2896

2) heterogeneous computing speeds and heterogeneous storage
capacity. The proposed combinatorial optimization problem
is solved in two steps in Section IV and Section V, where
the proposed low-complexity CEC computation assignment
algorithms are introduced. Section VI summarizes the results
and compares the performance across multiple designs. The
paper is concluded in Section VII.

Notation Convention: We use |-| to denote the cardinality
of a set or the length of a vector. Let [n] := {1,2,...,n}
denote a set of integers from 1 to n. A bold symbol such as
a indicates a vector and a[i] denotes the i-th element of a.
Z7F denotes the set of all positive integers; R denotes the
set of all positive real numbers and QT denotes the set of
all positive rational numbers. Finally, let Rf be the set of all
length-N vectors of real, positive numbers.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

We consider a set of N machines. Each machine n € [N]
stores an integer number, o[n|, of coded sub-matrices, which
we refer to as cs-matrices, derived from a g x r data matrix, X,
where ¢ can be large. Here, we denote the vector o =
(o[1],002],...,0[N]), o[n] € Z*, Vn € [N] as the storage
vector and Z = Y_.'_, o[n] is the total number of cs-matrices
stored among all machines.! The cs-matrices stored at each
machine are defined once and kept fixed during subsequent
computations. The cs-matrices are specified by an Z x L MDS
code generator matrix G' where g; ; denotes the element in the
i-th row and [-th column, where Z, L € Z*. Let any L rows
of G be invertible. The data matrix, X, is row-wise split into
L disjoint, % x r uncoded sub-matrices, X1,..., X . Then,
for i € [Z], we define X, = ZeL=1 9i X ¢, where X, is
the i-th cs-matrix. Each X;,i € [Z] has + rows. Assume
that machine n will store o[n] of these cs-matrices, specified
by an index set Q,. In other words, machine n stores the
cs-matrices of {X; : i € Q,,}, where |Q,| = o[n]. We also
assume that different machines store different cs-matrices: the
sets Q1,- -+, Q are disjoint. Also, note that given a cs-matrix
X;,i € [Z], there is an unique machine that stores this
cs-matrix.

The machines collectively perform matrix-vector compu-
tations? over multiple time steps. In a given time step only
a subset of the N machines are available to perform matrix
computations. Note that, the available machines of each time
step are known when we design the computation assignments.
Specifically, in time step ¢, a set of available machines
N; C [N] aims to compute y, = Xw; where w; is a
vector of length r. The machines of [N]\ N; are preempted.
The number of cs-matrices stored at the available machines
is Zy £ 3, cn, 0ln] > L, which means that Z; is at least L
such that the desired computation can be recovered. Machines

'Note that assuming o[n] € Z1,Vn € [N] is for the ease of presentation.
If any o[n] is a fractional number, then we can let Z be large such that all
o[n]s can be a positive integer.

2t is straightforward to extend the proposed CEC designs to other appli-
cations outlined in [33] including matrix-matrix multiplications and linear
regression because matrix-vector multiplication is integral to each of these
applications.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 5, MAY 2021

in A; do not compute y, directly. Instead, each machine
n € N; computes the set V,, = J;co {v = Xij)wt S

W;}, where X 5]) is the j-th row of X i, the cs-mgtrix stored
by machine n, and W; C [%] is the set of rows of X ; assigned
to machine n in time step ¢ for computing tasks.

B. Key Definitions

In the following, we introduce three key definitions that
are useful to specify the computation assignments in a CEC
network.

Definition 1: The computation load vector, p, defined as

Vn 7 W"
pln] = |(g)| :@7 Vn € N, ey
L

q
(%)
is the normalized number of rows computed by machine n in

time step . O
Note that while p, W;, and V,, can change with each

time step, reference to ¢t is omitted for ease of pre-
sentation. Moreover, assume that machines have varying
computation speeds defined by a strictly positive vector
s = (s[1],s[2],...,s[N]), s[n] € QF, ¥Yn € [N], fixed
over all time steps. Here, computation speed is defined as the
number of times a machine can compute its cs-matrix per unit
time. We assume that the computation speed of each machine
is known.

Definition 2: Given a computation load vector u, the over-
all computation time is dictated by the machine(s) that takes
the most time to perform its assigned computations. Thus,
we define

pln]
c(n) neN, s[n] @
to be the overall computation time as a function of the

computation load p. O
At each time step ¢, for each j € [%], the j-th row of L

cs-matrices undergoes a vector-vector multiplication with w;.
The results are sent to a master node which can resolve the
elements of y, by the MDS code design. To ensure each row
is assigned L times,> we will introduce a general framework
for defining computation assignments. _

Given a cs-matrix X ;, W; includes the subset of rows in X
assigned to be computed by the machine that stores X ;. In our
design, instead of trying to determine this assignment row by
row, we make the assignment in “blocks” of rows. Namely,
each W, will include blocks of rows from X ;. Furthermore,
we will use a common set of blocks for the assignment of all
Wi, i € [Z], which we refer to as row sets. These are formally
defined below.

Definition 3: Since each cs-matrix has £ rows, we partition
the full index set of these rows {1,2,---, 1} into F' consec-
utive disjoint subsets, possibly with varying sizes, called row
sets, denoted by M; = (My,..., M), whose union gives
the full index set. O

3When each machine stores just 1 coded matrix, we say the computations
are assigned to each machine as in the original CEC work [33]. Alternatively,
when some machines store more than 1 matrix, each row is computed for L
different matrices which are stored across a number of machines less than or
equal to L.

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:20:32 UTC from IEEE Xplore. Restrictions apply.

WOOLSEY et al.: CEC ON MACHINES WITH HETEROGENEOUS STORAGE AND COMPUTATION SPEED

2897

Algorithm 1 Computation Assignment: Homogeneous Storage Capacity and Heterogeneous Computing Speeds

Input: pu*, Ny, L, and ¢

% p* is solution to first sub-problem (7)-(8).

% m represents the remaining computation load vector to be assigned.

% Initialize m as the optimal computation load vector p*

% L' represents the sum of the remaining computation load

% specify machines that will compute M ¢
% ay is the fraction of rows assigned to row set M

% assign only a fraction of remaining rows to Py
% to ensure a FP solution exists at next iteration.

% assign all remaining un-assigned rows of machine ¢[1] to Py.

1:m «— p*

22 f«—0

3: while m contains a non-zero element do

4 f—f4+1

5. L' —YN mln]

6: N’ < number of non-zero elements in m

7: £« indices that sort the non-zero elements of m from smallest to largest’
8¢ Pr—{C[1,(N" —L+2],....¢[N'}

9: if N’ > L +1 then

10: a; « min (LT —mN'—L + 1]],m[€[1]])6
11: else

12: Qf m[@[l]]

13: end if

14: for n € Py do

15: mln] < m[n] — ay

16: end for
17: end while
18 F«— f

% update remaining computation load at each machine

19: Partition rows [{] into I disjoint row sets: My, ..., Mp of size =52, ..., “£Z rows
Output: F, Mq,... , Mp and Py,...,Pp
Definition 4: Given row sets M; = (My,...,Mp), X, then we can see that P; = {1,5,6}, P = {2,3,4},

we define cs-matrix sets P, = (P1,..., Pr) where each Py
includes the indices of L cs-matrices for which all rows in M ¢
are computed by the machines that store these cs-matrices.
Specifically, if i € Py and a machine n stores X . (1€ Q)
then machine n will compute all rows in My from X i
i.e., these rows are included in VV;. This ensures that each row
set M is computed exactly L times using the L cs-matrices
stored on these machines.

By the above definitions, the rows computed by machine
n € Ny in time step ¢ are in the set

U wi= U My:felFliePs}. A3)

1€Qn 1€Qn

Note that the sets My, ..
vary with each time step.

Remark 1: When each machine only stores one cs-matrix,
there is a one-to-one mapping between a cs-matrix and a
machine, and thus P, also represents the set of machines
that compute rows in M. This is used in Example 1 and
Algorithm 1, where we assume that the machines have het-
erogeneous speeds but homogeneous storage.

Remark 2: The row set and cs-matrix set pair (M, Py)
combine to determine the computation assignment. The com-

putation load g is a function of (M, Py).
One example to illustrate M ¢ and P; is given in Fig. 1(a).

In this example, we consider the case that all machines
have heterogeneous computing speed but with homogeneous
storage, i.e., o[n] = 1,n € [N]. Each machine store one
cs-matrix and the union of My, f € [4] in different colors
cover all the row indices, [%} We let machine n stores

., Mp and Py,...,Pr and F may

Ps = {3,5,6}, Py = {4,5,6}. In this case, since there is
a one-to-one mapping between the machine and the cs-matrix
that it stores, the cs-matrix set Py can also be interpreted as an
index set of the machines that compute the stored cs-matrices.

C. Formulation of a Combinatorial Optimization Framework

In a given time step ¢, our goal is to define the computation
assignment, M, and P, such that the resulting computation
load vector defined in (1) has the minimum computation time.
In time step ¢, given N;, Qi,...,Qn and s, the optimal
computation time, ¢*, is the minimum of computation time
defined by all possible computation assignments, (M, Py).
Hence, based on all the conditions discussed before and
given the storage vector o, we can formulate the following
combinatorial optimization problem.

r?inimiz)e c(p (M, Py)) (4a)
. . _ (49
subject to: U My = [L} , (4b)
MreM,
Prc U Qu VPreP, (o)
neN;
|M| = [Py, (4e)

The objective function (4a) is the overall computation
time of a computation load vector g, which is a func-
tion of (M, P;) and s. Conditions (4b)-(4e) specifies the
constraints on (M, P¢), which are to be optimized over.
Specifically, (4b) ensures that the union of the row sets My

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:20:32 UTC from IEEE Xplore. Restrictions apply.

2898

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 5, MAY 2021

1/3 1/3 1/5
| 1/6 1/6 1/6 1/5 1/5
machine 1 machine2 machine3 machine4 machine5 machine6 machine1 machine2 machine3 machine4 machine5 machine6
a) no preempted machines, t = 1 b) one preempted machine, t = 2
| 1/7” 1/7
machine 1 machine2 machine3 machine4 machine5 machine 6 machine 1 machine2 machine3 machine4 machine5 machine 6
a) two preempted machines, t = 3 a) three preempted machines, t = 4
----- - e |
| 1 : : 1 1
1 1
|M2 1 :M4 1 : :
1
Lo Locooi booood
\ J not preempted
Y computed
computed

Fig. 1.

An illustration of the optimal computation assignments in Example 1 over 4 time steps on a heterogeneous CEC network where machines have

heterogeneous computing speed and homogeneous storage space. In this example, N =6, Z =6, L = 3 and Q,, = {n},Vn € [6]. At ¢t = 1, there are
F = 4 row sets M (green) Mo (blue), M3 (magenta), My (yellow), each is assigned to L = 3 cs-matrices. The number labeled in the center of each row
set is the fraction of the rows in that row set. The row sets change over time. At ¢ = 3, there are /' = 3 row sets, and at ¢ = 4, there is only F' = 1 row set.

equals the full set of £ rows. i.e., all rows are assigned to
be computed by some available machines at time ¢. Condi-
tion (4c) ensures that the cs-matrices in Py are stored by only
available machines at time ¢, and hence, each row set My is
only assigned to be computed from these available machines.
Condition (4d) ensures that each row set is computed from
exactly L cs-matrices. Condition (4e) ensures that each row
set has a corresponding cs-matrix set, i.e., the number of row
sets equals the number of cs-matrix set.

Remark 3: In Sections IV and V, we precisely solve the
combinatorial optimization problem of (4) and summarize this
result in Theorem 2. We decompose this problem into two
sub-problems. First, a convex optimization problem to find an
optimal computation load vector p without the consideration
of a specific computation assignment. This means that we
will solve the problem of (4) by treating p as a real vector
without considering whether such a computation assignment
is feasible. Second, given the optimal p solved in the previous
convex optimization problem, we solve a computation assign-
ment problem or a filling problem in order to find a (M, P4)
that meets the optimal computation load. Moreover, we show
that an optimal assignment, (M, P,), can be found via a low
complexity algorithm that completes in at most [V, iterations

and the number of computation assignments, F', is at most NV;.
Remark 4: Note that, the optimization problem of (4) does

not consider the time required for decoding or communica-
tions, but only optimizes the time of overall computation.
Furthermore, our problem formulation considers the optimal
computation assignment to available machines that will remain
available during that computation time step. In this work,
we do not consider elastic events or stragglers during a
computation time step.

III. Two CEC EXAMPLES

In this section, we will discuss two CEC examples to
illustrate the proposed approaches. Example 1 considers

the scenario where machines have heterogeneous computing
speeds but homogeneous storage constraints. Example 2 con-
siders the more general scenario where machines have both
heterogeneous storage space and computing speeds.

A. Example 1: CEC With Heterogeneous Computing Speeds,
Homogeneous Storage Constraints

We consider a system with a total of N = 6 machines
where each has the storage capacity to store % of the data
matrix X. In time step ¢, the machines have the collective goal
of computing y, = Xw; where w; is some vector. In order
to allow for preempted machines, X is split row-wise into
L = 3 sub-matrices, X1, X5 and X3 and an MDS code
is used to construct the cs-matrices {X,, : n € [N]} which
are stored among the machines. In particular, when the storage
space among machines is homogeneous, machine n stores only
one cs-matrix X, and o = [1,...,1]. In this case, there is a
one-to-one mapping between cs-matrices and machines. This
placement is designed such that any element of y, can be
recovered by obtaining the corresponding coded computation
from any L = 3 machines. To recover the entirety of y,,
we split the cs-matrices into row sets, such that each set is
used for computation at L = 3 machines.

The machines have relative computation speeds defined by
s=1[2, 2, 3, 3, 4, 4], where machines 5 and 6 are
the fastest and can perform row computations twice as fast
as machines 1 and 2. Machines 3 and 4 are the next fastest
and can perform matrix computations 1.5 times as fast as
machines 1 and 2. Our goal is to assign computations, or rows
of the cs-matrices, to the machines to minimize the overall
computation time with the constraint that each computation is
assigned to L = 3 machines.

In time step 1, there are no preempted machines which
means that N7 = {1,...,6} and N; = 6. We assign fractions
of the rows to the machines defined by the computation load

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:20:32 UTC from IEEE Xplore. Restrictions apply.

WOOLSEY et al.: CEC ON MACHINES WITH HETEROGENEOUS STORAGE AND COMPUTATION SPEED

L4 11 2 2] such that machines 1

vector 1 =[5 50 35 3 3 3
and 2 are assigned %, machines 3 and 4 are assigned %
and machines 5 and 6 are assigned % of the rows of their
respective cs-matrices. We define g such that it sums to L = 3
and each row can be assigned to 3 machines. Furthermore,
based on the machine computation speeds, the machines
finish at the same time to minimize the overall computation
time. In Section IV, we outline the systematic approach to
determine p. Next, given p, the rows of the cs-matrices must
be assigned. We define row sets, Mj, My, Ms, and My
which are assigned to F' = 4 sets of . = 3 cs-matrices Pq, PQ,
P3, and P4. Since each machine n stores one cs-matrix X ,,,
it is equivalent to say that we assign computations to machines.
In other words Py, P2, Ps, and P, represent the machines
assigned to compute My, My, Ms, and My, respectively.
These sets are depicted in Fig. 1(a) where, for example,
M, contains the first % of the rows assigned to machines
P1 = {1,5,6}. Moreover, M contains the next 3 of the
rows assigned to machines Py = {2,3,4}, M3 contains the
next ¢ of the rows assigned to machines Ps = {3,5,6} and
M contains the final % of the rows assigned to machines
Py = {4,5,6}. In Section V, we present Algorithm 1 to
determine the computation assignment for general p. By this
assignment, the fraction of rows assigned to machine n sums
to p[n] and each row is assigned to L = 3 machines to recover
the entirety of y;.

In time step 2, we find No = 5 because machine 4 is
preempted and no longer available to perform computations.
Therefore, the computations must be re-assigned among Ny =
{1,2,3,5,6}. First, we obtain p = [%, %, %, 0, %, % }
which sums to L = 3 and minimizes the overall computation
time. Given p, we then use Algorithm 1 (see Section V)
to assign computations to a machine with the least number
of remaining rows to be assigned and L — 1 = 2 machines
with the most number of remaining rows to be assigned. For
example, in the first iteration, M is defined to contain the
first % of the rows and is assigned to machines P; = {1,5,6}.
After this iteration, machines 2, 5 and 6 require % of the

total rows to still be assigned to them and machine 3 requires
3

¢ of the total rows. In the next iteration, Mo contains the
next + of the rows and is assigned to P, = {2,3,6}. Note
that, only % of the rows could be assigned in this iteration
otherwise there would only be two machines, 3 and 5, which
still require assignments and therefore, the remaining rows
cannot be assigned to 3 machines. In the final two iterations,
M3 and My contain % of the previously unassigned rows
and are assigned to the machines of P3; = {2,3,5} and
Py = {3,5,6}, respectively. These assignments are depicted
in Fig. 1(b).

Next, in time step 3, we find N3 = 4 and N3 =
{1,2,3,5} because machines 4 and 6 are preempted. It is
ideal to have machines 3 and 5 compute 1.5x and 2X the
number of computations, respectively, compared to machines
1 and 2. However, this is impossible since each machine can
be assigned at most a number of rows equal to the number
of rows of the cs-matrices. In this case, we assign all rows
to the fastest machine, machine 5, and assign fractions of the
rows to the remaining machines which sum up to 2. As a

2899

result, welet = [2, 2, 80, 1, 0]. Then, Algorithm 1
defines My, My and Mj as disjoint sets containing 2, 1
and % of the rows, respectively. Moreover, these row sets are
assigned to the machines of P; = {1, 3,5}, P> = {1,2,5} and
Ps = {2,3,5}, respectively. These assignments are depicted
in Fig. 1(c).

Finally, in time step 4, machines 1, 4 and 6 are preempted
which means that Ny = {2,3,5} and Ny = 3. To assign
all the rows to L = 3 machines, each available machine is
assigned by all of the rows and p = [0, 1, 1, 0, 1, 0].
In other words, M contains all rows and P; = {2,3,5}. This
is depicted in Fig. 1(d).

Next, we present Example 2 with heterogeneous stor-
age space and computing speeds. This example uses Algo-
rithm 2, which is a generalization of Algorithm 1 discussed
in Example 1.

B. Example 2: CEC With Heterogeneous Computing Speeds
and Storage Constraints

Consider the case where L = 6 and there are N = 6
machines which each have distinct speed-storage pairs. For
ease of presentation, we only focus on a single time step
(or t = 1) and assume there are no preempted machines
(N1 = 6). The computing speed of the available machines are
defined by s = [2, 3, 4, 2, 3, 4]. The total number of
stored cs-matrices is Z; = 9 and the machines store a number
of cs-matrices defined by o = [2, 2, 2, 1, 1, 1]. For
example, machine 1 has a speed of 2 and stores 2 cs-matrices
and machine 5 has a speed of 3 and stores 1 cs-matrix. The
storage of the cs-matrices at each machine is shown in Fig. 2
where X; is labeled at the top of each block which represent a
cs-matrix. The machines are in descending order based on Z[[;’]]
to use Theorem 1 to find the optimal computation load vector
described in Section IV. Based on Theorem 1, the computation
load vector is p = [%, %, %, %, 1, 1] Notice that,
different from Example 1, a machine here may have a compu-
tation load greater than 1 if it performs computations on more
than 1 stored cs-matrices. However, similar to Example 1,
machines either have the same computation time or perform
computations on all locally stored data. In this example, based
on the computation speeds, machines 1 through 4 complete the
assigned computing tasks at the same time and machines 5
and 6 compute using the entirety of their one locally available
cs-matrix and finish before the other machines.

Next, we need to assign computations that yield the compu-
tation load vector, ;. We use Algorithm 2 in Section V, where
instead of assigning computations to machines, we assign
computations to each cs-matrix at each machine. In this
algorithm, we need to first decide how much of each cs-matrix
will be computed. For example, consider machine 3 which has
a computation load of x[3] = 1% and locally stores o[3] = 2
cs-matrices. There is a choice of how much machine 3 will
compute each of its cs-matrices. A solution which simplifies
the assignment is for machine 3 to compute the entirety of one
cs-matrix and a % fraction of the other. Similarly, machine 2
will compute the entirety of one cs-matrix and 1—11 fraction
of the other. In general, when o[n] > 1 and machine n

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:20:32 UTC from IEEE Xplore. Restrictions apply.

2900

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 5, MAY 2021

Algorithm 2 Computation Assignment: Heterogeneous Storage Capacity and Computing Speeds

Input: p*, Ny, L, q, Ql, ceey QNt and 6

% wp* is solution to first sub-problem (7)-(8). Q,...

, QNt and

% 6 include pre-chosen cs-matrices based on p*.

1: for n € [IV;] do

2 jln] —] — L[l
3: end for

L= Y jiln]

% determine the computation load for each partially computed cs-matrix.

% L is the sum of the computation load over partially computed cs-matrices.

o X R % Use Algorithm 1 next to find computation assignment for partially computed matrices.
5:F, My,...,Mp and Py, ..., Pp < Output of Algorithm 1 with f, Ny, L, and g as input

6 F— F
7: for f € [F] do
8: ./\/lf<—./\/lf

% use the output row sets from Algorithm 1 as final row sets.

9: Py — Uneﬁf 0[n] U Unemv Q, % combine outputs of Algorithm 1 with fully computed cs-matrices
% to obtain the final cs-matrices assignment
10: end for
Output: F, Mq,... , Mp and Py,...,Pp
X, X, X, X
3/11
5/11
I mach'ine 1 . I mach'ine 2 . I macf;ine 3 machine 4 machine 5 machine 6

Fig. 2.

Example 2: Optimal computation assignments for a CEC network with machines that have heterogeneous storage requirements and varying

computations speeds. Here, we have N = 6, Z = 9, L = 6. The machines have varying computation speeds s = [2, 3, 4, 2, 3, 4| and storage capacity
o =12, 2,2, 1, 1, 1]. Machines 1 to 3 each stores 2 cs-matrices, and machines 4 to 6 each stores only 1 cs-matrix. The machines are ordered in the

decreasing order of SCR ol
s[n]

instance, M is assigned to cs-matrices P1 = {3,4,5,7,8,9}. The optimal computation load vector is g = [1;81,
machine 3 computes one full cs-matrix X5 and partially computes % + 1—21 =

stores more than one cs-matrices, it will compute | u[n] | whole
cs-matrices and a p[n] — |u[n]| fraction of the remaining
cs-matrix.

The final computation assignments are shown in Fig. 2.
There are F' = 4 matrix row sets M through M, which
contain a ﬁ, %, % and % fraction of rows, respectively. Each
row set M is assigned to a cs-matrix set Py that contains
L = 6 cs-matrices. These are given by cs-matrix sets P; =
{3a 47 5; 77 8; 9}’ Py = {17 3; 57 6; 87 9}’ Ps = {37 5; 67 7; 87 9}’
and P, ={1,3,5,7,8,9}.

IV. FIRST SUB-PROBLEM: OPTIMAL COMPUTATION
LOAD VECTOR

We decompose the optimization problem (4) into two sub-
problems. In this section, we present the first sub-problem
by introducing a relaxed convex optimization problem to find
the optimal computation load vector p* and its correspond-
ing computation time ¢* = ¢(u*) without considering an
explicit computation assignment (M, P;). Due to the relaxed
constraints, we have ¢* < ¢*. Next, in Section V, we will
present the second sub-problem where we show a computation
assignment (M, P) exists that achieves the p* found in the

There are 4 row sets M (green) Mo (blue), M3 (magenta), My (yellow), each is assigned to L = 6 cs-matrices. For

216 8
)l T 110 110
% of X, which adds up to a computation load of u[3] =1+ % =

1]. For instance,
16
11

first step. Hence, there is no gap between the relaxed convex
optimization problem and (4) and we have ¢* = ¢*.

A. The Proposed Relaxed Convex Optimization Problem

Given a computation speed vector s and storage vector o,
we let the optimal computation load vector p* be the solution
to the following convex optimization problem:

pln]

minilr}lize ce(p) = nlélf}@i] Sl (5a)
subject to: Z wuln] =L, (5b)
n€[N¢]
0 <puln] <oln], Vne [N, (5¢)
pln] € RT, Vn € [N (5d)

which can be shown to be a convex optimization problem.
While computation assignments, (M, P;), are not explic-
itly considered in (5), we note that the key constraint of
2 one[n, #n] = L is a relaxed version of the requirement
on the computation assignment that each row set should be
assigned to L cs-matrices. The analytical solution to the opti-
mization problem (5) can be explicitly found. When Z; = L,
it can be seen that this optimal solution is given by pu* = o.

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:20:32 UTC from IEEE Xplore. Restrictions apply.

WOOLSEY et al.: CEC ON MACHINES WITH HETEROGENEOUS STORAGE AND COMPUTATION SPEED

When Z; > L, the analytical optimal solution to (5) is
presented in the following theorem.

Theorem 1: Assume that Z; > L and the machines are
labeled in the decreasing order of the storage capacity to
computation speed ratio (SCR)

oll] | o2

s(l] — sf2] ~ s[Ni]

The optimal solution p* to the optimization problem of (5)
must take the following form

. ¢ts[n] if 1 <n<k*
pn] = s
on] ifk*+1<n<N,

o[N]

(6)

@)

where k* is the largest integer in [V;] such that

olk* +1) _ . L= 0]
ST ke
S[Zn:l
olk*]
s[k*]’
otherwise, k* = N;. Here, ¢* = ¢(p*) is the maximum com-
putation time among the N, machines given the computation
load assignment p*.

s[n]

IN

if k* < N, (8)

B. Proof of Theorem 1

In the following, we first present two Claims that will lead
to the proof of Theorem 1.

Claim 1: If p*[n] < ¢*s[n], then p*[n] = o[n]. Thus,
in this case the optimal computation load assigned to machine

n is equivalent to its storage.
Proof: 'We prove Claim 1 by contradiction. Since ¢* =

max,,c(y,] “;[T[Z]L], we define two disjoint sets 7y and 77, where
ToUTh = [N, as

To ={n € [N¢] : p*[n] = ¢*s[n]} 9)

and

Ty ={n € [N¢] : p*[n] < é*s[n]}.

In the following, we will show that if there exists an i ¢ 7o,
then we must have ¢ € 7; and p*[i] = o[i]. In order to do this,
we will construct a new solution g’ from the optimal solution
p* such that e(p') < ¢*, which leads to a contradiction that g *
is an optimal solution. The details are as follows. Assume that
there exists some ¢ € [N¢] such that ¢ € 73 and p*[i] < oli].
Define g such that

(10)

w n]+e ifn=1,
wn] =< prn] — 7 if n €T, (11)
w*n] ifneTi\i
where 0 < € < o[n] — p*[n] and € is sufficiently small such
that
! *
whil _ p [Z]'—i—e <& (12)
sli] sli]
and for all n € 7y
€
*In] — — > 0. (13)
p(n] A

2901

One can verify that we have ‘;l[[:’] < ¢* for any n € [Ny

and thus we obtain ¢(p’) < ¢&*. This contradicts with the
assumption that p* is optimal. Thus, it follows that if n ¢ 7y,

then we must have n € 77 and p*[n] = oln]. [|
Claim 2: 1f j € Ty and i € Ty, then % > %
Proof: This claim follows directly from
wl] o o bl o) (14)
sli] s[d] slil — sl
|

Proof of Theorem 1: Combining Claims 1 and 2, the optimal
solution must take the form of

. cisn] if1<n <k,
u[n]Z{kH

. (15)
on] fk+1<n<Ng,

where k£ = |7g|. Next, we will optimize %k such that ¢

is minimized. Since Zne[Nt] p*[n] = L, by using (15),
we obtain (8) because

Ny
L= wh =%

ok
=,

Zn k+1 o[n]

n=1 []+Zn k+10[n]a

fz:llj‘ [n] +

(16)
and

L— Zn k1 0]
Zi:l s[n]

The right-most inequality of (8) follows from k € 7; and

w*[k] < o[k]. The left-most inequality of (8) follows from

k+1 € T; and p*[k+1] = o[k+1]. Since ‘7[["]] is a decreasing

sequence, we see from (8) that ¢; is minimized when k is

chosen to be k*, the largest value in [IV¢] such that (8) is
satisfied.

¢ = (17)

C. Discussions on Theorem 1

From (6), (7) and (8), we can observe that the optimal
solution p* to the optimization problem (5) is always rational
due to the fact that s are rational numbers and o are integers.
Hence, it is achievable for large enough ¢ if the computa-
tion assignment exists. The following corollary presents the
solution of the optimal computation load vector when the
storage among machines is homogeneous, i.e., each machine
stores exactly one cs-matrix. This storage design is equivalent
to that used in the original CEC work of [30], but here the
machines have varying speeds as opposed to the homogeneous
setting of [30].

Corollary 1: When o =[1,1---,1], we find

. ¢ts[n] if 1 <n<k*
p*[n] = s (18)
1 if £ +1<n< Ny,
where k* is the largest integer in [Ny] such that
1 L — Ny +k* 1
o = ¥ (19)

R P R O

Proof: Corollary 1 is proved by substituting o[n] = 1 for

n € [INV;] in equations (7) and (8) and ordering the machines
by speed in ascending order. []

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:20:32 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 5, MAY 2021

Total fill area

machine £~ .
(across all machines)

2902
o] |[= |
ol || | '
< | I
g b |
< E M Ak : I I oo -I
X | | sln] | | |
‘ G G ﬁl I
s[n] s[n] s[1] s[2] s[3]
(@)
Fig. 3.

s[k*]
(b)

S[k"lF + 1] S[Nt — 1} S[Nt]

A water-filling like representation of the storage and computation load of (a) for machine n only and (b) for a set of available machines with an

optimal computation load vector that solves the optimization of (5) with the solution of Theorem 1. Machines in (b) are ordered in the decreasing order of

a(n)

SCR, Ok The storage of machine n is represented by the area of the full rectangle (in peach color). The computation load p[n] assigned to machine n is

represented by the area of the filled blue region within the n-th rectangle. The height of the each filled blue region represents ——

B ["], which is the computation
s[n]

time of machine n. The maximum height of these filled regions represent the computation time ¢* = c(p™).

Remark 5: The two cases in (7) are determined by whether
a machine n satisfies ©*[n] = é*sn| or p*[n] < é*s[n]. For
the first case when 1 < n < k¥, the equality is achieved and
we must have 0 < p*[n] < o[n]. Among these k* machines,
the computation load p*[n] is proportional to the computation
speed s[n]. For the second case when k* +1 < n < N,
we have the strict inequality and p*[n] = o[n]. The computa-
tion load 1*[n] equals (thus is limited by) the storage o'[n]. The
equality in (8) ensures that Eg;l w*[n] = L; the right-most
inequality ensures that p*[n] < p*[k*] = ¢*s[k*] < o[n],
for any 1 < n < k*; the left-most inequality ensures that
for any £* + 1 < n < N, we have p*[n] < ¢*s[n]. Hence,
the computation time ¢* is equal to the local computation time

of any of the £* machines with the largest SCR.
Since the optimization problem of (5) aims to minimize a

convex function on a closed and convex set, the existence of an
optimal solution is guaranteed. This ensures the existence of
some k* € [INV;] such that (8) is satisfied. In the following,
we provide a numerical procedure to find k*. First, it is
straightforward to verify that if the right-hand-side (RHS)
inequality “<” of (8) is violated for £* = ¢, then the left-
hand-side (LHS) inequality “<” of (8) must hold for k£* =
¢ — 1. In other words, for any ¢ € [Ny],

if &7 > i?],then

sli]

where ¢; (and ¢;_;) are defined by (17) for different values
of k*. We first check k* = IN;. If the RHS of (8) holds, then
we have k* = N,. Otherwise, it follows from (20) that the
LHS of (8) must hold for k* = N; — 1. If the RHS of (8)
also hold for k* = N; — 1, then we have k* = N; — 1.
Otherwise, it follows from (20) that the LHS of (8) must hold
for k* = N; — 2. We continue this process by decreasing k*
until we find one value of k&* for which both sides of (8) hold.
This process is guaranteed to terminate before reaching £* = 1
for which the RHS of (8) always hold. Hence, this establishes
the procedure to find £* directly using (8).

ol
L.] < ¢y

si] (20)

Finally, we note that the solution in Theorem 1 for the opti-
mization problem of (5) has a “water-filling" like visualization
as shown in Fig. 3. In Fig. 3(a), the storage of machine n is
represented by the area of the full rectangle (shaded with the
peach color) that it corresponds to. We make the width of
the rectangle s[n] because if we “fill” part of the rectangle
with an area of u[n] (shaded in blue), then the height of the
filled area, which is the water level at that rectangle, represents
the computation time of machine n. Note that, this filled area
does not represent a specific computation assignment, but only
the total computations assigned to machine n. In Fig. 3(b),
in accordance to (6), we arrange the available machines in

descending order of the rectangle height, which is % for

machine n. Then, following (5b), we “fill” all the available
machines with a total area of L. First, notice that machines
with larger rectangle width, or speed, will have larger filled
area, or more computation load, until they are completely
filled. Machines k* + 1,..., N; with smaller rectangle height
fill completely and have a computation time strictly less
than ¢*. Machines 1,...,k* with larger rectangle height, all
have the same computation time of ¢*. Note that one or more
of these machines may be completely filled such as machine k*
in Fig. 3(b), but will have the same “water level" as machines
1,..., k"

D. Computation Load of Example 1 and Example 2

Homogeneous storage: We return to Example 1 presented
in Section III-A with homogeneous storage but heterogeneous
computing speeds and explain how to find the optimal compu-
tation load vector. In this example, each machine stores exactly
one cs-matrix. When ¢ = 1, we have Ny = 6 and L = 3.
Given s = [2, 2, 3, 3, 4, 4], the largest k* that satisfies (8)
is k* = 6, and thus ¢* = 1/6, p* = é*s = [§,3,5,3, %, 2].
Similarly, for ¢ = 2, since machine 4 is preempted, we have
now No = 5, Ny = {1,2,3,5,6} and s = [2, 2, 3, 4, 4]
(we ignore any preempted machines). In this case, we have
k* = 5, and thus ¢* = 1/5, p* = ¢*s = [%,%,%,%,%].

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:20:32 UTC from IEEE Xplore. Restrictions apply.

WOOLSEY et al.: CEC ON MACHINES WITH HETEROGENEOUS STORAGE AND COMPUTATION SPEED

Similarly, for ¢ = 3, we have N3 = 4, N3 = {1,2,3,5} and
s = [2, 2, 3, 4] because machines 4 and 6 preempts. Here,
we have k* =3, ¢* =2/7, and p* = [%, %, g, 1] 4
Heterogeneous storage: We illustrate this case using Exam-
ple 2 presented in Section III-B with L = N = 6 and no
preempted machines. In this case, we order the machines in
a descending order by Z[[;']], where s = [2,3,4,2,3,4] and
o =12,2,2,1,1,1]. Next, we need to determine k*, and we
start by checking £* = 6. However, we can observe that (8)

does not hold since
L

1

—— ==

Zn:l S[?’l] 3

Similarly, if we try £* = 5, we see that (8) does not hold since
L—-ol6] 5 1 o5

Finally, we see that k* = 4 is the solution that satisfies (8)
because
ob] 1
— =<
s[5] 3

o[6]

> 5[6] .

1
1= @1

(22)

L—O’[S]—O’[6]:i§

1
S 8l0) 172

It follows that ¢* = 4/11 and by using (7), we obtain p* =
[i 12 16 8 1 1]

10 110 10 110 0 1l .

In Section V, we will show that there always exists a
computation assignment (M, P;) whose computation load
vector equals p* and the assignment pair can be found using
the proposed Algorithm 1 (for homogeneous storage) and
Algorithm 2 (for heterogeneous storage) in no more than NV

iterations.

Q

_ 4
=3 (23)

V. SECOND SUB-PROBLEM: OPTIMAL
COMPUTATION ASSIGNMENT

In this section, we present a computation assignment
(M, P;) that solves the optimization problem of (4). First,
we show the existence of a computation assignment that yields
the computation load vector p* and computation time ¢*.
This shows that there is no gap between the combinatorial
optimization problem (4) and the relaxed convex optimization
problem of (5). Then, we provide a low-complexity itera-
tive algorithm that outputs such an assignment in at most
N, iterations. In the following, we start with the case of
homogeneous storage and heterogeneous computing speeds,
where each machine stores exactly one cs-matrix, then we
move to the case of heterogeneous storage and computing
speed requirements where each machine may store any integer
number of cs-matrices.

A. Homogeneous Storage With Heterogeneous
Computing Speeds

Here, we focus on the case where o[n] = 1 for
n € [N such that each available machine stores exactly
one cs-matrix. Our goal is to assign computations among the

“Note that, as in the optimization problem of (5), the computation load of
the preempted machines are ignored since they are simply O, presenting a
slight difference between the optimal computation load vectors presented in
Section III.

2903

machines such that each row set in M, is assigned to L
machines and the assignments satisfy the pu* given by (18).
Interestingly, we find that once p* is given, we can adapt the
filling problem (FP) introduced in [32] for private information
retrieval (PIR) to solve our second sub-problem of finding
the computation assignment for CEC networks. Note that our
proposed formulation of the computation assignments based
on row sets, together with the two-step approach to solve the
proposed combinatorial optimization problem, are important
to allow successful adaptation of the FP problem [32] to the
CEC setting.

Definition 5: (w, L)-Filling Problem (FP): Let B =
{b1,b2,...,bjz|} be a basis containing all {0, 1}-vectors of
length N, with exactly L 1’s. Find a set of non-negative
elements a1, as, ..., a5 € RT such that E‘fB:ll arby = p.0
We are interested in a solution to the (u*, L)-FP, because
we can define My, M, ..., Mg where M/ contains an
oy fraction of the rows. Then, we assign My to machines
Py = {n : bgln] = 1} defined by the indices of the
non-zero elements of by. This precisely yields a computation
load of p* and each computation is assigned to L machines.
Note that, we ensure each row is assigned since L > jaf =
> o i*[n] = L and the elements of ay, s, ..., a3 sum to
1. Also, My, ..., M will span all rows if we define these
sets to be disjoint. The question remains whether a (u*, L)-
FP solution exists for general pu* from the computation load
optimization problem. In particular, we refer to the following
lemma (Theorem 2 in [32]).

Lemma 1: Given p* € RY and L € Z*, a (p*,L)-FP
solution exists if and only if

il < 2 711
pln] < ==5
for all n € [IVy]. O

There are two important conse(}\lflences of Lemma 1. First, in
our problem setting, we have) ."*, p*[i] = L and p*[n] <1
for all n € [Ny]. Therefore, by using Lemma 1, an optimal
computation assignment exists. Second, Lemma 1 provides
a guide to develop an iterative algorithm to find such an
assignment. In other words, if we define an iteration to assign
a computation to a set of L machines, then effectively we
create a new FP after each iteration. We can design each
iteration to ensure the conditions of Lemma 1 are satisfied.
Moreover, by adapting Algorithm 1 in [32], we obtain an
equivalent Algorithm 1 (see pseudo-codes of Algorithm 1 for
detailed operations) to explicitly provide an optimal compu-
tation assignment, (M, P;) where machine n stores and
performs computations on its stored cs-matrix X,.

Remark 6: In line 10 of Algorithm 1, we consider the
conditions of Lemma 1 to ensure Algorithm 1 yields a
computation assignment with computation load p*. In lines
14 through 16, we update m which tracks the remaining
amount of assignments for each machine after the f-th iter-
ation. m must satisfy the conditions of Lemma 1 so that a
(m, L)-FP exists. After line 16, the machine with the most
remaining computations to be assigned could be machine

(24)

3¢ is an N'-length vector and 0 < m[¢[1]] < m[€[2]] < --- < m[¢[N']].
This is the condition obtained by using Lemma 1.

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:20:32 UTC from IEEE Xplore. Restrictions apply.

2904
fo| ap] im[2] m(3] 4] m[5] ml6] | L'
Vs [P | s |5 | 0 | s || 3
¥ $——¥
2 | Ys | 0 |\ %5 |%s s | s | s
¥ ¥
3 | s Ys | s s | s | s
¥ ¥
4 | s 0 | s Ys | s | ¥s
— ¥ —
- M 0 0 0 0
Fig. 4. Computation assignment following Algorithm 1 for Example 1 at

time ¢t = 2. Here, N = 6, L = 3, F = 4. f is the iteration index; Each row
corresponds to an iteration f, where oy is to the fraction of rows assigned to
row set M y; m[n] denotes the remaining computation load for machine 7 at
iteration f. The three red arrows from the first row to the second row represent

that a fraction of oy = % rows are assigned to M, which are computed

by machines (or equivalently, cs-matrices) P1 = {1,5,6}. L’ represents the
remaining total computation load at iteration f. At f = 1, L' = L = 3. After
one iteration, we have L’ =3 —3 . a1 = %. Note that « 7 is determined by
lines 9 to 12 of Algorithm 1. At each iteration f, Py includes the machine
with the smallest remaining m[n] and L — 1 = 2 machines with the largest
remaining m/[n].

¢[N" — L + 1]. This machine had the most computations to
be assigned before the f-th iteration but is not assigned any
computations during the f-th iteration. After the f-th iteration,
we must ensure

MmN’ — L +1]] € w

o L' —afL L'
= I = I Qf.
Here, (a) ensures the conditions of Lemma 1. Also, (b) holds
because L’ is the sum of m before the f-th iteration and the
total computations to be assigned is reduced by «y L after the
f-th iteration. From (25) we find oy < % —m[l{[N'— L+1]]
which is enforced in line 10.
Remark 7: Using a similar approach in the proof of
Lemma 2 in [32], we can show that F' < N; such that
Algorithm 1 needs at most [V, iterations to complete.

(25)

B. An Example of Algorithm 1 for Homogeneous Storage
and Heterogeneous Computing Speed

We return to Example 1 presented in Sections III-A
and IV-D and use Algorithm 1 to derive the computation
(rows in each element of M) assignments for ¢ = 2, where
machine 4 is preempted. The steps of the algorithm are shown
in Fig. 4. In this case, we showed that p* = [2,2,2 1 1]
in Section IV-D. In the first iteration, f = 1, we have L' = L
and m = p* as no computations have been assigned yet.
Rows of the respective cs-matrices are assigned to machine 1,
5, and 6 because among all machines, machine 1 has the least
remaining computations to be assigned, and machines 5 and
6 have with the most remaining computations to be assigned.

Note that

(26)

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 5, MAY 2021

where machine 3 is the machine with the most remaining
rows to be assigned that is not included in P; = {1,5,6}.
Therefore, a oy = % fraction of the rows are assigned to
machines 1, 5, 6. Then, m is adjusted to reflect the remaining
computations to be assigned and L' = 3 — 3aq = %.
For iteration 2, the condition of (26) relating to line 10 of
Algorithm 1 is motivated by the necessary and sufficient
conditions for the existence of a (m, L)-FP solution given
in Lemma 1. Here, we are interested in the FP solution for m
which is updated after each iteration. In other words, for each
iteration of a row set assignment in Algorithm 1, we ensure
there exists a set of succeeding row assignments such that a
final FP solution is obtained.

In the second iteration, f = 2, machine 2 is a machine
with the least remaining rows to be assigned. Computations
are assigned to machine 2 and machines 3 and 6 which are a
pair of machines with the most remaining computations to be
assigned. Ideally, we would like to assign all the remaining
rows to machine 2. However, since

2 L

m[2]:g>f—m[5]=

1
5 27)

o] w
(S0)

assigning % of the rows to machine 2 in this iteration will
violate the condition of (24) in Lemma 1 and as a consequence,

there will be no valid filling solution going forward. Therefore,
we set ap = % instead and after this iteration m and L’ are

adjusted accordingly.
In the third iteration, f = 3, since

1 L 2 1 1
2Q=-<— —ml6]l==—- == 28
ml=c<-m=Z-z=2z @9

we assign (JégZ%Ofthe rows to machines 2, 3,5 and m and

L' are adjusted accordingly. Finally, in the fourth iteration,
f = 4, only three machines 3, 5, 6 have non-zero computation
assignment left and each is assigned ay = % of the rows. In
this example, the algorithm completes in F' = 4 (fewer than
Ny = 5) iterations. The resulting computing assignment is
shown in Fig. 1(b).

C. Heterogeneous Storage Capacity and Computing Speeds

When both storage capacity and computing speeds among
machines are heterogeneous, machines may store more than
cs-matrices. In this case, machine n will pick [p*[n]]
cs-matrices to compute entirely. Then, it will pick a remaining
cs-matrix and compute a p*[n] — |p*[n]| fraction of that
cs-matrix. We will show this strategy requires F© < N,
iterations using Algorithm 2 and the number of computation
assignments F' is at most equal to the number of available
machines N;. Overall, the assignment consists of two steps.
In the first step, those cs-matrices that are computed entirely
are put into in the cs-matrix sets of P;. In the second
step, we assign row sets to the cs-matrices which are not
entirely computed so that each row set in M, is guaranteed
to be computed across L cs-matrices. Next, we demonstrate
that we can re-use Algorithm 1 for the second step of the
computation assignment under a modified procedure described
in Algorithm 2.

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:20:32 UTC from IEEE Xplore. Restrictions apply.

WOOLSEY et al.: CEC ON MACHINES WITH HETEROGENEOUS STORAGE AND COMPUTATION SPEED

To explain the computation assignment process we intro-
duce the following notations. For n € [INy], let 9, C O,
contain the indices of |p*[n]| arbitrarily chosen cs-matrices
in Q,, that machine n computes entirely. Note that |Qn| =
|*[n]). If uln] < 1, then Q, is empty. Next, machine n
arbitrarily chooses one cs-matrix from Q,, \ Qn to compute
partially which we label as A[n]. Note that when p[n] is
an integer, é[n] is simply a dummy variable and is never
referenced, i.e. é[n] = ¢. In the following, we denote =
(0[1],0]2],...,0[N;]) as the cs-matrices partially computed by
the machines. Then we define the partial computation vector
Qe Rf" such that

filn] = p*n] = [p*[n]], Vn € [Ni]. (29
Hence, machine n will entirely compute each cs-matrix X; for
i € Q, and compute a ji[n] fraction of the cs-matrix X dn"

Finally, we define the sum of the partial computation load

vector fi as
Ny

L&Y jfn).

n=1
Note that L is an important parameter because it represents the
number of cs-matrices that each row set needs to be assigned
to, excluding those cs-matrices that are entirely computed.
In other words, since the elements in g sum to L, there are
L — L cs-matrices that are entirely computed by the machines.
Therefore, in order to assign each row computation (or row
set) in M to L cs-matrices, we assign each row set to
L cs-matrices that are only partially computed. The detailed
description of the proposed algorithm is given in Algorithm 2.
In Algorithm 2, we will perform Algorithm 1 on f, which
iteratively fills some computations at L machines in each
iteration. Following similar arguments as before, we need to
ensure that such a filling problem solution exists and can be
found using the proposed algorithm. From Lemma 1, we see
that a (f1, L)-FP solution exists because j[n] < 1 for all
n €[Ny and L = Zﬁil fi[n]. Then, similar to the previous
analysis, it can be seen that Algorithm 1 will yield a (jz, L)-
FP solution with F' < NV, iterations. This means that, in order
to use Algorithm 1, instead of inputting p* and L, we input
fr and L. Then, we label the output of Algorithm 1 as F,
My,...,Mp and Py,...,Pp. These variables represent the
computation assignments at the cs-matrices that are partially
computed, but computations are only assigned to L, instead
of L, cs-matrices. Note that, due to the one-to-one mapping
between partially computed cs-matrices and machines, each
75f represents the set of machines that are assigned to com-
pute rows in M of the cs-matrix it is partially computing.
To complete the computation assignment, we must include the

L — L cs-matrices that are entirely computed. Therefore,

Udm o J Om ¥relm),
nePy mE[N:]

where | Uneﬁf O[n]| = L and [U,,¢(n, Qm|=L-L.

Since Algorithm 1 assigns computations to machines,> 8 is

needed to identify the cs-matrices that the machines partially

(30)

(€19

5 Algorithm 1 is designed with the assumption that machine n,Vn € [N]
stores one cs-matrix, X,,.

2905

compute. In addition, the number of computation assignments
remains the same and ' = F. The row sets also remain the
same, M; = M for all f € [F].

Algorithm 2 will be illustrated using the following example.

D. An Example of Algorithm 2 for Heterogeneous Storage
and Computing Speed

We consider Example 2 presented in Sections III-B
and IV-D, where we have L = 6 and o = [2,2,2,1,1,1].
This means that machines 1, 2, and 3 stores two cs-matrices
while machines 4, 5, and 6 stores one cs-matrix, respectively.
We assume no preempted machines at ¢ = 1. In this case,
the optimal computation load vector is found to be p* =
[£, 2 18 £ 1 1] in Section IV-D. Since p*[n] >
1,n € {2,3,5,6}, it can be seen that machines 2, 3, 5, and 6
will compute all the rows sets of M for one cs-matrix (see
Fig. 2). Next, machines 1, 2, 3 and 4 have one cs-matrix to be
partially computed, and each of them will compute a fraction
of that cs-matrix. Note that, since p*[5] = 1 and p*[6] = 1
are integers, by the algorithm design, no computations will
be assigned to cs-matrices partially computed by machines
5 and 6. In other words, based on the optimal computation
load vector p*, machines 5 and 6 only entirely compute
cs-matrices. Using (29), we can obtain the partial computa-
tion load vector as [t = [%, 1—11, %, %, 0, O}, whose
elements sum to L = 2. Our goal is to assign computations
to cs-matrices partially computed by machines 1 through 4,
where we assign the computations corresponding to each row
set of M to L = 2 cs-matrices at a time. This will be done
using Algorithm 1.

In particular, let the indexes of the cs-matrices stored at
the machines be Q; = {1,2}, Q2 = {3,4}, Q3 = {5,6},
Q4 = {7}, Q5 = {8} and Q¢ = {9}. Each machine n picks a
set of | pu[n]| stored cs-matrices to be computed entirely which
could be that of Q) = @, @y = {3}, O3 = {5}, Q4 = @,
Qs = {8} and Qg = {9}. Moreover, each machine selects an
index of a stored cs-matrix to be partially computed, which
are denoted as @ =[1, 4, 6, 7, 0, 0].

In the first iteration of Algorithm 1 inside Algorithm 2
(line 5), we aim to assign some computations to the cs-matrix
X 412> since fi[2] is the smallest non-zero element in fi. Xy
will be partially computed by machine 2. We also assign
this computation to machine 4 because it is a machine with
the largest remaining computations to be assigned (line 8 in
Algorithm 1). Therefore, we assign a a; = i1 fraction of
rows to the cs-matrices partially computed by machines 2
and 4 (line 10 in Algorithm 1). After this iteration m =
[, 0, &, 75, 0, 0] (line 15 in Algorithm 1), and
machines 1 and 3 are the machines with the most and least,
respectively, remaining computations to be assigned. From line
10 in Algorithm 1, since

5 3 L
=—>—=——-m/ 32
mis] = 7 > 5 = = —mld] (32)
we assign a ag = 1—?’1 fraction of rows to machines
1 and 3. Then, after this iteration, we find m =
[1—51, 0, 1—21, 1—71, 0, 0] By a similar approach, next we

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:20:32 UTC from IEEE Xplore. Restrictions apply.

2906

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 5, MAY 2021

5r1 1071
QSO = 5
r =16 Q\A so=1 N Hom. Network
zﬁ 4+ \\ \A\A L=10 8t ‘\\ —A--Hom. Cyc., [30]
g \ \A*A N — 57— -Het. Alg.
o 3 6
.8
e
&
5
O 1r 2
0 : : : : : 0
8 10 12 14 16 18 0
Number of Machines, NV, Number of Machines, N;
(@) (b)

Fig. 5.

The simulated mean computation time using the Homogeneous Cyclic design [30] (red curves) and the proposed Heterogeneous Algorithm (blues

curves) on heterogeneous networks. The machine speeds are sampled from a uniform distribution with mean 1. The results are compared to the computation
time of an equivalent homogeneous network where machines all have a speed of 1. In (a) and (b), the network heterogeneity, 7, and storage constraint, sq,

respectively, are varied to produce multiple curves.

assign a ag = % fraction of rows to machines 3 and 4 and
a oy = % fraction of rows to machines 1 and 4. After this
iteration, we can find that m = 0.

Based on above procedure in Algorithm 1, we obtain the
output ', My, ..., M4 which contain a L, 2, & and &
fraction of rows, respectively, and the machines assigned to
compute row sets M are given by P = {2,4}, Py =
{1,3}, P3 = {3,4} and P, = {1,4}. For the final solution,
the number of assignments stays the same, F' = F =4, and
the row sets stay the same M; = M, Yf € [F]. However,
using 75f, Vf € [F], we need to define specifically which
cs-matrices are being computed for each row set. Note that, 75f
is the set of machines that are assigned to compute rows in My
of the corresponding cs-matrix partially computed. We use 6 to
resolve the indexes of the cs-matrices from P . Then, we also
need to include the indexes of all cs-matrices that are entirely
cpmputed froIn Ql, e Q};. For exa~mple, recall thatl Q1 =,
Qs = {3}, Q3 = {5}, Q1 = @, Q5 = {8} and Qs = {9},

we then obtain the cs-matrix sets

Py ={0[2],0[4],3,5,8,9} = {3,4,5,7,8,9}. (33)

Similarly, we see that P, = {1,3,5,6,8,9}, P3s =
{3,5,6,7,8,9} and P; = {1,3,5,7,8,9}.

VI. RESULTS SUMMARY

In this section, we summarize the results of this work and
present simulation studies to evaluate the performance of the
new heterogeneous CEC design.

Theorem 2: An optimal computation assignment that
solves (4) is found by using Algorithm 2 to yield an
assignment satisfying the computation load vector p* from
Theorem 1.

Proof: Algorithm 2 produces a computation assignment
that yields the computation load vector p* and computa-
tion time ¢*, the solution of (5). The optimization problem
of (5) is a relaxed version of (4). Therefore, this computation

assignment from Algorithm 2 is a solution to the optimization
problem of (4). [|

A. Simulations

Machine computation speeds are sampled from a uniform
distribution with mean 1. The variable r defines the ratio
between the upper and lower bounds of the distribution and
is a quantitative measure of the network heterogeneity. For
example, if » = 2, then machine speeds are sampled from
a uniform distribution ranging from % to %. This distribution
has a mean of 1. Furthermore, we define sg as the number of
cs-matrices that each machine stores.

We perform simulations for various values of r, sg, and Vy
where L = 10 is fixed. In each configuration, the mean com-
putation time of the Homogeneous Cyclic [30] (red curves)
and the proposed Heterogeneous Algorithm (blue lines) from
10° samples are shown in Fig. 5. The results are compared to
those of a purely homogeneous network (black curves, » = 1)
where each machine has a computation speed of 1.

In Fig. 5(a), each machine has the same storage constraint
and stores so = 1 cs-matrix. Then, for different heterogeneity
measures, r, we vary the number of available machines,
N; from 10 to 20. Focusing on when N, = L = 10,
we notice the proposed heterogeneous design and the homo-
geneous cyclic design [30] have the same performance. This
occurs because the number of cs-matrices among the available
machines is exactly L and both designs produce the same
computation assignment which is that each machine computes
the entirety of their local cs-matrix. Also, the computation
time, ¢, increases with because c equals the time it takes the
slowest machine to compute the entirety of its cs-matrix. For
both designs, we observe a decrease in ¢ as N, increases since
the computations are spread across more machines, reducing
the computation load of any single machine. Note that when
Ny > L, the proposed heterogeneous CEC design outperforms
the homogeneous CEC design [30] because the former spreads
the computation load relative to the computation speed of each

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:20:32 UTC from IEEE Xplore. Restrictions apply.

WOOLSEY et al.: CEC ON MACHINES WITH HETEROGENEOUS STORAGE AND COMPUTATION SPEED

available machine. Moreover, c for the proposed heterogeneous
CEC design converges to that of a homogeneous network with
equivalent cumulative computation speed.

In Fig. 5(b), we fix » = 10 and assume that each machine
stores s cs-matrices. First, we vary sg to produce multiple
blue curves for the proposed heterogeneous design. Second,
for the homogeneous design [30], only one red curve cor-
responding to sy = 5 is presented. Due to the constraint
that Z, = soN; > L, choosing the larger sg = 5 allows
the homogeneous design to operate on a wider range of N;.
We also note that for a given N; that satisfies Z; = so Ny > L,
the ¢ of the homogeneous design is independent of sy because
all machines are assigned an equal computation load. In other
words, for a given Ny, varying so will not change c. This
justifies why only one red curve is shown. In contrast, for
the proposed heterogeneous CEC design, when s increases,
a smaller ¢ can be achieved. For example, when N, = 5,
we have ¢ ~ 5.5 for s = 2 and ¢ ~ 2.1 for sg = 5.
This occurs because s is the upper bound on the computation
load for each machine. When s is larger, it is less likely that
faster machines reach this upper bound. The faster machines
can take on more of the computation load and alleviate
the computation load of some slower machines that may be
affecting the computation time c. Finally, again we observe
that the performance of the proposed heterogeneous CEC
converges to that of a homogeneous network with equivalent
cumulative computation speed.

VII. CONCLUSION

In this paper, we study the heterogeneous coded elastic
computing problem where computing machines store MDS
coded data matrices and may have both varying computation
speeds and storage capacity. The key of this problem is to
design a fixed storage assignment scheme and a computation
assignment strategy such that no redundant computations are
present and the overall computation time can be minimized
as long as there are at least L cs-matrices stored among the
available machines. Given a set of available machines with
arbitrary relative computation speeds and storage capacity,
we first proposed a novel combinatorial min-max problem
formulation in order to minimize the overall computation time,
which is determined by the machines that need the longest
computation time. Based on the MDS coded storage assign-
ment, the goal of this optimization problem is to assign compu-
tation tasks to machines such that the overall computation time
is minimized. In order to precisely solve this combinatorial
problem, we decompose it into a convex optimization problem
to determine the optimal computation load of each machine
and a computation assignment problem that yields the result-
ing computation load from the convex optimization problem.
Then, we adapt low-complexity iterative algorithms to find
the optimal solution to the original combinatorial problems,
which require a number of iterations no greater than the
number of available machines. The proposed heterogeneous
coded elastic computing design has the potential to perform
computations faster than the state-of-the-art design which
was developed for a homogeneous distributed computing
system.

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

2907

REFERENCES

N. Woolsey, R.-R. Chen, and M. Ji, “Heterogeneous computation assign-
ments in coded elastic computing,” 2020, arXiv:2001.04005. [Online].
Available: http://arxiv.org/abs/2001.04005

S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed comput-
ing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109-128, Jan. 2018.

S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Compressed coded
distributed computing,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2018, pp. 2032-2036.

K. Konstantinidis and A. Ramamoorthy, “Leveraging coding tech-
niques for speeding up distributed computing,” 2018, arXiv:1802.03049.
[Online]. Available: http://arxiv.org/abs/1802.03049

N. Woolsey, R.-R. Chen, and M. Ji, “A new combinatorial design of
coded distributed computing,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Jun. 2018, pp. 726-730.

S. R. Srinivasavaradhan, L. Song, and C. Fragouli, “Distributed com-
puting trade-offs with random connectivity,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2018, pp. 1281-1285.

S. Prakash, A. Reisizadeh, R. Pedarsani, and A. S. Avestimehr, “Coded
computing for distributed graph analytics,” 2018, arXiv:1801.05522.
[Online]. Available: http://arxiv.org/abs/1801.05522

N. Woolsey, R.-R. Chen, and M. Ji, “Cascaded coded distributed
computing on heterogeneous networks,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jul. 2019, pp. 2644-2648.

F. Xu and M. Tao, “Heterogeneous coded distributed computing: Joint
design of file allocation and function assignment,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2019, pp. 1-6.

N. Woolsey, R.-R. Chen, and M. Ji, “Coded distributed computing
with heterogeneous function assignments,” 2019, arXiv:1902.10738.
[Online]. Available: http://arxiv.org/abs/1902.10738

K. Wan, M. Ji, and G. Caire, “Topological coded distributed com-
puting,” 2020, arXiv:2004.04421. [Online]. Available: http://arxiv.org/
abs/2004.04421

M. Adel Attia and R. Tandon, “Near optimal coded data shuffling
for distributed learning,” IEEE Trans. Inf. Theory, vol. 65, no. 11,
pp. 7325-7349, Nov. 2019.

A. Elmahdy and S. Mohajer, “On the fundamental limits of coded
data shuffling,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2018,
pp. 716-720.

K. Wan, D. Tuninetti, M. Ji, G. Caire, and P. Piantanida, “Fundamental
limits of decentralized data shuffling,” IEEE Trans. Inf. Theory, vol. 66,
no. 6, pp. 3616-3637, Jun. 2020.

K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514-1529, Mar. 2018.

R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proc. Int. Conf.
Mach. Learn., 2017, pp. 3368-3376.

S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 2100-2108.

K. Wan, H. Sun, M. Ji, and G. Caire, “Distributed linearly sep-
arable computation,” 2020, arXiv:2007.00345. [Online]. Available:
http://arxiv.org/abs/2007.00345

Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” [EEE Trans. Inf. Theory, vol. 66, no. 3, pp. 1920-1933,
Mar. 2020.

S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and
P. Grover, “On the optimal recovery threshold of coded matrix multipli-
cation,” IEEE Trans. Inf. Theory, vol. 66, no. 1, pp. 278-301, Jan. 2020.
K. Wan, H. Sun, M. Ji, D. Tuninetti, and G. Caire, “Cache-aided matrix
multiplication retrieval,” 2020, arXiv:2007.00856. [Online]. Available:
http://arxiv.org/abs/2007.00856

C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in
distributed optimization through data encoding,” in Proc. Adv. Neural
Inf. Process. Syst., 2017, pp. 5434-5442.

R. Bitar, P. Parag, and S. El Rouayheb, “Minimizing latency for secure
distributed computing,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2017, pp. 2900-2904.

M. Aliasgari, O. Simeone, and J. Kliewer, “Private and secure distributed
matrix multiplication with flexible communication load,” IEEE Trans.
Inf. Forensics Security, vol. 15, pp. 2722-2734, 2020.

H. Sun and S. A. Jafar, “The capacity of private computation,” /[EEE
Trans. Inf. Theory, vol. 65, no. 6, pp. 3880-3897, Jun. 2019.

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:20:32 UTC from IEEE Xplore. Restrictions apply.

2908

[26] S. A. Obead, H.-Y. Lin, E. Rosnes, and J. Kliewer, “Private
function computation for noncolluding coded databases,” 2020,
arXiv:2003.10007. [Online]. Available: http://arxiv.org/abs/2003.10007
[27] Z.Chen, Z.Jia, Z. Wang, and S. A. Jafar, “GCSA codes with noise align-
ment for secure coded multi-party batch matrix multiplication,” 2020,
arXiv:2002.07750. [Online]. Available: http://arxiv.org/abs/2002.07750
[28] L. Chen, H. Wang, Z. Charles, and D. Papailiopoulos, ‘“Draco:
Byzantine-resilient distributed training via redundant gradients,” in Proc.
Int. Conf. Mach. Learn., 2018, pp. 902-911.
[29] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy
the cloud: Distributed computing for the 99%,” in Proc. Symp. Cloud
Comput., Sep. 2017, pp. 445-451.
Y. Yang, M. Interlandi, P. Grover, S. Kar, S. Amizadeh, and M. Weimer,
“Coded elastic computing,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jul. 2019, pp. 2654-2658.
H. Dau er al, “Optimizing the transition waste in coded
elastic computing,” 2019, arXiv:1910.00796. [Online]. Available:
http://arxiv.org/abs/1910.00796
[32] N. Woolsey, R.-R. Chen, and M. Ji, “An optimal iterative placement
algorithm for PIR from heterogeneous storage-constrained databases,” in
Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2019, pp. 1-6.
Y. Yang, M. Interlandi, P. Grover, S. Kar, S. Amizadeh, and M. Weimer,
“Coded elastic computing,” 2018, arXiv:1812.06411. [Online]. Avail-
able: http://arxiv.org/abs/1812.06411

[30]

[31]

[33]

Nicholas Woolsey (Student Member, IEEE) received
the B.S. degree in biomedical engineering from the
University of Connecticut in 2012 and the M.Eng.
degree in bioengineering from the University of
Maryland, College Park, MD, USA, in 2015, with
a focus on signal processing, imaging and optics.
He is currently pursuing the Ph.D. degree with the
Department of Electrical and Computer Engineering,
University of Utah. From 2014 to 2017, he was an
Electrical Engineer with Northrop Grumman Corpo-
ration (NGC), Ogden, UT, USA, developing test and
evaluation methods, modernization solutions, and signal processing algorithms
for the sustainment of aging aircraft and ground communication systems. He is
currently with Trabus Technologies, San Diego, CA, USA. While at NGC,
he received the “Outside the Box™ Grant to investigate the design of a modern
receiver that interfaces aging technology and the 2016 Brent Scowcroft Team
Award for performing exceptional systems engineering work. His research
interests include combinatorial designs and algorithms for resource allocation,
coding, and efficient communications in distributed computing, private and
caching networks.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 5, MAY 2021

Rong-Rong Chen (Member, IEEE) received the
B.S. degree in applied mathematics from Tsinghua
University, China, in 1993, and the M.S. degree in
mathematics and the Ph.D. degree in electrical and
computer engineering from the University of Illinois
at Urbana—Champaign, in 1995 and 2003, respec-
tively. From 2003 to 2011, she was an Assistant
Professor with the University of Utah. Since 2011,
she has been an Associate Professor with the Uni-
versity of Utah. Her main research interests include
communication systems and networks, with current
emphasis on distributed computing, machine learning, caching networks,
statistical signal processing, image reconstructions, and channel coding. She
was a recipient of the M. E. Van Valkenburg Graduate Research Award
for excellence in doctoral research with the Department of Electronics and
Communication Engineering, University of Illinois at Urbana—Champaign,
in 2003, and the prestigious National Science Foundation Faculty Early Career
Development (CAREER) Award in 2006. She was rated among the Top 15%
Instructors of the College of Engineering, University of Utah, in 2017 and
2018. She has served as an Associate Editor for IEEE TRANSACTIONS
ON SIGNAL PROCESSING and a Guest Editor for IEEE JOURNAL ON
SELECTED TOPICS IN SIGNAL PROCESSING. She has also served on the
technical program committees for leading international conferences in wireless
communication and networks.

Mingyue Ji (Member, IEEE) received the B.E.
degree in communication engineering from the
Beijing University of Posts and Telecommunica-
tions, China, in 2006, the M.Sc. degrees in electrical
engineering from the Royal Institute of Technology,
Sweden, and the University of California, Santa
Cruz, CA, USA, in 2008 and 2010, respectively, and
the Ph.D. degree from the Ming Hsieh Department
of Electrical Engineering, University of Southern
California, Los Angeles, CA, in 2015. He subse-
quently was a Staff II System Design Scientist with
Broadcom Corporation (Broadcom Ltd.) from 2015 to 2016. He is currently
an Assistant Professor with the Department of Electrical and Computer Engi-
neering and an Adjunct Assistant Professor with the School of Computing,
University of Utah. He received the IEEE Communications Society Leonard
G. Abraham Prize for the Best IEEE JSAC Paper in 2019, and the Best Paper
Award from the IEEE ICC 2015 Conference, the IEEE European Wireless
2010 Conference, and the USC Annenberg Fellowship from 2010 to 2014.
He is currently an Associate Editor of IEEE TRANSACTIONS ON COMMUNI-
CATIONS. He research interested include information theory, coding theory,
concentration of measure and statistics with the applications of caching net-
works, wireless communications, distributed storage and computing systems,
federated learning, and (statistical) signal processing.

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:20:32 UTC from IEEE Xplore. Restrictions apply.

