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2) heterogeneous computing speeds and heterogeneous storage

capacity. The proposed combinatorial optimization problem

is solved in two steps in Section IV and Section V, where

the proposed low-complexity CEC computation assignment

algorithms are introduced. Section VI summarizes the results

and compares the performance across multiple designs. The

paper is concluded in Section VII.

Notation Convention: We use |·| to denote the cardinality

of a set or the length of a vector. Let [n] := {1, 2, . . . , n}
denote a set of integers from 1 to n. A bold symbol such as

a indicates a vector and a[i] denotes the i-th element of a.

Z+ denotes the set of all positive integers; R+ denotes the

set of all positive real numbers and Q+ denotes the set of

all positive rational numbers. Finally, let RN
+ be the set of all

length-N vectors of real, positive numbers.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a set of N machines. Each machine n ∈ [N ]
stores an integer number, σ[n], of coded sub-matrices, which

we refer to as cs-matrices, derived from a q×r data matrix, X ,

where q can be large. Here, we denote the vector σ =
(σ[1], σ[2], . . . , σ[N ]), σ[n] ∈ Z+, ∀n ∈ [N ] as the storage

vector and Z �
∑N

n=1 σ[n] is the total number of cs-matrices

stored among all machines.1 The cs-matrices stored at each

machine are defined once and kept fixed during subsequent

computations. The cs-matrices are specified by an Z×L MDS

code generator matrix G where gi,� denotes the element in the

i-th row and l-th column, where Z, L ∈ Z+. Let any L rows

of G be invertible. The data matrix, X , is row-wise split into

L disjoint, q
L × r uncoded sub-matrices, X1, . . . ,XL. Then,

for i ∈ [Z], we define X̃i =
∑L

�=1 gi,�X�, where X̃i is

the i-th cs-matrix. Each X̃i, i ∈ [Z] has q
L rows. Assume

that machine n will store σ[n] of these cs-matrices, specified

by an index set Qn. In other words, machine n stores the

cs-matrices of {X̃i : i ∈ Qn}, where |Qn| = σ[n]. We also

assume that different machines store different cs-matrices: the

sets Q1, · · · ,QN are disjoint. Also, note that given a cs-matrix

X̃i, i ∈ [Z], there is an unique machine that stores this

cs-matrix.

The machines collectively perform matrix-vector compu-

tations2 over multiple time steps. In a given time step only

a subset of the N machines are available to perform matrix

computations. Note that, the available machines of each time

step are known when we design the computation assignments.

Specifically, in time step t, a set of available machines

Nt ⊆ [N ] aims to compute yt = Xwt where wt is a

vector of length r. The machines of [N ] \ Nt are preempted.

The number of cs-matrices stored at the available machines

is Zt �
∑

n∈Nt
σ[n] ≥ L, which means that Zt is at least L

such that the desired computation can be recovered. Machines

1Note that assuming σ[n] ∈ Z
+, ∀n ∈ [N ] is for the ease of presentation.

If any σ[n] is a fractional number, then we can let Z be large such that all

σ[n]s can be a positive integer.
2It is straightforward to extend the proposed CEC designs to other appli-

cations outlined in [33] including matrix-matrix multiplications and linear

regression because matrix-vector multiplication is integral to each of these

applications.

in Nt do not compute yt directly. Instead, each machine

n ∈ Nt computes the set Vn =
⋃

i∈Qn
{v = X̃

(j)

i wt : j ∈
Wi}, where X̃

(j)

i is the j-th row of X̃i, the cs-matrix stored

by machine n, and Wi ⊆
[

q
L

]
is the set of rows of X̃i assigned

to machine n in time step t for computing tasks.

B. Key Definitions

In the following, we introduce three key definitions that

are useful to specify the computation assignments in a CEC

network.

Definition 1: The computation load vector, μ, defined as

μ[n] =
|Vn|(

q
L

) =

∑
i∈Qn

|Wi|(
q
L

) , ∀n ∈ Nt, (1)

is the normalized number of rows computed by machine n in

time step t. ♦
Note that while μ, Wi, and Vn can change with each

time step, reference to t is omitted for ease of pre-

sentation. Moreover, assume that machines have varying

computation speeds defined by a strictly positive vector

s = (s[1], s[2], . . . , s[N ]), s[n] ∈ Q+, ∀n ∈ [N ], fixed

over all time steps. Here, computation speed is defined as the

number of times a machine can compute its cs-matrix per unit

time. We assume that the computation speed of each machine

is known.

Definition 2: Given a computation load vector μ, the over-

all computation time is dictated by the machine(s) that takes

the most time to perform its assigned computations. Thus,

we define

c(μ) = max
n∈Nt

μ[n]
s[n]

. (2)

to be the overall computation time as a function of the

computation load μ. ♦
At each time step t, for each j ∈

[
q
L

]
, the j-th row of L

cs-matrices undergoes a vector-vector multiplication with wt.

The results are sent to a master node which can resolve the

elements of yt by the MDS code design. To ensure each row

is assigned L times,3 we will introduce a general framework

for defining computation assignments.

Given a cs-matrix X̃i, Wi includes the subset of rows in X̃i

assigned to be computed by the machine that stores X̃i. In our

design, instead of trying to determine this assignment row by

row, we make the assignment in “blocks” of rows. Namely,

each Wi will include blocks of rows from X̃ i. Furthermore,

we will use a common set of blocks for the assignment of all

Wi, i ∈ [Z], which we refer to as row sets. These are formally

defined below.

Definition 3: Since each cs-matrix has q
L rows, we partition

the full index set of these rows {1, 2, · · · , q
L} into F consec-

utive disjoint subsets, possibly with varying sizes, called row

sets, denoted by Mt = (M1, . . . ,MF ), whose union gives

the full index set. ♦
3When each machine stores just 1 coded matrix, we say the computations

are assigned to each machine as in the original CEC work [33]. Alternatively,
when some machines store more than 1 matrix, each row is computed for L
different matrices which are stored across a number of machines less than or

equal to L.
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Algorithm 1 Computation Assignment: Homogeneous Storage Capacity and Heterogeneous Computing Speeds

Input: μ∗, Nt, L, and q % μ∗ is solution to first sub-problem (7)-(8).

1: m ← μ∗ % m represents the remaining computation load vector to be assigned.

% Initialize m as the optimal computation load vector μ∗

2: f ← 0
3: while m contains a non-zero element do
4: f ← f + 1
5: L′ ←

∑Nt

n=1 m[n] % L′ represents the sum of the remaining computation load

6: N ′ ← number of non-zero elements in m
7: � ← indices that sort the non-zero elements of m from smallest to largest5

8: Pf ← {� [1], �[N ′ − L + 2], . . . , �[N ′]} % specify machines that will compute Mf

9: if N ′ ≥ L + 1 then % αf is the fraction of rows assigned to row set Mf

10: αf ← min
(

L′
L − m[�[N ′−L + 1]], m[�[1]]

)
6 % assign only a fraction of remaining rows to Pf

% to ensure a FP solution exists at next iteration.

11: else
12: αf ← m[�[1]] % assign all remaining un-assigned rows of machine �[1] to Pf .

13: end if
14: for n ∈ Pf do
15: m[n] ← m[n] − αf % update remaining computation load at each machine

16: end for
17: end while
18: F ← f
19: Partition rows [ q

L ] into F disjoint row sets: M1, . . . ,MF of size α1 q
L , . . . , αF q

L rows

Output: F , M1, . . . ,MF and P1, . . . ,PF

Definition 4: Given row sets Mt = (M1, . . . ,MF ),
we define cs-matrix sets Pt = (P1, . . . ,PF ) where each Pf

includes the indices of L cs-matrices for which all rows in Mf

are computed by the machines that store these cs-matrices.

Specifically, if i ∈ Pf and a machine n stores X̃i (i ∈ Qn),

then machine n will compute all rows in Mf from X̃i,

i.e., these rows are included in Wi. This ensures that each row

set Mf is computed exactly L times using the L cs-matrices

stored on these machines. ♦
By the above definitions, the rows computed by machine

n ∈ Nt in time step t are in the set⋃
i∈Qn

Wi =
⋃

i∈Qn

{Mf : f ∈ [F ], i ∈ Pf} . (3)

Note that the sets M1, . . . ,MF and P1, . . . ,PF and F may

vary with each time step.

Remark 1: When each machine only stores one cs-matrix,

there is a one-to-one mapping between a cs-matrix and a

machine, and thus Pf also represents the set of machines

that compute rows in Mf . This is used in Example 1 and

Algorithm 1, where we assume that the machines have het-

erogeneous speeds but homogeneous storage.

Remark 2: The row set and cs-matrix set pair (Mt, P t)
combine to determine the computation assignment. The com-

putation load μ is a function of (Mt, Pt).
One example to illustrate Mf and Pf is given in Fig. 1(a).

In this example, we consider the case that all machines

have heterogeneous computing speed but with homogeneous

storage, i.e., σ[n] = 1, n ∈ [N ]. Each machine store one

cs-matrix and the union of Mf , f ∈ [4] in different colors

cover all the row indices,
[

q
L

]
. We let machine n stores

X̃n, then we can see that P1 = {1, 5, 6}, P2 = {2, 3, 4},

P3 = {3, 5, 6}, P4 = {4, 5, 6}. In this case, since there is

a one-to-one mapping between the machine and the cs-matrix

that it stores, the cs-matrix set Pf can also be interpreted as an

index set of the machines that compute the stored cs-matrices.

C. Formulation of a Combinatorial Optimization Framework

In a given time step t, our goal is to define the computation

assignment, Mt and P t, such that the resulting computation

load vector defined in (1) has the minimum computation time.

In time step t, given Nt, Q1, . . . ,QN and s, the optimal

computation time, c∗, is the minimum of computation time

defined by all possible computation assignments, (Mt, Pt).
Hence, based on all the conditions discussed before and

given the storage vector σ, we can formulate the following

combinatorial optimization problem.

minimize
(Mt,Pt)

c (μ (Mt, Pt)) (4a)

subject to:
⋃

Mf∈Mt

Mf =
[ q

L

]
, (4b)

Pf ⊆
⋃

n∈Nt

Qn, ∀Pf ∈ Pt, (4c)

|Pf | = L, ∀Pf ∈ P t, (4d)

|Mt| = |P t|, (4e)

The objective function (4a) is the overall computation

time of a computation load vector μ, which is a func-

tion of (Mt, Pt) and s. Conditions (4b)-(4e) specifies the

constraints on (Mt, Pt), which are to be optimized over.

Specifically, (4b) ensures that the union of the row sets Mf
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Fig. 1. An illustration of the optimal computation assignments in Example 1 over 4 time steps on a heterogeneous CEC network where machines have

heterogeneous computing speed and homogeneous storage space. In this example, N = 6, Z = 6, L = 3 and Qn = {n},∀n ∈ [6]. At t = 1, there are
F = 4 row sets M1 (green) M2 (blue), M3 (magenta), M4 (yellow), each is assigned to L = 3 cs-matrices. The number labeled in the center of each row

set is the fraction of the rows in that row set. The row sets change over time. At t = 3, there are F = 3 row sets, and at t = 4, there is only F = 1 row set.

equals the full set of q
L rows. i.e., all rows are assigned to

be computed by some available machines at time t. Condi-

tion (4c) ensures that the cs-matrices in Pf are stored by only

available machines at time t, and hence, each row set Mf is

only assigned to be computed from these available machines.

Condition (4d) ensures that each row set is computed from

exactly L cs-matrices. Condition (4e) ensures that each row

set has a corresponding cs-matrix set, i.e., the number of row

sets equals the number of cs-matrix set.

Remark 3: In Sections IV and V, we precisely solve the

combinatorial optimization problem of (4) and summarize this

result in Theorem 2. We decompose this problem into two

sub-problems. First, a convex optimization problem to find an

optimal computation load vector μ without the consideration

of a specific computation assignment. This means that we

will solve the problem of (4) by treating μ as a real vector

without considering whether such a computation assignment

is feasible. Second, given the optimal μ solved in the previous

convex optimization problem, we solve a computation assign-

ment problem or a filling problem in order to find a (Mt, P t)
that meets the optimal computation load. Moreover, we show

that an optimal assignment, (Mt, P t), can be found via a low

complexity algorithm that completes in at most Nt iterations

and the number of computation assignments, F , is at most Nt.
Remark 4: Note that, the optimization problem of (4) does

not consider the time required for decoding or communica-

tions, but only optimizes the time of overall computation.

Furthermore, our problem formulation considers the optimal

computation assignment to available machines that will remain

available during that computation time step. In this work,

we do not consider elastic events or stragglers during a

computation time step.

III. TWO CEC EXAMPLES

In this section, we will discuss two CEC examples to

illustrate the proposed approaches. Example 1 considers

the scenario where machines have heterogeneous computing

speeds but homogeneous storage constraints. Example 2 con-

siders the more general scenario where machines have both

heterogeneous storage space and computing speeds.

A. Example 1: CEC With Heterogeneous Computing Speeds,
Homogeneous Storage Constraints

We consider a system with a total of N = 6 machines

where each has the storage capacity to store 1
3 of the data

matrix X . In time step t, the machines have the collective goal

of computing yt = Xwt where wt is some vector. In order

to allow for preempted machines, X is split row-wise into

L = 3 sub-matrices, X1, X2 and X3 and an MDS code

is used to construct the cs-matrices {X̃n : n ∈ [N ]} which

are stored among the machines. In particular, when the storage

space among machines is homogeneous, machine n stores only

one cs-matrix X̃n and σ = [1, . . . , 1]. In this case, there is a

one-to-one mapping between cs-matrices and machines. This

placement is designed such that any element of yt can be

recovered by obtaining the corresponding coded computation

from any L = 3 machines. To recover the entirety of yt,

we split the cs-matrices into row sets, such that each set is

used for computation at L = 3 machines.

The machines have relative computation speeds defined by

s = [ 2, 2, 3, 3, 4, 4 ], where machines 5 and 6 are

the fastest and can perform row computations twice as fast

as machines 1 and 2. Machines 3 and 4 are the next fastest

and can perform matrix computations 1.5 times as fast as

machines 1 and 2. Our goal is to assign computations, or rows

of the cs-matrices, to the machines to minimize the overall

computation time with the constraint that each computation is

assigned to L = 3 machines.

In time step 1, there are no preempted machines which

means that N1 = {1, . . . , 6} and N1 = 6. We assign fractions

of the rows to the machines defined by the computation load
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vector μ =
[

1
3 , 1

3 , 1
2 , 1

2 , 2
3 , 2

3

]
, such that machines 1

and 2 are assigned 1
3 , machines 3 and 4 are assigned 1

2
and machines 5 and 6 are assigned 2

3 of the rows of their

respective cs-matrices. We define μ such that it sums to L = 3
and each row can be assigned to 3 machines. Furthermore,

based on the machine computation speeds, the machines

finish at the same time to minimize the overall computation

time. In Section IV, we outline the systematic approach to

determine μ. Next, given μ, the rows of the cs-matrices must

be assigned. We define row sets, M1, M2, M3, and M4

which are assigned to F = 4 sets of L = 3 cs-matrices P1, P2,

P3, and P4. Since each machine n stores one cs-matrix X̃n,

it is equivalent to say that we assign computations to machines.

In other words P1, P2, P3, and P4 represent the machines

assigned to compute M1, M2, M3, and M4, respectively.

These sets are depicted in Fig. 1(a) where, for example,

M1 contains the first 1
3 of the rows assigned to machines

P1 = {1, 5, 6}. Moreover, M2 contains the next 1
3 of the

rows assigned to machines P2 = {2, 3, 4}, M3 contains the

next 1
6 of the rows assigned to machines P3 = {3, 5, 6} and

M4 contains the final 1
6 of the rows assigned to machines

P4 = {4, 5, 6}. In Section V, we present Algorithm 1 to

determine the computation assignment for general μ. By this

assignment, the fraction of rows assigned to machine n sums

to μ[n] and each row is assigned to L = 3 machines to recover

the entirety of y1.

In time step 2, we find N2 = 5 because machine 4 is

preempted and no longer available to perform computations.

Therefore, the computations must be re-assigned among N2 =
{1, 2, 3, 5, 6}. First, we obtain μ =

[
2
5 , 2

5 , 3
5 , 0, 4

5 , 4
5

]
,

which sums to L = 3 and minimizes the overall computation

time. Given μ, we then use Algorithm 1 (see Section V)

to assign computations to a machine with the least number

of remaining rows to be assigned and L − 1 = 2 machines

with the most number of remaining rows to be assigned. For

example, in the first iteration, M1 is defined to contain the

first 2
5 of the rows and is assigned to machines P1 = {1, 5, 6}.

After this iteration, machines 2, 5 and 6 require 2
5 of the

total rows to still be assigned to them and machine 3 requires
3
5 of the total rows. In the next iteration, M2 contains the

next 1
5 of the rows and is assigned to P2 = {2, 3, 6}. Note

that, only 1
5 of the rows could be assigned in this iteration

otherwise there would only be two machines, 3 and 5, which

still require assignments and therefore, the remaining rows

cannot be assigned to 3 machines. In the final two iterations,

M3 and M4 contain 1
5 of the previously unassigned rows

and are assigned to the machines of P3 = {2, 3, 5} and

P4 = {3, 5, 6}, respectively. These assignments are depicted

in Fig. 1(b).

Next, in time step 3, we find N3 = 4 and N3 =
{1, 2, 3, 5} because machines 4 and 6 are preempted. It is

ideal to have machines 3 and 5 compute 1.5× and 2× the

number of computations, respectively, compared to machines

1 and 2. However, this is impossible since each machine can

be assigned at most a number of rows equal to the number

of rows of the cs-matrices. In this case, we assign all rows

to the fastest machine, machine 5, and assign fractions of the

rows to the remaining machines which sum up to 2. As a

result, we let μ =
[

4
7 , 4

7 , 6
7 , 0, 1, 0

]
. Then, Algorithm 1

defines M1, M2 and M3 as disjoint sets containing 3
7 , 1

7
and 3

7 of the rows, respectively. Moreover, these row sets are

assigned to the machines of P1 = {1, 3, 5}, P2 = {1, 2, 5} and

P3 = {2, 3, 5}, respectively. These assignments are depicted

in Fig. 1(c).

Finally, in time step 4, machines 1, 4 and 6 are preempted

which means that N4 = {2, 3, 5} and N4 = 3. To assign

all the rows to L = 3 machines, each available machine is

assigned by all of the rows and μ = [ 0, 1, 1, 0, 1, 0 ].
In other words, M1 contains all rows and P1 = {2, 3, 5}. This

is depicted in Fig. 1(d).

Next, we present Example 2 with heterogeneous stor-

age space and computing speeds. This example uses Algo-

rithm 2, which is a generalization of Algorithm 1 discussed

in Example 1.

B. Example 2: CEC With Heterogeneous Computing Speeds
and Storage Constraints

Consider the case where L = 6 and there are N = 6
machines which each have distinct speed-storage pairs. For

ease of presentation, we only focus on a single time step

(or t = 1) and assume there are no preempted machines

(N1 = 6). The computing speed of the available machines are

defined by s = [ 2, 3, 4, 2, 3, 4 ]. The total number of

stored cs-matrices is Z1 = 9 and the machines store a number

of cs-matrices defined by σ = [ 2, 2, 2, 1, 1, 1 ]. For

example, machine 1 has a speed of 2 and stores 2 cs-matrices

and machine 5 has a speed of 3 and stores 1 cs-matrix. The

storage of the cs-matrices at each machine is shown in Fig. 2

where X̃i is labeled at the top of each block which represent a

cs-matrix. The machines are in descending order based on
σ[n]
s[n]

to use Theorem 1 to find the optimal computation load vector

described in Section IV. Based on Theorem 1, the computation

load vector is μ =
[

8
11 , 12

11 , 16
11 , 8

11 , 1, 1
]
. Notice that,

different from Example 1, a machine here may have a compu-

tation load greater than 1 if it performs computations on more

than 1 stored cs-matrices. However, similar to Example 1,

machines either have the same computation time or perform

computations on all locally stored data. In this example, based

on the computation speeds, machines 1 through 4 complete the

assigned computing tasks at the same time and machines 5
and 6 compute using the entirety of their one locally available

cs-matrix and finish before the other machines.

Next, we need to assign computations that yield the compu-

tation load vector, μ. We use Algorithm 2 in Section V, where

instead of assigning computations to machines, we assign

computations to each cs-matrix at each machine. In this

algorithm, we need to first decide how much of each cs-matrix

will be computed. For example, consider machine 3 which has

a computation load of μ[3] = 16
11 and locally stores σ[3] = 2

cs-matrices. There is a choice of how much machine 3 will

compute each of its cs-matrices. A solution which simplifies

the assignment is for machine 3 to compute the entirety of one

cs-matrix and a 5
11 fraction of the other. Similarly, machine 2

will compute the entirety of one cs-matrix and 1
11 fraction

of the other. In general, when σ[n] > 1 and machine n
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Algorithm 2 Computation Assignment: Heterogeneous Storage Capacity and Computing Speeds

Input: μ∗, Nt, L, q, Q̃1, . . . , Q̃Nt and θ̂ % μ∗ is solution to first sub-problem (7)-(8). Q̃1, . . . , Q̃Nt and

% θ̂ include pre-chosen cs-matrices based on μ∗.

1: for n ∈ [Nt] do
2: μ̂[n] ← μ∗[n] − �μ∗[n]� % determine the computation load for each partially computed cs-matrix.

3: end for
4: L̂ ←

∑Nt

n=1 μ̂[n] % L̂ is the sum of the computation load over partially computed cs-matrices.

% Use Algorithm 1 next to find computation assignment for partially computed matrices.

5: F̂ , M̂1, . . . ,M̂F and P̂1, . . . , P̂F ← Output of Algorithm 1 with μ̂, Nt, L̂, and q as input

6: F ← F̂
7: for f ∈ [F ] do
8: Mf ← M̂f % use the output row sets from Algorithm 1 as final row sets.

9: Pf ←
⋃

n∈P̂f
θ̂[n] ∪

⋃
n∈[Nt]

Q̃n % combine outputs of Algorithm 1 with fully computed cs-matrices

% to obtain the final cs-matrices assignment

10: end for
Output: F , M1, . . . ,MF and P1, . . . ,PF

Fig. 2. Example 2: Optimal computation assignments for a CEC network with machines that have heterogeneous storage requirements and varying

computations speeds. Here, we have N = 6, Z = 9, L = 6. The machines have varying computation speeds s = [2, 3, 4, 2, 3, 4 ] and storage capacity
σ = [2, 2, 2, 1, 1, 1 ]. Machines 1 to 3 each stores 2 cs-matrices, and machines 4 to 6 each stores only 1 cs-matrix. The machines are ordered in the

decreasing order of SCR
σ[n]
s[n]

. There are 4 row sets M1 (green) M2 (blue), M3 (magenta), M4 (yellow), each is assigned to L = 6 cs-matrices. For

instance, M1 is assigned to cs-matrices P1 = {3, 4, 5, 7, 8, 9}. The optimal computation load vector is μ = [ 8
11

, 12
11

, 16
11

, 8
11

, 1, 1 ]. For instance,

machine 3 computes one full cs-matrix X̃5 and partially computes 3
11

+ 2
11

= 5
11

of X̃6, which adds up to a computation load of μ[3] = 1 + 5
11

= 16
11

.

stores more than one cs-matrices, it will compute �μ[n]� whole

cs-matrices and a μ[n] − �μ[n]� fraction of the remaining

cs-matrix.

The final computation assignments are shown in Fig. 2.

There are F = 4 matrix row sets M1 through M4 which

contain a 1
11 , 3

11 , 2
11 and 5

11 fraction of rows, respectively. Each

row set Mf is assigned to a cs-matrix set Pf that contains

L = 6 cs-matrices. These are given by cs-matrix sets P1 =
{3, 4, 5, 7, 8, 9}, P2 = {1, 3, 5, 6, 8, 9}, P3 = {3, 5, 6, 7, 8, 9},

and P4 = {1, 3, 5, 7, 8, 9}.

IV. FIRST SUB-PROBLEM: OPTIMAL COMPUTATION

LOAD VECTOR

We decompose the optimization problem (4) into two sub-

problems. In this section, we present the first sub-problem

by introducing a relaxed convex optimization problem to find

the optimal computation load vector μ∗ and its correspond-

ing computation time ĉ∗ = c(μ∗) without considering an

explicit computation assignment (Mt, Pt). Due to the relaxed

constraints, we have ĉ∗ ≤ c∗. Next, in Section V, we will

present the second sub-problem where we show a computation

assignment (Mt, Pt) exists that achieves the μ∗ found in the

first step. Hence, there is no gap between the relaxed convex

optimization problem and (4) and we have c∗ = ĉ∗.

A. The Proposed Relaxed Convex Optimization Problem

Given a computation speed vector s and storage vector σ,

we let the optimal computation load vector μ∗ be the solution

to the following convex optimization problem:

minimize
μ

c(μ) = max
n∈[Nt]

μ[n]
s[n]

(5a)

subject to:
∑

n∈[Nt]

μ[n] = L, (5b)

0 ≤ μ[n] ≤ σ[n], ∀n ∈ [Nt], (5c)

μ[n] ∈ R+, ∀n ∈ [Nt] (5d)

which can be shown to be a convex optimization problem.

While computation assignments, (Mt, Pt), are not explic-

itly considered in (5), we note that the key constraint of∑
n∈[Nt]

μ[n] = L is a relaxed version of the requirement

on the computation assignment that each row set should be

assigned to L cs-matrices. The analytical solution to the opti-

mization problem (5) can be explicitly found. When Zt = L,

it can be seen that this optimal solution is given by μ∗ = σ.
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When Zt > L, the analytical optimal solution to (5) is

presented in the following theorem.

Theorem 1: Assume that Zt > L and the machines are

labeled in the decreasing order of the storage capacity to

computation speed ratio (SCR)

σ[1]
s[1]

≥ σ[2]
s[2]

≥ · · · ≥ σ[Nt]
s[Nt]

. (6)

The optimal solution μ∗ to the optimization problem of (5)

must take the following form

μ∗[n] =

{
ĉ∗s[n] if 1 ≤ n ≤ k∗

σ[n] if k∗ + 1 ≤ n ≤ Nt,
(7)

where k∗ is the largest integer in [Nt] such that

σ[k∗ + 1]
s[k∗ + 1]

< ĉ∗ =
L −

∑Nt

n=k∗+1 σ[n]∑k∗
n=1 s[n]

≤ σ[k∗]
s[k∗]

, if k∗ < Nt, (8)

otherwise, k∗ = Nt. Here, ĉ∗ = c(μ∗) is the maximum com-

putation time among the Nt machines given the computation

load assignment μ∗.

B. Proof of Theorem 1

In the following, we first present two Claims that will lead

to the proof of Theorem 1.

Claim 1: If μ∗[n] < ĉ∗s[n], then μ∗[n] = σ[n]. Thus,

in this case the optimal computation load assigned to machine

n is equivalent to its storage.
Proof: We prove Claim 1 by contradiction. Since ĉ∗ =

maxn∈[Nt]
μ∗[n]
s[n] , we define two disjoint sets T0 and T1, where

T0

⋃
T1 = [Nt], as

T0 = {n ∈ [Nt] : μ∗[n] = ĉ∗s[n]} (9)

and

T1 = {n ∈ [Nt] : μ∗[n] < ĉ∗s[n]}. (10)

In the following, we will show that if there exists an i /∈ T0,

then we must have i ∈ T1 and μ∗[i] = σ[i]. In order to do this,

we will construct a new solution μ′ from the optimal solution

μ∗ such that c(μ′) < ĉ∗, which leads to a contradiction that μ∗

is an optimal solution. The details are as follows. Assume that

there exists some i ∈ [Nt] such that i ∈ T1 and μ∗[i] < σ[i].
Define μ′ such that

μ′[n] =

⎧⎪⎨
⎪⎩

μ∗[n] + ε if n = i,

μ∗[n] − ε
|T0| if n ∈ T0,

μ∗[n] if n ∈ T1 \ i

(11)

where 0 < ε < σ[n] − μ∗[n] and ε is sufficiently small such

that

μ′[i]
s[i]

=
μ∗[i] + ε

s[i]
< ĉ∗, (12)

and for all n ∈ T0

μ∗[n] − ε

|T0|
> 0. (13)

One can verify that we have
μ′[n]
s[n] < ĉ∗ for any n ∈ [Nt]

and thus we obtain c(μ′) < ĉ∗. This contradicts with the

assumption that μ∗ is optimal. Thus, it follows that if n /∈ T0,

then we must have n ∈ T1 and μ∗[n] = σ[n].
Claim 2: If j ∈ T0 and i ∈ T1, then

σ[j]
s[j] > σ[i]

s[i] .

Proof: This claim follows directly from

μ∗[i]
s[i]

=
σ[i]
s[i]

< ĉ∗ =
μ∗[j]
s[j]

≤ σ[j]
s[j]

. (14)

Proof of Theorem 1: Combining Claims 1 and 2, the optimal

solution must take the form of

μ∗[n] =

{
ĉ∗ks[n] if 1 ≤ n ≤ k,

σ[n] if k + 1 ≤ n ≤ Nt,
(15)

where k = |T0|. Next, we will optimize k such that ĉ∗k
is minimized. Since

∑
n∈[Nt]

μ∗[n] = L, by using (15),

we obtain (8) because

L =
Nt∑

n=1

μ∗[n] =
∑k

n=1 μ∗[n] +
∑Nt

n=k+1 σ[n]

= ĉ∗k
∑k

n=1 s[n] +
∑Nt

n=k+1 σ[n], (16)

and

ĉ∗k =
L −

∑Nt

n=k+1 σ[n]∑k
n=1 s[n]

. (17)

The right-most inequality of (8) follows from k ∈ T0 and

μ∗[k] ≤ σ[k]. The left-most inequality of (8) follows from

k+1 ∈ T1 and μ∗[k+1] = σ[k+1]. Since
σ[n]
s[n] is a decreasing

sequence, we see from (8) that ĉ∗k is minimized when k is

chosen to be k∗, the largest value in [Nt] such that (8) is

satisfied.

C. Discussions on Theorem 1

From (6), (7) and (8), we can observe that the optimal

solution μ∗ to the optimization problem (5) is always rational

due to the fact that s are rational numbers and σ are integers.

Hence, it is achievable for large enough q if the computa-

tion assignment exists. The following corollary presents the

solution of the optimal computation load vector when the

storage among machines is homogeneous, i.e., each machine

stores exactly one cs-matrix. This storage design is equivalent

to that used in the original CEC work of [30], but here the

machines have varying speeds as opposed to the homogeneous

setting of [30].

Corollary 1: When σ = [1, 1 · · · , 1], we find

μ∗[n] =

{
ĉ∗s[n] if 1 ≤ n ≤ k∗

1 if k∗ + 1 ≤ n ≤ Nt,
(18)

where k∗ is the largest integer in [Nt] such that

1
s[k∗ + 1]

< ĉ∗ =
L − Nt + k∗∑k∗

n=1 s[n]
≤ 1

s[k∗]
. (19)

Proof: Corollary 1 is proved by substituting σ[n] = 1 for

n ∈ [Nt] in equations (7) and (8) and ordering the machines

by speed in ascending order.
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Fig. 3. A water-filling like representation of the storage and computation load of (a) for machine n only and (b) for a set of available machines with an

optimal computation load vector that solves the optimization of (5) with the solution of Theorem 1. Machines in (b) are ordered in the decreasing order of

SCR,
σ(n)
s(n)

. The storage of machine n is represented by the area of the full rectangle (in peach color). The computation load μ[n] assigned to machine n is

represented by the area of the filled blue region within the n-th rectangle. The height of the each filled blue region represents
μ[n]
s[n]

, which is the computation

time of machine n. The maximum height of these filled regions represent the computation time ĉ∗ = c(μ∗).

Remark 5: The two cases in (7) are determined by whether

a machine n satisfies μ∗[n] = ĉ∗s[n] or μ∗[n] < ĉ∗s[n]. For

the first case when 1 ≤ n ≤ k∗, the equality is achieved and

we must have 0 < μ∗[n] ≤ σ[n]. Among these k∗ machines,

the computation load μ∗[n] is proportional to the computation

speed s[n]. For the second case when k∗ + 1 ≤ n ≤ N ,

we have the strict inequality and μ∗[n] = σ[n]. The computa-

tion load μ∗[n] equals (thus is limited by) the storage σ[n]. The

equality in (8) ensures that
∑Nt

n=1 μ∗[n] = L; the right-most

inequality ensures that μ∗[n] ≤ μ∗[k∗] = ĉ∗s[k∗] ≤ σ[n],
for any 1 ≤ n ≤ k∗; the left-most inequality ensures that

for any k∗ + 1 ≤ n ≤ N , we have μ∗[n] < ĉ∗s[n]. Hence,

the computation time ĉ∗ is equal to the local computation time

of any of the k∗ machines with the largest SCR.
Since the optimization problem of (5) aims to minimize a

convex function on a closed and convex set, the existence of an

optimal solution is guaranteed. This ensures the existence of

some k∗ ∈ [Nt] such that (8) is satisfied. In the following,

we provide a numerical procedure to find k∗. First, it is

straightforward to verify that if the right-hand-side (RHS)

inequality “≤” of (8) is violated for k∗ = i, then the left-

hand-side (LHS) inequality “<” of (8) must hold for k∗ =
i − 1. In other words, for any i ∈ [Nt],

if ĉ∗i >
σ[i]
s[i]

, then
σ[i]
s[i]

< ĉ∗i−1. (20)

where ĉ∗i (and ĉ∗i−1) are defined by (17) for different values

of k∗. We first check k∗ = Nt. If the RHS of (8) holds, then

we have k∗ = Nt. Otherwise, it follows from (20) that the

LHS of (8) must hold for k∗ = Nt − 1. If the RHS of (8)

also hold for k∗ = Nt − 1, then we have k∗ = Nt − 1.

Otherwise, it follows from (20) that the LHS of (8) must hold

for k∗ = Nt − 2. We continue this process by decreasing k∗

until we find one value of k∗ for which both sides of (8) hold.

This process is guaranteed to terminate before reaching k∗ = 1
for which the RHS of (8) always hold. Hence, this establishes

the procedure to find k∗ directly using (8).

Finally, we note that the solution in Theorem 1 for the opti-

mization problem of (5) has a “water-filling" like visualization

as shown in Fig. 3. In Fig. 3(a), the storage of machine n is

represented by the area of the full rectangle (shaded with the

peach color) that it corresponds to. We make the width of

the rectangle s[n] because if we “fill” part of the rectangle

with an area of μ[n] (shaded in blue), then the height of the

filled area, which is the water level at that rectangle, represents

the computation time of machine n. Note that, this filled area

does not represent a specific computation assignment, but only

the total computations assigned to machine n. In Fig. 3(b),

in accordance to (6), we arrange the available machines in

descending order of the rectangle height, which is
σ[n]
s[n] for

machine n. Then, following (5b), we “fill” all the available

machines with a total area of L. First, notice that machines

with larger rectangle width, or speed, will have larger filled

area, or more computation load, until they are completely

filled. Machines k∗ + 1, . . . , Nt with smaller rectangle height

fill completely and have a computation time strictly less

than ĉ∗. Machines 1, . . . , k∗ with larger rectangle height, all

have the same computation time of ĉ∗. Note that one or more

of these machines may be completely filled such as machine k∗

in Fig. 3(b), but will have the same “water level" as machines

1, . . . , k∗.

D. Computation Load of Example 1 and Example 2

Homogeneous storage: We return to Example 1 presented

in Section III-A with homogeneous storage but heterogeneous

computing speeds and explain how to find the optimal compu-

tation load vector. In this example, each machine stores exactly

one cs-matrix. When t = 1, we have N1 = 6 and L = 3.

Given s = [2, 2, 3, 3, 4, 4], the largest k∗ that satisfies (8)

is k∗ = 6, and thus ĉ∗ = 1/6, μ∗ = ĉ∗s =
[

1
3 , 1

3 , 1
2 , 1

2 , 2
3 , 2

3

]
.

Similarly, for t = 2, since machine 4 is preempted, we have

now N2 = 5, N2 = {1, 2, 3, 5, 6} and s = [2, 2, 3, 4, 4]
(we ignore any preempted machines). In this case, we have

k∗ = 5, and thus ĉ∗ = 1/5, μ∗ = ĉ∗s =
[

2
5 , 2

5 , 3
5 , 4

5 , 4
5

]
.
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Similarly, for t = 3, we have N3 = 4, N3 = {1, 2, 3, 5} and

s = [2, 2, 3, 4] because machines 4 and 6 preempts. Here,

we have k∗ = 3, ĉ∗ = 2/7, and μ∗ =
[
4
7 , 4

7 , 6
7 , 1

]
. 4

Heterogeneous storage: We illustrate this case using Exam-

ple 2 presented in Section III-B with L = N = 6 and no

preempted machines. In this case, we order the machines in

a descending order by
σ[n]
s[n] , where s = [2, 3, 4, 2, 3, 4] and

σ = [2, 2, 2, 1, 1, 1]. Next, we need to determine k∗, and we

start by checking k∗ = 6. However, we can observe that (8)

does not hold since

L∑Nt

n=1 s[n]
=

1
3

>
1
4

=
σ[6]
s[6]

. (21)

Similarly, if we try k∗ = 5, we see that (8) does not hold since

L − σ [6]∑5
n=1 s[n]

=
5
14

>
1
3

=
σ[5]
s[5]

. (22)

Finally, we see that k∗ = 4 is the solution that satisfies (8)

because

σ[5]
s[5]

=
1
3

<
L − σ [5] − σ [6]∑4

n=1 s[n]
=

4
11

≤ 1
2

=
σ[4]
s[4]

. (23)

It follows that ĉ∗ = 4/11 and by using (7), we obtain μ∗ =[
8
11 , 12

11 , 16
11 , 8

11 , 1, 1
]
.

In Section V, we will show that there always exists a

computation assignment (Mt, P t) whose computation load

vector equals μ∗ and the assignment pair can be found using

the proposed Algorithm 1 (for homogeneous storage) and

Algorithm 2 (for heterogeneous storage) in no more than Nt

iterations.

V. SECOND SUB-PROBLEM: OPTIMAL

COMPUTATION ASSIGNMENT

In this section, we present a computation assignment

(Mt, Pt) that solves the optimization problem of (4). First,

we show the existence of a computation assignment that yields

the computation load vector μ∗ and computation time ĉ∗.

This shows that there is no gap between the combinatorial

optimization problem (4) and the relaxed convex optimization

problem of (5). Then, we provide a low-complexity itera-

tive algorithm that outputs such an assignment in at most

Nt iterations. In the following, we start with the case of

homogeneous storage and heterogeneous computing speeds,

where each machine stores exactly one cs-matrix, then we

move to the case of heterogeneous storage and computing

speed requirements where each machine may store any integer

number of cs-matrices.

A. Homogeneous Storage With Heterogeneous
Computing Speeds

Here, we focus on the case where σ[n] = 1 for

n ∈ [Nt] such that each available machine stores exactly

one cs-matrix. Our goal is to assign computations among the

4Note that, as in the optimization problem of (5), the computation load of
the preempted machines are ignored since they are simply 0, presenting a

slight difference between the optimal computation load vectors presented in

Section III.

machines such that each row set in Mt is assigned to L
machines and the assignments satisfy the μ∗ given by (18).

Interestingly, we find that once μ∗ is given, we can adapt the

filling problem (FP) introduced in [32] for private information

retrieval (PIR) to solve our second sub-problem of finding

the computation assignment for CEC networks. Note that our

proposed formulation of the computation assignments based

on row sets, together with the two-step approach to solve the

proposed combinatorial optimization problem, are important

to allow successful adaptation of the FP problem [32] to the

CEC setting.

Definition 5: (μ, L)-Filling Problem (FP): Let B =
{b1, b2, . . . , b|B|} be a basis containing all {0, 1}-vectors of

length Nt with exactly L 1’s. Find a set of non-negative

elements α1, α2, . . . , α|B| ∈ R+ such that
∑|B|

f=1 αfbf = μ.♦
We are interested in a solution to the (μ∗, L)-FP, because

we can define M1,M2, . . . ,M|B| where Mf contains an

αf fraction of the rows. Then, we assign Mf to machines

Pf = {n : bf [n] = 1} defined by the indices of the

non-zero elements of bf . This precisely yields a computation

load of μ∗ and each computation is assigned to L machines.

Note that, we ensure each row is assigned since L
∑

f αf =∑
n μ∗[n] = L and the elements of α1, α2, . . . , α|B| sum to

1. Also, M1, . . . ,M|B| will span all rows if we define these

sets to be disjoint. The question remains whether a (μ∗, L)-
FP solution exists for general μ∗ from the computation load

optimization problem. In particular, we refer to the following

lemma (Theorem 2 in [32]).

Lemma 1: Given μ∗ ∈ RN
+ and L ∈ Z+, a (μ∗, L)-FP

solution exists if and only if

μ∗[n] ≤
∑Nt

i=1 μ∗[i]
L

(24)

for all n ∈ [Nt]. �
There are two important consequences of Lemma 1. First, in

our problem setting, we have
∑Nt

i=1 μ∗[i] = L and μ∗[n] ≤ 1
for all n ∈ [Nt]. Therefore, by using Lemma 1, an optimal

computation assignment exists. Second, Lemma 1 provides

a guide to develop an iterative algorithm to find such an

assignment. In other words, if we define an iteration to assign

a computation to a set of L machines, then effectively we

create a new FP after each iteration. We can design each

iteration to ensure the conditions of Lemma 1 are satisfied.

Moreover, by adapting Algorithm 1 in [32], we obtain an

equivalent Algorithm 1 (see pseudo-codes of Algorithm 1 for

detailed operations) to explicitly provide an optimal compu-

tation assignment, (Mt, P t) where machine n stores and

performs computations on its stored cs-matrix X̃n.

Remark 6: In line 10 of Algorithm 1, we consider the

conditions of Lemma 1 to ensure Algorithm 1 yields a

computation assignment with computation load μ∗. In lines

14 through 16, we update m which tracks the remaining

amount of assignments for each machine after the f -th iter-

ation. m must satisfy the conditions of Lemma 1 so that a

(m, L)-FP exists. After line 16, the machine with the most

remaining computations to be assigned could be machine

5� is an N ′-length vector and 0 < m[�[1]] ≤ m[�[2]] ≤ · · · ≤ m[�[N ′]].
6This is the condition obtained by using Lemma 1.
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Fig. 4. Computation assignment following Algorithm 1 for Example 1 at

time t = 2. Here, N = 6, L = 3, F = 4. f is the iteration index; Each row
corresponds to an iteration f , where αf is to the fraction of rows assigned to

row set Mf ; m[n] denotes the remaining computation load for machine n at

iteration f . The three red arrows from the first row to the second row represent
that a fraction of α1 = 2

5
rows are assigned to M1, which are computed

by machines (or equivalently, cs-matrices) P1 = {1, 5, 6}. L′ represents the
remaining total computation load at iteration f . At f = 1, L′ = L = 3. After

one iteration, we have L′ = 3 − 3 · α1 = 9
5

. Note that αf is determined by

lines 9 to 12 of Algorithm 1. At each iteration f , Pf includes the machine

with the smallest remaining m[n] and L − 1 = 2 machines with the largest
remaining m[n].

�[N ′ − L + 1]. This machine had the most computations to

be assigned before the f -th iteration but is not assigned any

computations during the f -th iteration. After the f -th iteration,

we must ensure

m[�[N ′ − L + 1]]
(a)

≤
∑Nt

i=1 m[i]
L

(b)=
L′ − αfL

L
=

L′

L
− αf . (25)

Here, (a) ensures the conditions of Lemma 1. Also, (b) holds

because L′ is the sum of m before the f -th iteration and the

total computations to be assigned is reduced by αfL after the

f -th iteration. From (25) we find αf ≤ L′
L −m[�[N ′−L+1]]

which is enforced in line 10.

Remark 7: Using a similar approach in the proof of

Lemma 2 in [32], we can show that F ≤ Nt such that

Algorithm 1 needs at most Nt iterations to complete.

B. An Example of Algorithm 1 for Homogeneous Storage
and Heterogeneous Computing Speed

We return to Example 1 presented in Sections III-A

and IV-D and use Algorithm 1 to derive the computation

(rows in each element of Mt) assignments for t = 2, where

machine 4 is preempted. The steps of the algorithm are shown

in Fig. 4. In this case, we showed that μ∗ =
[

2
5 , 2

5 , 3
5 , 4

5 , 4
5

]
in Section IV-D. In the first iteration, f = 1, we have L′ = L
and m = μ∗ as no computations have been assigned yet.

Rows of the respective cs-matrices are assigned to machine 1,

5, and 6 because among all machines, machine 1 has the least

remaining computations to be assigned, and machines 5 and

6 have with the most remaining computations to be assigned.

Note that

m[1] =
2
5
≤ L′

L
− m[3] = 1 − 3

5
=

2
5
, (26)

where machine 3 is the machine with the most remaining

rows to be assigned that is not included in P1 = {1, 5, 6}.

Therefore, a α1 = 2
5 fraction of the rows are assigned to

machines 1, 5, 6. Then, m is adjusted to reflect the remaining

computations to be assigned and L′ = 3 − 3α1 = 9
5 .

For iteration 2, the condition of (26) relating to line 10 of

Algorithm 1 is motivated by the necessary and sufficient

conditions for the existence of a (m, L)-FP solution given

in Lemma 1. Here, we are interested in the FP solution for m
which is updated after each iteration. In other words, for each

iteration of a row set assignment in Algorithm 1, we ensure

there exists a set of succeeding row assignments such that a

final FP solution is obtained.

In the second iteration, f = 2, machine 2 is a machine

with the least remaining rows to be assigned. Computations

are assigned to machine 2 and machines 3 and 6 which are a

pair of machines with the most remaining computations to be

assigned. Ideally, we would like to assign all the remaining

rows to machine 2. However, since

m[2] =
2
5

>
L′

L
− m[5] =

3
5
− 2

5
=

1
5
, (27)

assigning 2
5 of the rows to machine 2 in this iteration will

violate the condition of (24) in Lemma 1 and as a consequence,

there will be no valid filling solution going forward. Therefore,

we set α2 = 1
5 instead and after this iteration m and L′ are

adjusted accordingly.

In the third iteration, f = 3, since

m[2] =
1
5
≤ L′

L
− m[6] =

2
5
− 1

5
=

1
5
, (28)

we assign α3 = 1
5 of the rows to machines 2, 3, 5 and m and

L′ are adjusted accordingly. Finally, in the fourth iteration,

f = 4, only three machines 3, 5, 6 have non-zero computation

assignment left and each is assigned α4 = 1
5 of the rows. In

this example, the algorithm completes in F = 4 (fewer than

N2 = 5) iterations. The resulting computing assignment is

shown in Fig. 1(b).

C. Heterogeneous Storage Capacity and Computing Speeds

When both storage capacity and computing speeds among

machines are heterogeneous, machines may store more than

cs-matrices. In this case, machine n will pick �μ∗[n]�
cs-matrices to compute entirely. Then, it will pick a remaining

cs-matrix and compute a μ∗[n] − �μ∗[n]� fraction of that

cs-matrix. We will show this strategy requires F ≤ Nt

iterations using Algorithm 2 and the number of computation

assignments F is at most equal to the number of available

machines Nt. Overall, the assignment consists of two steps.

In the first step, those cs-matrices that are computed entirely

are put into in the cs-matrix sets of Pt. In the second

step, we assign row sets to the cs-matrices which are not

entirely computed so that each row set in Mt is guaranteed

to be computed across L cs-matrices. Next, we demonstrate

that we can re-use Algorithm 1 for the second step of the

computation assignment under a modified procedure described

in Algorithm 2.
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To explain the computation assignment process we intro-

duce the following notations. For n ∈ [Nt], let Q̃n ⊆ Qn

contain the indices of �μ∗[n]� arbitrarily chosen cs-matrices

in Qn that machine n computes entirely. Note that |Q̃n| =
�μ∗[n]�. If μ[n] < 1, then Q̃n is empty. Next, machine n
arbitrarily chooses one cs-matrix from Qn \ Q̃n to compute

partially which we label as θ̂[n]. Note that when μ[n] is

an integer, θ̂[n] is simply a dummy variable and is never

referenced, i.e. θ̂[n] = ∅. In the following, we denote θ̂ =
(θ̂[1], θ̂[2], . . . , θ̂[Nt]) as the cs-matrices partially computed by

the machines. Then we define the partial computation vector

μ̂ ∈ R
Nt
+ such that

μ̂[n] = μ∗[n] − �μ∗[n]�, ∀n ∈ [Nt]. (29)

Hence, machine n will entirely compute each cs-matrix X̃i for

i ∈ Q̃n and compute a μ̂[n] fraction of the cs-matrix X̃ θ̂[n].

Finally, we define the sum of the partial computation load

vector μ̂ as

L̂ �
Nt∑

n=1

μ̂[n]. (30)

Note that L̂ is an important parameter because it represents the

number of cs-matrices that each row set needs to be assigned

to, excluding those cs-matrices that are entirely computed.

In other words, since the elements in μ sum to L, there are

L− L̂ cs-matrices that are entirely computed by the machines.

Therefore, in order to assign each row computation (or row

set) in Mt to L cs-matrices, we assign each row set to

L̂ cs-matrices that are only partially computed. The detailed

description of the proposed algorithm is given in Algorithm 2.

In Algorithm 2, we will perform Algorithm 1 on μ̂, which

iteratively fills some computations at L̂ machines in each

iteration. Following similar arguments as before, we need to

ensure that such a filling problem solution exists and can be

found using the proposed algorithm. From Lemma 1, we see

that a (μ̂, L̂)-FP solution exists because μ̂[n] < 1 for all

n ∈ [Nt] and L̂ =
∑Nt

n=1 μ̂[n]. Then, similar to the previous

analysis, it can be seen that Algorithm 1 will yield a (μ̂, L̂)-
FP solution with F ≤ Nt iterations. This means that, in order

to use Algorithm 1, instead of inputting μ∗ and L, we input

μ̂ and L̂. Then, we label the output of Algorithm 1 as F̂ ,

M̂1, . . . ,M̂F and P̂1, . . . , P̂F . These variables represent the

computation assignments at the cs-matrices that are partially

computed, but computations are only assigned to L̂, instead

of L, cs-matrices. Note that, due to the one-to-one mapping

between partially computed cs-matrices and machines, each

P̂f represents the set of machines that are assigned to com-

pute rows in Mf of the cs-matrix it is partially computing.

To complete the computation assignment, we must include the

L − L̂ cs-matrices that are entirely computed. Therefore,

Pf =
⋃

n∈P̂f

θ̂[n] ∪
⋃

m∈[Nt]

Q̃m, ∀f ∈ [F ], (31)

where |
⋃

n∈P̂f
θ̂[n]| = L̂ and |

⋃
m∈[Nt]

Q̃m| = L − L̂.

Since Algorithm 1 assigns computations to machines,5 θ̂ is

needed to identify the cs-matrices that the machines partially

5Algorithm 1 is designed with the assumption that machine n,∀n ∈ [N ]
stores one cs-matrix, X̃n.

compute. In addition, the number of computation assignments

remains the same and F̂ = F . The row sets also remain the

same, Mf = M̂f for all f ∈ [F ].
Algorithm 2 will be illustrated using the following example.

D. An Example of Algorithm 2 for Heterogeneous Storage
and Computing Speed

We consider Example 2 presented in Sections III-B

and IV-D, where we have L = 6 and σ = [2, 2, 2, 1, 1, 1].
This means that machines 1, 2, and 3 stores two cs-matrices

while machines 4, 5, and 6 stores one cs-matrix, respectively.

We assume no preempted machines at t = 1. In this case,

the optimal computation load vector is found to be μ∗ =[
8
11 , 12

11 , 16
11 , 8

11 , 1, 1
]

in Section IV-D. Since μ∗[n] ≥
1, n ∈ {2, 3, 5, 6}, it can be seen that machines 2, 3, 5, and 6
will compute all the rows sets of M1 for one cs-matrix (see

Fig. 2). Next, machines 1, 2, 3 and 4 have one cs-matrix to be

partially computed, and each of them will compute a fraction

of that cs-matrix. Note that, since μ∗[5] = 1 and μ∗[6] = 1
are integers, by the algorithm design, no computations will

be assigned to cs-matrices partially computed by machines

5 and 6. In other words, based on the optimal computation

load vector μ∗, machines 5 and 6 only entirely compute

cs-matrices. Using (29), we can obtain the partial computa-

tion load vector as μ̂ =
[

8
11 , 1

11 , 5
11 , 8

11 , 0, 0
]
, whose

elements sum to L̂ = 2. Our goal is to assign computations

to cs-matrices partially computed by machines 1 through 4,

where we assign the computations corresponding to each row

set of M1 to L̂ = 2 cs-matrices at a time. This will be done

using Algorithm 1.

In particular, let the indexes of the cs-matrices stored at

the machines be Q1 = {1, 2}, Q2 = {3, 4}, Q3 = {5, 6},

Q4 = {7}, Q5 = {8} and Q6 = {9}. Each machine n picks a

set of �μ[n]� stored cs-matrices to be computed entirely which

could be that of Q̃1 = ∅, Q̃2 = {3}, Q̃3 = {5}, Q̃4 = ∅,

Q̃5 = {8} and Q̃6 = {9}. Moreover, each machine selects an

index of a stored cs-matrix to be partially computed, which

are denoted as θ̂ = [ 1, 4, 6, 7, 0, 0 ].
In the first iteration of Algorithm 1 inside Algorithm 2

(line 5), we aim to assign some computations to the cs-matrix

X̃ θ̂[2], since μ̂[2] is the smallest non-zero element in μ̂. X̃ θ̂[2]
will be partially computed by machine 2. We also assign

this computation to machine 4 because it is a machine with

the largest remaining computations to be assigned (line 8 in

Algorithm 1). Therefore, we assign a α1 = 1
11 fraction of

rows to the cs-matrices partially computed by machines 2
and 4 (line 10 in Algorithm 1). After this iteration m =[

8
11 , 0, 5

11 , 7
11 , 0, 0

]
(line 15 in Algorithm 1), and

machines 1 and 3 are the machines with the most and least,

respectively, remaining computations to be assigned. From line

10 in Algorithm 1, since

m[3] =
5
11

>
3
11

=
L̂′

L̂
− m[4], (32)

we assign a α2 = 3
11 fraction of rows to machines

1 and 3. Then, after this iteration, we find m =[
5
11 , 0, 2

11 , 7
11 , 0, 0

]
. By a similar approach, next we
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Fig. 5. The simulated mean computation time using the Homogeneous Cyclic design [30] (red curves) and the proposed Heterogeneous Algorithm (blues

curves) on heterogeneous networks. The machine speeds are sampled from a uniform distribution with mean 1. The results are compared to the computation

time of an equivalent homogeneous network where machines all have a speed of 1. In (a) and (b), the network heterogeneity, r, and storage constraint, s0,
respectively, are varied to produce multiple curves.

assign a α3 = 2
11 fraction of rows to machines 3 and 4 and

a α4 = 5
11 fraction of rows to machines 1 and 4. After this

iteration, we can find that m = 0.

Based on above procedure in Algorithm 1, we obtain the

output F̂ , M̂1, . . . ,M̂4 which contain a 1
11 , 3

11 , 2
11 and 5

11
fraction of rows, respectively, and the machines assigned to

compute row sets Mf are given by P̂1 = {2, 4}, P̂2 =
{1, 3}, P̂3 = {3, 4} and P̂4 = {1, 4}. For the final solution,

the number of assignments stays the same, F = F̂ = 4, and

the row sets stay the same Mf = M̂f , ∀f ∈ [F ]. However,

using P̂f , ∀f ∈ [F ], we need to define specifically which

cs-matrices are being computed for each row set. Note that, P̂f

is the set of machines that are assigned to compute rows in Mf

of the corresponding cs-matrix partially computed. We use θ̂ to

resolve the indexes of the cs-matrices from P̂f . Then, we also

need to include the indexes of all cs-matrices that are entirely

computed from Q̃1, . . . , Q̃6. For example, recall that, Q̃1 = ∅,

Q̃2 = {3}, Q̃3 = {5}, Q̃4 = ∅, Q̃5 = {8} and Q̃6 = {9},

we then obtain the cs-matrix sets

P1 = {θ̂[2], θ̂[4], 3, 5, 8, 9} = {3, 4, 5, 7, 8, 9}. (33)

Similarly, we see that P2 = {1, 3, 5, 6, 8, 9}, P3 =
{3, 5, 6, 7, 8, 9} and P4 = {1, 3, 5, 7, 8, 9}.

VI. RESULTS SUMMARY

In this section, we summarize the results of this work and

present simulation studies to evaluate the performance of the

new heterogeneous CEC design.

Theorem 2: An optimal computation assignment that

solves (4) is found by using Algorithm 2 to yield an

assignment satisfying the computation load vector μ∗ from

Theorem 1.

Proof: Algorithm 2 produces a computation assignment

that yields the computation load vector μ∗ and computa-

tion time ĉ∗, the solution of (5). The optimization problem

of (5) is a relaxed version of (4). Therefore, this computation

assignment from Algorithm 2 is a solution to the optimization

problem of (4).

A. Simulations

Machine computation speeds are sampled from a uniform

distribution with mean 1. The variable r defines the ratio

between the upper and lower bounds of the distribution and

is a quantitative measure of the network heterogeneity. For

example, if r = 2, then machine speeds are sampled from

a uniform distribution ranging from 2
3 to 4

3 . This distribution

has a mean of 1. Furthermore, we define s0 as the number of

cs-matrices that each machine stores.

We perform simulations for various values of r, s0, and Nt

where L = 10 is fixed. In each configuration, the mean com-

putation time of the Homogeneous Cyclic [30] (red curves)

and the proposed Heterogeneous Algorithm (blue lines) from

105 samples are shown in Fig. 5. The results are compared to

those of a purely homogeneous network (black curves, r = 1)

where each machine has a computation speed of 1.

In Fig. 5(a), each machine has the same storage constraint

and stores s0 = 1 cs-matrix. Then, for different heterogeneity

measures, r, we vary the number of available machines,

Nt from 10 to 20. Focusing on when Nt = L = 10,

we notice the proposed heterogeneous design and the homo-

geneous cyclic design [30] have the same performance. This

occurs because the number of cs-matrices among the available

machines is exactly L and both designs produce the same

computation assignment which is that each machine computes

the entirety of their local cs-matrix. Also, the computation

time, c, increases with r because c equals the time it takes the

slowest machine to compute the entirety of its cs-matrix. For

both designs, we observe a decrease in c as Nt increases since

the computations are spread across more machines, reducing

the computation load of any single machine. Note that when

Nt > L, the proposed heterogeneous CEC design outperforms

the homogeneous CEC design [30] because the former spreads

the computation load relative to the computation speed of each
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available machine. Moreover, c for the proposed heterogeneous

CEC design converges to that of a homogeneous network with

equivalent cumulative computation speed.

In Fig. 5(b), we fix r = 10 and assume that each machine

stores s0 cs-matrices. First, we vary s0 to produce multiple

blue curves for the proposed heterogeneous design. Second,

for the homogeneous design [30], only one red curve cor-

responding to s0 = 5 is presented. Due to the constraint

that Zt = s0Nt ≥ L, choosing the larger s0 = 5 allows

the homogeneous design to operate on a wider range of Nt.

We also note that for a given Nt that satisfies Zt = s0Nt ≥ L,

the c of the homogeneous design is independent of s0 because

all machines are assigned an equal computation load. In other

words, for a given Nt, varying s0 will not change c. This

justifies why only one red curve is shown. In contrast, for

the proposed heterogeneous CEC design, when s0 increases,

a smaller c can be achieved. For example, when Nt = 5,

we have c ≈ 5.5 for s0 = 2 and c ≈ 2.1 for s0 = 5.

This occurs because s0 is the upper bound on the computation

load for each machine. When s0 is larger, it is less likely that

faster machines reach this upper bound. The faster machines

can take on more of the computation load and alleviate

the computation load of some slower machines that may be

affecting the computation time c. Finally, again we observe

that the performance of the proposed heterogeneous CEC

converges to that of a homogeneous network with equivalent

cumulative computation speed.

VII. CONCLUSION

In this paper, we study the heterogeneous coded elastic

computing problem where computing machines store MDS

coded data matrices and may have both varying computation

speeds and storage capacity. The key of this problem is to

design a fixed storage assignment scheme and a computation

assignment strategy such that no redundant computations are

present and the overall computation time can be minimized

as long as there are at least L cs-matrices stored among the

available machines. Given a set of available machines with

arbitrary relative computation speeds and storage capacity,

we first proposed a novel combinatorial min-max problem

formulation in order to minimize the overall computation time,

which is determined by the machines that need the longest

computation time. Based on the MDS coded storage assign-

ment, the goal of this optimization problem is to assign compu-

tation tasks to machines such that the overall computation time

is minimized. In order to precisely solve this combinatorial

problem, we decompose it into a convex optimization problem

to determine the optimal computation load of each machine

and a computation assignment problem that yields the result-

ing computation load from the convex optimization problem.

Then, we adapt low-complexity iterative algorithms to find

the optimal solution to the original combinatorial problems,

which require a number of iterations no greater than the

number of available machines. The proposed heterogeneous

coded elastic computing design has the potential to perform

computations faster than the state-of-the-art design which

was developed for a homogeneous distributed computing

system.
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