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Abstract—This paper extends the recently proposed power-particle-based fluid simulation method with staggered discretization,

GPU implementation, and adaptive sampling, largely enhancing the efficiency and usability of the method. In contrast to the original

formulation which uses co-located pressures and velocities, in this paper, a staggered scheme is adapted to the Power Particles to

benefit visual details and computing efficiency. Meanwhile, we propose a novel facet-based power diagrams construction algorithm

suitable for parallelization and explore its GPU implementation, achieving an order of magnitude boost in performance over the existing

code library. In addition, to utilize the potential of Power Particles to control individual cell volume, we apply adaptive particle sampling

to improve the detail level with varying resolution. The proposed method can be entirely carried out on GPUs, and our extensive

experiments validate our method both in terms of efficiency and visual quality.

Index Terms—Physically based modeling, fluid simulation, power diagrams, GPU parallelization, adaptive sampling

Ç

1 INTRODUCTION AND MOTIVATION

FLUID motion is highly complex to reproduce in computer
applications, game/film productions, and has gained

much attention in the computer graphics community during
the recent two decades. Modern fluid simulators are capable
of generating vivid waves, splashes, bubbles, etc. However,
the exact incompressibility continues to be challenging
for most fluid simulators to date. As discussed in Ihmsen
et al. [1], while Lagrangian methods preserve mass perfectly,
the oscillations in density evaluation affect the particle vol-
ume, requiring further correction such as Implicit Incom-
pressible Smoothed Particle Hydrodynamics (IISPH) [2]. On
the other hand, incompressible Eulerian methods assume a
rest density and compute a divergence-free velocity field, yet
the mass fluctuations [3], [4] may lead to volume changes and
possible artificial viscosity [5].

Hybridmethods that integrate the advantages of both have
long been explored, such as the popular Particle-In-Cell (PIC)
and FLuid Implikcit Particle (FLIP) which were first adopted
in [6] to simulate sand and later used to simulate liquids with
abundant surface details [4], [7], [8], viscosity treatment [9],
and multiple-phase setting [10]. Raveendran et al. [11] pro-
posed to use SPH particles with an underlying Eulerian grid
for pressure projection. These methods usually combine the

Eulerian divergence-free solver and the Lagrangian material
particles to minimize the impacts brought by either and to
ensure the preservation of both density andmass.

De Goes et al. [12] recently presented Power Particles for
incompressible fluids, which resort to power diagrams for
domain partition on the basis of the particle distribution
(hence called power particles). Despite its fully Lagrangian
nature, their method makes use of a divergence-free solver
as well as a precise volume control on particles to enforce
strong incompressibility. Nevertheless, some limitations
could still be found in this powerful method. First of all, the
pressure solver of the Power Particles calculates the velocity
divergence using co-located pressures/velocities and one-
ring divergence operator. This could cause strong negative
pressure near free surfaces and prevent the formation of
individual sprays. The co-located scheme also brings a large
number of non-zero entries into the Pressure Poisson Equa-
tion (PPE). Speed being a major impediment to the adoption
of the Power Particles scheme, the original method fails to
enjoy the GPU acceleration since few efforts have been
made to construct power diagrams on modern GPUs.
Moreover, despite Power Particles’ potential to control indi-
vidual cell volume, dynamic particle sampling still remains
unexplored.

Accordingly, this paper is dedicated to resolving the afore-
mentioned weaknesses within the existing power-particle-
based fluid simulator. As opposed to the co-located scheme
and one-ring divergence operator, we adapt the staggered
discretization to the power-particle framework and apply the
divergence condition using directional velocity perpendicular
to cell borders. Such an arrangement not only eliminates the
unwanted cluster behaviors but also reduces the non-zero
entries of the PPE to a large extent. Regarding the construction
of power diagrams, previous methods usually resort to the
existing code libraries like CGAL [13] or VORO++ [14]
for robustness and efficiency. Instead, we propose a novel
facet-trimmethodwhich enables the parallelized construction
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on GPUs. We also apply adaptive particle sampling at run
time to simulate fluid details up to different scales in various
regions. Our extensive experiments prove that Power Par-
ticles produce better visual results with higher efficiency
when using the staggered discretization and adaptive sam-
pling. Additionally, the GPU-based implementation offers a
significantly faster construction of power diagrams over the
VORO++ library and tremendously enhances the perfor-
mance of the fluid simulator, enabling its availability for
designing, modeling, and other interactive applications.

The main contributions of this paper are:

� A staggered pressure projection on Power Particles
to benefit visual details and computing efficiency;

� A GPU-based construction of power diagrams to
boost the computational performance by an order of
magnitude; and

� An adaptive sampling strategy for Power Particles to
simulate fluids using varying resolution.

2 BACKGROUND AND RELATED WORKS

The topics of this paper cover the particle-based methods,
grid-based methods, hybrid methods, Voronoi-based meth-
ods as well as the adaptive techniques in fluid simulation.
In this section, we briefly review them in the following
categories.

SPH Techniques. Owing to its conceptual simplicity and
ability to generate compelling visual results, SPH [15] has
become one of the most popular fluid solvers nowadays.
Such popularity is attributed partially to its kernel-based
nature which brings decent trade-off between computa-
tional expenses and realism for unstructured methods.
However, one of the drawbacks is its weakness in enforcing
the incompressibility. Early works used the equation of
state to calculate the interior pressure [16], [17], which often
induced instabilities. Later on, iterative methods [18], [19]
started to dominate as they greatly ameliorated the problem
by using a dynamic stiffness. Recently, researchers man-
aged to solve the PPE implicitly [2], and both the density
and the velocity divergence were taken into account in
some state-of-the-art solvers [20]. On the other hand, SPH
stress points [21] and staggered SPH method [22] solved the
tensile instabilities and improve boundary handling, using
the staggered arrangement in a similar way to this paper.

Methods Using Staggered Grids. In early Computational
Fluid Dynamics, the decoupling of pressure and velocity was
found in Cartesian grids inducing non-physical oscillations,
also known as the checkerboard problem. The staggered
grid [23] was designed to eliminate such problem and was
later widely applied in grid-based fluid simulators, e.g., the
octree approach [24]. The irregular grids also benefit from the
staggered primal-dual formulation (or Discrete Exterior
Calculus) in fewer non-zero entries in the Laplacian, smaller
grid interval and simpler boundary handling. The tetrahedral
meshes were naturally integrated with the staggered discreti-
zation [25] to simulate various phenomena, and the dynamic
semi-structured [26] and unstructured tetrahedral grids [27]
were also employed. Based on these, Mullen et al. [28] pro-
posed an energy-preserving integration that was viscosity-
free and time-reversible.

Hybrid Methods. It is a tempting attempt to integrate two
methods to neutralize each other’s defect and produce more
convincing results. Being one of these attempts, FLIP was
employed to simulate sand [6], viscous fluids [9], multi-
phase fluids [10] and so on. Hong et al. [29] and Ando
et al. [7], [30] put forward adaptive FLIP to drop the compu-
tational burden, and Ferstl et al. [31] came up with Narrow
Band FLIP eliminating excess particles far beneath the
surface. Moreover, FLIP was combined with IISPH [32] for
a much more flexible usage. In addition to these FLIP-family
methods, Losasso et al. [33] coupled SPH and particle level
set to model the diffuse regions and dense liquid volume
respectively. Raveendran et al. [11] proposed to employ a
coarse Eulerian grid to provide a divergence-free back-
ground velocity and to use SPH interaction to counter the
local density fluctuation. Chentanez et al. [34] simulated
large-scale water phenomena by further combining par-
ticles, 3D grids and height fields, from fine to coarse.

Voronoi-Based Approaches. The Voronoi-based spatial dis-
cretization is relatively new in the fluid simulation territory
because the non-stationary nature of fluids often requires
frequent updates of Voronoi diagrams which are fairly time-
consuming. Sin et al. [35] implemented a fluid solver and per-
formed staggered pressure projection based on Voronoi dia-
grams. Brochu et al. [36] integrated a surface tracking process
with Voronoi diagrams to capture thin features. English
et al. [37] glued uniform grids of different resolution together
with Voronoi diagrams. Power diagram, a generalization of
Voronoi diagramwithmore control over the cell volume, was
adopted to simulate bubble interactions in foam [38] as well
as to build a fully functional fluid simulator [12]. It was also
incorporated into a Sparse Paged Grids simulator to yield
high-resolution adaptive liquids [39]. Most recently, meshless
Voronoi is realized on GPUs [40], but neither the generaliza-
tion to power diagram nor the possible adaptivity has been
thoroughly studied. In this paper, we improve the existing
fluid simulator of de Goes et al. [12] towards better visual
result and efficiency.

Adaptivity in Fluid Simulation. Although the adaptive
octree scheme in Eulerian methods [24], [39] is quite intui-
tive, the adaptivity is often difficult to be implemented with
SPH as the insertion or deletion of particles could cause
sudden large spring force, let alone the intricacy brought by
non-uniform smoothing radii. Adams et al. [41] adjusted
particle positions and the smoothing radii to reduce the
pressure error, while Keiser et al. [42] simulated the interac-
tion across particle resolutions. Zhang et al. [43] provided
an early attempt of adaptive sampling for SPH on GPUs. To
prevent the previously mentioned sudden changes in force,
Orthmann and Kolb [44] introduced temporal blending to
achieve a smooth transition from before to after the particle
insertion or deletion, and Winchenbach et al. [45] further
developed implicit temporal blending and achieved infinite
continuous adaptivity. Alternatively, different levels of
detail can be simulated independently and coupled on the
common boundaries [46], [47].

3 OVERVIEW OF POWER PARTICLES

This section provides a brief introduction of the power
diagram and the original Power Particles solver, followed
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by an overview to highlight our main distinctions from
the existing method.

3.1 Power Diagram

A power diagram [48] is a partition of the spatial domain V
according to a set of sites fqig along with their associated
scalar weights fwig, as shown in Fig 1. Each cell Vi is
defined as

Vi ¼
�
x 2 V j kx� qik2 � wi � kx� qjk2 � wj 8j

�
; (1)

where �k k is the euclidean distance. Two neighboring sites
qi and qj share a facet Aij, which should be perpendicular
to vector qi � qj. We denote Vi as the volume of Vi in 3D

(area in 2D) and Aij as the area of Aij (length in 2D). The

distance between two neighboring sites qi and qj is denoted

as lij, while the distance from a site qi to its facet Aij is dij,

thus lij ¼ dij þ dji.
Aurenhammer et al. [48] pointed out that the volume of

cells can be fully controlled by their power weights. There-
fore the volume of each cell can be constrained to a target
value �Vi. We use the same weight optimization scheme
as [12] to iteratively update the weights towards direction
dw following

1

2
Ddw ¼ V � �V ; (2)

where Dij ¼ Aij=lij.

3.2 Power Particles

The Power Particles method is a Lagrangian fluid solver
whose particles are treated as the sites of a time-evolving
power diagram. In each time step, the power diagram is
updated according to the particles’ locations and their corre-
sponding weights, based on which the dynamics of fluids is
calculated following the Navier-Stokes equation,

Dv

Dt
¼ �rp

r
þ nr2vþ fext; (3)

where v denotes the velocity of particles, p their pressure, r
the density, n the kinematic viscosity, fext the body accelera-

tions, DDt
the material derivative, r the gradient and r2 the

Laplacian. With the velocity determined, the particles are

advected as all Lagrangian methods do. An algorithm that

specifies such procedure is listed in Algorithm 1.

Algorithm 1. The Simulation Loop of Power Particles

1 Apply diffusion and external forces;
2 Apply pressure projection on power diagram;
3 Advect particles;
4 Update the power diagram and enforce volume constraints;

In each simulation iteration, the splitting strategy is
applied for integration. The diffusion term and the external
forces in the Navier-Stokes equation are first solved, giving
an intermediate velocity v� to each particle,

ð1� nDtr2Þv� ¼ vt�1 þ Dtfext; (4)

where vt�1 is the initial velocity of each particle and Dt the
duration of the time step. Subsequently, the pressure projec-
tion solves the PPE, i.e.,

Dt

r
r2p ¼ r � v�; (5)

wherer� is the divergence operator. The velocity is updated
afterwards by

vt ¼ v� � Dt

r
rp; (6)

where vt is the resulting velocity used to advect the flow. In
the previous Power Particles, de Goes et al. [12] proposed to
use discrete divergence operator D, gradient operator G
and Laplacian operator L in calculating the fluid dynamics,

where D ¼ rqV , G ¼ �DT and L ¼ DdiagðmÞ�1G. Using

the co-located discretization,D corresponds to the matrix:

Dij :¼ ðrqj
ViÞT ¼ Aij

lij
ðqj � bijÞT ;

Dii :¼ ðrqi
ViÞT ¼ �Pj2Ni

ðrqi
VjÞT ;

(
(7)

where bij denotes the centroid of facet Aij and Ni the set of
one-ring neighboring particles of i. For more information
about the power diagram or the original Power Particles,
please refer to [12].

3.3 Overview of Our Method

In this paper, we make improvements in three aspects: inte-
grating staggered discretization in pressure solve, designing a
parallel power-diagram construction algorithm, and incorpo-
rating the adaptive particle sampling. The framework of our
method is illustrated in Algorithm 2. Essentially different
from the original Power Particles (Algorithm 1), our method
is not only GPU friendly but also much faster and visually
pleasing on CPU, and can produce even better surface details
with lower computational costwith the adaptivity turned on.

Algorithm 2. The Simulation Loop of our Method

1 Apply diffusion and external forces;
2 Apply staggered pressure projection on power diagram

(Section 4);
3 Advect particles;
4 Apply adaptive particle sampling (Section 6);
5 Update the power diagram on GPUs (Section 5) and enforce

volume constraints;

Fig. 1. Exemplary power diagram in 2D.
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The original Power Particles, in a fairly straightforward
manner, use co-located pressure/velocity samples, one-ring
discrete divergence/gradient operators D and G, and two-
away Laplacian operator L. In the pressure step, the velocity
is projected to achieve zero divergence, i.e., Dvt ¼ 0. Given
D is a one-ring operator, this zero divergence is enforced as
an inter-particle velocity condition. However, it could lead
to unnatural behaviors near free surfaces.

As illustrated in the top row of Fig. 2, when nearby surface
particles move apart from each other, the pressure projection
would exert strong negative pressures to eliminate the rela-
tive movement between particle pairs in order to meet the
zero-divergence condition. This causes particle clusters
instead of individual sprays to form on disturbing surfaces.

The IISPHmethod of Ihmsen et al. [2], similar to the Power
Particles, also used one-ring divergence and two-away Lapla-
cian operator in their pressure solver. They reported this
particle clustering as well albeit that they corrected the
predicted density to a target value r0 rather than enforced
the zero-divergence condition directly. The predicted density
radvi is calculated as

radvi ¼ ri � Dtrir � vi; (8)

where ri denotes the SPH density evaluation and r � vi the
velocity divergence. In other words, not only the underesti-
mated SPH density but also the diverging particles could
result in the drop of radvi and then the consequent negative
pressures. They referred to this artifact as “exaggerated
cohesion effects” that noticeably absorbed the splashes, but
failed to offer a fundamental solution other than clamping.

The Power Particles are free of underestimated particle
density, however, the velocity divergence could still cause the
clustering problem. In this paper, we present to use the stag-
gered discretization to address this unnatural clustering on
diverging particles. With this treatment, the zero divergence
is no longer enforced with neighboring particle velocities
but with directional velocities sampled at cell borders. The
projection still makes the velocity field free of divergence but
at the same time keeps the surface particles their tendency to
form individual sprays in case of negative pressure, see Fig. 2.
Additionally, with the co-located scheme, the multiplication
of large sparse matrices D and G is rather time-consuming,
especially for GPU realization where the runtime speed
matters a lot. Ihmsen et al. [2] proposed to bypass this multi-
plication by using a two-pass matrix-free method to solve the
PPE, notwithstanding the nested two-away stencil still signifi-
cantly increases the number of non-zero entries in the system.
In contrast, the staggered scheme offers one-ring Laplacian
operator which removes the necessity to multiply the large
sparse matrices or to access the two-away neighbors, making
the pressure projection cheaper to solve. It should be noted

that the staggered discretization is only employed in the
pressure projection, while in other steps the velocity is still
sampled at the particles for convenience.

The construction of power diagrams, which is the
foundation of Power Particles, is a well-studied spatial
partitioning problem. Both the weight Delaunay triangula-
tion, like CGAL [13], and the local cell-based method, like
VORO++ [14], were extensively adopted for this task previ-
ously. However, those efforts failed to exploit modern GPUs
for parallelization. Meanwhile, the update of the underlying
structure is usually the most time-consuming step in the
simulation loop. Therefore, we propose a GPU-based algo-
rithm, specialized for fluid simulation, to construct the power
diagram in parallel. To better enjoy the GPU parallelism,
our new algorithm constructs power diagrams in a local
facet-based fashion which differs from the local cell-based
VORO++, see Fig. 3.

A great variety of adaptive sampling techniques have
been presented in the field of fluid simulation. Among
them, the recent one from Winchenbach et al. [45] is rather
spectacular due to its decent effectiveness and excellent per-
formance. Although this scheme is originally designed for
SPH, we adopt its idea of particle classification and the
(n+1):n particle merging strategy in Power Particles. We get
rid of the data dependencies in the original method and
eliminate the atomic operations to fit GPU implementation.
Besides, some minor modifications to the particle classifica-
tion also help it fit into the Power Particles as we desire.

4 PRESSURE PROJECTION USING STAGGERED

DISCRETIZATION

Pressure solve is normally the most expensive step in incom-
pressible fluid simulators. Previously, the Power Particles
assemble the one-ring divergence and gradient operators to
achieve the two-away Laplacian. However, the pressure pro-
jection with co-located scheme could cause unnatural particle
clusters and is expensive to solve, as discussed in Section 3.3.

To improve, we make use of the staggered discretization
previously seen in octree [24], tetrahedral [26], [27], hybrid [25]
and Voronoi [35] solvers. Essentially, this scheme defines the
divergence and gradient as facet-particle/particle-facet oper-
ators instead of particle-particle operators. Therefore the
nested Laplacian becomes particle-facet-particle style rather
than the particle-particle-particle form. The details of the
staggered pressure solver are specified in Section 4.1, while
Section 4.2 presents the boundary handling of ourmethod.

4.1 Staggered Pressure Projection

Starting with the intermediate particle velocity v� after the
non-pressure forces applied, we first assume the staggered
velocity v�ij, namely the directional velocity perpendicular
to each facet Aij of the power diagram, is constant within
the facet, and calculate it using a linear interpolation as

v�ij ¼
dijv

�
j þ djiv

�
i

lij
� n̂ij; (9)

where n̂ij ¼ ðqj � qiÞ=kqj � qik is the normal vector of facet

Aij. We then define the divergence of a particle cell following

the divergence theorem as

Fig. 2. The handling of parting particles using Power Particles and our
staggered Power Particles.
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ðr � v�Þi ¼
1

Vi

X
j2Ni

Aijv
�
ij; (10)

where Vi is the volume of the ith particle cell andNi denotes
the set of one-ring neighboring particles of i. Meanwhile, the
scalar pressure gradient of a facet is written as

ðrpÞij ¼
pj � pi
lij

; (11)

and the Laplacian operator can be assembled in a one-ring
operator as

ðr2pÞi ¼ ðr � rpÞi
¼ 1

Vi

X
j2Ni

AijðrpÞij

¼ 1

Vi

X
j2Ni

Aij

lij
ðpj � piÞ:

(12)

Equations (10) and (12) are substituted into the PPE
(Equation (5)) to form the resulting linear system to solve.
Although this Laplacian operator r2 shares a very similar
form with the finite-volume Laplacian D in the volume con-
straints, it is still compatible with the divergence and gradi-
ent operator under staggered discretization. Besides, this
Laplacian operator is also used in the diffusion calculation,
namely Equation (4).

With the pressure solved, the directional pressure gra-
dients on facets can be calculated through Equation (11).
However, since the power cells are usually irregularly
shaped, to evaluate the pressure gradients at particles is not
so intuitive as interpolation. We propose to minimize the
objective function below to recover the vector pressure gra-
dients ðrpÞi on particles:

arg min
ðrpÞi

X
j2Ni

ððrpÞi � n̂ij � ðrpÞijÞ2: (13)

Essentially, this objective function calculates an average vec-
tor influenced by all the facets related to qi, and its solution
on each cell is obtained by solving the equivalent 3� 3
equation locally:

X
j2Ni

n̂ijn̂
T
ij

 !
ðrpÞi ¼

X
j2Ni

ððrpÞijn̂ijÞ: (14)

This vector conversion from facets to particles shares an
essentially similar least-squares fitting approach with the
tetrahedral/Voronoi solvers [27], [49]. Although it does not
perfectly match the interpolation from particles to facets,
our experiments on the kinetic energy demonstrate that the
artificial viscosity it brings is rather negligible, see Fig. 14.
Finally, the particle velocity is updated using Equation (6).

Equipped with the staggered scheme, Power Particles are
free from the particle clustering artifact and are capable of
generating more abundant ricocheting splashes with higher
efficiency, please see the comparisons on visual results in
Figs. 8, 11 and on performance in Section 7.2.

Our pressure projection is similar to the staggered Voronoi
method from Sin et al. [35] in the definition of cell divergence
(Equation (10)) and facet gradient (Equation (11)). The major
difference lies in the conversion of vectors between particles
and facets. In their work, velocities and pressure gradients on
particles are calculated using smooth-kernel-based fitting and
moving least-squares fitting respectively. These are common
techniques to define continuous vector fields based on sample
points, but they inevitably induce numerical damping. To
alleviate this problem, we replace their back-and-forth vector
conversions with linear interpolation (Equation (9)) and local
least-squares fitting (Equation (14)) defined on power dia-
grams. A comparison in our experiments demonstrates that
the decrease in numerical damping with our modification is
quite noticeable, see Fig. 12. Besides, we apply a different
boundary handling strategy with solid particles and ghost air
particles, which will be explained in Section 4.2. There

Fig. 3. TheVORO++ style cell-basedmethod (a-b-e) and our facet-basedmethod (a-c-d-e) to construct power diagrams. (a) All particles aremapped to an
auxiliary grid for the accelerated neighborhood search; (b) For each particle i (the orange dot), the corresponding power cell is constructed by sequential
cell cuts from nearby sites; (c) For particle i the nearby sites within a maximum radius rm are found, and the possible facets from all site pairs ðqi;qjÞ are
generated; (d) The possible facets are used to trim each other in parallel; (e) The remaining facets are collected to form the power cells.
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are also some minor distinctions between the two methods,
e.g., we apply the viscosity implicitly in Equation (4) while
they ignore the viscous term completely in their solver, we
merge their two-step Laplacian calculation into one operator
(Equation (12)) to slightly decrease memory accessing time,
and we do not use cell volumes as weights in PPE since the
substantially varying volumes in power diagrams could affect
the convergence of solution via iterativemethods.

4.2 Boundary Handling of Our Method

Boundary handling usually plays an indispensable role in
fluid simulation. Our approach supports two kinds of bound-
aries: solid boundary and free surfaces. Specifically, we
dynamically sample solid particles as the symmetrical mirror
of the fluid particles through the solid boundaries at run time
to clip the power diagrams according to the exact boundary
shape, see Fig. 4. These clipping particles do not have pressure
values and are excluded in the PPE. They do not have power
weights either since the solid shape is already known. For
solid-fluid coupling at facet Ais, the boundary flux Aisvs is
included in the divergence of fluid particle i in Equation (10),
where vs denotes the velocity of the moving boundary along
the normal direction n̂is of facetAis.

For free surfaces, ghost particles are adopted for fluid-air
interaction. These particles are populated around the fluid
particles in each time step, clipping the fluid power cells
on the outer layer and fulfilling the free-surface boundary
condition. They are excluded from the PPE since the incom-
pressibility of these cells is less meaningful. Though they
hold no determined velocity or pressure, they offer these
values in a ghost-fluid fashion [50] at run time. For example,
when a ghost particle qg is accessed through facet Aig, its
pressure is defined as pg ¼ �ðdgi=digÞpi and velocity vg ¼ vi.
Furthermore, their power weights are set uniformly to offer
a good boundary reference to other particles.

5 PARALLEL POWER DIAGRAM CONSTRUCTION

Without doubt, the construction of power diagram is themost
computationally intensive and time-consuming step in the
power-particle simulation. Previous works usually resort
to existing libraries, such as CGAL [13] or VORO++ [14],
for robust implementation of power diagram construction
on CPUs. However, the algorithms are not adequate to paral-
lelize. Instead, we propose a parallel power diagram cons-
truction algorithm and implement it on GPU to accelerate
the construction significantly. We first elaborate the ideas

of our algorithm in Section 5.1 and then some details of
implementation in Section 5.2.

5.1 The Algorithm of Power Diagram Construction

Employing a local strategy in the construction of power dia-
grams, VORO++ treats every particle cell Vi individually by
iterating through all of its neighboring particles and repeat-
edly cutting the cell using the possible weighted planes Aij.

This idea requires repeatedly updating polyhedral cells with
the number of facets and vertices unpredictable beforehand,
however, this is extremely time-consuming on GPUs. In con-
trast to the cell-based method of VORO++, our method
constructs all the facets first and assembles power cells with
the corresponding facets afterwards. This strategy not only
avoids the expensive dynamic memory management but also
takes full advantage of memory coalescing in every parallel
step tomaximize the power ofmulti-threading.

Our construction is also founded upon the fact that in
fluid-simulation circumstance any two neighboring fluid par-
ticles should be close enough to some extent, or they should
be separated by other fluid cells or ghost solid/air cells. As
a result, the possible neighbors of a site are confined to a sur-
rounding narrow spatial range.

Algorithm 3. GPU-Based Power Diagram Construction

input:weighted sites ðq; wÞ, maximum spacing rm
output: power cells V

1 Insert boundary/ghost particles;
2 Set up the auxiliary grid for neighborhood search;
/*allocate possible facets*/

3 for the ith site in parallel do
4 for the jth neighboring site within the radius of rm do
5 Generate possible facets Âij;
/*trim facets*/
6 for the possible facets Âij in parallel do

7 for the possible facets Âik; k 6¼ j do

8 trim Âij with Âik;
/*collect facets to form cells*/

9 for the ith site in parallel do
10 for the possible facets Âij do
11 Collect Âij as Aij if Aij > 0;
12 Form the power cell Vi;

Our algorithm to construct power diagrams can be seen
in Algorithm 3 and Fig. 3. First of all, the boundary/ghost
particles are sampled on fluid-solid or free boundaries to
clip the power diagrams. Inspired by the index-sort neigh-
borhood search widely used in VORO++ and various SPH
methods [1], our method also utilizes an underlying uni-
form grid for efficient particle accessing. With this auxiliary
grid established, all sites within a grid cell are placed
continuously in the array and can be accessed efficiently in
a coalesced manner by GPUs. For each site qi, after finding
all nearby sites within a maximum spacing rm, we generate
its possible facets Âij from all possible site pairs ðqi;qjÞ.
These possible facets are then used to trim each other, and
during this process, some may be nullified if they are
completely eliminated by other possible facets. Finally, the
remaining facets Aij are collected as the faces of the local
power cell. Please see our supplementary video for an ani-
mated illustration of the power construction.

Fig. 4. A 2D example of power-particle spatial partition during fluid simu-
lation. The solid particles are calculated as the symmetrical mirror of fluid
particles through the exact boundary, while ghost particles are populated
around the free surface to clip the cells on the outer layer.
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5.2 Details of Implementation

Compared with the cell-cut operation in VORO++, our
facet-trim process circumvents the dynamic memory man-
agement, which is difficult to handle for GPUs, by allocating
memory for all possible facets Âij in advance before the gen-
eration and trimming. However, this pre-allocation scheme
consumes much more memory than enough since the exact
amount to store the valid facets can hardly be predicted
beforehand, and may easily exhaust all on-chip GPU mem-
ory when millions of particles are simulated simulta-
neously. To cope with this problem, the power cells are not
computed all at once, but batch by batch. In each iteration, a
batch of particles is processed through the steps of generat-
ing possible facets, trimming facets and forming power cells
(lines 3 - 12 in Algorithm 3), then the memory buffers are
refreshed for the next batch. The sequential construction of
power cells in VORO++ can be seen as a special case where
the batch size equals to 1, while the typical batch size used
in our implementation is 10k to offer a balance between
memory overhead and calculation expense.

Within the construction process, the most time-consuming
step is the facet trimming whose time complexity is Oðnk2Þ,
while both allocating possible facets and collecting facets
have the complexity ofOðnkÞ, where n denotes the total num-
ber of fluid cells and k the average number of possible facets
for each cell. The complexity of trimming appears to be unac-
ceptable at first glance. However, if we allocate a GPU thread
for each possible facet, the complexity on each thread is only
OðkÞ. In addition, the GPU memory coalescing further sub-
stantially decreases the accessing cost during computation.
Meanwhile, a reasonable choice of rm is crucial to keep the
computational cost low while maintaining the accurate con-
struction of the power diagram. In our experiments, rm is
empirically set as twice the largest particle diameter and k
never exceeds 128, hence the time complexity of these three
steps can be assumed to have a linear upper bound. Other
components like ghost particle insertion or neighborhood
search are commonly seen in most SPH solvers and are
extremely fast when implemented properly onGPUs.

6 ADAPTIVE PARTICLE SAMPLING

This section covers the adaptive sampling strategy for dynam-
ically adjusting the particle size and distribution during
simulation.We draw inspiration fromWinchenbach et al. [45]
and propose an adaptive sampling method for Power Par-
ticles free of atomic operations and data dependencies.
Illustration examples for both 3D and 2D can be found in

Figs. 5 and 4. Section 6.1 introduces the sizing functionwe use
as well as the particle classification process, followed by the
particle splitting and merging strategy in Sections 6.2 and 6.3
respectively.

6.1 Particle Classification

The most interesting parts of fluid flows lie in the vicinity of
free surfaces and should be simulated with the finest resolu-
tion, while far beneath the boundary the subtle fluid move-
ment is less noticeable to human eyes. Winchenbach et al.
used Level-set functions to calculate the SPH particles’ dis-
tance to free surfaces. In Power Particles, however, the air
boundaries are well specified, therefore we approximate the
distance to surface di in a cheaper flood-fill fashion
di ¼ minðdjÞ þ lij; j 2 Ni, where the particles near free sur-
faces have di ¼ 0 initially. We then use a sizing function to
figure out a reference volume V ref

i for each fluid particle,

V ref
i ¼ min

hþ di
dmax

; 1

� �
V max; (15)

where h is the diameter of the finest particle and dmax controls
the field of interests beyond which the reference volume is
constantly set as V max. In all demonstrated experiments, dmax

is set to 16h and V max is set to 16h3. Particles are classified
according to the ratio of their volumes to the reference vol-

umes V rel
i ¼ Vi=V

ref
i into following categories,

Ci ¼
T V rel

i < 0:5
S 0:5 � V rel

i < 1:5
O 1:5 � V rel

i < 4
L 4 � V rel

i

8>><
>>: ; (16)

depending on which they should be split, merged or left
intact: L-class particles are too large and should split into
smaller ones while T -class particles are tiny and are likely
to be merged and deleted; S-class and O-class particles have
appropriate volume, but S-class particles are relatively
smaller so they can receive more when a nearby particle is
merged, while O-class particles are left intact.

6.2 Particle Splitting

When a particle is categorized as L-class, it splits into several
smaller particles which have equal volume and are distrib-
uted within the original cell. In our implementation, an
L-class particle i is split into ni ¼ minð Vi=V

optb c; 8Þ particles,
where �b c is the floor function. Note that we set 8 as the upper
limit of ni only for coding feasibility. If a newly allocated

Fig. 5. A 3D example of the particle adaptive sampling with the cells color-coded according to their volumes. From left to right: 36k uniform particles,
70k particles with adaptivity, 147k uniform particles. The example of 70k particles with adaptivity manages to achieve similar surface resolution as
the 147k uniform example while maintaining a coarse particle distribution beneath the surface.
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particle is categorized asL-class again, it can be further split in
the following time steps. For each ni, we use a pre-
computed pattern (see Fig. 6) as sites for new particles, and
the volume and velocity of new particles are Vnew ¼ Vi=ni and
vnew ¼ vi, accordingly.

6.3 Particle Merging

T -class particles are too fine for their local resolution and
therefore can be merged into their neighborhood. Inspired by
Winchenbach et al. [45], we accomplish the merging in an
(n+1):n pattern,where T -class particles are removed and their
volumes are evenly divided and scattered to the neighboring
S-class particles. However, when parallelized, this approach
has two main drawbacks. First, if several T -class particles
share one S-class neighbor, the divide-and-scatter operation
towards this target should be atomic, which is totally feasible
but not efficient on GPUs. Second, simply removing all
T -class particles at once may contradict data dependencies
and cause problems, see the top row of Fig. 7. During the
merging procedure, when one T -class particle is removed, its
neighboring T -class particles should also receive their shares
of volume just like S-class particles do. Yet in the previous
method, these T -class particles are removed simultaneously,
which induces the faulty distribution of fluids.

To correct these drawbacks, we set a restriction that
T -class particles should not be next to each other, see the
bottom row of Fig. 7. By doing so, T -class particles do not
have to transfer volume to other T -class particles which are
removed simultaneously. Besides, we can eliminate the
atomic operations by using the S-class particles to gather
their shares from neighboring T -class particles rather than
applying the divide-and-scatter operations.

Algorithm 4. Picking Valid T -Class Particles

input: a set of candidate T -class particles Pcand, picking
probability ppick, number of passes npass, two empty sets PT

and Ptemp

output: unconnected T -class particles PT

1 k ¼ 0;
2 for k < npass do
3 Empty Ptemp;
4 Randomly pick particles from Pcand into Ptemp under

probability ppick;
5 for the ith particle in Ptemp in parallel do
6 if qi has no neighbors in Ptemp and PT then
7 PT ¼ PT [ fqig
8 k ¼ kþ 1;
9 Pcand ¼ Pcand � PT ;
10 Tag particles within PT as T -class;
11 Tag particles within Pcand as S-class;

In terms of implementation, we determine a subset of
T -class particles that is unconnected. This is equivalent to a
graph coloring problem which is NP-hard to find an optimal
solution. Nonetheless, we are not attempting to seek the

perfect solution, but only to work out a fast and convenient
one suitable to be solved onGPUs.Wepropose to use a simple
randompickingmethod iteratively to determine the subset, as
shown in Algorithm 4. In each pass, particles are rand-
omly picked and tested, and those without T -class neighbors
are combined into the target subset. Those candidates who
are not categorized as T -class particles after several passes are
tagged as S-class for receiving volume during the particle
merging. This picking strategy is extremely fast on GPUs, and
the small particles which miss all the passes can be further
merged in the upcoming time steps. The picking probability
ppick and number of passes npass can be increased to allow
quicker adaption, but values too high would undermine
the chance of finding the unconnected candidates (line 6 in
Algorithm 4), thus making the picking less effective. In our
experiments, 10 passes of randompickingwith 0.1 probability
is used.

With T -class particles satisfying the unconnected restric-
tion, the ith S-class particle can update its volume, position
and velocity using a volume-weighted average as

V new
i ¼ Vi þ

X
j2Ni\PT

Vj

nj
;

qnew
i ¼ 1

V new
i

Viqi þ
X

j2Ni\PT

Vj

nj
qj

 !
;

vnewi ¼ 1

V new
i

Vivi þ
X

j2Ni\PT

Vj

nj
vj

 !
;

(17)

where PT denotes the selected subset of T -class particles
and nj is the surrounding S-class particles count of the jth
T -class particle. Finally, the merged particles are removed
from the simulation.

7 EXPERIMENTAL RESULTS

In this section, we validate our method through experiments
and comparisons. The visual results are presented in
Section 7.1, while the quantitative analysis and discussion
are provided in Section 7.2. We compared the proposed
method with the pressure projection from Sin et al. [35] as
well as the original Power Particles [12] based on our own
implementation. All of our experiments were implemented

Fig. 7. Previous merging strategy should use atomic scattering operations
and would contradict the data dependencies if the merging is applied at
once, while ours uses gathering instead and is thread-safe.

Fig. 6. The pattern used to split the orange particle into the blue sites.
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by CUDA C/C++ (staggered methods) or by OpenMP and
VORO++ [14] (staggered methods and co-located methods)
andwere tested on a PCwith an Intel Core i7-6700k CPU and
anNvidia Geforce GTX1070 graphics card. The visual results
were achieved by extracting fluid surfaces throughMarching
Cubes and offline renderingwith Cycles in Blender.

To test the capabilities of our method and tomake compar-
isons, we build several scenarios, including a colliding
spheres scenario (Fig. 8), a dam break scenario (Fig. 9), a col-
liding fountains scenario (Fig. 10), a sphere drop scenario
(Fig. 11), a double dam break scenario (Fig. 12), a wave gener-
ator (Fig. 13) and a rotating vortices scenario (Fig. 14). All of
these test cases were simulated within a cube whose edge
length was set to 1 m and the acceleration of gravity
g ¼ 9:8 m=s2. Furthermore, the timesteps for low-resolution
(< 100k particles) and high-resolution (� 100k particles)
examples are 0:004s and 0:001s respectively to limit the CFL

number a ¼ Dt maxkvk
h no greater than 1, where h is the diame-

ter of the finest particle.

7.1 Visual Results

Figs. 8, 9, 10 and 11 juxtapose the visual renderings using our
proposed staggered Power Particles and the original Power
Particles. Similarities in the overall water movement, at a
glance, can be found; however, the proposed approach is
capable of yielding results with finer features and more
details on free surfaces. In the colliding spheres scenario
(Fig. 8), two water balls collide towards each other in a zero-
gravity space. Our staggered Power Particles generate a sub-
stantially greater amount of sprays during this collision,while
the original Power Particles suffer severely from the particle
clustering problem and fail to form highly detailed sprays
even if the viscosity is set to zero. In the colliding fountains
scenario (Fig. 10), two columns of water collide to form
splashes. As it drops onto the ground, thewater sheet starts to
wobble shortly after its formation (see the accompanying
video) due to the perturbation in dynamics, where the origi-
nal Power Particles wobble much more frequently than the
proposed staggered method. In the sphere drop scenario

Fig. 8. The rendered results of the colliding spheres scenario under different kinematic viscosity (n ¼ 0; 1e�3 and 1e�2, respectively) with 60k staggered
Power Particles on the left and 60k Power Particles on the right. Particle clusters are formedwith Power Particles due to negative pressure on surfaces,
while the staggered Power Particles are free from this artifact, creating abundant tiny splashes in the simulation.

Fig. 9. The rendered results of the dam break scenario. From left to right: 18k staggered Power Particles, 147k staggered Power Particles, 147k
Power Particles. In this test, the 147k staggered Power Particles is roughly 14 times faster than the 147k Power Particles.

Fig. 10. The rendered results of the colliding fountains scenario. From left to right: 320k staggered Power Particles, 165k adaptive staggered Power
Particles, 320k Power Particles. In this test, the 320k staggered Power Particles and 165k adaptive staggered Power Particles are respectively
8 and 15.5 times faster than the 320k Power Particles.
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(Fig. 11), a water ball plummets to calm water, creating a
crown-like splash and then some water spikes. Noticeably,
our method manages to produce more abundant ricocheting
droplets in contrast to particle clusters with the original
Power Particles.

In Figs. 9 and 11, the same scenarios are simulated with
low-resolution and high-resolution examples. Similar fluid
motion can be observed, with the high-resolution examples
standing out with detailed surface behaviors. Besides, we
incorporate the adaptive particle sampling method in
Figs. 10 and 11, which allows the simulation using merely
half the particles to achieve the same visual results as the
full resolution examples without noticeable difference.

To test the ability of our method in handling large-scale
simulation, we use 1 million staggered Power Particles in
the double dam break scenario as shown in Fig. 12. We also
compare our pressure projection method against the one
from Sin et al. [35] under this setting since both methods
share a similar staggered discretization. In comparison,
their method displays more numerical damping while ours
generates more highly detailed water sheets and splashes.
For solid-fluid coupling, a moving wall is used in Fig. 13 to
periodically push the water in the tank, resulting in a desir-
able breaking-wave effect.

7.2 Quantitative Analysis and Discussion

Numerical Viscosity. In staggered Power Particles, the recovery
of velocity gradients from facets to particles (Equation (14))
does not perfectly match the interpolation from particles to
facets (Equation (9)), hence the conversion could give rise to
numerical viscosity. Fig. 14 demonstrates an example of four
rotating vortices in a unit cube. After 1000 timesteps, both the
proposed method and the original Power Particles maintain
the vortices well with a very similar decay of kinetic energy
with or without the viscosity. This result offers strong evi-
dence that the numerical viscosity brought by the staggered
discretization, particularly the unmatched velocity conver-
sion, is rather negligible.

Performance. Owing to the GPU implementation, our
method gains significant performance boost compared with
the CPU-based Power Particles. The speedup of power dia-
grams construction lays a good foundation for the fluid simu-
lator since updating the underlying spatial partition has
always been themost time-consuming part. A speed compari-
son is conducted across several scenarios and the results are
shown in Table 1 and Fig. 15, where the data indicate that our
method outperforms the original method over 10 times. We
also implement our method on CPU to test the minor speed
gain brought solely by the staggered discretization, which

Fig. 11. The rendered results of the sphere drop scenario. From top to
bottom: 52k staggered Power Particles, 418k staggered Power Particles,
216k adaptive staggered Power Particles, 418k Power Particles. The
adaptive particle sampling helps demonstrating similar visual details with
merely half the particles. Additionally, the staggered scheme manages to
produce more abundant ricocheting droplets in contrast to particle clusters
with the original Power Particles. In this test, the 418k staggered Power
Particles and 216k adaptive staggered Power Particles are respectively
25 and 76 times faster than the 418k Power Particles.

Fig. 12. The rendered results of the double dam break scenario with 1 million staggered Power Particles. The left sequence is simulated with our
standard method and the right one with the pressure projection proposed in Sin et al. [35]. Noticeably, our method demonstrates less numerical
damping in this comparison.

Fig. 13. The rendered results of the waves scenario with 576k staggered
Power Particles.

Fig. 14. The rotating vortices scenario. Both the staggered Power Particles
and the original Power Particles are tested with or without viscosity
(n ¼ 0:005), and the resulting energy profiles are comparable. Top: the
streamlines after 1000 timesteps. Bottom: the corresponding energy
statistics.
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mainly influences the speed of pressure calculation. With
the achieved speedup, the time cost of high-resolution Power
Particles is cut from days to hours, while the low-resolution
simulation with the proposed method could even serve
as the preview demo for interactive designing or similar
applications.

Volume Error. To manifest the ability of our algorithm in
handling uneven cell volume arrangement, Fig. 16 shows
a hydrostatic test on a narrow tank of liquid with various
initial cell volumes over the domain. After 1000 timesteps,
the position and shape of the cells hold well with barely per-
ceptible volume error. This ability to accurately maintain
the cell volume ensures a stable and even density/mass
distribution in our method.

Adaptivity. Fig. 17 offers statistics of particle numbers
over time in the colliding fountains scenario. With the adap-
tivity turned off, the water is injected into the scene at a con-
stant rate hence the particle number grows linearly over
time up to 320k. When the adaptivity is enabled, the particle
number increases rapidly at first and slows down when the
water accumulates at the bottom. The particle number
reaches at most 165k particles, about half the number of the

full-resolution example, without having noticeable discrep-
ancy in surface details visually.

8 CONCLUSION AND FUTURE WORKS

By integrating Power Particles with the staggered discretiza-
tion as well as our newly proposed parallel power-diagram
construction, this paper has detailed a fully GPU-based
method for fluid simulation, staggeredPower Particles, which
not only outperforms the previous method with highly
detailed surface effects but also yields a significant perfor-
mance gain in both the construction of power diagrams and

TABLE 1
The Statistics of Calculation Overhead (in Seconds) of each Step

scenario power diagram pressure volume ghost particle diffusion others total

dam break 18k SPP 0.062 0.038 0.038 0.001 0.004 0.000 0.145
dam break 147k SPP 0.415 0.065 0.066 0.004 0.011 0.000 0.563
dam break 147k PP 5.360 1.209 0.355 1.154 0.307 0.038 8.424
dam break 147k SPP (CPU) 5.352 0.819 0.365 1.145 0.307 0.035 8.025
fountains 320k SPP 2.002 0.083 0.077 0.007 0.021 0.000 2.19
fountains 165k adaptive SPP 1.098 0.056 0.052 0.005 0.017 0.005 1.233
fountains 320k PP 12.54 3.138 0.937 2.747 0.915 0.038 20.344
fountains 320k SPP (CPU) 12.44 1.948 0.969 2.680 1.008 0.038 19.089
sphere drop 52k SPP 0.119 0.039 0.038 0.001 0.004 0.000 0.203
sphere drop 418k SPP 0.966 0.098 0.091 0.009 0.021 0.000 1.187
sphere drop 216k adaptive SPP 0.247 0.064 0.060 0.006 0.012 0.009 0.400
sphere drop 418k PP 20.65 4.772 1.202 3.287 0.880 0.025 30.824
sphere drop 418k SPP (CPU) 20.56 2.440 1.253 3.227 0.865 0.026 28.379
double dam break 1M SPP 2.569 0.119 0.168 0.016 0.041 0.000 2.913
waves 576k SPP 1.545 0.109 0.105 0.009 0.034 0.000 1.804

From the second column, the overhead of the power-diagram construction, the pressure projection, the volume enforcement, the ghost-particle generation, the
diffusion, other procedures (including advection and adaptive sampling) as well as the total expense are displayed respectively.

Fig. 15. The comparison of simulation overhead per time step between
the staggered Power Particles and the original Power Particles [12]. Not
only our GPU-based algorithms provide a significant improvement on
efficiency, our staggered pressure solver is also much faster on CPU.

Fig. 16. The 1000-th timestep of a hydrostatic test with various cell volumes.
The volume of each cell is shown on the left, and the percentage error, with
respect to the initial volume, is demonstrated on the right.

Fig. 17. The statistics of particle number in the colliding fountains
scenario (Fig. 10) with adaptivity enabled and disabled. The adaptive
particle sampling allows using about half the particles to achieve the
similar surface effect.
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the overall fluid simulation. By continuing to equip it with the
ability of adaptive particle sampling, our method has become
an efficient and flexible fluid simulator, capable of producing
vivid and photo-realistic fluid motion even with a relatively
small number of particles. The extensive experiments have
validated both efficacy and adequacy of our research, and
the sharp comparisons with the previous method have also
demonstrated the advantages of our method computationally
and visually.

Our present work still has much room for improvement.
For example, in the experiments of the colliding fountains
scenario, despite the fact that the adaptivity we incorporate
enhances the visual results significantly, the holes within the
water sheet have yet to be completely eliminated. A possible
solution for remedy is to make use of some geometrical tech-
niques such as anisotropic particle repositioning [7], [51].
Another thing to improve would be to exploit the cut-cell
boundary handling by Brochu et al. [36] to better capture
the surface details. Besides, we are considering coupling
the Power Particles with the SPH method and grid-based
methods, aiming at taking the advantages of all in a single
simulation framework.
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