

2r
+

1
r2r

)
. (36)

Then, combining (35) and (36) we find Lc < L1 if

K > r − 1 +
r

1 −
(
1 − 1

2r + 1
r2r

)1/r
. (37)

We now aim to find an upper bound on the RHS of (37).

It can be shown that if r ≥ 6 then
(
1 − 1

2r + 1
r2r

)1/r ≤
exp(− 1

2r2 ) and 1 − exp(− 1
2r2 ) > 1

4r2 . Substituting this

into (37), we find L1 < Lc if r ≥ 6 and K > r − 1 + 4r3

which proves (b).

From (35), if r = Θ(1) then L1(r, r) ≥ r
2r−1 + o(1), and

alternatively, if r = Ω(1) and r = o(K) then L1(r, r) ≥
1
2 + o(1). From (13), Lc < r

2r−1 . Therefore, with the given

assumptions that r ≥ 1 and r = o(K), we find that
Lc(r)

L1(r,r) ≤
1 + o(1) which proves (c).
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