
5674 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 9, SEPTEMBER 2021

with the appropriate IVs as inputs to compute the assigned

output functions.

Throughout this paper, we consider the following design

options. First, we assume each computing node computes

all possible IVs from locally available files. This means that

Mk = |Mk| represents both the number of files stored and

number of map computations at node k. Second, we consider

the design scenario such that each of the Q Reduce functions is

computed exactly once (s = 1) at one node and |Wi∩Wj | = 0
for i �= j, where s is defined as the number of nodes

which calculate each Reduce function.2 Third, we consider

the general scenario where each computing node can have a

varying number of files, Mk and reduce functions, Wk .

This distributed computing network design yields two

important performance parameters: the computation load, r,

and the communication load, L. The computation load is

defined as the number of times each IV is computed among

all computing nodes, or r = 1
N

∑K
k=1 Mk. In other words,

the computation load is the number of IVs computed in the

Map phase normalized by the total number of unique IVs, QN .

The communication load is defined as the amount of traffic

load (in bits) among all the nodes in the Shuffle phase

normalized by QNT . Given the number of files mapped at

each node, we are interested in the optimal communication

load, L∗, over all possible file mappings, functions assign-

ments and shuffle designs. 3

Definition 1: Given the number of files at each node,

M1, . . . , MK , the optimal communication load is defined as

L∗ Δ= inf{L : (L, M1, . . . , MK) is feasible}, (1)

where we consider all achievable file mapping, function

assignments and shuffle designs.

III. HOMOGENEOUS HYPERCUBE COMPUTING APPROACH

In this section, we describe the proposed homogeneous CDC

design based on the hypercube combinatorial structure. Our

schemes are defined by node grouping, file mapping, function
assignment and shuffle method. Two detailed examples, one for

two-dimensional, and one for three-dimensional, are provided

to illustrate the fundamental principles of the proposed design.

These will be extended to the more general heterogeneous

CDC scheme in Section IV.

In this section, we consider the scenario where the network

is homogeneous. In other words, each node is assigned the

same number of files and reduce functions. Also, every reduce

function is computed exactly once at one node (s = 1).4

2The scenario of s > 1, meaning that each of the Q Reduce functions
is computed at multiple nodes, is called cascaded distributed computing,

introduced in [21]. In this paper, we do not consider this case.
3Note that we define L∗ as a function of the number of files at each node,

rather than just as a function of r as in previous CDC works. This excludes

trivial designs that lead to L = 0. For instance, we can pick r nodes and
assign the entire file library to each of these nodes. Furthermore, assign each

function to one of the r nodes. In this case, since each node can compute all

the necessary IVs itself, no Shuffle phase is required and L = 0. Our definition

is more practical as it is tied to the number of computations (or mapped files)
at each node.

4Our other work [31] focuses on the case of s > 1. The proposed schemes

and analysis of [31] are significantly different from those presented in this

work.

Fig. 1. (a) Lattice plane that defines file availability amongst the K = 6
computing nodes. Each lattice point represents a file and each node has a

set of files available to it represents by a horizontal or vertical line of lattice
points. (b) The IVs used locally and transmitted by each node.

Every node k computes a set of Wk = η2 distinct functions

and Q = η2 K where η2 ∈ Z
+. The novel combinatorial

hypercube design splits the nodes into r disjoint sets each of

size K
r and batches of η1 files are assigned to one node from

each set.5 This is analogous to constructing a hypercube lattice

of dimension r with the length of each side K
r to describe the

file placement at the nodes. We use this hypercube approach to

better illustrate the examples of our new combinatorial design.

We show that the required number of files is N = η1

(
K
r

)r

where η1 ∈ Z
+ and the number of multicasting groups is

G =
(

K
r

)r
. We first present a 2-dimension (a plane) example

where r = 2.

A. 2-Dimension Example

In this example, we propose a distributed computing net-

work based on a r = 2 dimensional hypercube (a plane)

lattice where each side has length K
r = 3. There are K = 6

computing nodes each of which has access to 1
3 of the file

library. Each lattice point represents a file and each node has

a set of files available to it represented by a line of lattice

points as shown in Fig. 1(a). Specifically, there are two set

of nodes: K1 = {1, 2, 3} and K2 = {4, 5, 6}. Each node k
in K1 (or K2) has access to Mk = 3 files, represented by

three lattice points along a horizontal (or vertical) line. For

instance, node 1 in K1 has access to three files w1, w2 and

w3 along the top horizontal line. Similarly, node 5 in K2

has access to three files w2, w5 and w8, along the middle

vertical line. Each node is responsible for computing one out

of the Q = 6 reduce functions in the Reduce phase. More

specifically, node k computes reduce function k and Wk = 1.

In the Map phase, nodes compute all Q = 6 IVs from

each locally available file. Some IVs are necessary to compute

the locally assigned reduce function. For example, as shown

in Fig. 1(b), node 1 computes v1,1, v1,2 and v1,3 and

node 5 computes v5,2, v5,5 and v5,8. These IVs do not have

5This scheme can be classified as a resolvable design for CDC, which was
introduced in [27]. In addition, it also falls into the general framework of

the Placement Delivery Array (PDA) designed for Device-to-Device coded

caching [32].

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:22:39 UTC from IEEE Xplore.  Restrictions apply.



WOOLSEY et al.: NEW COMBINATORIAL CODED DESIGN FOR HETEROGENEOUS DISTRIBUTED COMPUTING 5675

to be transmitted and do not contribute to the communica-

tion load. However, other IVs are transmitted between nodes.

We consider all possible pairs of nodes, termed node groups,

consisting of one node from K1 and one node from K2. For

instance, nodes 1 and 5 form node groups with each of the

three nodes in K2 = {4, 5, 6} or K1 = {1, 2, 3}, respectively.

For the node group of {1, 5}, node 1 has computed v5,1 and

v5,3 and transmits these IVs to node 5. Notice that, node 5
is incapable of computing these IVs itself because it does

not have access to files w1 and w3. Similarly, node 5 has

computed v1,5 and v1,8 and transmits these IVs to node 1
because node 1 does not have access to files w1 and w8.

Fig. 1(b) also shows the IVs transmitted by each node. For

example, node 1 will transmit IVs v4,2 and v4,3 to node 4,

v5,1 and v5,3 to node 5 and v6,1 and v6,3 to node 6. On the

other hand, node 1 will receive its requested IVs v1,4 and v1,7

from node 4, v1,5 and v1,8 from node 5, and v1,6 and v1,9

from node 6. Therefore, node 1 obtains all the IVs necessary

for computing reduce function 1. In general, by considering all

possible node groups, each node receives an IV for every file

that it does not have. We can see this is true by recognizing

that a node consecutively pairs with the three nodes in either

K1 or K2, and the nodes in either K1 or K2 collectively have

access to all the files.

Throughout this paper, we consider the case where each

node computes all IVs from its available files similar to the

original CDC work [21]. In this example, each IV is computed

twice and r = 2 since each file is assigned to 2 nodes.

In general, the computation load r is equivalent to the dimen-

sion of the hypercube which defines the file placement. Note

that, nodes will compute some IVs that are never used to

transmit, decode or compute a reduce function.6 From 1(b)

shows the IVs computed by each node that are utilized. Each

node computes 3 IVs which are necessary for its own reduce

function. Also, each node participates in 3 node pairs for which

it needs to compute 2 IVs to transmit to the other node in the

pair. In some applications, it may be possible for nodes to

compute a select set of IVs to reduce the computation load as

presented in [1], [23].

In this toy example, we only consider unicasting, therefore,

the communication load is equivalent to the uncoded scenario

and L = 2
3 , or the fraction of files not available at each node.

This can be verified by recognizing that there are 9 pairs

of nodes for which 2 IVs are transmitted from each node

for each pair. In total, 36 of the 54 IVs are transmitted and

L = 2
3 . In later examples, we will show how this scheme can

be expanded to utilize coded multicasting and outperform the

uncoded CDC scheme.

Remark 1: Interestingly, although the scheme generalized

from this example is equivalent to unicast in this case,

we observe that there actually exist multicasting opportunities

in this example. For instance, node 1 could transmit v4,2⊕v5,1

to nodes 4 and 5 (assuming that node 4 and 5 compute v5,1

and v4,2, respectively). In fact, all IVs could be transmitted

6We assume each node computes all Q IVs for each file. This is motivated

by practical applications such as TeraSort or WordCount for which computing

only a subset of IVs does not speed up overall MapReduce execution time.

Fig. 2. (left) Cube lattice which defines file availability amongst the K = 9
computing nodes. Each lattice point represents a file and each node has set
of files available to it represented by a plane of lattice points. The green, red

and blue planes represent the files locally available to nodes 3, 5 and 9,

respectively. (right) Intersections of planes which represent files that are
locally available to multiple nodes and yields coded multicasting opportunities.

in coded pairs where a node along one dimension transmits

to 2 nodes aligned along the other dimensions, which would

reduce the communication load by half.7

B. 3-Dimension Example

In the following, we provide a three-dimensional exam-

ple and introduce notations used in the general scheme in

Section III-C. We construct a computing network using a

three-dimensional hypercube as shown in Fig. 2. Each lattice

point in the cube, with its index i ∈ [27] labeled next to the

point, represents a different file set Bi = {wi} which contains

η1 = 1 files. There are a total of K = 9 nodes, split into three

node sets: K1 = {1, 2, 3}, K2 = {4, 5, 6}, and K3 = {7, 8, 9},

aligned along each of the r = 3 dimensions of the hypercube.

Specifically, the three nodes in K1 = {1, 2, 3} are represented

by three parallel planes that go from top surface of the

hypercube to the bottom. Node 3 is represented by the green

plane that passes through lattice point 7. Node 1 and 2 are

represented by the two planes (not shown) parallel to the green

plane that go through lattice point 1 and point 4, respectively.

The three nodes in K2 = {4, 5, 6} are represented by three

parallel planes that go from the left surface of the hypercube

to the right. Node 5 is represented by the middle plane, shown

in red, that goes through lattice point 8, and nodes 4 and 6 are

represented by two planes (not shown) parallel to the red plane

that go through lattice point 7 and 9, respectively. The nodes in

K3 = {7, 8, 9} are represented by three parallel planes that go

from the front surface of the hypercube to the back. Node 9 is

the blue plane, passing through lattice point 27, and nodes 7, 8
are represented by two planes (not shown) parallel to the blue

plane and go through lattice points 9 and 18, respectively.

For file mapping, each node is assigned all the files indicated

by the 9 lattice points on the corresponding plane. For instance,

node 5, represented by the red plane, is assigned the file set

7This is similar to the scheme outlined in [32], [33] for the analogous coded

caching problem. However, as we will see for other examples and as discussed

in [32], this scheme does not achieve a multiplicative gain for r > 2.

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:22:39 UTC from IEEE Xplore.  Restrictions apply.



5676 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 9, SEPTEMBER 2021

M5 = {w2, w5, w8, w11, w14, w17, w20, w23, w26}. For each

i ∈ [3], the size of Ki is K
r = 3, which is the number of lattice

points in the i-th dimension. Since the three nodes in each

set Ki are aligned along dimension i, they collectively store

the entire library of 27 files. Since each point i in the lattice

is uniquely determined by the intersection of three planes,

one from each dimension, the same point also represents a

node group Ti. For instance, node group T26 = {3, 5, 9} is

represented by the three planes– green (node 3), red (node 5),

and blue (node 9) intersecting at only one lattice point i = 26.

It is clear that each file wi is mapped to r = 3 nodes in Ti.

Each node k is assigned the η2 = 1 functions of Wk = {k}
because Q = K = 9 and each node k is only assigned the

k-th reduce function.

In the Map phase, each node computes all IVs from

locally available files. For example, node 5 will compute all

possible IVs {vi,j : i ∈ [Q], wj ∈ M5}. The subset of IVs

{v5,j : wj ∈ M5} is used to calculate of the function

output u5. Furthermore, node 5 will use the subset of IVs in

{vi,j : i ∈ [Q]\K2, wj ∈ M5} for transmission and decoding

purposes when forming multicasting groups with nodes of K1

and K3. Note that, similar to the last example, node 5, and

the other nodes, will compute some IVs that are not utilized.

We use the example of node group Tα = T26 = {3, 5, 9} to

explain the Shuffle phase. Within node group T26, node 3 will

multicast the summation of two IVs to nodes in T26 \ 3, one

intended for node 5, and one intended for node 9. The former

must be available at both nodes 3 and 9, and the latter must

be available at both nodes 3 and 5. To determine these IVs,

we consider the set V{5}
{3,9} and V{9}

{3,5}. The set V{5}
{3,9} contains

two IVs requested by node 5 that are available at nodes 3, 9.

To find these two IVs, we replace node 5 in T26 by one

of the other two nodes in K2, which are nodes 4 and 6.

This way, we obtain two node sets T25 = {3, 4, 9} and

T27 = {3, 6, 9} that differ from Tα only in the second element

(the element that intersects K2). Thus, we define a line of

lattice points, L5,α = {25, 27}, representing the intersection of

planes for nodes 3 and 9, but not points that intersect node 5’s

plane. This defines a set of IVs, V{5}
{3,9} = {v5,25, v5,27},

that are locally computed at nodes 3 and 9, but requested

by node 5. Furthermore, we split V{5}
{3,9} into two equally

sized subsets, V{5},3
{3,9} = {v5,25} and V{5},9

{3,9} = {v5,27} which

will be transmitted by nodes 3 and 9, respectively. Similarly,

L9,α = {8, 17} is defined by the intersection of the planes

for nodes 3 and 5, but not points intersecting node 9’s plane.

We now define V{9}
{3,5} = V{9},3

{3,5}
⋃
V{9},5
{3,5} = {v9,8, v9,17}

where V{9},3
{3,5} = {v9,8} will be transmitted by node 3 and

V{9},5
{3,5} = {v9,17} will be transmitted by node 5. Once IV sets

are found, node 3 transmits V{5},3
{3,9} ⊕ V{9},3

{3,5} = v5,25 ⊕ v9,8

to nodes 5 and 9. Upon receiving this value, node 5 will

subtract v9,8 to recover v5,25 and node 9 will subtract v5,25 to

recover v9,8. The rest of the IV sets can be found in a similar

fashion such that V{3}
{5,9} = V{3},5

{5,9}
⋃
V{3},9
{5,9} = {v3,20, v3,23},

and V{9}
{3,5} = V{9},3

{3,5}
⋃
V{9},5
{3,5} = {v9,8, v9,17}. Node 5 will

transmit v3,20 ⊕ v9,17 to nodes 3 and 9. Node 9 will transmit

v3,23 ⊕ v5,27 to nodes 3 and 5.

In this example, each node participates in 9 multicasting

groups and transmits 1 coded message per group. Each trans-

mission has the equivalent size of 1 IV. Therefore, the com-

munication load is Lc = 9·9
QN = 81

9·27 = 1
3 , which is half of

the uncoded communication load Lu = 2
3 , or the fraction of

files not available to each node.

C. General Homogeneous Scheme

In this subsection, we will introduce the general homoge-

neous scheme step by step as follows.

Node Grouping 1: Let K = {1, 2, · · · , K} denote the set

of K nodes. Assume that K is split into r equal-sized disjoint

sets K1, . . . ,Kr that each contains K
r ∈ Z

+ nodes. We define

T ⊂ K as a node group of size r if it contains exactly one

node from each Ki, i.e., |T ∩ Ki| = 1, ∀ i ∈ [r]. There

are a total of X =
(

K
r

)r
possible node groups, denoted by

T1, . . . , TX . Furthermore, for each node group Tj , we define

its i-th component Tj,i = Tj ∩ Ki as the node in Tj that is

chosen from Ki, where i ∈ [r].
Node Group (NG) File Mapping: Given node groups

T1, . . . , TX , we split the N files into X disjoint sets labeled

as B1, . . . ,BX . These file sets are of size η1 ∈ Z
+ and

N = η1 X . Each file set Bi is only available to every node

in Ti. It follows that if node k ∈ [K] belongs to a node

group Ti, then the file set Bi is available to this node. Hence,

by considering all possible node groups Ti that node k belongs

to, its available files, denoted by Mk, are expressed as

Mk :=
⋃

i:k∈Ti

Bi. (2)

Function Assignment 1: The Q reduce functions are split

into K equal size, disjoint subsets labeled as W1, . . . ,WK .

Each node is assigned η2 ∈ Z
+ reduce functions where

Q = η2 K . For each k ∈ [K], define Wk as the set of reduce

functions assigned to node k.

Remark 2: By Node Grouping 1 and NG File Mapping,

each node set Ki collectively maps the file library exactly

once, and therefore, the file library is mapped r times among

all K nodes. Note that, since each file belongs to a unique file

set Bi and is mapped to a unique set of r nodes (in the node

group Ti), we must have 1
N

∑K
k=1 Mk = Nr

N = r. Moreover,

Mk = η1

(
K
r

)r−1
files are mapped to each node. Then,

by Function Assignment 1, each node k is assigned Wk = η2

reduce functions and each reduce function is assigned to

exactly s = 1 node.

The Map, Shuffle and Reduce phases are defined as follows:

Map Phase: Each node k ∈ [K] computes the set of IVs

{vi,j : i ∈ [Q], wj ∈ Mk}.

Node Group (NG) Shuffle Method: For every α ∈ [X ],
a coded message will be multicasted by each node k ∈ Tα

to serve independent requests of the rest r − 1 nodes in Tα.

Here, each IV transmitted by node k is requested by a node

z ∈ Tα \k and must be available to all other nodes in Tα \z to

ensure that each node can decode successfully its own desired

IVs from the broadcast. Next, we consider an arbitrary node

group Tα and a node z ∈ Tα. Assume that z ∈ Kh, and thus

z = Tα,h = Tα ∩ Kh. In the following, we fix the choice

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:22:39 UTC from IEEE Xplore.  Restrictions apply.



WOOLSEY et al.: NEW COMBINATORIAL CODED DESIGN FOR HETEROGENEOUS DISTRIBUTED COMPUTING 5677

of α, z, h and define

Lz,α = {� ∈ [X ] : T�,h �= z, T�,i = Tα,i, ∀i ∈ [r] \ h}. (3)

Here, the set Lz,α includes all indexes � ∈ [X ] such that

the node group T� differs from Tα only in the h-th element,

i.e., the node choice from Kh. In other words, since z ∈ Kh,

then T�,h can be any node in Kh except for z. Note that h is

suppressed from the subscript of Lz,α for notation simplicity.

The definition of (3) ensures that for any � ∈ Lz,α, we have

z /∈ T�, but for any other node z′ in Tα \ z, we have z′ ∈ T�.

This follows that while file set B� is not mapped to node z,

it is mapped to all other nodes z′ in Tα \ z. Thus, we see

that IVs of the type {vi,j , i ∈ Wz, wj ∈ B�} are requested

by node z because z does not have B�, but are available to

all nodes in Tα \ z because they all have access to B�. This

key idea is used to create multicast opportunities as follows.

Formally, let us define

V{z}
Tα\z =

⋃
�∈Lz,α

{vi,j : i ∈ Wz, wj ∈ B�} , (4)

which contains IVs requested by node z and are available at

all nodes in Tα \ z. Furthermore, V{z}
Tα\z is split into r− 1 dis-

joint subsets of equal size8 denoted by V{z},σ1
Tα\z , . . . ,V{z},σr−1

Tα\z

where {σ1, . . . , σr−1} = Tα \ z. Each node k ∈ Tα sends the

common multicast message⊕
z∈Tα\k

V{z},k
Tα\z (5)

to all nodes z ∈ Tα \ k.

Reduce Phase: For all k ∈ [K], node k computes all output

values uq such that q ∈ Wk.

Remark 3: For the homogeneous case, we have |Lz,α| =
K
r − 1 because T�,h can only be one of the K

r − 1 nodes

in Kh \ z. When using Node Grouping 1, NG File Mapping,

and Function Assignment 1, in NG Shuffle Method we find

each IV set, V{z}
Tα\z , contains η1η2

(
K
r − 1

)
IVs.

In the following, we will present a more complex

3-dimension example by accommodating the design proce-

dures and all the notations introduced above.

D. Achievable Computation-Communication Load Trade-Off

The following theorem evaluates the trade-off between

the computation and communication loads for the proposed

scheme.

Theorem 1: By using Node Grouping 1, NG File Mapping,

Function Assignment 1, and NG Shuffle Method, the commu-

nication load of the general homogeneous scheme is

Lc(r) =
K − r

K (r − 1)
. (6)

Proof: Theorem 1 is proved in Appendix I as a special

case of our general heterogeneous design which is defined

in Section IV.

8In general, |V{z}
Tα\z

| may not be divisible by r− 1, in which case the IVs

of V{z}
Tα\z

can be concatenated into a message and split into r− 1 equal size

segments. This process was presented in [21].

The optimality of this scheme is discussed in Section V by

comparing the communication load of this scheme with that

of the state-of-the-art scheme in [21].

Remark 4: When s = 1, coded caching [34], D2D coded

caching [35], and CDC [21] are related. In particular, coded

caching can be understood as a special case of CDC when

each node is assigned one output function. This translates to

a single file request in coded caching. Under this condition,

in the original CDC work [21], the achievable design for s = 1
is equivalent to the D2D coded caching achievable design

of [35]. The homogeneous CDC design presented in this

paper is equivalent to the D2D coded caching design of [33].

However, CDC and coded caching differ in the following

aspects. First, CDC allows the design of function assign-

ment, while the file demand in coded caching is given. This

yields different designs in both achievability and information

theoretic converse. In the homogeneous case, the proposed

hypercuboid CDC design shares some similarities but are

different from the CDC schemes found in [36], [37] and the

coded caching design in [38] when “translated” to the D2D

setting using the approach introduced in [35].9 This difference

leads to a significant fact that the schemes in [36]–[38] cannot

be extended to the heterogeneous settings. In contrast, the pro-

posed hypercube homogeneous CDC design can be extended

to the heterogeneous settings by allowing heterogeneous func-

tion assignments (see Section IV). The proposed scheme is

applicable under some system parameters (e.g., K/r ∈ Z
+) in

the homogeneous setting. In practice, if it allows to assign only

slightly different computation loads (e.g., number of output

functions) to different nodes, the proposed coding gain can

be preserved, meaning that the overall computation time can

be significantly reduced compared to the uncoded approach.

Second, in the general CDC framework, the file placement

is uncoded in order to compute general functions. However,

coding is allowed for the cache placement in coded caching.

IV. HETEROGENEOUS HYPERCUBOID

COMPUTING APPROACH

In this section, we expand the proposed combinatorial

hypercube design to accommodate heterogeneous computing

networks. As mentioned in the introduction, one key novelty of

our design is that nodes are assigned a varying number of files

and reduce functions so that, nodes with larger local computa-

tion load, Mk

N , are assigned more reduce functions. In this case,

the proposed heterogeneous design becomes a hypercuboid,

consisting of P interleaved homogeneous hypercube networks.

The homogeneous networks, Cp, ∀p ∈ [P ], reflect hypercubes

with different dimensions and lengths, representing distinct

classes of nodes with varying local computation load. We start

with an example and then present the general scheme.

A. 3-Dimension Hypercuboid Example

This example is presented in Fig. 3, where there are P = 2
classes of nodes C1 = K1 ∪ K2 and C2 = K3 with different

storage capability where K1 = {1, 2}, K2 = {3, 4} and

9In fact, the coded caching scheme of [38] is equivalent to the CDC design

of [27] under the “translation approach” in [35] when each node is assigned

one output function, which is a single file.

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:22:39 UTC from IEEE Xplore.  Restrictions apply.



5678 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 9, SEPTEMBER 2021

Fig. 3. Representations of a hypercuboid with P = 2, r1 = 2, m1 = 2, r2 = 1 and m2 = 3. Left 3 cuboids: Depictions of files mapped to nodes of
K1, K2 and K3, respectively. Right most cuboid: Hypercuboid highlighting files stored at exactly 2 nodes of multicast group T11 = {2, 3, 7}. These files,

in addition to the assigned functions among these nodes, determine the IVs included in the coded multicasts, which are displayed to the right.

K3 = {5, 6, 7}. Each node in C1 stores half of the files and

each node in C2 stores one-third of the files. Each node set, Ki,

collectively stores all N = 12 files. Each file is stored at the

node group Tα of 3 nodes such that it contains one node from

each set K1, K2 and K3. For example, file w1 is assigned to the

nodes of T1 = {1, 3, 5} and file w11 is assigned to the nodes

of T11 = {2, 3, 7}. All of the file placements are represented

by the cuboid in Fig. 3. In the Map phase, the nodes will

compute all IVs from their locally available files. Since every

file is assigned to 3 nodes, the computation load is r = 3.

Different from previous works in CDC, nodes are assigned

a varying number of reduce functions. We assign more reduce

functions to nodes which map more files. Assume that there

are Q = 11 reduce functions. We assign 2 reduce functions

to each node of K1 and K2 and just 1 reduce function to

each node of K3. Specifically, the function assignments are

W1 = {1, 2}, W2 = {3, 4},W3 = {5, 6},W4 = {7, 8}, and

W5 = {9},W6 = {10}, and W7 = {11}. The reason we

assigned this specific number of reduce functions to each node

will become clear when we discuss the Shuffle phase.

In the Shuffle phase, the set of multicast groups includes

all possible node groups Tα which contain 1 node from

each set K1, K2 and K3. Within each Tα, nodes send coded

pairs of IVs to the other two nodes. For example, consider

the node set Tα = T11 = {2, 3, 7}. Following notations in

Shuffle Method 1, we have L2,α = {5}. This is because

when replacing node 2 ∈ K1 in Tα by a different node

in K1, we obtain T5 = {1, 3, 7}. Hence, using W2 = {3, 4}
and Eqn. (4), we obtain V{2}

3,7 = {v3,5, v4,5}, which are IVs

requested by node 2 and computed at nodes 3 and 7. Similarly,

for node 3, we have L3,α = {12}, and V{3}
2,7 = {v5,12, v6,12}.

For node 7, we have L7,α = {7, 9}, corresponding to T7 =
{2, 3, 5} and T9 = {2, 3, 6}. While the size of L7,α is larger

than that of L2,α and L3,α, since W7 = {11} is smaller,

we obtain V{7}
2,3 = {v11,7, v11,9}, which is the same size as

that of V{2}
3,7 and V{3}

2,7 . Using Eqn. (5), we see that nodes 2, 3,

and 7 transmit v5,12 ⊕ v11,7, v3,5 ⊕ v11,9, and v4,5 ⊕ v6,12,

respectively.

In this example, we see that by assigning a varying number

of reduce functions to the nodes we can create symmetry

among each node group, Tα, i.e., each node of the group

requests the same number of IVs from the other nodes of the

group. This symmetry can lead to savings in the communica-

tion load. Here, the communication load can be calculated by

accounting for the 2·2·3 = 12 node groups, where within each

group, there are 3 transmissions of size T bits. By normalizing

by QNT we find the communication load of the coded scheme

is Lc = 36
12·11 = 3

11 . We can compare this to the uncoded

communication load, where each requested IV is transmitted

alone. To compute the uncoded communication load, we count

the number of IVs each node requests. Since the 4 nodes of

K1 and K2 request 6 ·2 = 12 IVs each and the 3 nodes of K3

request 8 IVs each, we find Lu = 4·12+3·8
12·11 = 6

11 . In this case,

Lc = 1
2 ·Lu since for the coded Shuffle policy every requested

IV is transmitted in coded pairs. In the general heterogeneous

CDC scheme proposed here, we will see that Lc = 1
r−1 · Lu.

B. General Heterogeneous Scheme

In this subsection, we will introduce the general heteroge-

neous scheme step by step.

Node Grouping 2: The key idea of Node Grouping 2 is

to form one heterogeneous network based on a hypercuboid

design that consists of P interleaved homogeneous networks,

represented by hypercubes of different dimensions rp and

sizes mp within the hypercuboid. The K nodes consist of P

disjoint sets denoted by C1, . . . , CP , where
∑P

p=1 |Cp| = K .

For each p ∈ [P ], split Cp into rp ∈ Z
+ disjoint subsets,

each of size mp, denoted by {Knp−1+1, . . . ,Knp}, where

np =
∑p

i=1 ri. Hence, the entire network is comprised of

r node sets, K1, . . . ,Kr, where r =
∑P

p=1 rp. Consider all

possible node groups T1, . . . , TX of size r such that each

contains one node from every node set K1, . . . ,Kr, here X =∏r
i=1 |Ki| =

∏P
p=1 m

rp
p . Denote Tj,i = Tj ∩ Ki, ∀j ∈ [X ]

and ∀i ∈ [r], as the node in Tj that is chosen from Ki.

The file mapping is then determined by the NG File

Mapping defined in Section III-C with node groups T1, . . . , TX

defined by Node Grouping 2.

Remark 5: When using Node Grouping 2 and NG File

Mapping, we form a hypercuboid made of P interleved

hypercubes of different dimensions. For a given p ∈ [P ], Cp

translates to rp dimensions of size mp of the hypercuboid.

Moreover, Cp serves the role that is similar to that of a

single hypercube of dimension rp as in the homogeneous

case. Specifically, Cp contains rp node sets Ki, each of

size mp. Here mp is the number of lattice points along each

dimension of the hypercube. The total number of nodes in

Cp is thus rpmp. Nodes in each Ki collectively map the file

library once. Hence, all nodes in Cp have the same storage

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:22:39 UTC from IEEE Xplore.  Restrictions apply.



WOOLSEY et al.: NEW COMBINATORIAL CODED DESIGN FOR HETEROGENEOUS DISTRIBUTED COMPUTING 5679

capacity that each maps a total of N
mp

files. Collectively,

nodes in Cp map the library rp times. The P disjoint sets of

C1, · · · , Cp form one hypercuboid with r dimensions where

there are rp dimensions of size mp for p ∈ [P ]. Hence,

each node group Tα of size r =
∑P

i=p rp, defined in Node

Group 2, consists of the union of P node groups, with

size r1, · · · , rP , respectively, chosen from each of the P
interleved hypercubes corresponding to Cp, p ∈ [P ]. Note that,

instead of each hypercube operating independently subject to

its own computation load, rp, the hypercuboid design takes

full advantage of the total computation load, r, across the

P hypercubes to achieve the gain of 1
r−1 for the heterogeneous

system.

Function Assignment 2: Define Y as the least common

multiple (LCM) of {m1 − 1, m2 − 1, . . . , mP − 1}. Split the

Q functions into K disjoint sets, labeled W1, . . . ,WK , where,

in general, the sets may be different sizes. For each k ∈ [K],
Wk = |Wk| = η2Y

mp−1 where k ∈ Cp and η2 ∈ Z
+ such that

Q = η2 Y
∑P

p=1
rpmp

mp−1 . For each k ∈ [K], let Wk be the set

of reduce functions assigned to node k.

The Map and Shuffle phases follow our standard definition

from Section III-C and the NG Shuffle Method is used

for the Shuffle phase with node grouping defined by Node

Grouping 2.

The correctness of the proposed heterogeneous CDC

scheme is proved in Appendix III.

Remark 6: When using Node Grouping 2, NG File Map-

ping, Function Assignment 2, and NG Shuffle Method, we find

that each intermediate value set V{z}
Tα\z contains η1η2 Y IVs.

Remark 7: Node Grouping 2 and Function Assign-

ment 2 are a more general case of Node Grouping 1 and

Function Assignment 1, respectively. Therefore, the homoge-

neous scheme of Section III-C is a special case of the general

heterogeneous scheme here. By letting P = 1 such that C1 is

the set of all nodes, we find r = r1, m1 = K
r , X =

(
K
r

)r

and Y = K
r −1. Moreover, each node is assigned η2 Y

m1−1 = η2

reduce functions. For file availability, nodes are split into r
disjoint, equal size sets, K1, . . . ,Kr, and file sets of size η1

are available to sets of nodes which contain exactly one node

from each set K1, . . . ,Kr.

Remark 8: Due to the constrained combinatorial structure,

the proposed hypercuboid design will work only under certain

heterogeneous individual memories and computation loads.

The specific conditions for which our design is applicable are

as follows. The number of files at each node must be of the

form Mk = N
m for some integer m. Then, the number of

nodes which map N
m1

files must be c · m1 for some integer c
and m1. Furthermore, the number of functions at each node

is determined by the number of files at each node as defined

by Function Assignment 2. In practice, we can group nodes

with heterogeneous storage capacity and local computation

load (i.e. Mk

N ) to fit a hypercuboid design as close as possible

(similar to “quantization”) to take advantage of the system’s

heterogeneity.

An example is as follows. Consider M1
N = 1

2 , M2
N =

3
5 , M3

N = 1
3 , M4

N = 1
3 , M5

N = 2
5 . The hypercuboid scheme is

not applicable here because M2 and M5 do not take the form

of N
m for some integer m. To implement the hypercuboid

scheme, we will round M2 down to N
2 and M5 down to N

3 .

Now there are 2 nodes that have 1
2 of the files and 3 nodes

with 1
3 of the files. Then, note that the number of functions

assigned to each node is a function of M1, . . . , MK .

C. Achievable Trade-off Between Computation and
Communication Loads

In this section, we first present a naive heterogeneous CDC

design given the number of files and functions at each node.

This naive approach simply uses an uncoded shuffle phase.

We then expand it to find the communication load of an

uncoded Shuffle phase, Lu, using the number of files and

functions at each node from Node Grouping 2, NG File

Mapping, Function Assignment 2 of the general heterogeneous

scheme. Here, uncoded Shuffle phase means that all the

requested IVs will be transmitted in a unicast fashion without

coded multicasting. Note that, Lu represents the fraction of IVs

which are requested by any node. Then, we demonstrate that

the communication load using the the proposed hypercuboid

scheme and the NG Shuffle Method is Lc = 1
r−1 ·Lu. Note that

Lu and Lc are functions of m1, . . . , mP and r1, . . . , rP , which

specify the number of nodes and corresponding computation

load in each node class of the heterogeneous computing

network. Then, Lu and Lc are given in the following theorems.

Theorem 2: Given the number of files and functions at each

node, M1, . . . , MK and W1, . . . , WK , respectively, the follow-

ing communication load is achievable using an uncoded shuffle

phase

Lu =
1

QN

∑
k∈[K]

Wk(N − Mk). (7)

Corollary 1: By using Node Grouping 2, NG File Map-

ping, Function Assignment 2, and an uncoded Shuffle phase,

the communication load is

Lu(m1, . . . , mP , r1, . . . , rP ) =
r∑P

p=1
rpmp

mp−1

. (8)

Proof: Theorem 2 and Corollary 1 are proved in

Appendix II.

Next, we examine the communication load of the Shuffle phase

with coded communication.

Theorem 3: By using Node Grouping 2, NG File Mapping,

Function Assignment 2, and NG Shuffle Method, the commu-

nication load of the general heterogeneous scheme is

Lc(m1, . . . , mP , r1, . . . , rP )
=

1
r − 1

· r∑P
p=1

rpmp

mp−1

=
1

r − 1
· Lu(m1, . . . , mP , r1, . . . , rP ). (9)

Proof: Theorem 3 is proven in Appendix I.

The communication load Lc is comprised of two parts: the

local computing gain, Lu, and the global computing gain, 1
r−1 .

The local computing gain represents the normalized number

of IVs that must be shuffled. As nodes have access to a larger

fraction of the files, the nodes will inherently request less in

the Shuffle phase. The global computing gain stems from the

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:22:39 UTC from IEEE Xplore.  Restrictions apply.



5680 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 9, SEPTEMBER 2021

fact that with the coded design every transmission serves r−1
nodes with distinct requests.

D. Optimality

The information theoretic lower bound of the communi-

cation load derived in [21] is under the assumption of the

homogeneous reduce function assignment.10 Hence, it does

not apply when reduce functions are heterogeneously assigned

to the computing nodes. In the following, we use a cut-set

bound based approach to derive a lower bound on the optimal

communication load L∗ as defined in (1). That is, given the

number of files at each node, we find a lower bound on L∗ over

all possible uncoded file mappings, function assignments and

shuffle designs. We use this bound to show that the proposed

CDC design is optimal within a constant.

Theorem 4: Given the number of files mapped to each node,

M1, . . . , MK we have

L∗ ≥ min
W1,...,WK

max
S⊆[K]

1
QN

(
N −

∑
k∈S

Mk

) ∑
k∈S

Wk, (10)

where W1, . . . , WK are the number of reduce functions

assigned to each node and sum to Q.

Proof: Theorem 4 is proved in Appendix IV.

Remark 9: Theorem 4 and its proof are motivated by

the cut-set bound approach of the original coded caching

approach [34], but with two key differences. First, the CDC

problem is more general in that nodes require varying numbers

of IVs because they are assigned varying numbers of reduce

functions. Specifically, we consider a cut between the transmit-

ted signal useful to a set of nodes and the functions collectively

assigned to these nodes together with locally computed IVs.

This is shown in (28) in Appendix IV. Second, we need to

find the mutual information between the locally computed

IVs and the IVs for assigned functions as shown in (29) in

Appendix IV. Note that this term is not included in the coded

caching cut-set bound because it is generally unknown.

Theorem 5: For a computing network with M1, . . . , MK

and W1, . . . , WK defined by Node Grouping 2, NG File

Mapping, and Function Assignment 2, and mp is an even

integer for all p ∈ [P ], we have

Lc ≤
4r

r − 1
L∗, (11)

where Lc, given in (9), is the communication load achieved

by using the hypercuboid design. The optimal communication

load L∗, defined in (1), is over all possible file mappings,

function assignments and shuffle designs given M1, . . . , MK .

Proof: Theorem 5 is proved in Appendix V.

V. DISCUSSION

In this section, we will compare the performance of the

proposed schemes to the state-of-the-art schemes in [21].

Specifically, we compare the required number of files,

the required number of multicast groups and the communica-

tion load. When we compare the performance of the proposed

10The converse of [21] for the homogeneous reduce function assignment

was also derived in [39] using a different method.

Fig. 4. A comparison of the resulting communication load for the newly pro-
posed and the state-of-the-art homogeneous distributed computing schemes.

heterogeneous CDC scheme with that of the homogeneous

CDC in [21], we fix the computation load, r, the number of

files, N , and the number of reduce functions, Q.11

The scheme in [21] requires N1 =
(

K
r

)
η1 input files,

Q1 =
(
K
s

)
η2 reduce functions. Moreover, the communication

load as a function of K and r (with s = 1) is

L1(r) =
1
r

(
1 − r

K

)
. (12)

A. Homogeneous CDC
Using (6), we observe the following comparison

Lc(r)
L1(r)

=
rK

K − r
· K − r

K (r − 1)
=

r

r − 1
. (13)

For most values of r there is an insignificant increase in the

communication load for the new combinatorial scheme and

furthermore for r → ∞ the two schemes yield the identical

communication loads. Since our proposed homogeneous

scheme uses the same function assignment as the scheme

in [21], then this hypercube based design is asymptotically

optimal in the information theoretic sense in general without

fixing the file and function assignments. These findings are

verified through simulation of the communication load as

shown in Fig. 4.

While both schemes require the same number of outputs

functions, Q = Kη2, the required number of input files has

been drastically reduced in this case. It can be observed that

the number of input files for the homogeneous hypercube

design is Nc =
(

K
r

)r
η1, while the scheme of [21] requires

N1 =
(
K
r

)
η1 input files. Assuming r = Θ(K), by use of

Stirling’s formula to directly compare the two equations yields

N1

Nc
=

(
K
r

)
(

K
r

)r =
K!

r!(K − r)!
(

K
r

)r

= Θ

( √
2πK

(
K
e

)K

2π
√

r (K-r)
(

r
e

)r (
K−r

e

)(K-r)
· 1(

K
r

)r

)

= Θ

(√
K

2πr(K − r)
·
(

K

K − r

)K
)

= Θ

(√
1
K

·
(

K

K − r

)K
)

. (14)

11We adjust N and Q to be the same by using the appropriate η1 and η2.

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:22:39 UTC from IEEE Xplore.  Restrictions apply.



WOOLSEY et al.: NEW COMBINATORIAL CODED DESIGN FOR HETEROGENEOUS DISTRIBUTED COMPUTING 5681

When r < K , we find that (14) grows exponentially with K
and, therefore, our proposed scheme has an exponential

decrease in the number of required files.

As pointed out in [21], [27], the required number of mul-

ticast groups is also an important design parameter in CDC.

If this number is large, it may take a long time to build such

node groups such that the gain achieved by CDC is completely

gone. It can be seen that the number of required multicast

groups for the scheme in [21] is U1 =
(

K
r+1

)
, while the

required number of multicast group of the proposed scheme is

Uc =
(

K
r

)r
. Hence, by a similar computation to (14), it can

be seen that

U1

Uc
= Θ

(
r + 1
K − r

·
√

1
K

·
(

K

K − r

)K
)

, (15)

which can grows exponentially with K such that the proposed

hypercube scheme reduces the required number of multicast

group exponentially.

Remark 10: The hypercube approach has similar perfor-

mance compared to the CDC scheme based on the resolv-

able design proposed in [27], e.g., the required number of

input files in [27] is
(

K
r

)r−1
, which is slightly better than

the proposed hypercube scheme. However, as discussed in

Section IV, the proposed hypercube scheme can be extended

to the heterogeneous CDC networks naturally while it is

unclear how to extend the scheme in [27] to heterogeneous

CDC networks.

B. Heterogeneous CDC

As shown in (9), the communication load of the proposed

heterogeneous CDC design is Lc(r) = 1
r−1Lu(r), where 1

r−1
and Lu(r) are the global computing gain and the local com-

puting gain, respectively. In comparison, for the homogeneous

design in [21], we have L1(r) = 1
r (1− r

K ), where the global

computing gain is 1
r and the local computing gain is 1 − r

K .

Next, we will show that even though the proposed heteroge-

neous design has an inferior global computing gain than that

of [21] ( 1
r−1 versus 1

r ), it has a better local computing gain

Lu(r) ≤ (1− r
L), and hence can have a better communication

load Lc(r) < L1(r) under certain parameter regimes.

Since
∑P

p=1
rp

r = 1 and
mp

mp−1 is a convex function of mp

for mp > 1, using (8) and Jensen’s inequality, we can obtain

1
Lu(r)

=

∑P
p=1

rpmp

mp−1

r
=

P∑
p=1

rp

r
· mp

mp − 1

≥
∑P

p=1
rpmp

r(∑P
p=1

rpmp

r

)
− 1

=
K
r

K
r − 1

=
K

K − r
, (16)

where
∑P

p=1 rpmp =
∑P

p=1 |Cp| = K . Note that the inequal-

ity in (16) is strictly “>” if the network is truly heterogeneous,

i.e., not all {mp} are equal. Hence,

Lu(r) ≤ K − r

K
= 1 − r

K
, (17)

which shows that the local computing gain for our heteroge-

neous design is upper bounded by that of the homogeneous

design in [21]. Using (9), we obtain,

Lc(r) =
1

r − 1
Lu(r) ≤ 1

r − 1
·
(
1 − r

K

)
. (18)

Thus, Lc(r) can be less than L1(r) for certain choices of r
and K . For example, given a heterogeneous network defined

by m1 = 2, r1 = 4 and m2 = 8, r2 = 2, we have r =
r1 + r2 = 6, K = r1m1 + r2m2 = 24. We compare it with a

homogeneous network with r = 6 and K = 24. The proposed

heterogeneous design has a local computing gain of Lu(r) =
7
12 ≈ 0.583, which is less than that of the homogeneous design

1 − r
K = 3

4 = 0.75, and a communication load of Lc =
7
60 ≈ 0.117, that is lower than that of the homogeneous design

L1(r) = 1
8 = 0.125.

Remark 11: We note that Lc(r) < L1(r) is possible when

there is a heterogeneous function assignment such that nodes

are assigned varying numbers of functions. In [21], L1(r) was

proved to be a lower bound on the communication load given

r and K . However, the proof uses the implicit assumption that

every node is assigned the same number of reduce functions.

Our new finding is that if the reduce functions can be assigned

in a heterogeneous fashion, then the communication load lower

bound of [21] does not apply.

In Fig. 5, we provide additional comparisons of the commu-

nication load of the hypercuboid design and the homogeneous

scheme of [21] with an equivalent computation load, r. Each

design has a fixed number of nodes K = 20. The hetero-

geneous network is defined with P = 2 sets of nodes that

map a different number of files and are assigned a different

number of reduce functions. Specifically, |C1| = 2(r − 1) and

|C2| = K − 2(r − 1) where r1 = r − 1, m1 = 2, r2 = 1 and

m2 = K−2(r−1). In other words, the nodes of C1 each map 1
2

of the files and the nodes of C2 each map a 1
K−2(r−1) fraction

of the files which can be much less than 1
2 . Furthermore, nodes

of C1 and C2 are each assigned K − 2r + 1 and 1 reduce

functions, respectively. Fig. 5 shows that the communication

load of the hypercuboid design is less than that of the state-

of-the-art homogeneous design of [21] for 4 ≤ r ≤ 7.

Comparisons for Large Networks: Next, we provide com-

parisons of the communication load of the proposed heteroge-

neous scheme and the homogeneous scheme [21] for networks

with a large number of computing nodes K . We consider two

cases.

Case 1: For the heterogeneous network, assume that

r1, . . . , rP and r are fixed, but the fraction of files each node

has access to, 1
m1

, · · · , 1
mP

, decrease as K becomes large.

Then, we have

lim
K→∞

Lu(r) = 1 and lim
K→∞

Lc(r)
L1(r)

=
r

r − 1
. (19)

In other words,
Lc(r)
L1(r) = Θ(1).

Case 2: For the heterogeneous network, assume that r1
K =

β1, . . . ,
rP

K = βK and r
K = β are kept constant as

K gets large. The fraction of files available to each node,
1

m1
, · · · , 1

mP
, are also kept constant. It then follows from (16)

that when the network is truly heterogeneous (not all {mp}

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:22:39 UTC from IEEE Xplore.  Restrictions apply.



5682 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 9, SEPTEMBER 2021

Fig. 5. A comparison of the proposed hypercuboid CDC design to the state-

of-the-art CDC design of [21] with K = 20 nodes and an equivalent com-

putation load, r. The heterogeneous hypercube is designed with parameters
r1 = r−1, m1 = 2, r2 = 1 and m2 = K−2(r−1). The hypercuboid design

has a lower communication load than that of the homogeneous design for

4 ≤ r ≤ 7. The communication load of the uncoded shuffle design is plotted
for the homogeneous setting by the dashed red line. The communication load

of the uncoded, naive design in Theorem 2 is plotted by the dashed blue line.

are equal), then we have

lim
K→∞

Lc(r)
L1(r)

= lim
r→∞

r

r − 1
· Lu(r)
1 − r

K

=
1

1 − β

(
1∑P

p=1
βp

β
mp

mp−1

)

<
1

1 − β
(1 − β) = 1. (20)

This means that for large networks considered here, the com-

munication load of the proposed heterogeneous scheme is

strictly less than that of the homogeneous scheme. Hence, for

some heterogeneous file and computation load assignments,

the fundamental trade-off proposed in [21] does not apply.

This occurs because of the heterogeneous function assignment.

As we discussed before, in the extreme case, where there

exists a “super node” that can store all the files and compute

all functions, the communication load is straightforwardly 0.

However, for given heterogeneous storage capacities and com-

putation loads, it is non-trivial to design an achievable CDC

scheme such that its performance is superior compared to

that of homogeneous CDC under the same total storage and

computation load constraint.

For the hypercuboid design, the required number of

files is N = X =
∏P

p=1 m
rp
p and reduce functions is

Q = Y
∑P

p=1
rpmp

mp−1 where Y is the LCM of {m1 − 1, . . . ,

mP − 1}. Unlike the homogeneous network case, due to

the lack of CDC design for general heterogeneous networks,

we cannot compare the proposed scheme to other schemes.

Nevertheless, we believe that these numbers can serve as a

benchmark for the future research in this topic.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this work, we introduced a novel hypercuboid com-

binatorial approach to design CDC for both homogeneous

and heterogeneous distributed computing networks. This new

design achieves a significant reduction in the number of files

and functions compared to the state-of-the-art scheme in [21].

Moreover, the proposed schemes maintain a multiplicative

computation-communication trade-off and are proven to be

asymptotically optimal. Most importantly, we provided an

explicit and systematic heterogeneous CDC design with opti-

mality guarantees under certain network parameters. Surpris-

ingly, we found that the optimal trade-off derived in [21] no

longer applies when functions are heterogeneously assigned

and as a result, the communication load of a heterogeneous

network can be less than that of an equivalent homogeneous

CDC network. We have also provided a converse for CDC

when reduce functions are heterogeneously assigned. For the

future research direction, first, it will be interesting to design

other achievable schemes with heterogeneous function assign-

ments. Second, it is challenging but important to find a tighter

general information theoretic converse for communication load

in heterogeneous CDC.

APPENDIX I

PROOF OF THEOREMS 1 AND 3

For any α ∈ [X ], and z ∈ Tα, where z ∈ Kh ⊆ Cp,

it follows from Eq. (3), (4), and Remark 3 in Section III-C

that ∣∣V{z}
Tn\z

∣∣ = |Wz | · η1

∣∣Lz,α

∣∣ = |Wz| · η1(|Kp| − 1)

=
η2Y

mp − 1
· η1(mp − 1) = η1η2Y. (21)

We consider X node groups of size r nodes, where for each

group, every node of that group transmits a coded message of

size
∣∣V{z}

Tn\z

∣∣/(r − 1), therefore, the communication load is

Lc(m1, . . . , mP , r1, . . . , rP )

=
1

QN
· X · r ·

∣∣V{z}
Tn\z

∣∣
r − 1

=
1(

η2Y
∑P

p=1
rpmp

mp−1

)
η1X

· X · r · η1η2Y

r − 1

=
1

r − 1
· r∑P

p=1
rpmp

mp−1

. (22)

For the homogeneous case where P = 1 and C1 = [K], we

find r = r1, m1 = K
r and

Lc =
1

r − 1
· r∑P

p=1
rpmp

mp−1

=
1

r − 1
· r(

K
K
r −1

) =
1

r − 1
· K − r

K
. (23)

This completes the proof of Theorems 1 and 3.

APPENDIX II

PROOF OF THEOREM 2 AND COROLLARY 1

To prove Theorem 2, we count the number of IVs requested

by each node. Consider node k which maps Mk files and

is assigned Wk reduce functions. For each reduce function,

the node requires an IV from each of the N files. However,

this node only requests N−Mk IVs for each assigned function

since Mk of the IVs can be computed locally. Therefore,

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:22:39 UTC from IEEE Xplore.  Restrictions apply.



WOOLSEY et al.: NEW COMBINATORIAL CODED DESIGN FOR HETEROGENEOUS DISTRIBUTED COMPUTING 5683

node k requests (N − Mk)Wk IVs, each of size T bits,

to be transmitted unicast from the other nodes. Accounting

for the IVs requested by all nodes and normalizing by QNT ,

we obtain Theorem 2.

To prove Corollary 1, we count the number of files and

functions of each node and use Theorem 2 to find the uncoded

communication load. For all p ∈ [P ], the number of files a

node k ∈ Kj ⊆ Cp has local access to is

Mk = η1

∏
i∈[r]\j

|Ki| =
η1 X

|Kj |
=

N

mp
. (24)

Also, the number of functions assigned to a node

k ∈ Kj ⊆ Cp is Wk = η2Y
mp−1 where Q = η2 Y∑P

p=1
rpmp

mp−1 . Using the result of (7), we find

Lu(m1, . . . , mP , r1, . . . , rP )

=
1

QN

∑
p∈[P ]

∑
k∈Cp

η2Y

mp − 1
·
(

N − N

mp

)
(25)

=
1
Q

∑
p∈[P ]

rpmp
η2Y

mp − 1

(
mp − 1

mp

)

=
η2Y

∑
p∈[P ] rp

η2Y
∑P

p=1
rpmp

mp−1

=
r∑P

p=1
rpmp

mp−1

, (26)

where |Cp| = rpmp for all p ∈ [P ]. Hence, we finished the

proof of Corollary 1.

APPENDIX III

CORRECTNESS OF HETEROGENEOUS CDC SCHEME

This proof includes 4 parts: 1) nodes only compute IVs

from locally available files, 2) nodes only transmit locally

computed IVs, 3) nodes can decode transmissions with

requested IVs, 4) after the Map and Shuffle phases, nodes

have all necessary IVs to compute their reduce functions.

For 1), any node k ∈ [K] computes intermediate values of

the set

{vi,j : i ∈ [Q], wj ∈ Mk}. (27)

In all cases wj ∈ Mk for any vi,j computed by node k,

therefore nodes only compute IVs from locally available files.

Next, we prove 2) and 3) simultaneously. Consider any node

group Tα and any node k ∈ Tα. We will prove that node k
has access to multicast messages defined in Eq. (4) and (5).

This is true because as discussed above Eq. (4), all nodes in

Tα \ z, including node k, have access to the file set B� where

{Tα \ z} ⊂ T�. To see 3), when a node z0 ∈ Tα receives a

multicast message from another node k ∈ Tα in the form of

Eq. (4), only one term, V{z0},k
Tα\z , is its desired message. The

other terms are of the form V{z},k
Tα\z , intended for node z, where

z ∈ Tα and, z �= z0, k. Since node z0 ∈ Tα \ z, it has access

to V{z},k
Tα\z , and thus can decode its desired message correctly.

To prove 4), we need to show that for a given z ∈ Kh,

if some file wj /∈ Mz , then node z must be able to recover

its desired IVs {vi,j : i ∈ Wz} from multicast messages of

the form Eq. (4) and (5). To see this, assume that wj ∈ B�0 .

Consider node group T�0 . Since wj ∈ B�0 and wj /∈ Mz ,

we must have z /∈ T�0 . In other words, T�0,h �= z. Now,

consider another node group z ∈ Tα such that Tα and T�0

differ only in the h-th element: Tα,h = z and Tα,i = T�0,i

for any i �= h. As defined in Eq. (4), since �0 ∈ Lz,α and

wj ∈ B�0 , node z will receive its desired IVs {vi,j : i ∈ Wz}
from multicast group messages of node group Tα according

to Eq. (4) and (5).

APPENDIX IV

PROOF OF THEOREM 4

In this proof, we use the following notations: XK represents

the collection of all transmissions among all nodes, WS is the

union of all functions assigned to nodes in S, MS is the union

of files available to nodes in S, VWS ,: is the set of IVs needed

to compute the functions of WS , and V:,MS is the set of IVs

computed from files of MS . Here, we use “:” to denote all

possible file or function indices.

Consider a particular given W1, . . . , WK . Then, we consider

some set of nodes S ⊆ [K] and use a cut-set to separate XK
and V:,MS from VWS ,: and obtain

I (VWS ,:; XK, V:,MS ) = H (VWS ,:) − H (VWS ,:|XK, V:,MS )
(a)
= H (VWS ,:)

(b)
= TN

∑
k∈S

Wk, (28)

where (a) follows from H (VWS ,:|XK, V:,MS ) = 0 because

given XK and V:,MS , the IVs in VWS ,: are known; (b) holds

because there are N
∑

k∈S Wk IVs in VWS ,:, each of length

T bits, and these IVs are assumed to be independent. Further-

more, note that, as defined in the problem definition, for two

different nodes k1 and k2 we find |Wk1 ∩Wk2 | = 0 and each

function is only assigned to 1 node. Next, notice that

I (VWS ,:; V:,MS )
= H (VWS ,:) − H (VWS ,:|V:,MS )
(a)
= TN

∑
k∈S

Wk − T (N − |∪k∈SMk|)
∑
k∈S

Wk

= T |∪k∈SMk|
∑
k∈S

Wk ≤ T
∑
k∈S

Mk

∑
k∈S

Wk, (29)

where the second term in (a) corresponds to the entropy of the

IVs that cannot be computed locally using files in MS . Note

that, each file produces 1 IV of size T bits for each function

and the number of unique files among the nodes of S is at

most
∑

k∈S Mk. Thus, we have

I (VWS ,:; XK|V:,MS )
= H(XK|V:,MS ) − H(XK|VWS ,:, V:,MS )
≤ H (XK) . (30)

By combining (30) with (28) and (29), we obtain

H (XK) ≥ I (VWS ,:; XK|V:,MS )
= I (VWS ,:; XK, V:,MS ) − I (VWS ,:; V:,MS )

≥ TN
∑
k∈S

Wk−T
∑
k∈S

Mk

∑
k∈S

Wk

= T
∑
k∈S

Wk

(
N −

∑
k∈S

Mk

)
. (31)

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:22:39 UTC from IEEE Xplore.  Restrictions apply.



5684 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 9, SEPTEMBER 2021

By recognizing that QNTL = H(XK) and considering all

possible node groups, S, we obtain a lower bound on the com-

munication load given W1, . . . , WK . Then, as W1, . . . , WK

are design parameters, we minimize over these parameters to

obtain the bound of (10).

APPENDIX V

PROOF OF THEOREM 5

The proof is based on the achievability in Theorem 3 and

the converse bound in Theorem 4. First, define

LS
Δ=

1
QN

(
N −

∑
k∈S

Mk

) ∑
k∈S

Wk, (32)

and

LS∗
Δ= max

S⊂[K]
LS , (33)

where S∗ ⊆ [K] is the set of nodes that maximizes LS . Let

W ∗
1 , . . . , W ∗

K denote the number of function assignments at

each node that minimize LS∗ given M1, . . . , MK . We present

two Claims below to characterize W ∗
1 , . . . , W ∗

K .

Claim 1: There exists an optimal solution W ∗
1 , . . . , W ∗

K

such that for any two nodes k1, k2 ∈ [K], if Mk1 = Mk2 ,

then we must have W ∗
k1

= W ∗
k2

.

Proof: Assume that there exists a pair of nodes k1 and k2

such that Mk1 = Mk2 and W ∗
k1

> W ∗
k2

. Let us consider a new

function assignment with W ′
k1

= W ′
k2

=
W∗

k1
+W∗

k2
2 . We will

show that the new LS∗ , corresponding to the new assignment,

will not increase and thus, it gives an optimal assignment

that satisfies Claim 1. To verify this, we will examine all LS
under the new assignment. First, note that for any group S
that contains both k1 and k2, or contains none of them, LS
will not change if W ∗

k1
, W ∗

k2
is changed to W ′

k1
, W ′

k2
. Next,

we consider node groups that include only one of k1 or k2.

Specifically, consider any node set S′ ⊆ [K] \ {k1, k2} and

define two sets S1 = {k1}∪S′ and S2 = {k2}∪S′. Note that

LS∗ ≥ max{LS1, LS2} and max{LS1 , LS2} will not increase

if W ∗
k1

, W ∗
k2

is changed to W ′
k1

, W ′
k2

. Therefore, LS∗ will not

increase with this change.

Next, to compare the bound of (10), we follow the proposed

design to define M1, . . . , MK based on the parameters of

hypercuboid m1, . . . , mP and r1, . . . , rP . Note that, there are

P sets of nodes Cp = {k ∈ [K] : Mk = N
mp

} where each

node maps the same number of files. Moreover, we impose an

additional requirement that mp is an even integer as defined

in Theorem 5.

Claim 2: Under the assumptions outlined in Theorem 5,

we have W ∗
k = Mk

rN Q for all k ∈ [K].
Proof: By claim 1, there exists an optimal assignment

such that for each p, the nodes in Cp are assigned the same

number of reduce functions. Define cp as the ratio of the

number of assigned functions to the number of files of each

node in Cp (i.e., W ∗
k = cpMk where k ∈ Cp). Consider a

node group Sp ⊂ Cp for some p ∈ [P ]. We find, LSp =
1

QN (N − MSp)cpMSp where MSp =
∑

k∈Sp
Mk. Note that

in this case LSp is maximized when MSp = N
2 , and this occurs

when Sp contains
mp

2 nodes from Cp. This is possible since

mp is an even integer and Cp contains at least mp nodes.

In summary, considering all subsets S ⊂ Cp, the maximum

LSp is LSp = N
4Qcp.

Next, let p̂ = argmax
p∈[P ]

cp be the index of the node

set Cp with maximum cp. Note that for any S, we have

LS = 1
QN (N − MS)W ∗

S where MS =
∑

k∈S Mk and

W ∗
S =

∑
k∈S W ∗

k . Using W ∗
k = cpMk ≤ cp̂Mk, we find

that W ∗
S ≤ cp̂MS . Thus, LS ≤ 1

QN (N − MS)cp̂MS ≤ N
4Qcp̂.

It follows that S∗, the node subset that maximizes LS , is
mp̂

2
nodes from Cp̂. Hence, LS∗ = N

4Qcp̂.

Finally, to minimize LS∗ , we need to minimize cp̂ =
maxp∈[P ] cp. We require that Q =

∑
p∈[P ] cp

N
mp

|Cp| =
N

∑
p∈[P ] cprp, where node k ∈ Cp maps N

mp
files and

|Cp| = rpmp. In this case, since r =
∑

p∈[P ] rp, we find

cp̂ = c1 = . . . = cP = Q
rN . Therefore, for each node k ∈ [K],

we have W ∗
k = Mk

rN Q.

From Claim 2 and the converse bound of Theorem 4,

we find that L∗ ≥ 1
4r given M1, . . . , MK . This result applies

to all possible file mappings, reduce function assignments and

shuffle phase designs. This combines with Lc < 1
r−1 , shown

in (18) obtained by Theorem 3, to give (11).

REFERENCES

[1] N. Woolsey, R.-R. Chen, and M. Ji, “A new combinatorial design of

coded distributed computing,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Jun. 2018, pp. 726–730.

[2] N. Woolsey, R.-R. Chen, and M. Ji, “Coded distributed computing with

heterogeneous function assignments,” in Proc. IEEE Int. Conf. Commun.
(ICC), Jun. 2020, pp. 1–6.

[3] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[4] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 2016, pp. 2100–2108.

[5] N. S. Ferdinand and S. C. Draper, “Anytime coding for distributed

computation,” in Proc. 54th Annu. Allerton Conf. Commun., Control,
Comput. (Allerton), Sep. 2016, pp. 954–960.

[6] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitiga-

tion in distributed matrix multiplication: Fundamental limits and opti-

mal coding,” 2018, arXiv:1801.07487. [Online]. Available: http://arxiv.
org/abs/1801.07487

[7] R. Bitar, P. Parag, and S. El Rouayheb, “Minimizing latency for secure

distributed computing,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2017, pp. 2900–2904.

[8] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in
distributed optimization through data encoding,” in Proc. Adv. Neural
Inf. Process. Syst., 2017, pp. 5434–5442.

[9] W. Halbawi, N. Azizan-Ruhi, F. Salehi, and B. Hassibi, “Improv-
ing distributed gradient descent using Reed–Solomon codes,” 2017,

arXiv:1706.05436. [Online]. Available: http://arxiv.org/abs/1706.05436

[10] G. Suh, K. Lee, and C. Suh, “Matrix sparsification for coded matrix

multiplication,” in Proc. 55th Annu. Allerton Conf. Commun., Control,
Comput. (Allerton), Oct. 2017, pp. 1271–1278.

[11] A. Mallick, M. Chaudhari, U. Sheth, G. Palanikumar, and G. Joshi,

“Rateless codes for near-perfect load balancing in distributed matrix-

vector multiplication,” 2018, arXiv:1804.10331. [Online]. Available:
http://arxiv.org/abs/1804.10331

[12] R. K. Maity, A. S. Rawat, and A. Mazumdar, “Robust gradient descent
via moment encoding with LDPC codes,” in Proc. SysML Conf.,
Jul. 2018, pp. 2734–2738.

[13] M. F. Aktas, P. Peng, and E. Soljanin, “Straggler mitigation by delayed
Relaunch of tasks,” ACM SIGMETRICS Perform. Eval. Rev., vol. 45,

no. 3, pp. 224–231, Mar. 2018.

[14] S. Wang, J. Liu, N. Shroff, and P. Yang, “Fundamental limits of

coded linear transform,” 2018, arXiv:1804.09791. [Online]. Available:

http://arxiv.org/abs/1804.09791

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:22:39 UTC from IEEE Xplore.  Restrictions apply.



WOOLSEY et al.: NEW COMBINATORIAL CODED DESIGN FOR HETEROGENEOUS DISTRIBUTED COMPUTING 5685

[15] M. Ye and E. Abbe, “Communication-computation efficient gradient

coding,” 2018, arXiv:1802.03475. [Online]. Available: http://arxiv.org/

abs/1802.03475
[16] K. Wan, H. Sun, M. Ji, and G. Caire, “Distributed linearly sep-

arable computation,” 2020, arXiv:2007.00345. [Online]. Available:

http://arxiv.org/abs/2007.00345

[17] M. A. Attia and R. Tandon, “Near optimal coded data shuffling
for distributed learning,” IEEE Trans. Inf. Theory, vol. 65, no. 11,

pp. 7325–7349, Nov. 2019.

[18] A. Elmahdy and S. Mohajer, “On the fundamental limits of coded data
shuffling for distributed machine learning,” IEEE Trans. Inf. Theory,

vol. 66, no. 5, pp. 3098–3131, May 2020.

[19] K. Wan, D. Tuninetti, M. Ji, G. Caire, and P. Piantanida, “Fundamental

limits of decentralized data shuffling,” IEEE Trans. Inf. Theory, vol. 66,
no. 6, pp. 3616–3637, Jun. 2020.

[20] L. Chen, H. Wang, Z. Charles, and D. Papailiopoulos, “Draco:

Byzantine-resilient distributed training via redundant gradients,” in Proc.
Int. Conf. Mach. Learn., 2018, pp. 902–911.

[21] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental

tradeoff between computation and communication in distributed comput-

ing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128, Jan. 2018.
[22] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on

large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[23] Y. H. Ezzeldin, M. Karmoose, and C. Fragouli, “Communication vs
distributed computation: An alternative trade-off curve,” in Proc. IEEE
Inf. Theory Workshop (ITW), Nov. 2017, pp. 279–283.

[24] L. Song, S. R. Srinivasavaradhan, and C. Fragouli, “The benefit of being

flexible in distributed computation,” 2017, arXiv:1705.08464. [Online].
Available: http://arxiv.org/abs/1705.08464

[25] S. Prakash, A. Reisizadeh, R. Pedarsani, and A. S. Avestimehr, “Coded

computing for distributed graph analytics,” 2018, arXiv:1801.05522.

[Online]. Available: http://arxiv.org/abs/1801.05522
[26] S. R. Srinivasavaradhan, L. Song, and C. Fragouli, “Distributed com-

puting trade-offs with random connectivity,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2018, pp. 1281–1285.

[27] K. Konstantinidis and A. Ramamoorthy, “Resolvable designs for speed-

ing up distributed computing,” IEEE/ACM Trans. Netw., vol. 28, no. 4,

pp. 1657–1670, Aug. 2020.

[28] M. Kiamari, C. Wang, and A. Salman Avestimehr, “On heterogeneous
coded distributed computing,” in Proc. GLOBECOM IEEE Global
Commun. Conf., Dec. 2017, pp. 1–7.

[29] N. Shakya, F. Li, and J. Chen, “Distributed computing with heteroge-
neous communication constraints: The worst-case computation load and

proof by contradiction,” 2018, arXiv:1802.00413. [Online]. Available:

http://arxiv.org/abs/1802.00413

[30] F. Xu and M. Tao, “Heterogeneous coded distributed computing:
Joint design of file allocation and function assignment,” 2019,

arXiv:1908.06715. [Online]. Available: http://arxiv.org/abs/1908.06715

[31] N. Woolsey, R.-R. Chen, and M. Ji, “A combinatorial design for
cascaded coded distributed computing on general networks,” 2020,

arXiv:2008.00581. [Online]. Available: http://arxiv.org/abs/2008.00581

[32] J. Wang, M. Cheng, Q. Yan, and X. Tang, “On the placement delivery

array design for coded caching scheme in D2D networks,” 2017,
arXiv:1712.06212. [Online]. Available: http://arxiv.org/abs/1712.06212

[33] N. Woolsey, R.-R. Chen, and M. Ji, “Towards finite file packetizations

in wireless device-to-device caching networks,” IEEE Trans. Commun.,
vol. 68, no. 9, pp. 5283–5298, Sep. 2020.

[34] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”

IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[35] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching
in wireless D2D networks,” IEEE Trans. Inf. Theory, vol. 62, no. 2,

pp. 849–869, Feb. 2016.

[36] Q. Yan, X. Tang, and Q. Chen, “Placement delivery array and its

applications,” in Proc. IEEE Inf. Theory Workshop (ITW), Nov. 2018,
pp. 1–5.

[37] V. Ramkumar and P. V. Kumar, “Coded MapReduce schemes based on

placement delivery array,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jul. 2019, pp. 3087–3091.

[38] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery

array design for centralized coded caching scheme,” IEEE Trans. Inf.
Theory, vol. 63, no. 9, pp. 5821–5833, Sep. 2017.

[39] P. Krishnan, L. Natarajan, and V. Lalitha, “An umbrella converse for

data exchange: Applied to caching, computing, shuffling & Rebal-

ancing,” 2020, arXiv:2010.10459. [Online]. Available: http://arxiv.org/
abs/2010.10459

Nicholas Woolsey (Student Member, IEEE) received

the B.S. degree in biomedical engineering from

the University of Connecticut in 2012, the M.Eng.
degree in bioengineering from the University of

Maryland, College Park, in 2015, with a focus

on signal processing, imaging, and optics, and the

Ph.D. degree from the Department of Electrical
and Computer Engineering, The University of Utah,

in December 2020. From 2014 to 2017, he was an

Electrical Engineer with Northrop Grumman Corpo-
ration (NGC), Ogden, UT, USA, developing test and

evaluation methods, modernization solutions, and signal processing algorithms

for the sustainment of aging aircraft and ground communication systems. He is

currently with Trabus Technologies, San Diego, CA, USA, as a Signal Process-
ing Engineer developing decentralized wireless network technologies. His

research interests include combinatorial designs and algorithms for resource

allocation, coding and efficient communications in distributed computing, and
private and caching networks. He received the 2020 Best ECE Dissertation

Award from The University of Utah for his Ph.D. degree, the Outside the

Box Grant to investigate the design of a modern receiver that interfaces

aging technology from NGC, and the 2016 Brent Scowcroft Team Award
for performing exceptional systems engineering work.

Rong-Rong Chen (Member, IEEE) received the

B.S. degree in applied mathematics from Tsinghua
University, China, in 1993, and the M.S. degree

in mathematics and the Ph.D. degree in electrical

and computer engineering from the University of
Illinois at Urbana–Champaign in 1995 and 2003,

respectively. She was an Assistant Professor with

The University of Utah from 2003 to 2011 and has

been an Associate Professor since 2011. Her main
research interests are in the area of communication

systems and networks, with current emphasis on

distributed computing, machine learning, caching networks, statistical signal
processing, image reconstructions, and channel coding. She was a recipient

of the M. E. Van Valkenburg Graduate Research Award for excellence in

doctoral research with the ECE Department, University of Illinois at Urbana–

Champaign, in 2003, and the prestigious National Science Foundation Faculty
Early Career Development (CAREER) Award in 2006. She was rated among

the Top 15% Instructors of the College of Engineering, The University of

Utah, in 2017 and 2018. She has served as an Associate Editor for IEEE
TRANSACTIONS ON SIGNAL PROCESSING and a Guest Editor for IEEE

JOURNAL ON SELECTED TOPICS IN SIGNAL PROCESSING. She has served

on the technical program committees of leading international conferences in

wireless communication and networks.

Mingyue Ji (Member, IEEE) received the B.E.
degree in communication engineering from the

Beijing University of Posts and Telecommunica-

tions, China, in 2006, the M.Sc. degrees in electrical

engineering from the KTH Royal Institute of Tech-
nology, Sweden, and the University of California,

Santa Cruz, in 2008 and 2010, respectively, and

the Ph.D. degree from the Ming Hsieh Department

of Electrical Engineering, University of Southern
California, in 2015. He subsequently was a Staff II

System Design Scientist with Broadcom Corporation

(Broadcom Ltd.) from 2015 to 2016. He is currently an Assistant Professor
of the Electrical and Computer Engineering Department and an Adjunct

Assistant Professor with the School of Computing, The University of Utah.

He is interested in the broad area of information theory, coding theory,

concentration of measure and statistics with the applications of caching net-
works, wireless communications, distributed storage and computing systems,

distributed machine learning, and (statistical) signal processing. He received

the IEEE Communications Society Leonard G. Abraham Prize for the Best
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS Paper in 2019,

the Best Paper Award in IEEE ICC 2015 conference, the Best Student Paper

Award in IEEE European Wireless 2010 Conference and the USC Annenberg

Fellowship from 2010 to 2014. He has been serving as an Associate Editor
of IEEE TRANSACTIONS ON COMMUNICATIONS since 2020.

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:22:39 UTC from IEEE Xplore.  Restrictions apply.


