5674

with the appropriate IVs as inputs to compute the assigned
output functions.

Throughout this paper, we consider the following design
options. First, we assume each computing node computes
all possible IVs from locally available files. This means that
M), = | M| represents both the number of files stored and
number of map computations at node k. Second, we consider
the design scenario such that each of the) Reduce functions is
computed exactly once (s = 1) at one node and |W;NW;| =0
for i # j, where s is defined as the number of nodes
which calculate each Reduce function.? Third, we consider
the general scenario where each computing node can have a
varying number of files, M}, and reduce functions, W.

This distributed computing network design yields two
important performance parameters: the computation load, r,
and the communication load, L. The computation load is
defined as the number of times each IV is computed among
all computing nodes, or r = % Zszl M. In other words,
the computation load is the number of IVs computed in the
Map phase normalized by the total number of unique IVs, QN.
The communication load is defined as the amount of traffic
load (in bits) among all the nodes in the Shuffle phase
normalized by QNT'. Given the number of files mapped at
each node, we are interested in the optimal communication
load, L*, over all possible file mappings, functions assign-
ments and shuffle designs. 3

Definition 1: Given the number of files at each node,
My, ..., Mg, the optimal communication load is defined as

L* 2inf{L: (L, M,..., M) is feasible}, (1)

where we consider all achievable file mapping, function
assignments and shuffle designs.

III. HOMOGENEOUS HYPERCUBE COMPUTING APPROACH

In this section, we describe the proposed homogeneous CDC
design based on the hypercube combinatorial structure. Our
schemes are defined by node grouping, file mapping, function
assignment and shuffle method. Two detailed examples, one for
two-dimensional, and one for three-dimensional, are provided
to illustrate the fundamental principles of the proposed design.
These will be extended to the more general heterogeneous
CDC scheme in Section IV.

In this section, we consider the scenario where the network
is homogeneous. In other words, each node is assigned the
same number of files and reduce functions. Also, every reduce
function is computed exactly once at one node (s = 1).*

2The scenario of s > 1, meaning that each of the) Reduce functions
is computed at multiple nodes, is called cascaded distributed computing,
introduced in [21]. In this paper, we do not consider this case.

3Note that we define L* as a function of the number of files at each node,
rather than just as a function of 7 as in previous CDC works. This excludes
trivial designs that lead to L = 0. For instance, we can pick r nodes and
assign the entire file library to each of these nodes. Furthermore, assign each
function to one of the r nodes. In this case, since each node can compute all
the necessary IVs itself, no Shuffle phase is required and L = 0. Our definition
is more practical as it is tied to the number of computations (or mapped files)
at each node.

4Our other work [31] focuses on the case of s > 1. The proposed schemes
and analysis of [31] are significantly different from those presented in this
work.

each lattice point
represents a file

node 1

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 9, SEPTEMBER 2021

node 4

(V1,1 v1,2 v1,3)

{V4,2 U1 V6,1}

(V4,1 V4,4 V47
\
]
|
i

V1,4 V2,1 V31

1 2 3 ! H
nodel + @)) V43 Us3 Ue2! V1,7 V2,7 V34
4 5 6 node 2 node 5
node2 & @ Y ® (V2,4 V2,5 V2,6] (V5,2 Us,5 s 8]
V45 V54 V6,4l (V1,5 V2,2 V3,2
7 8 9 V4,6 V5,6 V65! iVU18 Vag V35!
node3 » @ (] [)
4 A A node 3 node 6
< " © (vs3,7 v38 v39) (v6,3 V6,6 V69)
5 3 3 V4.8 Us7 V6,71 V16 V2,3 V3,3
(o] o o 1 1 i
<3 e e V4,9 V5,9 Ve8! 1V1,9 V29 V36!
key: [used locally]I‘ transmitted ‘I
(a) (b)
Fig. 1. (a) Lattice plane that defines file availability amongst the K = 6

computing nodes. Each lattice point represents a file and each node has a
set of files available to it represents by a horizontal or vertical line of lattice
points. (b) The IVs used locally and transmitted by each node.

Every node k£ computes a set of W = 7, distinct functions
and QQ = 12 K where 15 € Z*. The novel combinatorial
hypercube design splits the nodes into r disjoint sets each of
size % and batches of 7, files are assigned to one node from
each set.” This is analogous to constructing a hypercube lattice
of dimension r with the length of each side % to describe the
file placement at the nodes. We use this hypercube approach to
better illustrate the examples of our new combinatorial design.
We show that the required number of files is N = (%)T
where 177 € ZT and the number of multicasting groups is
G = (£)". We first present a 2-dimension (a plane) example
where r = 2.

A. 2-Dimension Example

In this example, we propose a distributed computing net-
work based on a r = 2 dimensional hypercube (a plane)
lattice where each side has length % = 3. There are K = 6
computing nodes each of which has access to % of the file
library. Each lattice point represents a file and each node has
a set of files available to it represented by a line of lattice
points as shown in Fig. 1(a). Specifically, there are two set
of nodes: K; = {1,2,3} and 3 = {4,5,6}. Each node &
in IC; (or K2) has access to My = 3 files, represented by
three lattice points along a horizontal (or vertical) line. For
instance, node 1 in Iy has access to three files w;, wy and
w3 along the top horizontal line. Similarly, node 5 in /Cy
has access to three files ws, w5 and wg, along the middle
vertical line. Each node is responsible for computing one out
of the) = 6 reduce functions in the Reduce phase. More
specifically, node k& computes reduce function k£ and Wy = 1.

In the Map phase, nodes compute all Q = 6 IVs from
each locally available file. Some IVs are necessary to compute
the locally assigned reduce function. For example, as shown
in Fig. 1(b), node 1 computes vy, vi2 and vy3 and
node 5 computes vs 2, v55 and vsg. These IVs do not have

5This scheme can be classified as a resolvable design for CDC, which was
introduced in [27]. In addition, it also falls into the general framework of
the Placement Delivery Array (PDA) designed for Device-to-Device coded
caching [32].

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:22:39 UTC from IEEE Xplore. Restrictions apply.

WOOLSEY et al.: NEW COMBINATORIAL CODED DESIGN FOR HETEROGENEOUS DISTRIBUTED COMPUTING

to be transmitted and do not contribute to the communica-
tion load. However, other IVs are transmitted between nodes.
We consider all possible pairs of nodes, termed node groups,
consisting of one node from X; and one node from Ks. For
instance, nodes 1 and 5 form node groups with each of the
three nodes in [Cy = {4,5,6} or K; = {1, 2,3}, respectively.
For the node group of {1,5}, node 1 has computed v5 1 and
v5,3 and transmits these IVs to node 5. Notice that, node 5
is incapable of computing these IVs itself because it does
not have access to files w; and ws. Similarly, node 5 has
computed vy 5 and v1g and transmits these IVs to node 1
because node 1 does not have access to files w; and wsg.
Fig. 1(b) also shows the IVs transmitted by each node. For
example, node 1 will transmit IVs v4 2 and vs3 to node 4,
vs,1 and vs 3 to node 5 and vg,1 and vg 3 to node 6. On the
other hand, node 1 will receive its requested IVs vy 4 and vy 7
from node 4, vy 5 and v; g from node 5, and vy 6 and vy g
from node 6. Therefore, node 1 obtains all the IVs necessary
for computing reduce function 1. In general, by considering all
possible node groups, each node receives an IV for every file
that it does not have. We can see this is true by recognizing
that a node consecutively pairs with the three nodes in either
K1 or Ko, and the nodes in either /C; or Iy collectively have
access to all the files.

Throughout this paper, we consider the case where each
node computes all IVs from its available files similar to the
original CDC work [21]. In this example, each IV is computed
twice and r = 2 since each file is assigned to 2 nodes.
In general, the computation load 7 is equivalent to the dimen-
sion of the hypercube which defines the file placement. Note
that, nodes will compute some IVs that are never used to
transmit, decode or compute a reduce function.® From 1(b)
shows the IVs computed by each node that are utilized. Each
node computes 3 IVs which are necessary for its own reduce
function. Also, each node participates in 3 node pairs for which
it needs to compute 2 IVs to transmit to the other node in the
pair. In some applications, it may be possible for nodes to
compute a select set of IVs to reduce the computation load as
presented in [1], [23].

In this toy example, we only consider unicasting, therefore,
the communication load is equivalent to the uncoded scenario
and L = %, or the fraction of files not available at each node.
This can be verified by recognizing that there are 9 pairs
of nodes for which 2 IVs are transmitted from each node
for each pair. In total, 36 of the 54 IVs are transmitted and
L= % In later examples, we will show how this scheme can
be expanded to utilize coded multicasting and outperform the
uncoded CDC scheme.

Remark 1: Interestingly, although the scheme generalized
from this example is equivalent to unicast in this case,
we observe that there actually exist multicasting opportunities
in this example. For instance, node 1 could transmit v4 o ®vs 1
to nodes 4 and 5 (assuming that node 4 and 5 compute vs 1
and vy, respectively). In fact, all IVs could be transmitted

oWe assume each node computes all @ IVs for each file. This is motivated
by practical applications such as TeraSort or WordCount for which computing
only a subset of IVs does not speed up overall MapReduce execution time.

5675

each lattice 20
»1 point represents
afile

23

26

27

17

7 8 9 8 P
node: transmits:
node cache legend . @o
node 3: node 5: node 9: 3: U525 S 9,8
5 v
o ’ 3,20 D V9,17
9: V3,23 D Vs, 27
Fig. 2. (left) Cube lattice which defines file availability amongst the K = 9

computing nodes. Each lattice point represents a file and each node has set
of files available to it represented by a plane of lattice points. The green, red
and blue planes represent the files locally available to nodes 3, 5 and 9,
respectively. (right) Intersections of planes which represent files that are
locally available to multiple nodes and yields coded multicasting opportunities.

in coded pairs where a node along one dimension transmits
to 2 nodes aligned along the other dimensions, which would
reduce the communication load by half.”

B. 3-Dimension Example

In the following, we provide a three-dimensional exam-
ple and introduce notations used in the general scheme in
Section III-C. We construct a computing network using a
three-dimensional hypercube as shown in Fig. 2. Each lattice
point in the cube, with its index ¢ € [27] labeled next to the
point, represents a different file set 5; = {w;} which contains
m = 1 files. There are a total of K = 9 nodes, split into three
node sets: K1 = {1,2,3}, K2 = {4,5,6}, and K3 = {7, 8,9},
aligned along each of the r = 3 dimensions of the hypercube.
Specifically, the three nodes in Ky = {1, 2, 3} are represented
by three parallel planes that go from top surface of the
hypercube to the bottom. Node 3 is represented by the green
plane that passes through lattice point 7. Node 1 and 2 are
represented by the two planes (not shown) parallel to the green
plane that go through lattice point 1 and point 4, respectively.
The three nodes in Ky = {4,5,6} are represented by three
parallel planes that go from the left surface of the hypercube
to the right. Node 5 is represented by the middle plane, shown
in red, that goes through lattice point 8, and nodes 4 and 6 are
represented by two planes (not shown) parallel to the red plane
that go through lattice point 7 and 9, respectively. The nodes in
K3 ={7,8,9} are represented by three parallel planes that go
from the front surface of the hypercube to the back. Node 9 is
the blue plane, passing through lattice point 27, and nodes 7, 8
are represented by two planes (not shown) parallel to the blue
plane and go through lattice points 9 and 18, respectively.

For file mapping, each node is assigned all the files indicated
by the 9 lattice points on the corresponding plane. For instance,
node 5, represented by the red plane, is assigned the file set

TThis is similar to the scheme outlined in [32], [33] for the analogous coded
caching problem. However, as we will see for other examples and as discussed
in [32], this scheme does not achieve a multiplicative gain for » > 2.

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:22:39 UTC from IEEE Xplore. Restrictions apply.

5676

M5 = {’LUQ, W5, Wg, W11, W14, W17, W20, W23, w26}. For each
i € [3], the size of IC; is % = 3, which is the number of lattice
points in the i-th dimension. Since the three nodes in each
set /C; are aligned along dimension i, they collectively store
the entire library of 27 files. Since each point ¢ in the lattice
is uniquely determined by the intersection of three planes,
one from each dimension, the same point also represents a
node group 7;. For instance, node group 726 = {3,5,9} is
represented by the three planes— green (node 3), red (node 5),
and blue (node 9) intersecting at only one lattice point ¢ = 26.
It is clear that each file w; is mapped to r = 3 nodes in 7;.
Each node k is assigned the 72 = 1 functions of Wy, = {k}
because () = K = 9 and each node k is only assigned the
k-th reduce function.

In the Map phase, each node computes all IVs from
locally available files. For example, node 5 will compute all
possible IVs {v; ; : i € [Q],w; € M5}. The subset of IVs
{vs,; + w; € Ms} is used to calculate of the function
output us. Furthermore, node 5 will use the subset of IVs in
{vi,j 11 € [Q]\ 2, w; € M5} for transmission and decoding
purposes when forming multicasting groups with nodes of xCy
and K3. Note that, similar to the last example, node 5, and
the other nodes, will compute some I'Vs that are not utilized.

We use the example of node group 7, = To6 = {3,5,9} to
explain the Shuffle phase. Within node group 736, node 3 will
multicast the summation of two IVs to nodes in 75 \ 3, one
intended for node 5, and one intended for node 9. The former
must be available at both nodes 3 and 9, and the latter must
be available at both nodes 3 and 5. To determine these IVs,
we consider the set V{{;g} and V{§7}5 . The set V{;}g contains
two IVs requested by node 5 that are available at nodes 3, 9.
To find these two IVs, we replace node 5 in 7o by one
of the other two nodes in K9, which are nodes 4 and 6.
This way, we obtain two node sets 735 = {3,4,9} and
Tor = {3,6,9} that differ from 7,, only in the second element
(the element that intersects KC3). Thus, we define a line of
lattice points, L5 o = {25, 27}, representing the intersection of
planes for nodes 3 and 9, but not points that intersect node 5’s
plane. This defines a set of IVs, V{{;}g} = {vs25,U527},
that are locally computed at nodes 3 and 9, but requested
by node 5. Furthermore, we split V{{;}g} into two equally

sized subsets, Vfg}e)f = {525} and Vg}g’f = {vs,27} which

will be transmitted by nodes 3 and 9, respectively. Similarly,
Lo« = {8,17} is defined by the intersection of the planes
for nodes 3 and 5, but not points intersecting node 9’s plane.

We now define Vf;]l,)} = vf??if’uvg}sf = {vgs,v917}
where Vg]:-af = {vg,s} will be transmitted by node 3 and
V{{?‘? }55 = {vg,17} will be transmitted by node 5. Once IV sets

are found, node 3 transmits Vfg}e)f &b V{{:?}g)f = v5,25 D Vg8

to nodes 5 and 9. Upon receiving this value, node 5 will

subtract vg g to recover vs 25 and node 9 will subtract vs o5 to

recover vg g. The rest of the IV sets can be found in a similar
. 3 3},5 319

fashion such that V}L{&};} =y UV{ - {v3,20,v3,23},

{ {5,9} {5,9}
and VE??]%} = V§§7}gfuvg§]g’f = {’U978,U9717}. Node 5 will

transmit v3 20 ® vg,17 to nodes 3 and 9. Node 9 will transmit
V3,23 @ Us,27 to nodes 3 and 5.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 9, SEPTEMBER 2021

In this example, each node participates in 9 multicasting
groups and transmits 1 coded message per group. Each trans-
mission has the equivalent size of 1 IV. Therefore, the com-
munication load is L. = g;z% = % = % which is half of
the uncoded communication load L, = %, or the fraction of
files not available to each node.

C. General Homogeneous Scheme

In this subsection, we will introduce the general homoge-
neous scheme step by step as follows.

Node Grouping 1: Let K = {1,2,---, K} denote the set
of K nodes. Assume that K is split into r equal-sized disjoint
sets K1, ..., C, that each contains % € 7 nodes. We define
7T C K as a node group of size r if it contains exactly one
node from each K;, ie, [T NK;| = 1, Vi € [r]. There
are a total of X = (£)" possible node groups, denoted by
Ti,...,Tx. Furthermore, for each node group 7;, we define
its 4-th component 7;; = 7; N K; as the node in 7; that is
chosen from K;, where i € [r].

Node Group (NG) File Mapping: Given node groups
Ti,...,Tx, we split the N files into X disjoint sets labeled
as Bi,...,Bx. These file sets are of size 71 € Z* and
N = m X. Each file set B, is only available to every node
in 7;. It follows that if node k¥ € [K] belongs to a node
group 7;, then the file set B; is available to this node. Hence,
by considering all possible node groups 7; that node & belongs
to, its available files, denoted by My, are expressed as

My, = U B;.)

i:keT;

Function Assignment 1: The () reduce functions are split
into K equal size, disjoint subsets labeled as Wiy, ..., Wk.
Each node is assigned 72 € Z7 reduce functions where
@ =2 K. For each k € [K], define W), as the set of reduce
functions assigned to node k.

Remark 2: By Node Grouping 1 and NG File Mapping,
each node set KC; collectively maps the file library exactly
once, and therefore, the file library is mapped r times among
all K nodes. Note that, since each file belongs to a unique file
set BB; and is mapped to a unique set of r nodes (in the node
group 7;), we must have % Zszl My = % = r. Moreover,
M, = m (%)r_l files are mapped to each node. Then,
by Function Assignment 1, each node k is assigned Wy = 1o
reduce functions and each reduce function is assigned to
exactly s = 1 node.

The Map, Shuffle and Reduce phases are defined as follows:

Map Phase: Each node k € [K] computes the set of IVs
{qu NS [Q],’LUJ‘ S Mk}

Node Group (NG) Shuffle Method: For every a € [X],
a coded message will be multicasted by each node k € 7,
to serve independent requests of the rest » — 1 nodes in 7.
Here, each IV transmitted by node k is requested by a node
z € T, \ k and must be available to all other nodes in 7, \ z to
ensure that each node can decode successfully its own desired
IVs from the broadcast. Next, we consider an arbitrary node
group 7, and a node z € 7,. Assume that z € K}, and thus
z = Ton = To N Ky In the following, we fix the choice

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:22:39 UTC from IEEE Xplore. Restrictions apply.

WOOLSEY et al.: NEW COMBINATORIAL CODED DESIGN FOR HETEROGENEOUS DISTRIBUTED COMPUTING

of a, z, h and define
L:z,a = {£ S [X] : ﬂ,h # Zvlff,i

Here, the set L, , includes all indexes ¢ € [X] such that
the node group 7, differs from 7, only in the h-th element,
i.e., the node choice from /Cj,. In other words, since z € K,
then 7; 5 can be any node in), except for z. Note that & is
suppressed from the subscript of £, , for notation simplicity.
The definition of (3) ensures that for any ¢ € L, ,, we have
z ¢ Ty, but for any other node 2z’ in 7,, \ z, we have 2’ € 7.
This follows that while file set B, is not mapped to node z,
it is mapped to all other nodes 2z’ in 7, \ z. Thus, we see
that IVs of the type {v;;,i € W.,w; € B} are requested
by node z because z does not have By, but are available to
all nodes in 7, \ z because they all have access to B,. This
key idea is used to create multicast opportunities as follows.
Formally, let us define

= |J {vijrieW.,w; €Bi}, 4)
LeL o

=T..:, Vi€ [r]\ h}.

Vil

which contains IVs requested by node z and are available at
all nodes in 7, \ z. Furthermore, V;Z{ is split into r — 1 dis-

joint subsets of equal size® denoted by V;Z}Zgl, . V;Z{’:’ !
where {o1,...,0,_1} =7, \ z. Each node ke Ta sends the

common multicast message

D

z€T\k

to all nodes z € 7, \ k.

Reduce Phase: For all k € [K], node k computes all output
values u4 such that ¢ € W.

Remark 3: For the homogeneous case, we have |L:al =
5 — 1 because 7;), can only be one of the £ — 1 nodes
1r1 K1, \ z. When using Node Grouping 1, NG F11e Mapping,
and Function Ass1gnment 1, in NG Shuffle Method we find
each IV set, V , contains 7112 (— — 1) IVs.

In the followmg, we will present a more complex
3-dimension example by accommodating the design proce-
dures and all the notations introduced above.

vEL! ®)

D. Achievable Computation-Communication Load Trade-Off

The following theorem evaluates the trade-off between
the computation and communication loads for the proposed
scheme.

Theorem 1: By using Node Grouping 1, NG File Mapping,
Function Assignment 1, and NG Shuffle Method, the commu-
nication load of the general homogeneous scheme is

K—r
K(r—1)
Proof: Theorem 1 is proved in Appendix I as a special

case of our general heterogeneous design which is defined
in Section IV. n

Le(r) = (6)

8In general, |VT \Z\ may not be divisible by r — 1, in which case the IVs

of Vq{— }\z can be concatenated into a message and split into r — 1 equal size
[e3
segments. This process was presented in [21].

5677

The optimality of this scheme is discussed in Section V by
comparing the communication load of this scheme with that
of the state-of-the-art scheme in [21].

Remark 4: When s = 1, coded caching [34], D2D coded
caching [35], and CDC [21] are related. In particular, coded
caching can be understood as a special case of CDC when
each node is assigned one output function. This translates to
a single file request in coded caching. Under this condition,
in the original CDC work [21], the achievable design for s = 1
is equivalent to the D2D coded caching achievable design
of [35]. The homogeneous CDC design presented in this
paper is equivalent to the D2D coded caching design of [33].
However, CDC and coded caching differ in the following
aspects. First, CDC allows the design of function assign-
ment, while the file demand in coded caching is given. This
yields different designs in both achievability and information
theoretic converse. In the homogeneous case, the proposed
hypercuboid CDC design shares some similarities but are
different from the CDC schemes found in [36], [37] and the
coded caching design in [38] when “translated” to the D2D
setting using the approach introduced in [35].° This difference
leads to a significant fact that the schemes in [36]-[38] cannot
be extended to the heterogeneous settings. In contrast, the pro-
posed hypercube homogeneous CDC design can be extended
to the heterogeneous settings by allowing heterogeneous func-
tion assignments (see Section IV). The proposed scheme is
applicable under some system parameters (e.g., K/r € Z*1) in
the homogeneous setting. In practice, if it allows to assign only
slightly different computation loads (e.g., number of output
functions) to different nodes, the proposed coding gain can
be preserved, meaning that the overall computation time can
be significantly reduced compared to the uncoded approach.
Second, in the general CDC framework, the file placement
is uncoded in order to compute general functions. However,
coding is allowed for the cache placement in coded caching.

IV. HETEROGENEOUS HYPERCUBOID
COMPUTING APPROACH

In this section, we expand the proposed combinatorial
hypercube design to accommodate heterogeneous computing
networks. As mentioned in the introduction, one key novelty of
our design is that nodes are assigned a varying number of files
and reduce functions so that, nodes with larger local computa-
tion load, %, are assigned more reduce functions. In this case,
the proposed heterogeneous design becomes a hypercuboid,
consisting of P interleaved homogeneous hypercube networks.
The homogeneous networks, C,,, Vp € [P], reflect hypercubes
with different dimensions and lengths, representing distinct
classes of nodes with varying local computation load. We start
with an example and then present the general scheme.

A. 3-Dimension Hypercuboid Example

This example is presented in Fig. 3, where there are P = 2
classes of nodes C; = K1 U Ky and Cy = K3 with different
storage capability where K1 = {1,2}, Ky = {3,4} and

9In fact, the coded caching scheme of [38] is equivalent to the CDC design
of [27] under the “translation approach” in [35] when each node is assigned
one output function, which is a single file.

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:22:39 UTC from IEEE Xplore. Restrictions apply.

5678

files: represented
by lattice points

Fig. 3.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 9, SEPTEMBER 2021

files mapped to
/ nodes 2 and 3

file mapped
to nodes 2 .
» and 7 assigned
functions transmits
node 2: 3,4 vs5,12 D V11,7
_______ #12node 3: 5, 6 v35 D V11,9
/5 node 7: 11 V4,5 D Vg,12

file mapped to
nodes 3 and 7

Representations of a hypercuboid with P = 2, 71 = 2, m1 = 2, 7o = 1 and mao = 3. Left 3 cuboids: Depictions of files mapped to nodes of

K1, K2 and K3, respectively. Right most cuboid: Hypercuboid highlighting files stored at exactly 2 nodes of multicast group 711 = {2, 3, 7}. These files,
in addition to the assigned functions among these nodes, determine the IVs included in the coded multicasts, which are displayed to the right.

K3 = {5,6,7}. Each node in C; stores half of the files and
each node in Cy stores one-third of the files. Each node set, C;,
collectively stores all N = 12 files. Each file is stored at the
node group 7, of 3 nodes such that it contains one node from
each set [Cq, [Co and KC3. For example, file w; is assigned to the
nodes of 7; = {1, 3,5} and file wy; is assigned to the nodes
of 711 = {2,3,7}. All of the file placements are represented
by the cuboid in Fig. 3. In the Map phase, the nodes will
compute all IVs from their locally available files. Since every
file is assigned to 3 nodes, the computation load is r = 3.

Different from previous works in CDC, nodes are assigned
a varying number of reduce functions. We assign more reduce
functions to nodes which map more files. Assume that there
are (Q = 11 reduce functions. We assign 2 reduce functions
to each node of X; and Ky and just 1 reduce function to
each node of KCs. Specifically, the function assignments are
W, = {1,2}, W, = {3,4},W3 = {5,6},W4 = {7,8}, and
Ws = {9}, Ws = {10}, and W; = {11}. The reason we
assigned this specific number of reduce functions to each node
will become clear when we discuss the Shuffle phase.

In the Shuffle phase, the set of multicast groups includes
all possible node groups 7, which contain 1 node from
each set K1, Ko and 3. Within each 7., nodes send coded
pairs of IVs to the other two nodes. For example, consider
the node set 7, = 711 = {2,3,7}. Following notations in
Shuffle Method 1, we have L5, = {5}. This is because
when replacing node 2 € K; in 7, by a different node
in Ky, we obtain 75 = {1, 3, 7}. Hence, using W5 = {3,4}
and Eqn. (4), we obtain V§_27} = {v35,v4,5}, which are IVs
requested by node 2 and computed at nodes 3 and 7. Similarly,
for node 3, we have L3, = {12}, and Vé{_37} = {v5,12,V6,12}-
For node 7, we have L7, = {7,9}, corresponding to 7; =
{2,3,5} and 7Ty = {2,3,6}. While the size of L7, is larger
than that of £y, and L3, since W; = {11} is smaller,

. 7 . . .
we obtain V2{_3} = {v11,7,v11,9}, which is the same size as

that of V§727} and V2{737}. Using Eqn. (5), we see that nodes 2, 3,
and 7 transmit vs 12 @ V11,7, V3,5 D V11,9, and va 5 D Ve 12,
respectively.

In this example, we see that by assigning a varying number
of reduce functions to the nodes we can create symmetry
among each node group, 7., i.e., each node of the group
requests the same number of IVs from the other nodes of the
group. This symmetry can lead to savings in the communica-
tion load. Here, the communication load can be calculated by

accounting for the 2-2-3 = 12 node groups, where within each
group, there are 3 transmissions of size 7" bits. By normalizing
by QNT we find the communication load of the coded scheme
is L. = % = % We can compare this to the uncoded
communication load, where each requested IV is transmitted
alone. To compute the uncoded communication load, we count
the number of IVs each node requests. Since the 4 nodes of
K1 and ICy request 6-2 = 12 IVs each and the 3 nodes of /C3
request 8 IVs each, we find L, = % = %. In this case,
L. = % - Ly, since for the coded Shuffle policy every requested
IV is transmitted in coded pairs. In the general heterogeneous
CDC scheme proposed here, we will see that L. = T—il - Ly

B. General Heterogeneous Scheme

In this subsection, we will introduce the general heteroge-
neous scheme step by step.

Node Grouping 2: The key idea of Node Grouping 2 is
to form one heterogeneous network based on a hypercuboid
design that consists of P interleaved homogeneous networks,
represented by hypercubes of different dimensions 7, and
sizes m,, within the hypercuboid. The K nodes consist of P
disjoint sets denoted by Cy,...,Cp, where 25:1 ICpl = K.
For each p € [P], split C, into r, € ZT disjoint subsets,
each of size m,, denoted by {K,,_,41,...,K,,}, where
np = >.&_, ;. Hence, the entire network is comprised of
r node sets, Kq,...,K,, where r = 25:1 rp. Consider all
possible node groups 7i,...,7x of size r such that each
contains one node from every node set K1, ...,K,, here X =
[1;_, |K:| = [1,_, m;’. Denote T;; = T; N K;, Vj € [X]
and Vi € [r], as the node in 7; that is chosen from C,.

The file mapping is then determined by the NG File
Mapping defined in Section III-C with node groups 77, . .., 7x
defined by Node Grouping 2.

Remark 5: When using Node Grouping 2 and NG File
Mapping, we form a hypercuboid made of P interleved
hypercubes of different dimensions. For a given p € [P], C,
translates to 7, dimensions of size m,, of the hypercuboid.
Moreover, C, serves the role that is similar to that of a
single hypercube of dimension 1, as in the homogeneous
case. Specifically, C, contains r, node sets X;, each of
size my. Here m,, is the number of lattice points along each
dimension of the hypercube. The total number of nodes in
Cp is thus r,m,,. Nodes in each KC; collectively map the file
library once. Hence, all nodes in C,, have the same storage

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:22:39 UTC from IEEE Xplore. Restrictions apply.

WOOLSEY et al.: NEW COMBINATORIAL CODED DESIGN FOR HETEROGENEOUS DISTRIBUTED COMPUTING

capacity that each maps a total of mi files. Collectively,

nodes in C, map the library 7, times. The P disjoint sets of
Ci,---,C, form one hypercuboid with r dimensions where
there are r, dimensions of size m, for p € [P]. Hence,
each node group 7, of size r = Zip rp, defined in Node
Group 2, consists of the union of P node groups, with
size ry,---,rp, respectively, chosen from each of the P
interleved hypercubes corresponding to Cp, p € [P]. Note that,
instead of each hypercube operating independently subject to
its own computation load, r,, the hypercuboid design takes
full advantage of the total computation load, r, across the
P hypercubes to achieve the gain of ﬁ for the heterogeneous
system.

Function Assignment 2: Define Y as the least common
multiple (LCM) of {my —1,ma —1,...,mp — 1}. Split the
@ functions into K disjoint sets, labeled W, ..., Wk, where,
in general, the sets may be different sizes. For each k € [K],
Wi = Wk| = % where k € C, and 72 € ZT such that

Q = sz N ;{’m” For each k € [K], let W, be the set
of reduce functions as51gned to node k.

The Map and Shuffle phases follow our standard definition
from Section III-C and the NG Shuffle Method is used
for the Shuffle phase with node grouping defined by Node
Grouping 2.

The correctness of the proposed heterogeneous CDC
scheme is proved in Appendix III.

Remark 6: When using Node Grouping 2, NG File Map-
ping, Function Assignment 2, and NG Shuffle Method, we find
that each intermediate value set V{ } . contains 7172 Y 1Vs.

Remark 7: Node Grouping 2 and Function Assign-
ment 2 are a more general case of Node Grouping 1 and
Function Assignment 1, respectively. Therefore, the homoge-
neous scheme of Section III-C is a special case of the general
heterogeneous scheme here. By letting P =1 such that C; is
the set of all nodes, we find r = r, m; = &, X = (r)T
and Y = % — 1. Moreover, each node is a551gned i _Yl =1
reduce functions. For file availability, nodes are spht into r
disjoint, equal size sets, K1,...,K,, and file sets of size 7,
are available to sets of nodes which contain exactly one node
from each set Kq,...,KC,.

Remark 8: Due to the constrained combinatorial structure,
the proposed hypercuboid design will work only under certain
heterogeneous individual memories and computation loads.
The specific conditions for which our design is applicable are
as follows. The number of files at each node must be of the
form M = N for some integer m. Then, the number of
nodes which map - files must be c-m; for some integer c
and my. Furthermore the number of functions at each node
is determined by the number of files at each node as defined
by Function Assignment 2. In practice, we can group nodes
with heterogeneous storage capacity and local computation

(similar to “quantization”) to take advantage of the system’s
heterogeneity.
M, — 1 My

An example is as follows Consider 5N
3 Ms — L Mi— 1M — 2 The hypercuboid scheme is

not apphcable here because Mg and M5 do not take the form

5679

of N for some integer m. To implement the hypercuboid
scheme we will round M5 down to 7 and M5 down to —.
Now there are 2 nodes that have % 5 of the files and 3 nodes
with - 1 of the files. Then, note that the number of functions

assigned to each node is a function of My, ..., Mk.

C. Achievable Trade-off Between Computation and
Communication Loads

In this section, we first present a naive heterogeneous CDC
design given the number of files and functions at each node.
This naive approach simply uses an uncoded shuffle phase.
We then expand it to find the communication load of an
uncoded Shuffle phase, L, using the number of files and
functions at each node from Node Grouping 2, NG File
Mapping, Function Assignment 2 of the general heterogeneous
scheme. Here, uncoded Shuffle phase means that all the
requested IVs will be transmitted in a unicast fashion without
coded multicasting. Note that, L,, represents the fraction of IVs
which are requested by any node. Then, we demonstrate that
the communication load using the the proposed hypercuboid
scheme and the NG Shuffle Method is L. = T—il - L. Note that
Ly and L. are functions of my,...,mp and rq,...,rp, which
specify the number of nodes and corresponding computation
load in each node class of the heterogeneous computing
network. Then, L,, and L, are given in the following theorems.

Theorem 2: Given the number of files and functions at each
node, My, ..., Mg and W7y, ..., Wi, respectively, the follow-
ing communication load is achievable using an uncoded shuffle
phase

1
L= gy > Wi(N = My).)

ke[K]

Corollary 1: By using Node Grouping 2, NG File Map-
ping, Function Assignment 2, and an uncoded Shuffle phase,
the communication load is

r

Lu(ml,...,mp,rl,...,rp):W. (8)
Ep:l mp—1
Proof: Theorem 2 and Corollary 1 are proved in

Appendix II. []
Next, we examine the communication load of the Shuffle phase
with coded communication.

Theorem 3: By using Node Grouping 2, NG File Mapping,
Function Assignment 2, and NG Shuffle Method, the commu-
nication load of the general heterogeneous scheme is

Lc(ml, .1. . ,mp,Tl, ce ,Tp)
TI 1 Zp 1 :;{;,nipl
:r_l-Lu(ml,...,mp,rl,...,rp). 9)
Proof: Theorem 3 is proven in Appendix I. [|

The communication load L. is comprised of two parts: the
local computing gain, L, and the global computing gain, 7«%1
The local computing gain represents the normalized number
of IVs that must be shuffled. As nodes have access to a larger
fraction of the files, the nodes will inherently request less in
the Shuffle phase. The global computing gain stems from the

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:22:39 UTC from IEEE Xplore. Restrictions apply.

5680

fact that with the coded design every transmission serves r — 1
nodes with distinct requests.

D. Optimality

The information theoretic lower bound of the communi-
cation load derived in [21] is under the assumption of the
homogeneous reduce function assignment.'® Hence, it does
not apply when reduce functions are heterogeneously assigned
to the computing nodes. In the following, we use a cut-set
bound based approach to derive a lower bound on the optimal
communication load L* as defined in (1). That is, given the
number of files at each node, we find a lower bound on L* over
all possible uncoded file mappings, function assignments and
shuffle designs. We use this bound to show that the proposed
CDC design is optimal within a constant.

Theorem 4: Given the number of files mapped to each node,
My, ..., Mk we have

L*> min max
Wi,...Wk SC[K]

ox (N - Zm) > Wi (10)
kes kes
where Wi,..., Wy are the number of reduce functions
assigned to each node and sum to Q.
Proof: Theorem 4 is proved in Appendix IV. []

Remark 9: Theorem 4 and its proof are motivated by
the cut-set bound approach of the original coded caching
approach [34], but with two key differences. First, the CDC
problem is more general in that nodes require varying numbers
of IVs because they are assigned varying numbers of reduce
functions. Specifically, we consider a cut between the transmit-
ted signal useful to a set of nodes and the functions collectively
assigned to these nodes together with locally computed IVs.
This is shown in (28) in Appendix IV. Second, we need to
find the mutual information between the locally computed
IVs and the IVs for assigned functions as shown in (29) in
Appendix IV. Note that this term is not included in the coded
caching cut-set bound because it is generally unknown.

Theorem 5: For a computing network with My, ..., Mg
and Wi, ..., Wk defined by Node Grouping 2, NG File
Mapping, and Function Assignment 2, and m, is an even
integer for all p € [P], we have

4r
r—1
where L., given in (9), is the communication load achieved
by using the hypercuboid design. The optimal communication
load L*, defined in (1), is over all possible file mappings,
function assignments and shuffle designs given M, ..., M.
Proof: Theorem 5 is proved in Appendix V. []

Le < L, (1)

V. DISCUSSION

In this section, we will compare the performance of the
proposed schemes to the state-of-the-art schemes in [21].
Specifically, we compare the required number of files,
the required number of multicast groups and the communica-
tion load. When we compare the performance of the proposed

10The converse of [21] for the homogeneous reduce function assignment
was also derived in [39] using a different method.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 9, SEPTEMBER 2021

—--—--Hypercube (hom.), K = 60
i —-e—-Lietal. (hom.), K =60
~ 087 —-x—--Hypercube (hom.), K = 360
,g 55 —x—-Liet al. (hom.), K = 360
K=} b
= 0.6 5‘
2
ERERE
g \ Yy
g 0.4y
Y
LY
W
3 LN
~ 0.2 %%_\
§ =SV
L T
5 10 15 20 25 30

computation load,

Fig. 4. A comparison of the resulting communication load for the newly pro-
posed and the state-of-the-art homogeneous distributed computing schemes.

heterogeneous CDC scheme with that of the homogeneous
CDC in [21], we fix the computation load, r, the number of
files, N, and the number of reduce functions, Q.“

The scheme in [21] requires N; = (I:)m input files,
Q1 = (IS()n2 reduce functions. Moreover, the communication
load as a function of K and r (with s = 1) is

1 T
Li(r) =~ (1 - E) . (12)
A. Homogeneous CDC
Using (6), we observe the following comparison
L.(r) 1K K-—r __r (13)

Li(r) K-r K(r—-1 r—1

For most values of r there is an insignificant increase in the
communication load for the new combinatorial scheme and
furthermore for r — oo the two schemes yield the identical
communication loads. Since our proposed homogeneous
scheme uses the same function assignment as the scheme
in [21], then this hypercube based design is asymptotically
optimal in the information theoretic sense in general without
fixing the file and function assignments. These findings are
verified through simulation of the communication load as
shown in Fig. 4.

While both schemes require the same number of outputs
functions, Q = K)o, the required number of input files has
been drastically reduced in this case. It can be observed that
the number of input files for the homogeneous hypercube
design is N, = (%)Tm, while the scheme of [21] requires
Ny = (®)n input files. Assuming r = ©(K), by use of
Stirling’s formula to directly compare the two equations yields

N () K!
Ne (5)" K - (5)
:®< ok (£) 1)
2/ (K) (2) () (5)

—@(%r(g—r)'g(ffa)K)
Sa(yT ().

We adjust N and Q to be the same by using the appropriate 71 and 72.

(14)

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:22:39 UTC from IEEE Xplore. Restrictions apply.

WOOLSEY et al.: NEW COMBINATORIAL CODED DESIGN FOR HETEROGENEOUS DISTRIBUTED COMPUTING

When r < K, we find that (14) grows exponentially with K
and, therefore, our proposed scheme has an exponential
decrease in the number of required files.

As pointed out in [21], [27], the required number of mul-
ticast groups is also an important design parameter in CDC.
If this number is large, it may take a long time to build such
node groups such that the gain achieved by CDC is completely
gone. It can be seen that the number of required multicast
groups for the scheme in [21] is U; = (Tifl), while the
required number of multicast group of the proposed scheme is
U. = (£)". Hence, by a similar computation to (14), it can
be seen that

Ui r+1 o [1 K \"

a{_@<K—r' K'(K—r>)’ (15)
which can grows exponentially with K such that the proposed
hypercube scheme reduces the required number of multicast
group exponentially.

Remark 10: The hypercube approach has similar perfor-
mance compared to the CDC scheme based on the resolv-
able design proposed in [27], e.g., the required number of
input files in [27] is (%)Tﬁl, which is slightly better than
the proposed hypercube scheme. However, as discussed in
Section IV, the proposed hypercube scheme can be extended
to the heterogeneous CDC networks naturally while it is
unclear how to extend the scheme in [27] to heterogeneous
CDC networks.

B. Heterogeneous CDC

As shown in (9), the communication load of the proposed
heterogeneous CDC design is L¢(r) = 15 Ly (r), where 5
and Ly(r) are the global computing gain and the local com-
puting gain, respectively. In comparison, for the homogeneous
design in [21], we have Li(r) = 1(1 — &), where the global
computing gain is % and the local computing gain is 1 — &.
Next, we will show that even though the proposed heteroge-
neous design has an inferior global computing gain than that
of [21] (-1 versus 1), it has a better local computing gain
Ly(r) < (1—), and hence can have a better communication
load L.(r) < Lq(r) under certain parameter regimes.

Since 25:1 2 =1 and -2 is a convex function of m,,
for m, > 1, using (8) and Jensen’s inequality, we can obtain

P TpMp
Lu(r) r N =oromp - 1
P rpmy
Ep:l rl o % o K (16)
S e
where Z§=1 rpMmy = Z§=1 |Cp| = K. Note that the inequal-

ity in (16) is strictly “>" if the network is truly heterogeneous,
i.e., not all {m,} are equal. Hence,

K—r 1T
K K’
which shows that the local computing gain for our heteroge-
neous design is upper bounded by that of the homogeneous

Ly(r) < 17

5681

design in [21]. Using (9), we obtain,

rilLu(T)Sril.(l_%)'

Thus, L.(r) can be less than L;(r) for certain choices of r
and K. For example, given a heterogeneous network defined
by mj = 2,71 = 4 and me = 8, 79 = 2, we have r =
r1+1re =6, K =rymy + romo = 24. We compare it with a
homogeneous network with » = 6 and K = 24. The proposed
heterogeneous design has a local computing gain of L,(r) =
% ~ 0.583, which is less than that of the homogeneous design
1- % = % = 0.75, and a communication load of L. =
6—70 ~ (0.117, that is lower than that of the homogeneous design
Li(r) = £ =0.125.

Remark 11: We note that L.(r) < L1(r) is possible when
there is a heterogeneous function assignment such that nodes
are assigned varying numbers of functions. In [21], L (r) was
proved to be a lower bound on the communication load given
r and K. However, the proof uses the implicit assumption that
every node is assigned the same number of reduce functions.
Our new finding is that if the reduce functions can be assigned
in a heterogeneous fashion, then the communication load lower
bound of [21] does not apply.

In Fig. 5, we provide additional comparisons of the commu-
nication load of the hypercuboid design and the homogeneous
scheme of [21] with an equivalent computation load, r. Each
design has a fixed number of nodes K = 20. The hetero-
geneous network is defined with P = 2 sets of nodes that
map a different number of files and are assigned a different
number of reduce functions. Specifically, |C;| = 2(r — 1) and
ICa| = K —2(r—1) where ry =r—1,my =2, 15 =1 and
mg = K—2(r—1). In other words, the nodes of C1 each map 1
of the files and the nodes of Cs each map a m fraction

(18)

of the files which can be much less than 2 5. Furthermore, nodes
of C; and C, are each assigned K — 2r + 1 and 1 reduce
functions, respectively. Fig. 5 shows that the communication
load of the hypercuboid design is less than that of the state-
of-the-art homogeneous design of [21] for 4 < r < 7.

Comparisons for Large Networks: Next, we provide com-
parisons of the communication load of the proposed heteroge-
neous scheme and the homogeneous scheme [21] for networks
with a large number of computing nodes K. We consider two
cases.

Case 1: For the heterogeneous network, assume that
r1,...,7p and r are ﬁxed but the fraction of files each node
has access to, et B decrease as K becomes large.
Then, we have

7m7

. L
lim =
K—oo

lim L,(r)=1 and

K—oo

19)

In other words, EE:; =0(1).

Case 2: For the heterogeneous network, assume that 7+ =
B1,...,% = Pk and = [are kept constant as
K gets large. The fraction of files available to each node,
ml cee 1 , are also kept constant. It then follows from (16)
that when the network is truly heterogeneous (not all {m,}

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:22:39 UTC from IEEE Xplore. Restrictions apply.

5682

. ‘—)&Hyperc‘uboid (het.)
N —e—Liet al. (hom.)
sl N - - - -Uncoded (het.)
< U AN . - - - -Uncoded (hom.)
g
8
<
= 0.6
=
<
g
5045
g
g
S
T 02f
0 | I >
0 5 10 15 20

computation load, r

Fig. 5. A comparison of the proposed hypercuboid CDC design to the state-
of-the-art CDC design of [21] with K = 20 nodes and an equivalent com-
putation load, r. The heterogeneous hypercube is designed with parameters
r1=r—1,m1 = 2,72 = 1and ma = K—2(r—1). The hypercuboid design
has a lower communication load than that of the homogeneous design for
4 <r < 7. The communication load of the uncoded shuffle design is plotted
for the homogeneous setting by the dashed red line. The communication load
of the uncoded, naive design in Theorem 2 is plotted by the dashed blue line.

are equal), then we have

L L
lim e(r) = lim . u(r)
K—oo Ly(r) r—cor—1 1— £
1 1
1 P By _my
1 5 Zp:l ?myz—l
1
—(1-p5)=1. 20
<1—50-7) (20)

This means that for large networks considered here, the com-
munication load of the proposed heterogeneous scheme is
strictly less than that of the homogeneous scheme. Hence, for
some heterogeneous file and computation load assignments,
the fundamental trade-off proposed in [21] does not apply.
This occurs because of the heterogeneous function assignment.
As we discussed before, in the extreme case, where there
exists a “super node” that can store all the files and compute
all functions, the communication load is straightforwardly 0.
However, for given heterogeneous storage capacities and com-
putation loads, it is non-trivial to design an achievable CDC
scheme such that its performance is superior compared to
that of homogeneous CDC under the same total storage and
computation load constraint.

For the hypercuboid design, the required number of
files is N = X = szl m,” and reduce functions is
Q = Yzlf):l % where Y is the LCM of {m; —1,...,
mp — 1}. Unlike the homogeneous network case, due to
the lack of CDC design for general heterogeneous networks,
we cannot compare the proposed scheme to other schemes.
Nevertheless, we believe that these numbers can serve as a
benchmark for the future research in this topic.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this work, we introduced a novel hypercuboid com-
binatorial approach to design CDC for both homogeneous
and heterogeneous distributed computing networks. This new
design achieves a significant reduction in the number of files
and functions compared to the state-of-the-art scheme in [21].

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 9, SEPTEMBER 2021

Moreover, the proposed schemes maintain a multiplicative
computation-communication trade-off and are proven to be
asymptotically optimal. Most importantly, we provided an
explicit and systematic heterogeneous CDC design with opti-
mality guarantees under certain network parameters. Surpris-
ingly, we found that the optimal trade-off derived in [21] no
longer applies when functions are heterogeneously assigned
and as a result, the communication load of a heterogeneous
network can be less than that of an equivalent homogeneous
CDC network. We have also provided a converse for CDC
when reduce functions are heterogeneously assigned. For the
future research direction, first, it will be interesting to design
other achievable schemes with heterogeneous function assign-
ments. Second, it is challenging but important to find a tighter
general information theoretic converse for communication load
in heterogeneous CDC.

APPENDIX I
PROOF OF THEOREMS 1 AND 3

For any o € [X], and z € 7,, where z € K;, C C,,
it follows from Eq. (3), (4), and Remark 3 in Section III-C
that

VELL = el -mLea] = Wal - m(Kpl = 1)
n2Y

L 1) = Y.
pr— m(mp —1) = mmne

21

We consider X node groups of size r nodes, where for each

group, every node of that group transmits a coded message of
{z}

size |VT,,\Z‘ /(r — 1), therefore, the communication load is
Lc(my,...,mp,r1,...,7pP)
{z}
B B L8
QN r—1
1 Y
= = X - 7717721
rpMp -
(772Y 2 p=1 mrl) mX "
1 r
= P rpMmp (22)

r—1
Zp:l mp—1

For the homogeneous case where P = 1 and C; = [K], we

findr =ry, m = % and

B 1 r
c R P rpMmp
r—1 szl _—t
1 r 1 K—r
= . = . . 2
r—1 (K) r—1 K (23)
£

This completes the proof of Theorems 1 and 3.

APPENDIX II
PROOF OF THEOREM 2 AND COROLLARY 1

To prove Theorem 2, we count the number of IVs requested
by each node. Consider node k& which maps M, files and
is assigned Wj reduce functions. For each reduce function,
the node requires an IV from each of the N files. However,
this node only requests N — M}, IVs for each assigned function
since M}, of the IVs can be computed locally. Therefore,

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:22:39 UTC from IEEE Xplore. Restrictions apply.

WOOLSEY et al.: NEW COMBINATORIAL CODED DESIGN FOR HETEROGENEOUS DISTRIBUTED COMPUTING

node k requests (N — Mjy)Wj, IVs, each of size T bits,
to be transmitted unicast from the other nodes. Accounting
for the IVs requested by all nodes and normalizing by QNT,
we obtain Theorem 2.

To prove Corollary 1, we count the number of files and
functions of each node and use Theorem 2 to find the uncoded
communication load. For all p € [P], the number of files a
node £ € K; C C, has local access to is

X N
Me=m [] 1K= ”|}C| = 24)
i€[r]\j 7 P
Also, the number of functions assigned to a node
E e Kj C Cpis Wi = "2Y1 where Q@ = o YV
Z;::l ;"m” Using the result of (7), we find
L (ml,.. smp,T1,... Tp)
Y (N)
Z > N—-—) 029
Q P] keC, Mp = Mp
1 neY (mp - 1)
- 5 3
Qpe[P] my — 1 My
n2Y ZpE[P] p r 26)

= P rym, P rym,

772Y Ep:l mp—1 Zp:l mp—1

where |C,| = rp,m,, for all p € [P]. Hence, we finished the
proof of Corollary 1.

APPENDIX III
CORRECTNESS OF HETEROGENEOUS CDC SCHEME

This proof includes 4 parts: 1) nodes only compute IVs
from locally available files, 2) nodes only transmit locally
computed IVs, 3) nodes can decode transmissions with
requested IVs, 4) after the Map and Shuffle phases, nodes
have all necessary IVs to compute their reduce functions.

For 1), any node k € [K] computes intermediate values of
the set

{’Ui’j 11 € [Q],w]‘ S Mk}

In all cases w; € My for any v;; computed by node k,
therefore nodes only compute IVs from locally available files.

Next, we prove 2) and 3) simultaneously. Consider any node
group 7, and any node k € 7,. We will prove that node k
has access to multicast messages defined in Eq. (4) and (5).
This is true because as discussed above Eq. (4), all nodes in
7. \ z, including node k, have access to the file set B, where
{7, \ z} C Ty. To see 3), when a node zy € 7, receives a
multicast message from another node k € 7, in the form of
Eq. (4), only one term, VT , is its desired message. The

other terms are of the form V., Z}’ , intended for node z, where
z € T, and, z # 2y, k. Since node zo € T, \ z, it has access
to V{Z} ¥, and thus can decode its desired message correctly.

To prove 4), we need to show that for a given z € K,
if some file w; ¢ M., then node z must be able to recover
its desired IVs {v; ; : i € W.} from multicast messages of
the form Eq. (4) and (5). To see this, assume that w; € By,.
Consider node group 7y,. Since w; € By, and w; ¢ M.,

27)

5683

we must have z ¢ 7. In other words, 7y, , # z. Now,
consider another node group z € 7, such that 7, and 7,
differ only in the h-th element: 7,), = z and 7, ; = Ty,
for any i # h. As defined in Eq. (4), since ¢y € L, , and
w; € By, node z will receive its desired IVs {v; j : i € W, }
from multicast group messages of node group 7, according
to Eq. (4) and (5).

APPENDIX IV
PROOF OF THEOREM 4

In this proof, we use the following notations: Xy represents
the collection of all transmissions among all nodes, W is the
union of all functions assigned to nodes in S, Mg is the union
of files available to nodes in S, Vyyy . is the set of IVs needed
to compute the functions of Ws, and V. a4, is the set of IVs
computed from files of Ms. Here, we use *“:” to denote all
possible file or function indices.

Consider a particular given W7y, ..., Wi . Then, we consider
some set of nodes S C [K] and use a cut-set to separate Xy

and V. aqs from Wy . and obtain
I(VWS7:;X’C7V7MS) = H(VW&:) - H(VWS7:|X’C7V7M5)
YH V) TN Wi @8)
kes

where (a) follows from H (Viy, .| Xic, Vi ms) = 0 because
given Xic and V. pqg, the IVs in 1y, . are known; (b) holds
because there are NV Eke s Wi IVs in Wy, ., each of length
T bits, and these IVs are assumed to be independent. Further-
more, note that, as defined in the problem definition, for two
different nodes k; and k2 we find |Wj,, N1 Wi, | = 0 and each
function is only assigned to 1 node. Next, notice that

I(VWS,:; ‘/:,Ms)
= H(VWS) - H(VWS7:|‘/:7M5)
2 TN Wi =T (N —|UresMa|) D Wi
keS keS
= T|UpesMu| > We T Y MY Wi, (29)
kes kes kes

where the second term in (a) corresponds to the entropy of the
IVs that cannot be computed locally using files in Ms. Note
that, each file produces 1 IV of size T bits for each function
and the number of unique files among the nodes of S is at
most), s My. Thus, we have

I (VWwys,:: Xk Vims)

= H(Xk|Vims) — H(X |[Vws,:, Vims)
< H(Xx). (30)
By combining (30) with (28) and (29), we obtain
H (Xx) = I (Vs XlVims)
=1 (VWS,I; X, V:,Ms) =1 (VWs,l; VZ,MS)
>TNY Wi=TY My » Wi
keS keS keS
:TZWk (N—ZMk). (31)
keS keS

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:22:39 UTC from IEEE Xplore. Restrictions apply.

5684

By recognizing that QNTL = H(Xx) and considering all
possible node groups, S, we obtain a lower bound on the com-
munication load given Wy, ..., Wg. Then, as Wy,..., Wk
are design parameters, we minimize over these parameters to
obtain the bound of (10).

APPENDIX V
PROOF OF THEOREM 5

The proof is based on the achievability in Theorem 3 and
the converse bound in Theorem 4. First, define

A 1
LSZQ—N N—ZMk, ZWk, (32)
kes kes
and
A
Ls« = max Lg, (33)
SC[K]

where §* C [K] is the set of nodes that maximizes Ls. Let
Wi, ..., Wk denote the number of function assignments at
each node that minimize Ls~ given My, ..., M. We present
two Claims below to characterize W7, ..., Wg.

Claim 1: There exists an optimal solution W7, ..., W
such that for any two nodes ki, ke € [K], if My, = Mj,,
then we must have W = W .

Proof: Assume that there exists a pair of nodes k; and ko
such that My, = My, and W;; > W/ . Let us consider a new
function assignment with W} = W, = et We will
show that the new Lgs-, corresponding to the new assignment,
will not increase and thus, it gives an optimal assignment
that satisfies Claim 1. To verify this, we will examine all Lg
under the new assignment. First, note that for any group S
that contains both k; and ko, or contains none of them, Lg
will not change if Wy, W} is changed to W,;l,W,éz. Next,
we consider node groups that include only one of k; or ks.
Specifically, consider any node set 8" C [K]\ {k1,k2} and
define two sets S = {k1}US’ and Sy = {k2} US’. Note that
Ls« > max{Ls,, Ls,} and max{Ls,, Ls,} will not increase
if Wy, Wy is changed to W , Wy, . Therefore, Ls~ will not
increase with this change. []

Next, to compare the bound of (10), we follow the proposed
design to define Mi,..., Mg based on the parameters of
hypercuboid m1,...,mp and r1,...,rp. Note that, there are
P sets of nodes C, = {k € [K] : M} = %} where each
node maps the same number of files. Moreover, we impose an
additional requirement that m,, is an even integer as defined
in Theorem 5.

Claim 2: Under the assumptions outlined in Theorem 5,
we have W; = 2@ for all k € [K].

Proof: By claim 1, there exists an optimal assignment
such that for each p, the nodes in C, are assigned the same
number of reduce functions. Define ¢, as the ratio of the
number of assigned functions to the number of files of each
node in C, (i.e., W = ¢, M}, where k € C,). Consider a
node group S, C C, for some p € [P]. We find, Ls, =
on (N — Ms,)e, Ms, where Ms, = 3,5 Mj. Note that
in this case Ls, is maximized when Ms, = %, and this occurs

when S, contains %2 nodes from C,. This is possible since

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 9, SEPTEMBER 2021

m,, is an even integer and C, contains at least m, nodes.

In summary, considering all subsets S C C,, the maximum
: _ N

Ls,is Ls, = 10

Next, let p = argmax c, be the index of the node
pE[P]

set C, with maximum c,. Note that for any S, we have

LS = LN(N — MS)W§ where MS = EkeSMk’ and

Ws =) ies Wi Using Wi = ¢, My, < cp My, we find

that W5 < ¢y Ms. Thus, Ls < g (N = Ms)e;Ms < %c,;ﬁ.
It follows that S*, the node subset that maximizes Lg, is =2

nodes from Cp. Hence, Ls+ = %c,;. ’

Finally, to minimize Ls+, we need to minimize cp =
maxpe(p] ¢p. We require that Q@ = > c(p cp%wp =
NZ[)E[P] cprp, where node k € C, maps % files and
ICp| = rpmy. In this case, since r = > _p7p, We find
Cp=C =...=cCcp= % Therefore, for each node k € [K],
we have W} = % .]

From Claim 2 and the converse bound of Theorem 4,
we find that L* > ﬁ given My, ..., M. This result applies
to all possible file mappings, reduce function assignments and
shuffle phase designs. This combines with L. < T%l, shown
in (18) obtained by Theorem 3, to give (11).

REFERENCES

[1] N. Woolsey, R.-R. Chen, and M. Ji, “A new combinatorial design of
coded distributed computing,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Jun. 2018, pp. 726-730.

[2] N. Woolsey, R.-R. Chen, and M. Ji, “Coded distributed computing with
heterogeneous function assignments,” in Proc. IEEE Int. Conf. Commun.
(ICC), Jun. 2020, pp. 1-6.

[3] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514-1529, Mar. 2018.

[4] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 2016, pp. 2100-2108.

[5] N. S. Ferdinand and S. C. Draper, “Anytime coding for distributed
computation,” in Proc. 54th Annu. Allerton Conf. Commun., Control,
Comput. (Allerton), Sep. 2016, pp. 954-960.

[6] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitiga-
tion in distributed matrix multiplication: Fundamental limits and opti-
mal coding,” 2018, arXiv:1801.07487. [Online]. Available: http://arxiv.
org/abs/1801.07487

[7]1 R. Bitar, P. Parag, and S. El Rouayheb, “Minimizing latency for secure
distributed computing,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2017, pp. 2900-2904.

[8] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in
distributed optimization through data encoding,” in Proc. Adv. Neural
Inf. Process. Syst., 2017, pp. 5434-5442.

[91 W. Halbawi, N. Azizan-Ruhi, F. Salehi, and B. Hassibi, “Improv-

ing distributed gradient descent using Reed—Solomon codes,” 2017,

arXiv:1706.05436. [Online]. Available: http://arxiv.org/abs/1706.05436

G. Suh, K. Lee, and C. Suh, “Matrix sparsification for coded matrix

multiplication,” in Proc. 55th Annu. Allerton Conf. Commun., Control,

Comput. (Allerton), Oct. 2017, pp. 1271-1278.

A. Mallick, M. Chaudhari, U. Sheth, G. Palanikumar, and G. Joshi,

“Rateless codes for near-perfect load balancing in distributed matrix-

vector multiplication,” 2018, arXiv:1804.10331. [Online]. Available:

http://arxiv.org/abs/1804.10331

R. K. Maity, A. S. Rawat, and A. Mazumdar, “Robust gradient descent

via moment encoding with LDPC codes,” in Proc. SysML Conf.,

Jul. 2018, pp. 2734-2738.

M. F. Aktas, P. Peng, and E. Soljanin, “Straggler mitigation by delayed

Relaunch of tasks,” ACM SIGMETRICS Perform. Eval. Rev., vol. 45,

no. 3, pp. 224-231, Mar. 2018.

S. Wang, J. Liu, N. Shroff, and P. Yang, “Fundamental limits of

coded linear transform,” 2018, arXiv:1804.09791. [Online]. Available:

http://arxiv.org/abs/1804.09791

[10]

(11]

[12]

[13]

[14]

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:22:39 UTC from IEEE Xplore. Restrictions apply.

WOOLSEY et al.: NEW COMBINATORIAL CODED DESIGN FOR HETEROGENEOUS DISTRIBUTED COMPUTING

[15] M. Ye and E. Abbe, “Communication-computation efficient gradient

coding,” 2018, arXiv:1802.03475. [Online]. Available: http://arxiv.org/

abs/1802.03475

K. Wan, H. Sun, M. Ji, and G. Caire, “Distributed linearly sep-

arable computation,” 2020, arXiv:2007.00345. [Online]. Available:

http://arxiv.org/abs/2007.00345

[17] M. A. Attia and R. Tandon, “Near optimal coded data shuffling
for distributed learning,” IEEE Trans. Inf. Theory, vol. 65, no. 11,
pp. 7325-7349, Nov. 2019.

[18] A. Elmahdy and S. Mohajer, “On the fundamental limits of coded data

shuffling for distributed machine learning,” IEEE Trans. Inf. Theory,

vol. 66, no. 5, pp. 3098-3131, May 2020.

K. Wan, D. Tuninetti, M. Ji, G. Caire, and P. Piantanida, “Fundamental

limits of decentralized data shuffling,” IEEE Trans. Inf. Theory, vol. 66,

no. 6, pp. 3616-3637, Jun. 2020.

[20] L. Chen, H. Wang, Z. Charles, and D. Papailiopoulos, ‘“Draco:

Byzantine-resilient distributed training via redundant gradients,” in Proc.

Int. Conf. Mach. Learn., 2018, pp. 902-911.

S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental

tradeoff between computation and communication in distributed comput-

ing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109-128, Jan. 2018.

[22] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on

large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008.

Y. H. Ezzeldin, M. Karmoose, and C. Fragouli, “Communication vs

distributed computation: An alternative trade-off curve,” in Proc. [EEE

Inf. Theory Workshop (ITW), Nov. 2017, pp. 279-283.

[24] L. Song, S. R. Srinivasavaradhan, and C. Fragouli, “The benefit of being
flexible in distributed computation,” 2017, arXiv:1705.08464. [Online].
Available: http://arxiv.org/abs/1705.08464

[16]

[19]

[21]

[23]

[25] S. Prakash, A. Reisizadeh, R. Pedarsani, and A. S. Avestimehr, “Coded
computing for distributed graph analytics,” 2018, arXiv:1801.05522.
[Online]. Available: http://arxiv.org/abs/1801.05522

[26] S. R. Srinivasavaradhan, L. Song, and C. Fragouli, “Distributed com-
puting trade-offs with random connectivity,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2018, pp. 1281-1285.

[27] K. Konstantinidis and A. Ramamoorthy, “Resolvable designs for speed-

ing up distributed computing,” IEEE/ACM Trans. Netw., vol. 28, no. 4,
pp. 1657-1670, Aug. 2020.

[28] M. Kiamari, C. Wang, and A. Salman Avestimehr, “On heterogeneous
coded distributed computing,” in Proc. GLOBECOM IEEE Global
Commun. Conf., Dec. 2017, pp. 1-7.

[29] N. Shakya, F. Li, and J. Chen, “Distributed computing with heteroge-
neous communication constraints: The worst-case computation load and
proof by contradiction,” 2018, arXiv:1802.00413. [Online]. Available:
http://arxiv.org/abs/1802.00413

[30] F. Xu and M. Tao, “Heterogeneous coded distributed computing:
Joint design of file allocation and function assignment,” 2019,
arXiv:1908.06715. [Online]. Available: http://arxiv.org/abs/1908.06715

[31] N. Woolsey, R.-R. Chen, and M. Ji, “A combinatorial design for
cascaded coded distributed computing on general networks,” 2020,
arXiv:2008.00581. [Online]. Available: http://arxiv.org/abs/2008.00581

[32] J. Wang, M. Cheng, Q. Yan, and X. Tang, “On the placement delivery
array design for coded caching scheme in D2D networks,” 2017,
arXiv:1712.06212. [Online]. Available: http://arxiv.org/abs/1712.06212

[33] N. Woolsey, R.-R. Chen, and M. Ji, “Towards finite file packetizations
in wireless device-to-device caching networks,” IEEE Trans. Commun.,
vol. 68, no. 9, pp. 5283-5298, Sep. 2020.

[34] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856-2867, May 2014.

[35] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching
in wireless D2D networks,” IEEE Trans. Inf. Theory, vol. 62, no. 2,
pp. 849-869, Feb. 2016.

[36] Q. Yan, X. Tang, and Q. Chen, “Placement delivery array and its
applications,” in Proc. IEEE Inf. Theory Workshop (ITW), Nov. 2018,
pp. 1-5.

[37] V. Ramkumar and P. V. Kumar, “Coded MapReduce schemes based on
placement delivery array,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jul. 2019, pp. 3087-3091.

[38] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery

array design for centralized coded caching scheme,” IEEE Trans. Inf.
Theory, vol. 63, no. 9, pp. 5821-5833, Sep. 2017.

[39] P. Krishnan, L. Natarajan, and V. Lalitha, “An umbrella converse for
data exchange: Applied to caching, computing, shuffling & Rebal-
ancing,” 2020, arXiv:2010.10459. [Online]. Available: http://arxiv.org/
abs/2010.10459

5685

Nicholas Woolsey (Student Member, IEEE) received
the B.S. degree in biomedical engineering from
the University of Connecticut in 2012, the M.Eng.
degree in bioengineering from the University of
Maryland, College Park, in 2015, with a focus
on signal processing, imaging, and optics, and the
Ph.D. degree from the Department of Electrical
and Computer Engineering, The University of Utah,
in December 2020. From 2014 to 2017, he was an
Electrical Engineer with Northrop Grumman Corpo-
ration (NGC), Ogden, UT, USA, developing test and
evaluation methods, modernization solutions, and signal processing algorithms
for the sustainment of aging aircraft and ground communication systems. He is
currently with Trabus Technologies, San Diego, CA, USA, as a Signal Process-
ing Engineer developing decentralized wireless network technologies. His
research interests include combinatorial designs and algorithms for resource
allocation, coding and efficient communications in distributed computing, and
private and caching networks. He received the 2020 Best ECE Dissertation
Award from The University of Utah for his Ph.D. degree, the Outside the
Box Grant to investigate the design of a modern receiver that interfaces
aging technology from NGC, and the 2016 Brent Scowcroft Team Award
for performing exceptional systems engineering work.

Rong-Rong Chen (Member, IEEE) received the
B.S. degree in applied mathematics from Tsinghua
University, China, in 1993, and the M.S. degree
in mathematics and the Ph.D. degree in electrical
and computer engineering from the University of
Illinois at Urbana—Champaign in 1995 and 2003,
respectively. She was an Assistant Professor with
The University of Utah from 2003 to 2011 and has
been an Associate Professor since 2011. Her main
research interests are in the area of communication
systems and networks, with current emphasis on
distributed computing, machine learning, caching networks, statistical signal
processing, image reconstructions, and channel coding. She was a recipient
of the M. E. Van Valkenburg Graduate Research Award for excellence in
doctoral research with the ECE Department, University of Illinois at Urbana—
Champaign, in 2003, and the prestigious National Science Foundation Faculty
Early Career Development (CAREER) Award in 2006. She was rated among
the Top 15% Instructors of the College of Engineering, The University of
Utah, in 2017 and 2018. She has served as an Associate Editor for IEEE
TRANSACTIONS ON SIGNAL PROCESSING and a Guest Editor for IEEE
JOURNAL ON SELECTED TOPICS IN SIGNAL PROCESSING. She has served
on the technical program committees of leading international conferences in
wireless communication and networks.

Mingyue Ji (Member, IEEE) received the B.E.
degree in communication engineering from the
Beijing University of Posts and Telecommunica-
tions, China, in 2006, the M.Sc. degrees in electrical
engineering from the KTH Royal Institute of Tech-
nology, Sweden, and the University of California,
Santa Cruz, in 2008 and 2010, respectively, and
the Ph.D. degree from the Ming Hsieh Department
of Electrical Engineering, University of Southern
California, in 2015. He subsequently was a Staff II
System Design Scientist with Broadcom Corporation
(Broadcom Ltd.) from 2015 to 2016. He is currently an Assistant Professor
of the Electrical and Computer Engineering Department and an Adjunct
Assistant Professor with the School of Computing, The University of Utah.
He is interested in the broad area of information theory, coding theory,
concentration of measure and statistics with the applications of caching net-
works, wireless communications, distributed storage and computing systems,
distributed machine learning, and (statistical) signal processing. He received
the IEEE Communications Society Leonard G. Abraham Prize for the Best
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS Paper in 2019,
the Best Paper Award in IEEE ICC 2015 conference, the Best Student Paper
Award in IEEE European Wireless 2010 Conference and the USC Annenberg
Fellowship from 2010 to 2014. He has been serving as an Associate Editor
of IEEE TRANSACTIONS ON COMMUNICATIONS since 2020.

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:22:39 UTC from IEEE Xplore. Restrictions apply.

