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Map Phase: Each node k, using the Map functions, com-
putes all IVs from a set of locally available files My C
{w1,...,wy}. That is for each w,, € My, node k computes
Viny---,0Qn-

Shuffle Phase: Each node k aims to collect all IVs
Vg,1,--.,Vq,N for each assigned output function ¢, : ¢ €
Wi C [Q] where Wy is the set of indexes of the output
functions assigned to node k. The nodes transmit codewords
derived from locally computed IVs such that, after the shuffle
phase, each node k can recover all necessary IVs of the
assigned output functions.

Reduce Phase: With the collected IVs from the shuffle
phase, each node %k uses Reduce function h, to compute
Ug = hq(vg,1,...,0qn) for g € Wy.

Assume that each node computes all () IVs from each of
its locally available file. We define the computation load of
the system as 7 = Eszl | M|, which is the total number
of IVs computed normalized by QQN. Note that r represents
both the average number of times that an IV is computed,
and the average number of times that a file is mapped across
the network. Then, the communication load L, where 0 <
L < 1, is defined as the total number of bits transmitted by
all nodes normalized by the total number of bits of all IVs,
QNT. In other words, L = ﬁ Zszl I, where I, is the
number of bits transmitted by node k.

Moreover, in this work, we assume that each Reduce
function is assigned to an average of s nodes, where
5= SR Wi. We say (r,s,L) is feasible if there exist
1) a file mapping such that each file is mapped to an average
of r nodes 2) a function assignment such that each function
is assigned to an average of s nodes and 3) a shuffle phase
design such that at most QNT'L bits are transmitted on the
multicast channel and each node can decode all requested
IVs for the assigned fucntions. Then, we define the optimal
communication load as follows.

Definition 1: The optimal communication load is defined
as

L*(r,s) 2 inf{L: (r,s, L) is feasible}. 2)

Remark 1: In general, r and s can take different values.
However, in this work, we consider the case where r = s.
This is motivated by the fact that » and s can be a design
choice. For example, in [3], for s = 1, the authors discuss
picking an optimal r to reduce the overall execution time on
a real distributed computing platform. For s > 1, we note
that, while allowing more (r,s) pairs may help optimize the
execution time, limiting the pairs to 7 = s can still leave
a sufficient number of viable operating points. Hence, in the
remainder of the paper, we will focus on the case where r = s.
Nevertheless, we will keep both variables r and s because they
each have a different meaning.

III. HYPERCUBOID APPROACH FOR CASCADED CDC

In this section, we present the proposed combinatorial
design for general cascaded CDC networks that apply to both
heterogeneous and homogeneous networks. We will begin
with a simpler, two-dimensional example to introduce the
basic ideas of the proposed approach. This is followed by
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Fig. 1. (left) Lattice points that represent the file mapping and function

assignment of the hypercube design with » = 2, s = 2 and K = 4. Each
lattice point represents a file and a function and each node maps files and is
assigned files based on a line of lattice points. (right) The linear combinations
of packets received by node 1 in round 2 after cancelling out locally computed
packets.

a description of the general scheme that includes four key
components: Generalized Node Grouping, Node Group Map-
ping, Cascaded Function Mapping, and Multi-round Shuffle
Phase. We then present two three-dimensional examples of
the proposed hypercuboid design, one for a homogeneous
network, and one for a heterogeneous network, to further
illustrate details of the proposed design and compute the
achievable communication rates.

A. 2-Dimensional Homogeneous Example

Example 1: Consider K = 4 nodes that map N = 4
files and are assigned to compute (Q = 4 functions. Fig. 1
and Table I show the file mapping and functions assignment.
In Fig. 1, the nodes are aligned along a 2-by-2 lattice and then
horizontal or vertical lines define the mapping and assignment
at the nodes. For instance, node 1 maps files w; and ws and is
assigned functions 1 and 2 represented by the top horizontal
line of lattice points. Similarly, node 3 maps files w; and
ws and is assigned functions 1 and 3 represented by the left
vertical line of lattice points. As each lattice point intersects
2 lines, one vertical and one horizontal, then we find each file
is mapped at 2 nodes, = 2, and each function is assigned to
2 nodes, s = 2.

In the Map phase each node computes all IVs from each
locally available file as shown in the third column of Table I.
For example, node 1 computes v1,1, v2,1, 3,1, and v4,1 from
file wy and vy 2, V2,2, V32, and vy from file wy. The IVs
can be classified by the number of nodes that request them
in the Shuffle phase. For instance, IV v ; is only needed by
nodes 1 and 3, but these nodes computes this IV from the
locally available file w;. Therefore, we say v is requested
by 0 nodes. Similarly, va 2, v3 3, and v4 4 are requested by
0 nodes. Then, since nodes 1 and 3 are the only nodes that
are assigned function 1, we see that v 3 is only requested
by one node (node 1) because ws is available at node 3, but
not at node 1. Similarly, vy 2 is only requested by one node
(node 3) because wsy is available at node 1, but not at node 3.
On the other hand, vy 4 is requested by 2 nodes, nodes 1 and
3, because neither node maps file wy.

There are 2 rounds in the Shuffle phase where the nodes
shuffle the IVs that are requested by 1 and 2 nodes,
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TABLE 1
FILES, FUNCTIONS, IVS AND TRANSMISSIONS OF EXAMPLE 1
node | files computed IVs funcs. | requested IVs round 1 round 2
1 w1 V1,1, V2,1, V3,1, V4,1 ¢1 V1,3, V1,4 V1,2 D V21 vglg + 0(2) +v <1) +v (2)
w2 V1,2, V2,2, V3,2, V4,2 P2 V2,3, V2,4 Uélz) + 21)(2) + 2U<1) (2)
2 w3 | V1,3,V2,3,V3,3,04,3 @3 V3,1, U3,2 V3,4 D V4,3 v&li + 0(2) + v(l) + v<2>
W4 | V1,4,V2,4,V34,04,4 Pa V4,1, V4,2 vili + 21)(2) + 2v (1) 5+ (2)
3 w1 V1,1, V2,1, V3,1, V4,1 b1 V1,2,V1,4 V1,3 D 31 Uélg), + U(B) +v (1) +v <3>
w3 | vV1,3,0V2,3,V3,3,04,3 @3 V3,2, U3,4 vS; + 211(3) + 21)(1) + v(?’)
4 w2 | vV1,2,V2,2,V3,2, V42 P2 V2,1, V2,3 V2,4 D Va2 Ugli + U(S) (1) 5+ <3>
Wy | V1,4,V2.4,V34,044 o V4,1, 04,3 vﬂ + 20(3) + 21)(1) + v(3>

respectively. The messages transmitted by each node are
shown in last two columns of Table I. In round 1, each
node includes 2 IVs in a coded message to 2 other nodes.
For instance, node 1 computes v; > and vy 1, where vy o is
requested by node 3 and is available at node 4, and the opposite
is true for vo 1. Therefore, node 1 transmits v1,2@v2,1 to nodes
3 and 4.! In this example, each node transmits a coded message
to serve 2 independent requests of nodes aligned along the
other dimension.

In round 2, we consider all IVs requested by 2 nodes which
are vi4, V4,1, V2,3 and vz 2. These IVs are each available at
the 2 nodes that do not request them. Each IV is split into
3 disjoint equally sized packets. For instance, for the IVs

requested by node 1, vy 4 is split into vﬂ, Uﬁ and Uﬂ and

V2,3 is split into Uélg, 1)5232 and Uéj) Each node sends two linear
combinations of its available packets.” Accordingly, each node
will receive a total of 6 linear combinations to solve for the
6 requested packets. The linear combinations are shown in
the last column of Table I. We can see, for instance, after
subtracting out available packets, node 1 receives the linear
combinations shown by the matrix-vector multiplication on
the right side of Fig. 1. Since, the matrix A is invertible, node
1 can solve for its requested packets and therefore all requested
IVs. The messages of round 2 are deliberately designed so that
the received messages at each node can be represented by a
full rank matrix similar to matrix A for node 1. One can verify
from the the table of Fig. 1, that each node can recover all
requested packets from round 2.

We compute the communication load, L., by counting
all transmitted messages and considering their size. There
are 4 messages of length T bits (size of a single IV), and
8 messages of length bits. After normalizing by the total
bits over all IVs, QN T, the communication load is

1 1 8
Le= QNT<4T +8= > o <4+3>~0.417. 3)

With an equivalent, r, s and K, we can compare L. to the
fundamental bound and scheme of [3] where the communica-

'Note that, each IV corresponds to an element in the field Fyr. To perform
the bit-wise XOR operation, “@®”, we translate each IV into an array of T'
bits in the field ]172T and then perform XOR with each bit of each IV.

2We assume that T is large enough to allow for a large range of coefficients
in the linear combinations.

tion load is

4 ()G

Ly = — +
() r(5) (%)
3'4'1-2 4-1-2-1 32
e - m0ad @)

Ultimately, we find L. < Lj, and our new design has a
reduced communication load.

Remark 2: To the best of our knowledge, this is the first
homogeneous example of CDC that has a communication load
less than Ly. In [3], L; was shown to be the smallest achiev-
able communication load given 7, s and K, under an implicit
assumption of the reduce function assignment that every set
of s nodes must have have a common reduce function. This
assumption was made in the proof of [3, Theorem 2]. Note
that our proposed design does not impose such an assump-
tion. For instance, neither node pairs {1,2} nor {3,4} in
Example 1 have a shared assigned function. Example 1 shows
that the more general function assignment proposed in this
work allows us to achieve a lower communication load that
is less than Lj, even for homogeneous networks. Similar
observations were made for a heterogeneous network with
s =11in [10], [11].

B. General Achievable Scheme

Next, we present the proposed general achievable scheme
and describe its four key components. in detail.

1) Generalized Node Grouping: The Generalized Node
Grouping lays the foundation of the proposed hypercuboid
design. It consists of Single Node Grouping (equivalent to
Node Grouping 2 in [9]), and Double Node Grouping. The
latter is specifically designed for the cascaded CDC networks
considered in this work.

Consider a general network of K nodes with varying storage
capacity. To define a hypercuboid structure for this network,
divide these K nodes into P disjoint sets, Cy,...,Cp, each
of size |Cp| and 25:1 |Cp| = K. Nodes in the same set C,
have the same storage capacity and each stores 1/m,, of the
entire file library. Furthermore, assume that nodes in C, map
the library 7, times so that 25:1 rp, = r. Apply the hypercube
design in [9] to each C, by splitting nodes in C,, into r,, disjoint
subsets {/C;,i € Z,} of equal size m,,, where |C,| = rpmy,
and the index set 7, = {i : n, 1 +1 < i < n,} and n; =
>7_ 7,7 € [P]. The entire network is comprised of 7 node
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sets, K1,...,K,. Nodes in K;,i € [r] are aligned along the
i-th dimension of the hypercuboid, and they collectively map
the library exactly once.

2) Single Node Grouping: Given a subset A C [r], we say
that S C [K] is an (A, 1) node group if it contains exactly one
node from each K;, i.e., |SNK;| = 1, for every i € A. In par-
ticular, consider all possible ([r], 1) node groups 71, ...,7x
of size r that each contains a single node from every node
set Ki,...,K,, here X = [[/_, |K;| = H5:1 m,”. Denote
T =7;NK;, Vj € [X] and Vi € [r], as the node in 7; that
is chosen from /C;.

3) Double Node Grouping: Given a subset A C [r], we say
that S C K is an (A, 2) node group if it contains exactly two
nodes from each KC;, i.e., |[SNKC;| = 2, for every i € A. Hence,
the size of an (A, 2) node group is |S| = 2-|.A|. Double Node
Grouping is essential for the design of the Multi-round Shuffle
phase.

4) Node Group (NG) File Mapping: Given all ([r],1) node
groups 71,...,7x, we split the N files into X disjoint sets
labeled as By, . .., Bx. These file sets are of size 1 € Z* and
N = X. Each file set 5; is only available to every node in
the node group 7;. It follows that if node k € [K] belongs to
a node group 7;, then the file set B; is available to this node.
Hence, by considering all possible node groups 7; that node
k belongs to, its available files, denoted by My, is expressed
as

M= | B. Q)
i:keT;

Note that, since each file belongs to a unique file set B; and
is mapped to a unique set of  nodes (in the node group 7;),
we must have 3 S M| = N=r

The function assignment is defined as follows:

5) Cascaded Function Assignment: Given all ([r],1) node
groups 71,...,7x, the @ files are split into X disjoint sets
labeled as Dy, ..., Dx and file set D; is assigned exclusively
to nodes of set 7;. These function sets are of size 7y € Z*
and @ =12 X. For k € [K], define

We:= |J D (6)
k€T
as the set of functions assigned to node k.

Remark 3: Note that the proposed Cascaded Function
Assignment follows the same design principle as that of the
NG File Mapping. As each file is mapped to r nodes in the
network, the proposed design ensures that each reduce function
is also mapped to r nodes. Thus, we assume that = s in our
design. The proposed Cascaded Function Assignment serves
as a building block for consecutive rounds of MapReduce
iterations, where the reduce function outputs become the file
inputs for the next iteration.

6) Map Phase: Each node k € [K] computes the set of IVs
{vij i€ [Q,w; € My}

7) Multi-Round (MR) Shuffle Phase: We consider a
Multi-round Shuffle Phase with r rounds, where in each round
we use one of two methods termed the Inter-group (IG) Shuffle
Method and the Linear Combination (LC) Shuffle Method.
In the 7-th round, the nodes exchange IVs requested by -~
nodes. The IG Shuffle Method is designed for 1 <~ <r —1
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and forms groups of 2 nodes. A node outside of each node
group multicasts coded pairs of IVs to this node group. For
the LC Shuffle Method, nodes also form groups of 2+ nodes;
however, nodes of this group multicast linear combinations
of packets among one another. The LC Shuffle Method is
designed only for the r-th round.

8) Inter-Group (IG) Shuffle Method (1 < ~v < r — 1):
Consider A C [r] such that |A| = ~. For each A, let S be a
(A, 2)-node group with |S| =2y and &’ C Sbe a (A, 1)-node
group with |S’| = ~. Assume A° = [r] \ A and let ) be a
(A°, 1)-node group with |Y| = r — . An arbitrary node in Y
will multicast a summation of two sets of IVs, one for nodes
in &’ and one for nodes in S\ §’. To ensure that each node
in &’ (or §\ &’) can decode successfully from the multicast
message, the set of IVs intended for nodes in &’ (or S\ &)
must be available to nodes in S \ &’ (or &’ ). To determine
these IVs, letting 7,, = {S\S'}UY and 7, = S’UY, we define

V= (v i € Daywj € By} %
and )
VE = {vi; i€ Dy e Ba}. (8)

By the definition of the NG File Mapping, nodes in 7; have
access to files in B,. However, since nodes in S \ &’ are not
in ’]2,, they do not have access to files in 5. Thus, the set
V%\S contains IVs that are requested by nodes in S\ S’ and
can be computed at every node in 7. Similarly, V%: contains
IVs that are requested by nodes in S’ and can be computed

at every node in 7,. The IVs of V%\S are concatenated

to form the message U%\Sl and similarly the IVs of V%:
are concatenated to form the message Uﬁ For all possible

choices of A,S,S8’,), an arbitrary node in )/ multicasts
S\8' /
Uz o Us ©9)
to the 2 nodes in S.

9) Linear Combination (LC) Shuffle Method (v = r): This
shuffle method is used for the r-th round only. Let S denote
a ([r],2)-node group with |S| = 2r. Each node k € S will
multicast linear combinations of IVs to the other 2r — 1 nodes
in S. These IVs are defined as follows. Given k € S, let

T¢ denote a ([r],1)-node group such that k& € 7, C S. Let
Ta, = S\ 7y, which is also a ([r],1)-node group. Define

TO .
V'Te ‘= {U@j S 'D(w,w]’ S Bg}, (10)

which are IVs requested by the r nodes in 7, and are avail-

. T,
able at the r nodes in 7. For each VT[ ¢ we concatenate the IVs

of this set into the message UT;’-’

and split it into 27 — 1 equal
size, disjoint sub-messages denoted by U;j’j, cey U;;(’g -
Let £, = {¢: k € T, C S}. Then node k multicasts 2(" 1)

random linear combinations of the sub-messages in

U U v

LEL ie[2r—1]

Y

to the other 2r — 1 nodes in S.3

3In Appendix B, we prove that each node can decode its requested
sub-messages with high probability.

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:16:41 UTC from IEEE Xplore. Restrictions apply.



WOOLSEY et al.: COMBINATORIAL DESIGN FOR CASCADED CDC ON GENERAL NETWORKS

10) Reduce Phase: For all k € [K], node k computes all
output values u, such that ¢ € W;.

Remark 4: The two Shuffle methods each have their own
advantages. With the IG Shuffle Method, as shown in (9),
a node outside a node group S transmits a coded message
containing 2 IVs, one intended for v nodes in S’, and one
for v nodes in S. Hence, each transmission serves 2y nodes.
Moreover, the IG Shuffle Method does not require the use of
linear combinations or packetization of the IVs, and the sets of
IVs can simply be XOR’d together. However, the IG Shuffle
Method cannot be used in r-th Shuffle round since the node
set ) would be empty. With the LC Shuffle Method, the node
group shuffles linear combinations among one another and
27y — 1 nodes are served with each transmission. Then, after
a node receives all the transmissions from other nodes of the
node group, it can solve for all its requested IV packets. While
the LC Shuffle Method can be generalized for any round +,
since we only use it for v = r, its generalized form is not
presented here.

Remark 5: While the proposed design only operates for
r=s, it will be interesting to explore the possibility of
expanding the proposed design to r # s. The main challenge
stems from taking advantage of IVs that are requested by
multiple nodes. In the shuffle method, it is ideal to group
nodes which have similar requests as we have shown here
for r = s and as done in [3]. If the relationship between the
file placement and function assignment is arbitrary, as in the
case when r # s, this becomes a combinatorial optimization
problem. There may not exist a systematic scheme to find a
shuffle phase that minimizes the communication load.

Remark 6: When considering arithmetic complexity, we see
the benefits of using bit-wise XOR for most of the Shuf-
fle rounds. Here, we define arithmetic complexity as the
number of addition and multiplications in the field Fyr for
encoding or decoding. Encoding or decoding bit-wise XOR
has a complexity of 1 since two packets are simply added
together. Then, in the final round, for a given shuffle group,
a node generates 2("~1) linear combinations and decodes
by solving a linear system of size (2r — 1)2("~1). Using
Gaussian elimination, solving such a system has an arith-
metic complexity of O(r®23"). Considering all shuffle groups,
the per node encode complexity for the first » — 1 rounds is
@) ((%)QT_Q) and the decode complexity is O (r (%)%_2 .
Then, for the last round, the encode complexity at each

node is O ((%)%71 2“2) and the decode complexity is

O (rd ()7 22,

T

C. 3-Dimension Homogeneous Example

Example 2: To demonstrate the general scheme, we con-
struct a computing network using a 3-dimensional hypercube
(or a cube) as shown in Fig. 2. First, we present the NG File
Mapping.* Each lattice point in the cube represents a different
file B, = w;, i € [27] where 1 = 1. The network has
K = 9 nodes, partitioned into three sets: K; = {1,2,3},

4“While the File Mapping in this example is the same as that in [9], it is
included here for completeness.
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(e) node plane legend
node 2:

node 3: node 5:
Ay &

node 6:

node 9:

node 8:

Fig. 2. The input files and output functions assigned to each node are
represented by planes of lattice points from a cubic lattice. (a) planes assigned
to nodes of a set 7o = {3,5,9}. (b) planes assigned to a set of nodes
S ={2,3,5,6} in the 2nd round of the Shuffle phase and (c) lattice points
which intersect 2 planes of from nodes in S. (d) the lattice points which
intersect 3 planes of nodes in set S = {2, 3,5, 6, 8,9}. (e) legends for (a)-(d).

Ko = {4,5,6}, and K3 = {7,8,9}, aligned along each of
the » = 3 dimensions of the cube. For example, the three
nodes in K1 = {1,2,3} are represented by three parallel
planes, e.g., node 3 is represented by the green plane. For
file mapping, each node is assigned all files indicated by
the 9 lattice points on the corresponding plane. For instance,
node 5, represented by the red plane, is assigned the file set
My = {wa, ws, ws, w11, W14, W17, Wag, Wz, Wae }. For each
i € [3], the size of ; is % = 3, which is the number of
lattice points in the i-th dimension. Since the three nodes in
each set IC; are aligned along dimension i, they collectively
stores the entire library of 27 files. Nodes compute every IV
from each locally available file and therefore r = 3.

Next, we illustrate the Cascaded Function Assignment. The
reduce functions are assigned to multiple nodes by the same
process as the file mapping. The planes representing the reduce
functions (and files) for 6 of 9 nodes are shown in Fig. 2.
Each lattice point represents 72 = 1 function (in addition
to a file). For instance, node 2 stores files {w;} for all
1 € {4,5,6,13,14,15,22,23,24} (purple plane), and is
assigned to compute reduce functions for all 7 in the same set.
A depiction of these planes are shown in Fig. 2 (a) and (b).
IVs can be categorized by the number (y) of nodes which
request them. Any IV of the form v; ; is only needed by nodes
that can compute this IV themselves and are thus requested
by 7 = 0 nodes. Next, we consider round v = 1 in which IVs
which are requested by only 1 node and use the IG Shuffle
Method. These IVs can be identified by considering node
group 7, (o € {1,2,---,27}), consisting of 1 node from
each set K1, Ko and K3. An example is 7, = {3,5,9} whose
planes are depicted in Fig. 2(a). Lattice points which fall on
the intersection of exactly two of these planes represent input
files that 2 out of the 3 nodes have available to it. As these
3 nodes are the only nodes that compute the 26-th reduce
function, we see that vy 23 is requested only by node 3 and
available at nodes 5 and 9. Next, consider another node group
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Te = {2,5,9} that differs from 7, by only in the first node
(from /Cy). By observing the planes representing the nodes
of 7, = {2,5,9}, we find wva3 26 is requested only by node
2 and available at nodes 5 and 9. Therefore, either node 5 or
9 can transmit vag 23 @ V23,26 to nodes 2 and 3 which can
recover their requested IV. To match the description of the
general scheme, we say A = {1}, S = {2,3}, &’ = {3} and
Y =1{5,9}.

Next, we consider Shuffle round v = 2 in which IVs
requested by 2 nodes are exchanged using the IG Shuffle
Method. Given 736 = {3,5,9}, whose planes are depicted
in Fig. 2(a), we consider lattice points which intersect only
1 out of these 3 planes. For instance, ws4 is available to node
9 and not nodes 3 or 5. Therefore, nodes 3 and 5 are the only
nodes that request IV v 24. Since node 9 has this IV, it can
multicast this IV to nodes 3 and 5. However, there is a way to
serve two more nodes without increasing the communication
load, recognizing that there are 2 other nodes, {2,6}, that
have input file way. Given S = {2,3,5,6}, there is a set
of 4 files {was3,waq, was, war} such that each file is only
available to 2 nodes in S and all of these files are available
to node 9. We define S’ = {3,5} and Y = {9}. Therefore,
Vg’gg} {v26,24}. V{3 p 9} = {v24,26} and node 9 transmits
V26,24 B V24,26 to nodes {2 ,5,6}. Keeping YV = {9}, we can
also define S’ = {3,6} to obtain V{{g’g}g} = {vg3,27} and

g 5}9} {v27,23} and node 9 also transmits vogz 27 Dv27 23 tO

nodes {2,3,5,6}. Continuing with S = {2,3,5,6}, consider
lattice points which are in the planes parallel to plane of
node 9. These planes are defined by nodes {7,8} € KCs.
The lattice points of interests in regards to S are highlighted
in Fig. 2(c). We see that when ) = {8}, node 8 transmits
V17,15 @ V15,17 and vig 14 P v1a,18. When YV = {7}, node 7
transmits vs 9 ®vy 5 and ve g Dvg 6. Each node of S has locally
computed one IV and requests the other IV from each of the
transmissions from nodes 7, 8 and 9.

Finally, we consider the last Shuffle round in which IVs
requested by v = 3 nodes are exchanged by the LC Shuffle
Method. We see that none of the nodes in 726 = {3, 5,9} have
access to file wys and therefore, they all request v 15. All
3 nodes in 715 = {2,6,8} have computed vz 15, but request
v15,26 Which nodes of 735 have computed. In fact, any node
in a ([y],1) node group &’ C § = T6 U 715 computes an IV
that nodes in S\ S’ request. We consider the following sets

of IVs: V{{Sgg}} = {7126 15} V{{SSS}} {1)27 14} V{{§65§}}

{269 (2,6,8) 12,5,8
{v23,18}, V{3 s 8; {vaa,17}, V{3 - 9} = {v15,26}, V{3 6 9; =
{via,27}. V{{‘;fs;’ = {vis,23}, and V{ggs}% = {v17,24}. The

planes associated with each node of § = {2,3,5,6,8,9}
are highlighted in Fig. 2(d). The IVs are split into 5 packets
so that each node requests 20 unknown packets. Every node
multicasts 4 linear combinations of its computed packets so
that every node receives transmissions from 5 nodes and a
total of 20 linear combinations to solve for the 20 requested
packets. As proved in Appendix B, at the end of 3 shuffle
rounds all node requests are satisfied.

In this example, each IV is computed at 3 nodes and = 3.
For round 1 (7 = 1), there are 9 node groups and nodes outside
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(d) node plane legend

node 2: node 4:

node 1:
node 3:

Fig. 3. A 3-dimensional lattice that defines the file availability and reduce
function assignment of 8 nodes in a heterogeneous CDC network. Each lattice
point represents both a file and a function. Nodes are assigned files and
functions represented by planes in the lattice.

node 5: 4
node 6:

node 7:

node 8:

each group transmit an equivalent of 9 IVs. This results in
9 -9 = 81 transmissions. For round 2 (y = 2), nodes form
27 groups of 4 nodes and nodes outside each group transmit an
equivalent of 6 I'Vs and leads to 27-6 = 162 transmissions. For
round 3 (v = 3), nodes form 27 groups of 6 nodes and each
node in every group transmits an equivalent of % IVs. This
leads to 27-6-4/5 = 129.6 transmissions of IVs. Collectively,
the nodes transmit (81 + 162 + 129.6)T = 372.6T bits and

372.6

D. A 3-Dimensional (Cuboid) Heterogeneous Example

Example 3: Consider a heterogeneous network with K = 8
computing nodes where nodes C; = {1, 2, 3,4} have double
the memory and computation power compared to nodes Cy =
{5,6,7,8}. By General Node Grouping, nodes are split into
3 groups: K1 = {1,2}, Ko = {3,4} and K5 = {5,6,7,8}.
By NG File Mapping and Cascaded Function Assignment,
there are X = 16 sets of functions and files and node
assignments are represented by a lattice structure (a cuboid)
in Fig. 3. Let 777 = 2 = 1 so that each file set only contains
1 file and each function set only contains 1 function. In the
Map phase, every node computes every IV for each locally
available file.

Next, we consider the Shuffle phase. In round 1 (v = 1),
we use the IG Shuffle Method and consider pairs of nodes
that are from the same set K; and aligned along the same
dimension. Let S = {1,2},8" = {1}, and Y = {3,8}.
We then have S’UY = {1,3,8} = 77, and (S\ S)UY =
{2,3,8} = 7s. Note that node 1 is the only node that requests
v7,s and node 2 is the only node that requests vg 7. Hence,
either node 3 or 8 from ) can transmit v7 g @ vg 7 to nodes
1 and 2 in S. Continuing this process, we see that all IVs
requested by a single node are transmitted in coded pairs.

Next, for round 2 (v = 2) we use the IG Shuffle Method
and consider groups of 4 nodes where 2 are from K; and
2 are from K; where ¢ # j. For instance, let S = {3,4,6,8}.
If we let S {3,6}, and Y = {1}. We then have
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S'uy={3,6,1}=T3,and (S \ &) U Y = {4,8,1} =
Ti5. Thus, node 1 from ) will transmit v3 15 @ vi53 to
S. For the same § = {3,4,6,8},8" = {3,6}, if we let
Y = {2}, then we have S’ UY = {3,6,2} = 74, and
(S\SHUY = {4,8,2} = Ty4. Thus, node 2 from ) will
transmit v4 16 @ v16,4 to S. Hence, IVs requested by 2 nodes
can also be transmitted in coded pairs.

Finally, for 3 (v = 3) we use the LC Shuffle Method and
consider groups of 6 nodes that contains 2 nodes from each set
K1, K2 and Ks. For instance, consider S = {1,2,3,4,5,6}.
If we choose &’ = {1,3,5} = 73, then we have
S\ S8 ={2,4,6} = T15. We observe that vq 12 is requested
by three nodes in &’ and is computed by all three nodes
in §\ & Similarly, we consider the other three cases:

= {1,3,6} = 73, S\ S = {2,4,5} = Tip; § =
{1,4,5} =79, S\ &' =1{2,3,6} =74; and &’ = {1,4,6} =
Ti1, S\'§' = {2,3,5} = T. In this way, we identify 8 IVs
which are requested by 3 nodes of S and locally computed at
the 3 other nodes of S. These IVs are: vy ,12, V12,1, 3,10, V10,3,
V4,9, V9.4, V2,11 and vi1,2. Each IV is then split into 2 r —1 =
2-3 —1 = 5 equal size packets and each node of S transmits
27=1 = 22 = 4 linear combinations of its locally available
packets. Each node collectively receives 4 - 5 = 20 linear
combinations from the other 5 nodes in S which are sufficient
to solve for the requested 4 IVs or 20 unknown packets.

In this example, the computation load is » = 3 because
every file is assigned to 3 nodes and every node locally
computes all possible IVs. In order to compute the
communication load, we can see that IVs requested by
0 nodes do not have to be transmitted. IVs requested by
1 or 2 nodes are transmitted in coded pairs, effectively
reducing the communication load by half to shuffle these
IVs. Hence, the number of transmissions in round 1 and
2 are given by 82 = 40, and 122 = 56, respectively. The
number of transmissions in round 3 is 6-6 - % = 28.8 because
there are 6 choices of S of size 6 and each node transmit
effectively % of an IV. The communication load is thus given
by L = 204564288 — () 4875 where QN = 16 - 16 = 256.

1V. ACHIEVABLE COMMUNICATION LOAD AND
OPTIMALITY

In this section, we present the achievable communication
load of the proposed design for general cascaded CDC net-
works and discuss the optimality of the design given the
proposed file and function assignment. An example is provided
to illustrate the key steps in finding an information theoretic
lower bound on the achievable communication load.

A. Achievable Communication Load

Theorem 1: Assume r = s. For the proposed hypercuboid
scheme with NG File Mapping, Cascaded Function Assign-
ment, and Multi-round Shuffle Phase, the following commu-
nication load is achievable

X -1 1 s

L= " + g 10K - V)

(12)
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where X = []/_, |K;|. An upper bound on L. is obtained
from (12) as

1 1 r 2
L, < - 13
<3 + r—2 2r—1-3 (13)
Proof: The proof of Theorem 1 is given in Appendix A.
|
Corollary 1: When setting |K;| = £ and X = (£)7, (12)

gives the L. of a homogeneous network with parameters K
and 7.

B. Optimality

In this section, we will show the optimality of the proposed
hypercuboid approach for cascaded CDC. Note that, the funda-
mental computation-communication load tradeoff of [3] does
not apply to the cascaded CDC design since it has a different
reduce function assignment compared to that of [3]. We start
by presenting the optimality of a homogeneous network using
our proposed design and then for the more general heteroge-
nous design.

Theorem 2: Consider a homogeneous system with parame-
ters K and r. Let L* be the infimum of achievable communi-
cation load over all possible shuffle designs given the proposed
NG File Mapping and Cascaded Function Assignment. Then,
we have

L*

v
N[

m— 2" —2r
=R (Zm:i 4m1271) moe, (14)
2. Furthermore, given L. in (12), it follows
is within a constant multiple of L*

L
29

*IN

where m = & >
from (14) that L.

L* ~2.207 L*, (15)

for general K, r.
Proof: Theorem 2 is proved in Appendix C. [ |

Remark 7: For the homogeneous network in Example 2,
we have L. = 0.5111. This is compared to the lower bound
of (14) that gives L* > 0.3937. In this case, we have L, <
1.2982 L*, achieving a better constant than that of the general
case given in (15).

Theorem 3: Consider a general heterogeneous system with
parameters /K and r. Let L* be the infimum of achievable
communication load over all possible shuffle designs given the
proposed NG File Mapping and Cascaded Function Assign-
ment. Let z; = |KC;|. Without loss of generality, assume that

T1 > xo--- > Ts. Then, we have
L* Z maX(Lpl,Lpg), (16)
where
xr1 — 1
L e
P1 901
_ 22 1,52(i—¢
23101 £ I S SURITERIE
=1 =1 m=z;4+1+1 (=1
(17)

Furthermore, for general K and r, we show that L. is within
a constant multiple of L*,

(18)

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:16:41 UTC from IEEE Xplore. Restrictions apply.



5694

Proof: Theorem 3 is proved in Appendix D. [ ]
Remark 8: The two lower bounds Lp; and Lps in (17)
correspond to two different choices of permutations used to
evaluate the right side of (29) of Lemma 2 in Appendix C.
Extensive simulations suggest that the permutation used in
Lpo is optimal in achieving the largest lower bound using
Lemma 2. For instance, consider Example 4, we get Lp; =
0.375, which is less than Lpys = 0.3945. However, due to
the complexity of (17), we use the simpler Lp; to determine
the constant in (18). Note that the permutation used for L po
matches with the permutation used in the homogeneous case to
derive (14). Since Lp; is in general weaker than L ps, we see
that the constant in (18), derived using L p1, is larger than that
of (15) for the homogeneous case.

C. Optimality Example

Example 4: This example shows how to find a lower bound
on the achievable communication load given the proposed NG
Filing Mapping and Cascaded Function Assignment. Here,
we use the homogeneous file mapping and function assignment
of Example 2. Our approach builds upon an information
theoretic lower bound (29) (see Lemma 2 and the notations
therein in Appendix C), originally designed for s = 1 in [9],
and extend it to the case of s > 1 for the case of cascaded
CDC.

Lemma 2 requires that we pick a permutation of nodes and
then use file and function counting arguments. The permuta-
tion we use here is {1,7,6,2,8,5,3,9,4}. To achieve a tighter
bound, this permutation contains 3 sequential node groups
where each node group contains one node aligned along each
dimension of the cube. In order to calculate the terms of (29),
for each node k;, we count the number of files not available
to the first ¢ nodes of the permutation. This set of files is
Mic\ Mg, k;}» called file of interests for node k;. We also
count the number of functions assigned to the i-th node of the
permutation that are not assigned to the previous ¢ — 1 nodes.
This set of functions is W, \W{kl,...,k,;_l}’ called functions
of interests for node k;. The product of these file and function
counts represents the number of IVs of interests in Lemma 2.
Moreover, since the IVs are independent and of size T bits,
we have

H (VWICW:'V,MM7Y{k1,u.,ki,1}>
=T |/\/l'C \ Mk, k| - |Wk \W{kl,...,k,;_l}} )

where H(+) is the entropy function. In Fig. 4, we highlight the
lattice points representing the sets of files and functions which
are used to obtain the bound. Lattice points representing the
files are highlighted in red and lattice points representing the
functions are highlighted in green. First, we consider every
function assigned to node 1 and every file not available to
node 1, where node 1 is the first node in the permutation.
This is shown in Fig. 4(a). We see that H (W, .|Viam,) =
T -18 -9 = 1627 since in this case each lattice point only
represents 1 file and 1 function (7, = 172 = 1).

Similarly, for node 7, we are count functions it computes
and files it does not have locally available, except this
time we do not count files available to node 1 or functions

19)
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Fig. 4. A representation of Example 4 for a given permutation
{1,7,6,2,8,5,3,9,4}. In (a)-(g), the i-th subfigure shows the functions
of interests and files of interests for node k;, highlighted in green and red,
respectively. For instance, (c) shows the functions and files of interests for
node 6, after accounting for functions and files of interests for node 1 (see
(a)) and node 7 (see (b)). From (a)-(g), ¢ increases by 1 at each step, and the
lattice shrinks in one dimension by one unit. Refer to Fig. 2 for the definition
of file mapping and function assignment.

assigned to node 1. Fig. 4(b) shows the files and functions we
counting. Note that, we disregard the top layer of the cube
which represents the files and functions assigned to node
1. We see that H (Viy, .|Vim,, Yiay) = T -6+ 12 = 72T,
By continuing this process, from Fig. 4(c-f), we see that

H (Vg o\ Vime: Yiu,7y) = 32T, H (Vi o\ Ve, Y, 76})
16T }I(‘/V\/s7 |VM87Yt{1762}) -
4T, H (VW5,.|V,M57Y{1,7,6,2,8}) = T. Finally, only 1 lattice
point remains in Fig. 4 (g), representing a function assigned
to node 3. However, there are no lattice points representing
files node 3 does not have locally available. This occurs
because the other two nodes aligned along the same
dimension, nodes 1 and 2, have already been accounted
for, and they collectively have all the files that node 3 does
not have. Therefore, H(VW3,;|V:,M3,Y{177,672,875}) = 0.
Similarly, for the last two nodes of the permutation, nodes
9 and 4, there are no remaining files that are not locally
available to them. In fact, there are also no functions
assigned to nodes 9 and 4 which have not already been
accounted for. Therefore, H (VW9,1|V;,M9,Y{1,776,278,573}) =
H (Vw, I Vimas Y(1,7,6,2,8.5,3,01) = 0.

By taking the sum of (29), we directly compute the bound
of (31) and find that

s 28T
= QNT

287

57 37 ~ (0.3937.

(20)

V. DISCUSSION

In this section, we compare the performance the proposed
scheme with the state-of-the-art scheme of [3] and discuss
design considerations of the proposed CDC scheme.

First, we compare the required number of files and functions
for homogeneous designs. The scheme of [3] requires N7 =
(I:)m input files and Q1 = (I:)ng reduce functions. The
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proposed scheme requires N, = (£)"7; input files and

Q. = (£)"n output functions. Assuming r = O(K),
by using Stirling’s formula and a similar analysis found in [9],

we directly compare the required number of input files to find

% - @< 27rr(II§—r) ' <Kfir>K>

o5 ()

Since (21) grows exponentially with K, the proposed
scheme reduces the number of required files exponentially.
By a similar analysis, we can show that the proposed scheme
also allows an exponential reduction in the number of Reduce
functions.

Next, we compare the communication load of the proposed
CDC scheme with that of [3]. While the proposed design
applies to heterogeneous networks, the design in [3] only
applies to homogeneous networks. Hence, to facilitate fair
comparisons, we compare with an equivalent homogeneous
network of [3] with the same r, N, @), for appropriate choices
of 171 and 72. The scheme of [3] achieves the communication
load as a function of K, r and s as

K -2 r
'V(y)(ZA) ('yfs)
K\ (K :
r(2)()
Corollary 2: Let L.(r) be the resulting communication
load from using the NG File Mapping, Cascaded Function
Assignment and MR Shuffle Method, and L;(r,r) given

by (22) for an equivalent computation load r and number of
nodes K and r = s.

21

min{r+s,K}
Ly(r,s) =

y=max{r+1,s}

(22)

(a) When r = s = 2, for both homogeneous and heteroge-
neous hypercuboid designs, we have L.(2) < L(2,2).
(b) When r = s > 6 and K > r — 1 + 473, there exists
a heterogeneous hypercuboid design where Lq(r) <
Ly(r,r).
(c) In the limiting regime, when r» = s = o(K),> we have
limg oo 2505 < 1.
Proof: Corollary 2 is proven in Appendix E. [ ]

A. Homogeneous Cascaded CDC

In this section, we provide numerical results to confirm the
findings in Corollary 2 for homogeneous cascaded CDC.

In Fig. 5a, we compare L.(r) with L.(r,r) for large
homogeneous networks (K = 96,120) as r increases. For
s = r, we observe that L.(r) with L.(r,r) are close when
r < K, verifying Corollary 2 (c), but begin to deviate when
r = ©(K). We see that for most (but not all) values of K and
r that L, = % + ¢ where ¢ > 0. The intuition behind this is
for most of the Shuffle phase, IVs are included in coded pairs.

SWe will use the following standard “order” notation: given two functions
f and g, we say that: 1) f(K) = O (g(K)) if there exists a constant ¢ and
integer N such that f(K) < cg(K) forn > N. 2) f(K) = o(g9(K))
if limg oo LU = 0.3) f(K) = Q(g(K)) if g(K) = O (f(K)). 4)
J(K) = w(g(K)) if g(K) = o (f(K)). 5) f(K) =© (g9(K)) if f(K) =
O (9(K)) and g(K) = O (f(K)).
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(b) Increase K for fixed r = s = 2.

Fig. 5. Comparisons of communication load L. of the proposed design and
Ly of [3] for homogeneous networks.

Meanwhile, from (22) and Fig. 5a, we see that L (r,r) can
have a communication load less than %

Fig. 5 compares L.(r) and L (r,r) as a function of K for
fixed » = s = 2. This corresponds to the limiting regime of
r = o(K). Moreover, consistent with Corollary 2 (a), Fig. 5
shows the proposed design achieves a lower communication
load than that of [3]. This is because while both the proposed
scheme and that of [3] handle IVs that are requested by
1 or 2 nodes with the same efficiency, the former has a
greater fraction of IVs which are requested by 0 nodes. The
optimality of the scheme in [3] is proved under the key
assumption on function assignment that every s nodes have
at least 1 function in common. In contrast, we do not make
such an assumption in the proposed design. This allows greater
flexibility in the design of function assignment and enables a
lower communication load than that of [3].

By the proposed NG File Mapping and Cascaded Function
Assignment, the minimum requirement of N and @) is (%)T
where 77 = 772 = 1. While the minimum requirements of N
and Q in [3] are (1: ) and (IS( ). Hence, it can be observed that
the proposed approach reduces the required numbers of both
N and @ exponentially as a function of r and s.

B. Heterogeneous Cascaded CDC

We consider the following two cases of heterogeneous
network.
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Fig. 6.  Comparisons of the communication load achieved by the proposed
heterogeneous design to equivalent homogeneous designs including the pro-
posed design and the design from [3].

e Case I: Assume % of the nodes have 3 times as much
storage capacity and computing power compared to the
other % of the nodes. Here, we set P =2,y = 2,mq =
0.2 K,r9 = 1,ms = 0.6 K. Note that my = 3 m;.
e Case 2: Assume % of the nodes have 4 times as much
storage capacity and computing power compared to the
other % of the nodes. Here, we set P =2,ry =2,my =
0.1 K,79 =2, my = 0.4K . Note that my = 4m;.
We compare these two cases to equivalent homogeneous
schemes including the homogeneous scheme described in this
paper and the scheme of [3]. Here, equivalent means the
schemes are compared with the same r, s and K. Fig. 6
confirms Corollary 2 (b) that for fixed r and large K, there
exists a proposed heterogeneous design with L.(r) < L.(r, 7).
There appears to be an advantage of having a set of nodes with
both more locally available files and assigned functions. In this
way, less IV shuffling is required to satisfy the requests of
these nodes. As discussed before, an extreme case of this can
be observed where a subset of nodes each have all files locally
available and compute all assigned functions. Furthermore,

for the given simulations, the communication load of the
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heterogeneous designs approaches the communication load of
the homogeneous designs as shown in Corollary 2 (c).

VI. CONCLUSION

In this work, we introduced a novel combinatorial hyper-
cuboid approach for cascaded CDC frameworks with both
homogeneous and heterogeneous network scenarios. The pro-
posed low complexity combinatorial structure can determine
both input file and output function assignments, requires sig-
nificantly less number of input files and output functions, and
operates on large heterogeneous networks where nodes have
varying storage space and computing resources. Surprisingly,
due to a different output function assignment, the proposed
scheme can outperform the optimal state-of-the-art scheme
with a different output function assignment. Moreover, we also
show that the heterogeneous storage and computing resource
can reduce the communication load compared to its homoge-
neous counterpart. Finally, the proposed scheme can be shown
to be optimal within a constant factor of the information
theoretic converse bound while fixing the input file and the
output function assignments.

APPENDIX A
PROOF OF THEOREM 1

Let z; = |K;| be the size of the i-th dimension of the
hypercuboid. Note that if /C; € C,, then z; = m,, as defined in
General Node Grouping of Section III-B. The communication
load can be calculated by considering all r rounds of the
Shuffle phase. For v € {1,...,r — 1}, in the 7-th round we
use the IG Shuffle Method. We consider a node group S of
27 nodes where there are 2 nodes from K; for all i € A C [r]
such that |A|] = v. Given A and S we identify all node sets
Y which contain 7 — 7y nodes, 1 node from each set ; for all
i € [r]\ A. Given A, there are [][ z; possibilities for V.

ie[r]\A
Furthermore, there are 27 possibiel[it]iézs for choosing a subset

S’ C S such that |S’| = . Therefore, there are

sz(?)Hm:mH@Huﬁ

icA ig A icA ig A

=X [J@i-1)

i€ A

(23)

unique pairs of ) and S’ given A. For eacb unique pair
of Y and &', we define a set of IVs Vg/\fy which only
contains IVs wv; ; such that ¢ € D, and w; € B, where
{{S\SMuY} =74 and §"UY = Tp. Since |Be| = m
and |Dq| = 72, we see that [VS\5),| = 772, All of the IV
sets are transmitted in coded pairs, effectively reducing the
contribution to the communication load by half. Therefore,
given A, there are % [L;ca(wi — 1) transmissions of size
T bits, the number of bits in a single IV. A can range in size
from 1 to v — 1. Accounting for all possibilities of A, we
obtain the total number of bits transmitted as

M XT '
> > M- (24)
y=1 \{A:AC[r],|A|=7} \icA
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Finally, in the r-th round, we use the LC Shuffle Method.
We consider all node groups of 2r nodes, S, such that |S N
Ki| =2 forall i € [r]. There are [],_, (%) possibilities for a
node group S. Furthermore, given S, there are 2" possibilities
for a node group S” C S such that |S'NK;| =1 forall i € [r].
We see that &' = 7; and {S \ &'} = 7o, for some ¢ which

determines . Therefore, |VS\S | = |B¢|-|Da,| = min2. Each
node of S transmits 2" ! linear combinations of size %

bits and the total number of bits transmitted in the r-th round

is
2r7717722’"_1T - T; rmne T X -
1 E 2) " Tor_1 E(x"_l)'

(25)

Next, we need to add (24), (25), and normalize by QNT =
mne X 2T to get L.. The summation can be simplified using
Lemma 1 below.

Lemma 1: Given a set of numbers ai,as,...,a. € R,
the sum of the product of all subsets, including the empty
set, of this set of numbers is

ZH%* a1+ 1)

CClc]ieC

X (ag +1) x -+ x (ac+1). (26)

Lemma 1 easily follows by considering the expansion of

the right side of (26). Using Lemma 1, the communication
load (12) is given by

1= 5 (Tl -1 =TT -v)

i=1
T

+X(T—1) [0k -1

i=1
r

X -1 1
2X | X(dr—2) E“’C' )
iy 1 @7)
2 Ar—2
APPENDIX B

CORRECTNESS OF HETEROGENEOUS CDC SCHEME

Consider » = s sets of IVs, where the «-th set includes
IVs requested by « nodes. For each set, we prove that Shuffle
Methods from Section III-B satisfy the following: 1) all IVs
from that set are included in a coded transmission, 2) nodes
can decode IVs they request from that set and 3) nodes only
transmit IVs from that set which are computed from locally
available files. Then by using the specified Shuffle Method for
each v € {1,...,s}, each node will receive all its requested
IVs and be able to compute all assigned functions in the
Reduce phase.

We first prove criterion 1) for the IG and LC Shuffle
Methods. For v € {1,...,7 — 1}, in the v-th round we see
|70 N Tg| = |Y| = r — 7. Also, any 7y is possible and given
T any 7, is possible given that |7, N7;| = r — 7. Therefore,

the set of IVs transmitted is
{vij 1€ Do,w; € Be, | TeNTo| =1 —7}. (28)

This is the set of all IVs requested by v nodes and this
proves 1) for the IG Shuffle Method. Similarly, for the r-th
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round, in the LC Shuffle Method, we consider all possible
pairs 7; and 7, such that |7, NZ;| = 0 and the sets have no
nodes in common. The I'Vs included in the linear combinations
in the r-th are then {v; ; : i € Do, w; € By, |7y N 7o,| = 0}.
which represents all IVs requested by r nodes and this proves
1) for the LC Shuffle Method.

Next, for the IG Shuffle Method, consider an arbitrary node
z € S that receives a multicast message from node y € Y
where z ¢ ). The message is of the form V EB VT , given
in (9), where 7, = {S\ &’} UY and Tg = 8" U ). Note
that z is either in S’ or S\ &’. If z € &, then since z € ’Z},
it has access to By and thus can compute all IVs in VS\S
then subtract these off from the coded message to recover its
desired IVs in V&S—; The same reasoning applies to the case
when z € S\ §'. This confirms 2). To confirm 3), we see that
for any node y € ), since y is in both 7, and 7, by the NG
File Mapping node y has acces/s to both By and B, and thus
can compute IVs in both V and VT

For the LC Shuffle Method in the r-th round, for a given
S, there are 2" choices of 7; in (10) which determines the
node group 7,,. Fix a node z € S. Since half of these 7p
include node z, we see that z can compute exactly half of
these IVs, and requests the other half of them. These leads to
2"~1 unknown IV sets V; ¢ requested by node z. Since these
IVs are further divided into 2 — 1 disjoint subsets, node z will
request a total of (2r —1)2"~! unknown packets. Node 2 will
receive transmissions from the other 2r—1 nodes in S in which
each node transmits 2" ~! random linear combinations of its
known IV sets of interest. Therefore, node z can recover the
(2r —1)2"~! unknown packets since it receives (2r —1)2" 1
linearly independent combinations with high probability as the
field size goes to infinity, which is shown below.

For the LC Shuffle method, we consider a (2r — 1)27 1
square coefficient matrix A = (a; ;) for the requested packets
of a node z € {S\ &'} NK;. The first 2" ! rows contain only
non-zero elements since z receives linear combinations of all
requested packets from the node k € S’ NK;. We consider the
other 2r — 2 nodes in pairs as {k1,ko} = SN K, for j # i.
Nodes k; and ko send LCs with half of the requested packets
by node z, and they complement each other such that k; and ko
do not have any transmitted packets in common. Therefore, A
contains (2r — 2)2"~! rows with half non-zero elements and
each half-zero row has a compliment row with the position
of the zero and non-zero elements swapped. If we randomly
generate the non-zero elements, we can show that at least one
term of the determinant computation is non-zero. Therefore,
by the Schwartz-Zippel Lemma [12], the probability of this
matrix being invertible is high as the field size goes to infinity.
We create a matrix A’ = (ay, ,,) by re-arranging the rows of
A such that aj, ,, > 0. Consider the half-zero rows of A which
we will place as the first and last (27 —2)2" 2 rows of A’. For
each n € [(2r—2)2"~2], consider some unplaced half-zero row
of A which we label as row ¢ and whose unplaced compliment
row is row i'. If a;, > 0, then we let a},,, = a;,, and
a/(2r71)2r_17n+1,m = a;’,m, where m spans the length of each
row. Otherwise, if a; , = 0, we place the rows in the opposite
places. Note that, for n € [(2r — 2)2"~2], there will always
be an unplaced compliment row pair {i,7'} such that the
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a;n > 0 and a;,7(2r_1)2,,.,1_n+1 > 0. After this, the 27!
entirely non-zero rows of A are placed in the remaining
rows of A’. This matrix has no non-zero elements along the
diagonal and at least one term of the determinant computation
is non-zero.

This proves criterion 2) for the LC Shuffle Method. To con-
firm 3) for LC Shuffle Method, we see that since node k € 7y,
it has access to By, and thus can compute all IVs in VT;’" .

APPENDIX C
PROOF OF THEOREM 2

The proof of Theorem 2 utilizes Lemma 2 in [9] which
is based on the approaches in [3], [13] and provides a lower
bound on the entropy of all transmissions in the Shuffle phase
given a specific function and file placement and a permutation
of the computing nodes.

Lemma 2: Given a particular file placement and function
assignment { My, Wy, Vk € [K]}, in order for every node
k € [K] to have access to all IVs necessary to compute
functions of W, the optimal communication load over all
achievable shuffle schemes, L*, is bounded by

K
1
D —— AV
L* > TON ;:1 H (VWki,.|V.,MkiaY{kl,...,ki,l}) , 29

where k1, ...,k is some permutation of [K7], Viy, . is the
set of IVs necessary to compute the functions of Wy,. Here,
the notation “:” is used to denote all possible indices. V: 4,
is set of IVs which can be computed from the file set My,
and Yy, .. k,_,} is the union of the set of IVs necessary to
compute the functions of U;;ll Wi, and the set of IVs which

can be computed from files of U;;ll M, . O

Proof of Theorem 2: We pick a permutation of nodes by
first dividing the K nodes into m = £ disjoint ([r],1)
node groups {Gi,...,Gn}, each containing a node from
{Ki,i € [r]}. Note that each K; contains m nodes aligned
along i-th dimension of the hypercube, and each G; has size
r. In particular, each G;,7 € [m] is an element in the set of
all possible ([r],1) node groups {77, --,7x} as defined in
Single Node Grouping of Section III-B with P = 1. Then the
permutation is defined such that G; contains the first » nodes,
G- contains the next r nodes and this pattern continues such
that G,,, contains the last r nodes of the permutation. In other
words, {k(j_1)r41,..-,kjr} = Gj forall j € {1,...,m}.
Given this permutation, to compute the ¢-th term of (29),
we will show

H (VWkI;|V:Mk1 ) Y{k1,...,k7¢_1})
= Tl 1y — 1) 4D,

where 7m; = m — |[=1] and ¢; = i — r|*=1]. Note
that nodes {ki,ka,---,k;—1} consists of all nodes in
{G1,Go,- - 7g|.7‘,—_1J}, /; — 1 nodes in gLﬂJH, and no nodes

in any of the 7i; — 1 node groups in {TQLQHQ,--- ,Gm }

(30)

i—1

In particular, k; is the ¢;-th node in G,,, where n; = =2 ] +1.

Since the I'Vs are assumed to be independent, we will take
two steps to count the number of terms in (30). In Step 1,
we count the number of functions that are in W,, but not
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in {Wh,, - ,Wk,_, }. These are referred to as functions of
interests. By the definition of cascaded function assignment,
this is equivalent to counting the number of ([r],1) node
groups 7; such that 7; includes k;, but none of nodes in
{k1, ko, -+ ,ki_1}. Now, consider the first ¢; nodes in G,,.
Without loss of generality, assume that these nodes are taken
from KCj,7 =1, -+, ¥;, respectively. Then, for any dimension
ro € {¢;+1,---,r}, T; ,, can be any of the 7i; elements from
{Gj.ro, i < j < m}. Here, 7, (or Gj ,,) denotes the element
in 7; ( or G;) that is chosen from K,,. Similarly, for any

ro € {1,---,¢; — 1}, T; », can be any of the 7i; — 1 elements
from {G;,,,ni +1 < j < m}. When ry = {;, we must
have 7;,, = k;. This gives a total of m;—“ (; — 1)6—1

choices of such 7;. In Step 2, we count the number of
files that are not in {My,,---, My, }. These are referred
to as files of interests. This step is equivalent to counting
the number of ([r],1) node groups 7; that do not include
any of the nodes {ki, ks, -, k;}. By replacing the case of
ro € {1,2,---£;—1} in Step 1 by rg € {1,2,---¢;}, we obtain
a total of m;"—@ (17;—1)*% choices of 7;. By taking the product
of the results as in (19) from both steps and accounting for
the number of files, 11, and functions, 72, assigned to a node
group 7;, we obtain (30). The counting principle described
above can be visualized in Example 4. For instance, in Step 2,
when considering node k; after some “layers have been peeled
oft” (previous nodes were considered), the hypercuboid has ¢;
dimensions of size m; — 1 and r — ¢; dimensions of size m;.

It follows from (29) that we can sum (30) over all nodes
{kiyi=1,--- ,mr} to calculate the lower bound correspond-
ing to this permutation. Note that summing over the right side
of (30) from ¢ = 1 to ¢ = mr is the same as summing over
all possible mr pairs of (17, ¢;), where m; goes from 1 to m,
and ¢; goes from 1 to r. For instance, nodes in G; all have
the same m; = m — j + 1 but different ¢; that goes from 1 to
r. In the following, for brevity, we drop the subscript ¢ in the
double summation over {(712;, [;) }, with the understanding that
the first summation goes through all node groups Gi, -+ , Gy,
and the second summation goes through each of the r nodes
in a given node group.

L*QN

Z M2 Z Zm(QT’fQE) (m o 1)(2671)
m=1¢=1

_1)§<mﬁ;1)2‘*

€19

By normalizing (31) by QN = 1,1mom?", we obtain (14).
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Moreover, we can loosen the bound of (14) to find

1 1 1
> - = 44—
— 2 4m—-2 8m 8m?
29
> —. 32
Z 96 (32)

The last inequality in (32) follows from the left side of being
an increasing function of m when m > 2, and the minimum
is achieved at m = 2. Combining (32) with (13), we obtain
(15).

APPENDIX D
PROOF OF THEOREM 3

In the following, let x; = |K;| be the size of the i-th
dimension of the hypercuboid. WLOG, assume x; > zo >
... > Ts_1 > . First, we take a similar approach to Exam-
ple 4 and the proof of Theorem 2 to derive Lpo. With each
node of the permutation we remove a layer of the hypercuboid.
Through this process, the hypercuboid reduces in size as we
disregard files available and functions assigned to nodes of the
previous nodes of the permutation. In particular, we design
the permutation such that the next node is aligned along the
dimension with the largest remaining size (accounting for
layers previously removed). For example, if after accounting
for some nodes the remaining sizes of the dimensions are
Z1,...,T., we pick the next node from the set /C,, such that
I, is the largest dimension. Then, we count the number of
files of interests which is 71 (2, —1)[[,, ; and number of
functions of interests 72 [ | jotn Zj-

L*QN

> mn Y

= Jj=1 k=1
r 1—1 xT; 1
2 o 20—1,~2(i—4
=mme ) | (I1a3) 2o D (m-p it
=1 7j=1 m=x;41+1 =1

(33)

After scaling (33) by QN = 7,12 X2, we obtain the desired
expression for L ps.

Next, we derive Lp; using a different permutation that
includes only the x; nodes aligned along the largest dimen-
sion. Note that since nodes aligned along the same dimension
collectively compute all functions, the remaining nodes of the
permutation are irrelevant. Each of the x; nodes computes
772% functions and there are 7; X “;—:1 files which are not
available to it For the first node of the permutation there are
mneX? g IVs of interest using the bound of Lemma 2.
Since nodes ahgned along the same dimension do not have
any assigned functions in common, the number functions of
interest remains the same for the following nodes However,
the number of files of interest decreases by 7)1 for each
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following node of the permutation. Since nodes aligned along
the same dimension do not have any available files in common,
the number of files of interest decreases by the same amount
with each node in the permutation. Thus,

2 X 1 — 1 X)
L*QN>E - X —Gi-1).-=
- = i <m1> < €1 ( ) xr1

X%(zy —1
. S T} (34)
21’1
By combining (34) and (13), we obtain (18).
APPENDIX E
PROOF OF COROLLARY 2
For (a), given that r = s = 2, we obtain L; = 35?73

from (22), and L. = % — %w from (12) using |Kq| +
o] = K and |[K4 - |[K2| = X. Since L. is the largest
when X is maximized to be X = (£)? (corresponding to the

homogeneous network), we have L, < % < L.

Next, for (b), when » = s < % such that
there exists an achievable hypercuboid design, then
min{r+s, K} =r+s=2r. By only considering the

last term of Li(r,r) in (22) we derive the following lower
bound.

2r(5,) (7))

L1(7",7")> (K)2
o T(K—r)(K—r—l)---(K—Zr—l—l)
T -1 K(K—-1)--(K—-r+1)
>27“r—1 (1_K—:~+1) :27“7;1 (L o(1)).
(35)

Next, we derive an upper bound on L.. For a given r and

K, let K| =--=|K,—1] =2 and K, | = K —2(r — 1).
Then by (12)
I X -1 L K-2r+1
¢ 2X 21K —2r +2)(4r —2)
r 1 1
1—-— . 36
<2r—1< 27“—’_7"2’“) (36)
Then, combining (35) and (36) we find L. < L; if
r
K>r—1+ - (37)
/r
1= (1- 5 +77)

We now aim to find an upper bound on the RHS of (37).
It can be shown that if r > 6 then (1 — 5~ + rér)l/T <
exp(—5) and 1 — exp(—

3z) > pz. Substituting this
into (37), we find L; < L, if r > 6 and K > r — 1 + 413
which proves (b).

From (35), if » = ©(1) then Ly(r,r) > 5 + o(1), and
alternatively, if » = Q(1) and r = o(K) then Ly(r,r) >
2+ o0(1). i
assumptions that r > 1 and r = o(K), we ﬁnd that LL((T)) <
1+ o(1) which proves (c).
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