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II. PROPOSED SYSTEM MODEL WITH VARYING IV SIZE

The considered system model is motivated by the fact that
the relative size of I'Vs is a design choice for many MapReduce
applications. The goal of this work is to utilize the design
freedom in defining map and reduce functions to develop new
low-complexity CDC designs that support varying IV sizes.
This distinguished feature yields novel CDC designs with
greater flexibility, i.e., designs that can operate under a wider
range of system parameters. This is in contrast to previous
CDC designs (e.g., [4], [6], [11]) that can only operate with
constant IV sizes. For this reason, we adopt a more general
system model of the original CDC work [4].

We consider a network of K nodes, labeled 1,..., K.
The whole dataset is split into /N equally sized input files,
{wy,...,wyn}, based on the specific design. The system aims
to compute K output functions, ¢i(wy,...,wn),k € [K],
each of which requires all N files as input. The output
function ¢, is assigned to node k.* In general, as the dataset
may be large, node k only has access to a subset of files
My, € {ws,...,wn} and each file is available at r nodes.
Since nodes do not have access to all NV files such that
they cannot directly compute their assigned output function,
a MapReduce framework is used which has three phases as
follows. While in a typical MapReduce framework, the IV
sizes are fixed, in the following, we describe a MapReduce
framework that allows varying IV sizes. The proposed FLCD
scheme is based on this modified framework.

Map Phase: Nodes compute I'Vs from locally available files.
Each node £ uses each locally available file w,, € M}, as input
to the map functions, {g1 n,..., 9K n}. to compute the IVs,
{vin,-.., VK n}, with possibly different lengths, i.e., vy, =
Gin(wy) and |vg | = T bits. The relative IV sizes, Ty, k €
[K], are based on the choice of the specific map and reduce
function designs.

Shuffle Phase: Each node k broadcasts a (coded) message
set X} on a shared-link, over which X, sent by node k can
be received by all other nodes without errors. All (coded)
messages, Ay, are designed so that each node £ can collect
every IV vy, for n € [N]. In general, messages, X}, may
include coded combinations of IVs such that nodes can decode
requested I'Vs using locally computed I'Vs.

Reduce Phase: Each node %k computes the reduce func-
tion, hi(vga,..., vk N), with all IVs, {vg1,..., vk N}, as
input. The map and reduce functions are designed such that
hi (Vs - veN) = Gr(wr, -+, wN).

Under this framework we define the computation load, r, as
the mean number of times each file is mapped to the system

K
1
s
rs N};wkh (1)

which can be understood as the number of times that each IV is
computed in the system. In conventional uncoded MapReduce

3Each output function can be a collection of many functions. When there
are more functions than nodes, we can group the functions into K non-
overlapping sets and define these sets as output functions.

we find » = 1 where each file is only mapped once on the
computing network. In this paper, for simplicity, we will just
consider the case when r is an integer.* Next, we will present
an example of TeraSort to illustrate the the system model de-
scribed above and put particular focus on the heterogeneous IV
sizes. TeraSort is widely used as a benchmark for MapReduce
platform.

Example 1: TeraSort Map and Reduce Function Design: The
K computing nodes aim to use TeraSort to sort a large set of
integers in the range of [0,7) in a distributed manner. We
design K reduce functions, where node k is assigned reduce
function hy,Vk € [K]. The reduce functions sort integers
of a specific range defined by bounds zg,z2;,...,2x in an
ascending order with zp = 0 and zx = Z > 0. Reduce
function hy, sorts integers in the range of [z;_1,2;). Then,
map functions are designed to hash the integers of each file
into bins defined by the bounds. Map function gy ,, returns
the IV vy, which includes the integers of file w,, in the
range of [z;_1, 2% ). After the map phase, the nodes shuffle the
corresponding I'Vs such that each node & collects all integers in
range [z—1, 21 ) to be sorted with reduce function hy. After the
reduce phase, the integers will be sorted across the computing
network. A

Compared to previous works in CDC, we study a more
general framework where IVs can have varying sizes that
are dictated by the map and reduce function designs. Let the
number of bits of IV vy, ,, be T}, bits, which only depends on
the corresponding reduce function, hy. Then, we define the
communication load, L, as the number of bits transmitted on
the shared-link normalized by the total number of bits from
all IVs

K
-y Zk:l |Xk|
£ =k=LP -
N> 1Tk
where |Xj| is the total number of bits from all transmitted
messages in Xj.

Definition 1: The optimal communication load or the opti-
mal communication-computation tradeoff is defined as

2)

L*(r) 2inf{L: (r, L) is feasible}. 3)
O

Next, we will present an example based on the previous
TeraSort example to illustrate the possibility to vary the sizes
of IVs in practice.

Example 2: Design Choice of Relative IV Sizes: The design
of the map and reduce functions dictates the sizes of the I'Vs.
Continuing Example 1, assuming the N files are the same size
and the integers follow a uniform distribution, the size of IV
Vg 18 T, = 2221 . |w,,| with high probability where |w,,|
is the size in bits of each file. The bounds, zg, z1, ..., 2K, can
be chosen accordingly to have desired varying IV sizes. A

In contrast to the proposed system model that supports
varying IV sizes, the state-of-the-art CDC designs typically
assume constant IV sizes. We will provide a brief description
of these as below.

4The case of non-integer 7 can be solved by using the similar memory-
sharing scheme used in classical coded caching literature [21].
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III. STATE-OF-THE-ART ACHIEVABLE DESIGNS WITH
F1XED IV SIZES

Currently, there are only two CDC designs whose perfor-
mance has been demonstrated through empirical evaluations
over Amazon EC2 as shown in [4]-[6], [27]. These both
assume constant IV sizes. The first is the LMYA design of
[4], [27]. Under the system model in [4], the LMYA design
achieves the information theoretic optimal communication-
computation load tradeoff of

LMYA * 1 r
L (r)—L(r)—r(l K). @)
We will show in this paper that, this tradeoff is only optimal
under the specific design framework of [4], which assumes the
same IV sizes across the network.

In short, the LMYA design operates by mapping a file at
every unique set of r nodes. Then, for the Shuffle phase, every
unique node group of size r 4+ 1 nodes forms a shuffle group.
The shuffle group is special in that each node requests IVs
from a file that is locally available at every other node in the
shuffle group. Each message of A sent from node £ is a
network coded multicast message that serves r independent
requests of the other nodes in the shuffle group. Each of the r
nodes in each shuffle group can successfully decode requested
IVs from the coded multicast message of Xj. Hence, there
is a multiplicative gain of r in terms of communication load
using this coded multicasting scheme compared to the conven-
tional unicast approach. Although the promising theoretical
performance achieved by the LMYA design, it has a high
complexity because it requires N = ([: ) input files, where
each file is mapped to a set of r nodes. Also, the scheme
requires G = (rfl) shuffle groups, significantly increasing
the overhead in CDC implementations as shown in [4], [27].

The second practically implemented design is the KR design
of [5], [6] which has a reduced complexity as it only requires
N = (%)Pl files and G = (£)"" (£ — 1) shuffle groups.
While files are mapped to node groups of size r nodes,
the mapping is not to every unique set of r nodes. This
significantly reduces the complexity. Both files and shuffle
groups have been reduced exponentially compared to those of
the LMYA design. Moreover, the multiplicative gain of coded
multicasting is maintained and the communication load is

e e

which is asymptotically optimal as r goes to infinity. However,
this scheme only works for homogeneous systems (i.e., the size
of all M, are the same) and only holds for the limited param-
eter settings where m = % is an integer. This requirement can
be very restrictive. For example, if K = 25, then the possible
choices of r are only 1,5,25, where » = 1 (conventional
MapReduce system) and r = 25 (no needed communication)
are not interesting cases. The optimal choice of r might
not be achievable with the KR design. Moreover, both the
LMYA and KR designs only operate under the assumption of
homogeneous IV sizes.
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Fig. 1: Uncoded MapReduce with » = 1, N = 8 files
and K = 3 nodes from Example 3. Nodes unicast locally
computed intermediate values (IVs) to the other nodes over a
shared link.

IV. EXAMPLES OF THE PROPOSED FLCD FOR K = 3

In this section, we present two examples to illustrate the key
idea of the proposed FLCD scheme for the special case K = 3
nodes. Although the specific designs described here are differ-
ent from those of the general design for K > 3, these examples
outline the fundamental concepts of our system model and
demonstrate how to design the Shuffle phase when IVs have
varying size. Moreover, the examples demonstrate that under
our general design framework which allows different IV sizes,
the fundamental tradeoff, L'™MYA of [4] originally derived
for the homogeneous IV sizes no longer holds. Example 3
outlines the conventional uncoded MapReduce approach based
on unicast where each input file is mapped at exactly r = 1
node. Even for this uncoded case, we show that allowing
variable IV sizes results in a lower communication load than
that of [4]. In Example 4, FLCD is applied to a network of
K = 3 nodes and each input file is mapped to r» = 2 nodes.
This example uses coded multicasting, and our design with
varying IV sizes again improves on the communication load
of [4].

Example 3: Conventional Uncoded MapReduce: As shown
in Fig. 1, a network of K' = 3 nodes aims to compute 3 output
functions, one assigned to each node. There are N = 8 input
files and each is mapped to 7 = 1 computing node. Nodes 1, 2
and 3 map the files of My = {wy,ws}, Mo = {ws, wy, w5}
and M3 = {wg, wr, ws}, respectively. In the map phase, each
node computes 3 Vs, one for each output function, from each
of its locally available files. Moreover, the map functions are
designed such that 277 = T, = T3 and IVs for node 1’s reduce
function (red circles) contain half the number of bits of IVs
for node 2 and 3’s reduce functions (green triangles and blue
squares, respectively).

The shuffle phase is necessary so each computing node can
collect the needed (or requested) I'Vs for its reduce function
corresponding to its assigned output function. Nodes 1, 2
and 3 will be required to have the access to all the 8 IVs
represented by red circles, green triangles, and blue squares,
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respectively, as shown in Fig. 1. In order to accomplish this,
each node transmits the required IVs to the other two nodes
on the shared-link. For instance, node 1 transmits IVs v3
and v 2, represented by green triangles numbered 1 and 2, to
node 2. Similarly, node 2 transmits IVs v3 3, vs4 and vs s,
represented by blue squares numbered 3, 4 and 5, to node 3.
Finally, after the shuffle phase, each node uses the appropriate
IVs as input to reduce functions to compute the desired output.
In this example, we see that Node 1 maps 2 files, requests 6
IVs, and the length of each IV is shorter with 7} bits. Node 2
and 3 each maps 3 files, requests 5 I'Vs, and the size of each
IV is longer with T5 = T3 bits.

Next, we derive the resulting communication load in this
case, denoted by LU"@t(1). Note that, the total number of
bits in all IVs is N(T} + T + T3). Also, the number of bits
transmitted on the shared-link is 677 + 575 + 573 as seen in
Fig. 1 where 6 IVs of length 77 (red circles), 5 IVs of length
T5 (green triangles), and 5 IVs of length T3 (blue squares) are
transmitted among the nodes. Hence, given 27} = Ty = Tj,
we obtain
6771 + 571 + 573
N(Ty + T + T3)

677 + 107y + 107y 13

= — 6
8(T1 + 217 + 2T1) 20’ ©
which is less than

DAL =L (- ) =1 (1- 1) = 4
achieved by [4].

Example 4: Coded MapReduce with FLCD: We study the
same network of Example 3, where K = 3 nodes aim
to compute 3 output functions from N = 8 input files.
Here, nodes 1, 2 and 3 will need to collect all IVs repre-
sented by the red circles, green triangles and blue squares,
respectively, as shown in Fig. 2. Unlike the conventional
MapReduce, in FLCD, each file is strategically mapped to
r = 2 nodes. Specifically, nodes 1, 2 and 3 map the files
of Ml = {wl, wa, W3, wg}, MQ = {wl, w3, Wy, Wy, Wy, wg}
and M3 = {ws,wy, w5, we, w7, ws}, respectively. Nodes
compute IVs from their locally available files. Similar to
before, we let IVs have different lengths, i.e., 27} = Ty = T5.
In this example, we see that Node 1 maps 4 files, requests 4
IVs, each IV is of a shorter length 7. Node 2 and 3 each
maps 6 files, requests 2 I'Vs, and each IV is of a longer length
Ts.

In the shuffle phase, we look for coded multicasting op-
portunities where a coded message can serve two independent
node requests as shown in Fig. 2. In particular, the IVs v3
and vs 3, represented by blue squares numbered 1 and 3, are
available at nodes 1 and 2 and requested by node 3. Similarly,
IVs v o and vy ¢, represented by green squares numbered 2
and 6, are available at nodes 1 and 3 and requested by node 2.
Hence, node 1 can transmit the coded pair v3; @ v 2 where
“@®” represents the bit-wise XOR operation. Note that vs ;
and v2 o have the same size. Nodes 2 and 3 can recover their
requested IVs from this coded multicast using their locally
computed IVs. The transmitted coded message from node 3 is
(v1,7,v1,8) @ v26. Here, “(,)” represents the concatenation of
two IVs which is necessary since the I'Vs for output function 1
are half the size of those for output functions 2 and 3. Using

Lunicast ( 1) —
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Fig. 2: Coded MapReduce using FLCD with K = 3, r =
2, and N = 8 of Example 4. Coded multicast messages are
transmitted from one node to the other two nodes through a
shared link.

locally computed IVs node 1 can recover v;,7 and vy g and
node 2 can recover v ¢. The transmitted coded message from
node 2 can be designed similarly to those of node 3.

As shown from Fig. 2, given that 277 = T, = 753, the
coded messages transmitted for all nodes have the same size
of T, = T3 bits. For instance, the coded message from node
2 to node 1 and 3 is generated by doing the XOR of the
concatenation of two IVs of length T} (for a total length of 27}
bits) and one IV of length 75. The resulting coded message
has a length of 27} = Tj bits. Hence, the communication load
is given by

KT,
N(Ty + T» + Ts)
32T 3

= — 7
8(Ty + 2Ty 1 21,)  20° ™

LFLCD (2) —

which is significantly less than that of that of Example 4 where
Lrmicast(1) = 13 due to the use of coded multicasting. It also
improves upon the fundamental communication-computation
trad-eoff LMMYA(2) = 1, calculated from (4). A

Remark 1: Interestingly, for Examples 3 and 4, the proposed
FLCD schemes achieve a lower communication load, L, than
those of the LMYA design, even though the latter was proven
to be optimal given K and r in [4]. The reason is that the
optimality proof of [4] enforces an assumption that the size
of each IV is the same. Therefore, the derived lower bound
on achievable communication load does not apply to FLCD.
We demonstrate here that relaxing this requirement allows for
designs with a better communication load. This is because we
can reduce the size of I'Vs that are transmitted more frequently
over the network. For instance, in both Examples 3 and 4, there
are more transmitted IVs requested by node 1 (red circles),
than the IVs requested by node 2 (green triangles) and node 3
(blue squares). Therefore, the size of IVs requested by node 1
are reduced relative to the other IVs. Furthermore, the number
of IVs requested by a node is proportional to the difference
between the total number of files and the number of locally
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mapped files. In other words, by FLCD, the nodes that map
less files request IVs of smaller sizes.

V. ACHIEVABLE COMMUNICATION LOAD AND
COMPLEXITY OF FLCD

In this section, we will summarize the achievable commu-
nication load of the proposed FLCD and provide a theoretical
complexity comparison against other state-of-the-art designs.
Detailed descriptions of the FLCD schemes and empirical
evaluations are deferred until Section VI and Section VII,
respectively. Next, we will first discuss results of the FLCD
scheme for the special case of K = 3, and then discuss results
for the general FLCD scheme of K > 3.5

A. Results of FLCD Scheme for K = 3

When K = 3, the only non-trivial case is r = 2.5 In this
case, for FLCD each multicast from any node serve r = 2
independent node requests. This case allows for arbitrary IV
sizes and shows the fundamental tradeoff of [4] does not apply
under the more general design framework with heterogeneous
IV sizes.

Proposition 1: When K = 3 and r = 2, for general IV sizes
Ty,T5, T3 > 0, the communication load of FLCD is

LFLCD (9) — ST C®)

2Ty + ThTs + ToTs) (11 + 1o + 1)
where T,k € [3] are the sizes of the IVs for function k.
The required number of input files is LCM(T}, T, T5) X

T% + T% + T%) and the required number of shuffle groups
is 1.

Proof: Proposition 1 is proved in Appendix A. [ ]

Remark 2: When K = 3, r = 2 and 1T} = 15 = 13,
FLCD is equivalent to the LMYA design and LFLCP(2) =
& = L'™MYA(2). When Ty, T, and T are not equal, we have
the following corollary.

Corollary 1: When K = 3, r = 2 and Ty, Ty and T3 are
not equal,

LFLCD(2) < é _ LLMYA(Q). (9)

Proof: Corollary 1 is proved in Appendix B. [ ]
From Corollary 1, it can be seen that in this case, the
fundamental limit of [4] is no longer optimal when we allow
different IV sizes.

B. Results of General FLCD Scheme of K > 3

When K > 3, FLCD achieves a multiplicative
communication-computation load tradeoff where each multi-
cast serves r — 1 nodes. By the design of specific relative IV
sizes, FLCD for K > 3 is flexible in that it operates for any
integer 7 such that 2 < r < % The performance of FLCD in
terms of the communication-computation load tradeoff and the

SThe case of K < 2 is straightforward. Hence, we do not consider this
case.

SWhen K = 3, FLCD is designed only for r = 2 since the case of 7 = 1
is conventional uncoded MapReduce. When r = 3, each node maps the entire
library and strategic map and shuffle designs are unnecessary.

required number of input files and shuffle groups is presented
in Theorem 1 in the following.
Theorem 1: When K > 3 and 2 <r < % let m £ % and

7 £ |m] + 1, the communication load of FLCD is

LFLCD (1) = 1 (LmJQ _ LmJ> 7

r—1\ |[m]im—m

(10)

and the required number of input files and shuffle groups is
N =G = |m|"=K) x pE=1lmIr) and TV sizes are either
equal to T} or T4 where |m|T] = (|m| — 1)T3.
Proof: Theorem 1 is proved in Appendx C. [ ]

Remark 3: For K > 3, when % = m is an integer, we find
LFLOD(r) = L¥R(r) = L5 (1- %), ie., the FLCD and
the KR designs have the same communication-computation
load tradeoff. When m is not an integer, the FLCD can still
operate as shown in Section VI, but the KR scheme is no
longer feasible. Note that while the KR scheme can be used
in conjunction with a memory sharing approach to operate on
a non-integer m, this will result in a communication load that
is greater than the original LXR(r) given in (5). In contrast,
the proposed FLCD is directly designed to operate on a non-
integer m without the need for memory sharing. Surprisingly,
for an non-integer m, we find that when allowing varying
IV sizes, the communication load of FLCD is less than that
of a system with constant IV sizes. This is described in the
following corollary.

Corollary 2: When K > 3 and m = % is not an integer,
then

1 r
J,FLCD (1 _ 7)
(r) < r—1 K/’

where > 2 and r € Zt.
Proof: Corollary 2 is proved in Appendix D. |

Remark 4: It can be seen from Section VI-B that although
the proposed FLCD scheme allows flexible IV lengths, the
designed IV lengths and computation loads at each node to
achieve (10) will be approximately the same as m becomes
large. This result is summarized in the following corollary.

Corollary 3: Assume K >3 and r > 2. Let m = % Then,
we have the following:

(11)

(1) Asymptotically equal IV sizes: There exists some 7" > 0
such that
lim T, =T, VEke[K].

m—o0

(12)

(i) Asymptotically equal number of files mapped at each

node: N
. r

(13)

Proof: Corollary 3 can be directly obtained in Sec-
tion VI-B. |
From (12) of Corollary 3, we see that when % =m
is large, the IV sizes of different nodes in the network are
approximately equal. In this case, the constraint of equal IV
size commonly used in other designs is relaxed only slightly.
Hence, an important consequence of Corollary 3 is that for
small variation in IV size, FLCD can fit a much wider range
of parameters since FLCD operates for any integer r < %
This is opposed to the previous low complexity design [6]

which only operates for integer &

T
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TABLE I: Flexibility and Complexity of Achievable CDC Designs

LMYA Design [4] KR Design [6] FLCD

K r m L N G L N G L N G

16 3 5.33 | 0.27 560 1820 — — — 0.41 150 150
16 4 4 0.19 1820 4368 0.25 64 192 | 0.25 256 256
16 5 3.2 | 0.14 4368 8008 - - - 0.17 324 324
22 3 433 | 0.29 1540 7315 — — — 0.43 392 392
22 4 55 | 0.20 7315 26334 - — - 0.27 900 900
22 5 44 | 0.15 26334 74613 - - - 0.19 1600 1600
25 3 833 0.29 2300 12650 — — — 0.44 576 576
25 4 6.25 | 0.21 12650 53130 — — — 0.28 1512 1512
25 5 5 0.16 53130 177100 | 0.2 625 2500 | 0.2 3125 3125

C. Comparison to State-of-the-Art CDC Designs

In Table I, we list the key parameters L (communication
load), N(number of files) and G (number of shuffle groups)
of different CDC designs considered in this paper. First, as
discussed before, the LMYA design [4] has a relatively high
complexity. For example, it requires N > 10* and G' > 10°
for K = 25 and r = 5. As shown in the empirical evaluations
(see Section VII), a large G greatly negates the promised gain
of CDC. Second, the KR design [6] has the least complexity in
terms of N and G, but is rather limited to network parameters
with integer m. Third, the proposed FLCD scheme can operate
on all (K,r) pairs of Table I and has over 10x reduction
in G compared to LMYA [4]. Empirical evaluations of these
designs on Amazon EC2 (see Section VII) will confirm that
FLCD outperforms both of the LMYA and KR designs in
MapReduce total execution times.’

Next, in Section VI, we will introduce the general FLCD
schemes that achieve (8) and (10), respectively.

VI. DESCRIPTION OF THE GENERAL FLCD SCHEME

In this section, we will first present the general design of
FLCD when K = 3 and r = 2 and then we will introduce the
general design of FLCD for K > 3.

A. General FLCD Scheme for K = 3 and r = 2

Given arbitrary IV sizes 17, T, T5 > 0, we first present the
general design of FLCD when K = 3. We first split the files
into three non-overlapping sets My 2y, My 33 and Mz 3).
The files of My 5y are mapped at nodes 1 and 2, My, 3y are
mapped at nodes 1 and 3 and M5 3y are mapped at nodes 2
and 3. Also, given the IV sizes, T}, 15 and T3 bits, the file
sets are defined such that

(M2 |T3 = My 33| To = My 5y|T1,

where |My; ;1| is the number of files in My; ;3. Then, we
define Vf{)’m} as the set of IVs for node 3’s output function
from the files of My 5y. The IV sets V{21,3} and V{lz,g} are
defined similarly. Each IV set V& i is split into two equal size
sets Vfi’;} and Vfi’)jj} to be transmitted in a coded message
from node ¢ and j, respectively. In the shuffle phase, node

(14)

"Note that, in Table 1, the LMYA scheme has a lower communication load
L than FLCD. While FLCD can have a lower L for K = 3, it is not always
the case for K > 3. This stems from the fact that the upper bound of L is
reduced by a factor of » — 1 for FLCD, but a factor of r for LMYA.

1 transmits Vﬁ:’ifg} P V{Zf?)}, node 2 transmits fo% ® V{lf?’}
and node 3 transmits V{f’?)} @V%i’?)}. Due to (14), we can see
for each coded transmission, the message sets being XOR’d
together have the same length in bits.

Each coded transmission successfully serves independent
requests of two nodes simultaneously via the shared-link such
that the receiving nodes use locally computed IVs to resolve
the requested IVs from this coded transmission. For example,

node 2 receives V?i%z} @V?ﬁg} from node 1. Since node 2 has

1oc211y, it can XOR V/;', with the

received message, V{1,2} @V{i,g}’ to recover VZEB . From the
Shuffle phase, each node receives and decodes all needed IVs
from files that are not locally available. For example, node 2
can resolve the IV sets V2f3} and V{Qf3} which collectively
contain all IVs from the files M, 3) that are not available to
node 2 but available at nodes 1 and 3. Hence, we can conclude
the correctness of FLCD for K = 3 and r = 2.

The communication load of FLCD for K = 3 is shown in
(8) and its proof is can be found in Appendix A.

already computed V§i12}
3,1

B. General FLCD scheme for K > 3

Next, we present the proposed FLCD design for the general
case of K > 3. It comprises of a strategic file mapping and
shuffle design, which centers around supporting varying IV
sizes, such that each node can compute its assigned output
function in the reduce phase and the total number of requested
IVs bits are kept the same for different nodes. Compared
to prior work of [25], [26], which focus on CDC networks
with heterogeneous function assignments, the FLCD proposed
here takes a different approach to explore heterogeneous IV
sizes instead of function assignments, assuming that only one
reduced function is assigned to each node. This approach
leads to a new class of asymptotic homogeneous CDC design
proposed here that are amenable for practical implementations
due to the reduced packetization.

Assume 2 < r < % where r and K are positive integers.
Let m = 75 and m = |m| + 1. We split all the computing
nodes into two non-overlapping sets K; and 2. Each node in
K1 maps a % fraction of the entire dataset and each node in
Ko maps a % fraction of the entire dataset. Moreover, Ky
and Cy contain K7 = /K — |m]mr and Ko = |m]mr —
|m|K nodes, respectively. Note that Ky + Ko = K. The
number of times that the nodes in K; collectively map the
file library is 11 = K — |m/]r. Similarly, the nodes in Ko
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collectively map the entire dataset ro = mr — K times. Note
that 7y + ro = r. We further split C; and Ky into 71 and 79,

respectively, equally sized non-overlapping sets K1, ..., K}
and K},..., K5, where |K}| = &1 = jj and |Kj| = &2 =
1 r2

|m]. Nodes in each set K collectively map the file library
exactly once. Moreover, we design the map functions such that
Uk, 18 of size T bits if k € Ky and size T4 bits if k € Ko
where |m|T] = (|m]| — 1)T4. This design choice ensures
each node requests the same number of bits of IVs from each
shuffle group. When m is large (e.g., K is large and r is fixed),
it can be shown that all IVs will have approximately the same
size, i.e,

T ml-1
A ey b (15

and the number of files mapped to each node are approxi-
mately the same

N N [m]
] - Ay 1
mso [My,|  Im]+1 N ’ (16)

for any nodes k1 € K1 and ko € Kso. This proves Corollary 3.

Map Phase: We split the dataset into N = m"™ x |m|™
files and define N groups, Si,...,Sy. Each such group is
called a placement group. The placement groups S,,,n € [N]
consist of all possible sets with cardinality of r nodes such
that each set contains exactly one node from every node set
Ki,... K7, K, ... K52, Each file, w,,n € [N] is then
placed into every node in S,,. In this way, the library is mapped
exactly 7 times and each node in S,, maps file w,, to compute
the corresponding IVs v1 4, ..., VK n.

Shuffle Phase: In FLCD, each placement group S,, also
forms a shuffle group. The nodes in S,, shuffle IVs requested
by one node and locally computed by the other » — 1 nodes
in S,,. We define the set of IVs, fo, to be those requested
by node k and locally computed by the other nodes in S,,.
Then we split V¥ into r — 1 equal size subsets V7, where
j € S, \ k and node j is responsible for transmitting the IVs
of VFJ. Specifically, each node j € S,, broadcasts the coded
message Gakesn\j VEJ to the rest of nodes in S,. It can be
seen that due to the requirement that |m |T] = (|m| — 1)T3,
the transmitted messages from node j, V,’f’j , ke S,\J, have
the same length in bits.

The communication load of FLCD for K > 3 is shown in
(10). The correctness of FLCD for K > 3 and the proof of
(10) can be found in Appendix C.

Remark 5: When K > 3, the size of the IVs in FLCD are
exactly the same for integer m. In this case, we have K; = 0,
K, = K. This means that all the computing nodes are in /Cy
and each maps a % fraction of the file library. Hence, in this
case, all the IVs are of size T3 bits.

C. An Example of FLCD for K > 3

Example 5: Our goal is to use the FLCD on a network of
K = 18 computing nodes with a computation load of r = 4.
We find % =m = % is not an integer and the KR design
cannot be used. However, by allowing varying IV sizes in
the network we can use FLCD. Define i = [m] + 1 = 5,
we split the nodes into two sets Ky and Ky of size K; =

Node 1 Node 2
3000 Vi
Computed T T 3 Computed 3
Vs 9 110} 11 W& Vs 9 1011 &
1213 | 14 Ry TIETRETY V!

Requests: [FEREREY Vi Requests: [ERICREANY Vi
e L o P |

T _—— =
e 3 m e mv
BicEeocE. _HBicEIcEl

Multicast ™ <y
Messages tx A
FEcG3EoHl~ <~ HoldoEl
BODn v 0
o Vi il Vi
v ot ! [\ R !
| v : W

Requests: [JENNECRERY V;
o i

e

B B B

Node 3

Requests: EPRIEEREIN V)
—t—t
( /42 . 4,3
vt BV B
Node 4

Fig. 3: Illustration of the data shuffle within a specific shuffle
group S; of the FLCD scheme for a CDC network with K =
18 and » = 4 of Example 5. Given the IVs computed from
locally available files, each node can recover its requested IVs
from the coded transmissions.

mK — |m]mr =10 and Ky = [m]7r — |m]K = 8 nodes,
respectively. In particular, the 10 nodes of K; will each map
4 = 1 of the files and the 8 nodes of Ky will each map
Lil 7= % of the files. These node sets are each split into 2
equally sized disjoint subsets such that X1 = K} U K7 and
K2 = K3 UK3. The file library is split into N = 52 -42 = 400
equally sized files where a file is mapped at a set of » = 4
nodes, S,, with one node from each set of {K1, K%, K1, K3}
As an example, let S; = {1,2, 3,4} where nodes 1, 2, 3 and
4 belong to the sets K1, K7, K3, and K3, respectively. A file
is mapped to these nodes that is not mapped to any other of
the 14 nodes.

Each set S,,, n € [N] also represents a shuffle group. Fig. 3
shows the IVs requested and transmitted by the nodes of S; =
{1,2,3,4}. Each node requests IVs that are locally computed
at the other nodes, presenting multicast opportunities. For
example, the nodes of S;\{1} = {2, 3, 4} also form placement
groups with the 4 nodes of K} \ {1}. Therefore, there are 4
files available to the nodes of {2, 3,4}, but not node 1. Without
loss of generality, let these files be wy, ws, ws and wy, then
node 1 requests the IVs of V| = {vq1,v12,v1,3,v1,4} from
the shuffle group &;. Similarly, node 2 requests the 4 IVs
of V} = {va5,v26,v27,v28}. Then, we see nodes 3 and 4
each request 3 IVs from S because the nodes of {1,2,4} and
{1,2,3} form placement groups with the 3 nodes of 3\ {3}
and K3 \ {4}, respectively. Again, without loss of generality,
node 3 requests the IVs of Vi = {v39,v3 10,311} and node
4 requests the IVs of Vi = {vy 12,0413, v4,14} from ;. Since
the TVs requested by nodes 1 and 2 are T} bits each and the
IVs requested by nodes 3 and 4 are T3 bits each, we see each
node requests the same number of bits from this shuffle group
Sy since |m|T] = 4T = 3Ty = (|m] — 1)Ty.

Fig. 3 depicts the IVs of Vi (red squares), V7 (green
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squares), Vf’ (blue rectangles), and Vf (magenta rectangles).
In particular, the width of the IVs reflect their relative size.
In practice, the IVs requested by a particular node will be
concatenated as shown in Fig. 3 where the IVs are lined up
side-by-side. We visualize that each node requests the same
amount because the width of the concatenated messages are
the same. Then, each concatenated I'V set is splitinto r—1 = 3
messages to be transmitted by 3 different nodes. For example,
Vi is split into V| 2 1% 3 and 1% " to be transmitted by
nodes 2, 3 and 4, respectively. Note that, in practice, Vll ",
i € {2,3,4} each contain fractions of IVs and not necessarily
whole IVs in order to split V| into 3 equal size subsets.

Each node i € 81 = {1,2,3,4} transmits ,_; VI to the
other nodes of S;. For example, node 1 transmits the coded
combination of V12 1 (green rectangle that includes vy 5 and
a fraction of vg), Vf - {vs o} (blue rectangle with the
number 9) and Vf 1 (magenta rectangle with the number 12).
The size of the transmission from each node is 377 = Tj
bits. Accounting for each shuffle group S, n € [N], the
communication loz}d is LFLCD — m R ()..258.1
where we normalize by the total bits of all IVs which is
N(K1| - Ty + |Ko| - T) bits.

VII. EMPIRICAL EVALUATION ON AMAZON EC2

A. Experiment Setup

In order to evaluate the effectiveness of the proposed FLCD
approach, we perform a TeraSort algorithm [28] on Amazon
EC2 with K = 16,22,25 worker nodes and an additional
master node. Each computing node is a t2.large EC2
instance with 2 vCPUs, 8 GiB of RAM and 24 GB of solid-
state drive (SSD) storage. We developed Python software to
implement a TeraSort algorithm using the proposed FLCD,
LMYA [21], KR [6], and the conventional uncoded design.
Nodes sort 12 GB of data comprised of 6 x 10% key-value
pairs (KVs) in total. Each key is a 16-bit unsigned integer
(uint16) and each value a length-9 array of 16-bit unsigned
integers. Each node is assigned an output function to sort
KVs with keys in a specific range. We design the map and
reduce functions using the method outlined in Examples 1
and 2 so that the length of the IVs satisfy the requirement of
FLCD and |m|T{ = (|m] — 1)T% for non-integer m. as well
as for the homogeneous requirements of the LMYA and KR
designs. The map functions hash the KVs by placing KVs in
bins based on their keys. The bins correspond to the specific
range of keys each node is assigned to sort. We use the open
Message Passing Interface (MPI) library to facilitate the inter-
node communications. To prevent bursty communication rates,
the incoming and outgoing traffic rate of each computing node
is limited to 100 Megabits per second (Mbps) using the Linux
tc command. The execution is split into 6 steps described as
follows.

1) CodeGen: The worker nodes define placement and shuf-
fle groups and reduce function assignments. The place-
ment groups define partitions of the data and the set of
KVs that each node will map based on the specific CDC
design. The shuffle groups are defined using the MPI

Algorithm 1 CDC: Master Node Processing Flow

Input: r, K, CDC design

1: Record timestamp % CodeGen start

2: Define dataset file partitions, file mappings and function
assignments based on r, K and CDC design

3: Send dataset partitions and file assignments to all worker
nodes

4: Wait for worker nodes to finish establishing MPI-
communicators for shuffles groups

5: Record timestamp % CodeGen end, Map start

6: Wait for all worker nodes to load and map assigned files

7: Record timestamp % Mep end, Encode start

8

9

: Wait for all worker nodes to encode IVs
: Record timestamp % Encode end, Shuffle start
10: Wait for all worker nodes to shuffle encoding IVs
11: Record timestamp % Shuffle end, Decode start
12: Wait for all worker nodes decode received IVs
13: Record timestamp % Decode end, Reduce start
14: Wait for all worker nodes to sort locally collected IVs for
assigned bin
15: Record timestamp
plete
Output: timestamps

% Reduce end, Execution com-

Create function to create a new MPI-communicator
and facilitate the shuffle phase.

2) Map: The worker nodes load data from the solid-state
drive (SSD) and use map functions to hash KVs into
bins defined by the reduce functions, or the range of
values the nodes are responsible for sorting.

3) Encode: Based on the CDC design, the worker nodes
form the coded messages of IVs that will be used for
the multicast transmissions. The IVs are combined using
bit-wise XOR and concatenation operations. Note that
this step does not apply to the corresponding uncoded
design.

4) Shuffle: Nodes sequentially transmit the (coded) mes-
sages to the other nodes in the same shuffle groups
based on the shuffle design of the specific CDC design.
For data transmission, the coded designs use the MPI
bcast function and the uncoded design uses the MPI
scatter function.

5) Decode: Using the received and locally computed coded
messages, the nodes resolve the necessary IVs for their
assigned reduce functions. Note that this step does not
apply to the uncoded design.

6) Reduce: The nodes execute their assigned reduce func-
tions to sort the IVs within their corresponding assigned
range. In this way, the data set is sorted across the
computing network.

We provide the developed Python code for this eval-
uation on the Github page https://github.com/C3atUofU/
Coded-Distributed-Computing-over- AWS.
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Algorithm 2 CDC: Worker Node Processing Flow

Input: r, K, rank, CDC design
1: Receive dataset partitions, file mappings and function
assignments from master node

2: for each participating shuffle group do

3: Create MPI-communicator for shuffle group

4: end for

5: for each assigned file do

6: Load file into local memory from storage

7: Hash all elements of files to appropriate bins (compute
IVs)

8: end for

9: for each participating shuffle group do
10: for node k in shuffle group do

11: if £ == rank then

12: Split and encode IVs into message that serves
shuffle group

13: else

14: Split and encode IVs into message used for
decoding

15: end if

16: end for

17: end for

18: for node k € [K] do
19: if £ == rank then

20: for each participating shuffle group do

21: broadcast encoded messages to MPI-
communicator of associated shuffle group

22: end for

23: else

24: receive messages from transmitting worker node

25: end if

26: end for

27: Use decoding and received messages to resolve requested
IVs

28: Sort elements from assigned bin

Output: Sorted data subset

B. Processing Flow

The processing flow for our empirical evaluations is outlined
in Algorithm 1 and 2 for the master node and worker nodes,
respectively. For the experiment, the master node comes up
with explicit file mapping and function assignments based
on 7, i and the CDC design being used and transmits this
information to worker nodes. Then, the master node keeps
timing for each of the 6 steps in the execution by monitoring
the progress of worker nodes and recording the time when
workers nodes complete a step.

In Algorithm 2, the rank indicates the specific numerical
label of the worker node. Lines 1 through 4 outline the
CodeGen step. Worker nodes receive file mapping and func-
tion assignments from the master node. From this, worker
nodes form shuffle groups in the network and create MPI-
communicator for each shuffle group they participate in. Then,
lines 5 through 8 outline the map phase where nodes load
files and hash elements from the loaded files creating the I'Vs.

Note that, the bins used for hashing are defined by the reduce
function design, or the range of keys each worker node is
responsible for sorting in the reduce phase. Lines 9 through 17
outline the encoding where each worker node cycles through
the shuffle groups that it is a part of and encodes IVs to
make messages for decoding and broadcasting to other nodes
of shuffle group. Lines 18 through 26 outline the shuffle
phase where nodes sequentially broadcast messages over the
network. Lines 27 and 28 outline the decoding step and reduce
phase, respectively. After Algorithm 2 is done, the dataset is
sorted across worker nodes in the network.

C. Results

Evaluation results are shown in Fig. 4 and Table II (K =
16), where shuffle times for different K are shown in Fig. 4(a)
to Fig. 4(c) and total times are shown in Fig. 4(d) to Fig. 4(f).
In addition, the “Speedup” column in Table II refers to the fac-
tor speed-up compared to conventional uncoded MapReduce.
The following observations are made based on these results.

e For most points in Fig. 4(a) to Fig. 4(c), the shuffle
time decreases proportionally to r and almost coincide
with the theoretical results (10). This is the first time
that theoretical predictions of the shuffle time of a CDC
design are validated by empirical evaluations for a large
range of .8 There are a few points in (b) and (c) where
the shuffle times lie above (10), possibly due to the
underlying topology of EC2 and the MPI protocol. For
instance, the efficiency and overhead of the multicast
changes depending on the number of nodes in the mul-
ticast group, whereas this is assumed to be constant in
calculating the theoretic prediction (10).

o In Fig. 4(d) to Fig. 4(f), for most of the points, total
time decreases significantly with increasing r despite the
time of Map Phase increasing greatly as r grows due to
increased computations at each node. This demonstrates
the multiplicative gain of CDC holds even for the total
time.

e The proposed FLCD scheme outperforms LMYA when
comparing total time. From Fig. 4(d) to Fig. 4(f), for each
value of K, with the choice of r that minimizes the total
time, FLCD has a total time 12% ~ 52% lower than
LMYA.

o While the FLCD and KR have similar shuffle and total
time, the FLCD has greater flexibility. Table II shows that
when K = 16, the scenario of » = 5 cannot be achieved
by the KR scheme, and the gain in terms of the total time
of FLCD is 19% compared to KR scheme (r = 4). This
observation is important because in practical networks
may be storage limited and » = 5 may be an upper limit
for example. Note that for the case of K = 25 and r = 5,
the KR scheme has the lowest total time, possibly because
the KR scheme requires a much smaller NV than that of
the FLCD for this setting (see Table 1) and a smaller
CodeGen time and Map time (see Table IV).

8The communication rate in the experiment is set to be 100 Mbps. The
theoretical curve is computed using the total traffic load divided by 100 Mbps.
Therefore, the bandwidth occupation is nearly 100%
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Fig. 4: Empirical evaluations of the proposed FLCD, LMYA [4], KR [6] on Amazon EC2 for implementing the TeraSort
Algorithm using K = 16, 22,25 computing nodes. In the first row, (a)-(c) show shuffle time versus computation load r for the
three schemes and the theoretical prediction of shuffle time from (10). In the second row, (c)-(d) show total time versus 7.

e From Table II, the FLCD (r = 5) has a 47% reduction
in total time compared to the LMYA scheme with r = 2.
Due to the high complexity of the LMYA, the maximum
implementable r is limited to 3.

o Table II shows a 2.15 ~ 4.24 x speed-up of the FLCD de-
sign compared to the conventional uncoded MapReduce
approach.

Additional evaluation results are also provided in Tables III
and IV, which include a detailed break down of the times
of each step for K = 22,25 worker nodes similar to the
case for K = 16. These evaluations show similar behavior
of all the schemes considered in this paper and demonstrate
the significant advantage of the proposed FLCD. For example,
in Table III, we see that the KR and LMYA scheme are
only feasible for » = 2 and r = 1, respectively, but the
FLCD scheme allows for up to » = 6. In addition, we
observe from Tables III and IV a clear trend that the IV ratio
approaches 1 as % increases (or equivalently r decreases).
This confirms that the proposed design leads to asymptotic
homogeneous systems for which the reduced communication
load and implementation complexity are achieved with only
small variations in IV sizes.

VIII. DISCUSSION

This work and others [4], [6] have demonstrated a signif-
icant speed-up for the distributed computing application of
TeraSort. The proposed FLCD is specifically designed for
the TeraSort application. The application of FLCD to other
computing problems is unknown. Hence, it will be interesting
to consider other applications that can benefit from a similar
speed-up using FLCD. The target applications will need to
have a communication bottleneck in the Shuffle phase. CDC
works by trading computation load for communication load. If
there is a computation bottleneck (i.e. Map computations take
up most of the execution time), increasing the computation

load will certainly not reduce the overall execution time, even
if the communication load is reduced. Other applications that
are shuffle-heavy, such as Grep, Invindex, RankInvindex and
SelfJoin [3], may be good candidates for implementation using
FLCD. This will be considered as our future work.

For general applications, the following approach can be used
to control the IV size. When there are many functions to be
computed on a dataset, we will assign multiple functions to
each node. We have the flexibility of defining and assigning
these function groups. In this work, we can think of a reduce
function as a cumulative set of functions. In this way, each
node is assigned one reduce function. Furthermore, we can
think of an IV as a cumulative set of map computations, where
each computation is for a function assigned to some node.
In this way, the size of the IV is controlled by the function
grouping and assignment. For example, if all functions are
associated with the same size IVs, the cumulative IV size is
proportional to the number of functions assigned to a node.
Therefore, the reduce function assignments can be designed
in such a way to control the IV size.

Another consideration in the implementation of CDC is
the cost of duplicating a dataset r times over the network.
Moreover, the dataset needs to be strategically split up and
placed at specific nodes. For the experiments of this paper,
each node stores the entire dataset on the hard-drive and then
loads the appropriate files based on the file mapping. For
some systems it may be unrealistic to duplicate the data many
times. Or, it may not be possible to realize a specific CDC
file mapping given some predefined storage on the computing
nodes. Sending files to the nodes before the Map phase can
take lots of time, which may outweigh the benefits of reduced
communication load in the shuffle phase. However, there are
some interesting results in the literature which begin to tackle
this problem. For example, [29] considers the problem of
coded caching whose designs are generally “translatable” to
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TABLE II: Empirical Evaluation with K = 16 worker nodes

v Total
size CodeGen Map Encode | Shuffle | Decode | Reduce Time
Design r | ratio (sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.) Speedup
Uncoded 1 1 0.05 14.94 — 906.46 — 14.63 | 936.07 —
LMYA [4] | 1 1 0.79 15.14 0.81 891.69 0.79 13.55 | 922.76 1.01x
LMYA [4] | 2 1 15.23 27.34 1.10 409.37 0.58 11.40 | 465.01 2.01x
LMYA [4] | 3 1 101.37 39.72 1.16 379.90 0.62 13.143 | 535.91 1.75%
KR [6] 2 1 0.437 30.45 0.77 831.83 0.76 13.65 | 877.89 1.07x
KR [6] 4 1 1.83 55.32 0.74 238.13 0.44 10.74 | 307.21 3.05x%
KR [6] 8 1 1.08 122.46 1.13 88.50 0.32 11.81 225.31 4.15%
FLCD 2 1 0.29 30.85 1.10 831.12 0.63 9.16 873.14 1.07x
FLCD 314:5 0.89 45.51 1.53 376.31 0.63 10.89 | 435.75 2.15x%
FLCD 4 1 2.04 49.09 1.60 238.66 0.49 14.02 | 305.91 3.06 x
FLCD 51 2:3 5.08 75.28 1.90 150.34 0.49 15.44 | 248.52 3.77%
FLCD 6| 1:2 3.60 109.86 2.22 159.08 0.56 25.32 | 300.65 3.11x
FLCD 71 1:2 3.03 125.84 1.96 71.51 0.46 18.18 | 220.98 4.24x
FLCD 8 1 3.43 115.23 1.89 88.14 0.39 13.89 | 222.97 4.20x
TABLE III: Empirical Evaluation with K = 22 worker nodes
v Total
size CodeGen Map Encode | Shuffle | Decode | Reduce Time
Design r | ratio (sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.) Speedup
Uncoded 1 1 0.02 12.20 1 903.78 — 6.96 922.95 —
LMYA [4] | 1 1 2.92 7.79 0.61 901.73 0.41 8.56 921.40 1.00x
LMYA [4] | 2 1 44.00 24.28 0.89 419.50 0.43 8.83 497.93 1.85%
KR [6] 2 1 5.17 16.85 0.58 858.61 0.56 9.71 891.46 1.04x
FLCD 2 1 0.74 15.82 0.86 857.72 0.51 7.14 882.788 1.05x
FLCD 316:7 3.26 40.22 1.25 395.67 0.45 9.93 450.76 2.05%x
FLCD 415:6 16.88 48.11 1.60 374.86 0.53 10.49 452.37 2.04x
FLCD 51 4:5 107.76 75.53 2.05 169.41 0.68 10.03 365.46 2.53 %
FLCD 6| 3:4 187.30 118.03 3.12 193.69 1.08 12.62 515.83 1.79x
TABLE IV: Empirical Evaluation with K = 25 worker nodes
v Total
size CodeGen | Map | Encode | Shuffle | Decode | Reduce Time
Design T ratio (sec.) (sec.) (sec.) (sec.) (sec.) (sec.) (sec.) Speedup
Uncoded 1 1 0.06 13.94 — 904.55 — 6.24 924.78 —
LMYA [4] | 1 1 3.24 6.79 0.52 903.93 0.37 6.26 921.10 1.00x
LMYA [4] | 2 1 74.66 13.82 0.82 421.94 0.43 8.47 520.14 1.78x
KR [6] 5 1 125.21 28.37 0.94 174.34 0.56 8.06 337.50 2.74x
FLCD 2 | 11:12 1.04 15.13 0.78 865.01 0.39 8.46 890.82 1.04x
FLCD 3 7:8 9.99 37.96 1.19 401.59 0.44 8.67 459.83 2.01x
FLCD 4 5:6 57.57 51.24 1.52 383.38 0.53 9.16 503.51 1.84x
FLCD 5 1 212.71 93.77 2.17 174.78 0.79 8.39 492.62 1.88x

CDC. Specifically, the authors of [29] consider a random file
placement and demonstrate that multicasting opportunities still
exist in this setting. In fact, an order optimal trade-off still
exists. Alternatively, it would be interesting to study a network
with some storage constraints such that not all file mappings
are possible. Perhaps there exists some hybrid design using
concepts of random placement and deterministic placement
that achieves a significant communication load improvement.

Furthermore, an interesting direction for future work is
to explore more communication efficient CDC designs with
flexible IV sizes that can serve r nodes within each shuffle
group, as opposed to serving only »—1 nodes as in the present
FLCD design for K > 3. This has the potential to generalize
the proposed FLCD design for the special case of K = 3
to arbitrary K, and possibly yield a better communication-
computation trade off in this general MapReduce framework.

IX. CONCLUSIONS

In this work, we developed a new flexible, low complexity
design (FLCD) to expedite computing platforms such as
MapReduce and Spark by trading increased local computation
with reduced communication across the network. Built upon
a combinatorial design for the Map and Shuffle phase, the
FLCD schemes utilize the design freedom in defining map
and reduce functions to facilitate varying IV sizes under a
general MapReduce framework. This new approach led to an
interesting class of asymptotic homogeneous CDC systems
that can adapt to a wide range of network parameters and
facilitate low complexity implementation, while requiring only
small variations in the IV sizes. We provided the most com-
prehensive empirical evaluations to date on Amazon EC2 for
the comparisons of the CDC schemes. Our evaluations of the
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FLCD covered noticeably more network configurations than
previous designs permitted and showed substantial reductions
of 12%-52% in total time under the same network parameters.
These successfully validated the flexibility and low complexity
of the FLCD schemes.
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APPENDIX A
THE PROOF OF PROPOSITION 1

We consider the FLCD scheme for K = 3 and » = 2. It
can be seen directly that the FLCD scheme is correct from
its description in Section VI-A. Here, we will derive the
communication load (8).

From the FLCD description in Section VI-A, it can be seen
that this scheme is correct straightforwardly. Note that, by (14),
the number of total bits of each IV set sz; ., is the same since
it contains [My; ;3| IVs of size T} bits each. Let the number
of bits in each IV set Vfi,j} be B, then |My; j1|Tx = B and
we obtain

3(B/2)

JFLCD (9 _
@ N(Ty + Ty + T3)

3B
2(IM 1oy | + Mg ay| + [Mya 3y )Ty + To + T3)
3B
2(%+T%+T%) (T) + Ty + T3)
RYEVEY R

= . 17
2T + ThTs + ToT3)(Th + 1o + T3) (a7

Hence, we finish the proof of Proposition 1.

APPENDIX B
PROOF OF COROLLARY 1

In this section, we will prove Corollary 1, which states that
LFLCD(2) < L = L"™™YA(2) when Ty, Ty and Tj are not
all equal. Here, LFCP(2) and L'MYA(2) refer to equations
(8) and (4), respectively. Note that, when K = 3 and r = 2,
we obtain that LFMYA = 1 (1 — 2) = 1. Then, by using the
Arithmetic Mean-Geometric Mean (AM-GM) Inequality twice
to obtain

TiTs + ThTs + ToTs

3 > /(ThT>T3)?, (18)
and
T+ 15 + T )
Htila+1s > YT ToT. (19)

3

In both (18) and (19), equality holds only when 17 = T5 = T5.
By using (18) and (19), we can obtain that

(T\Ty + Ty Ts + ToT5)(Ty + Ty + Ts)

> V(M ToTo)? - /T ToTy = 9T\ T Ts. (20)
Therefore
LFLOD () — 3T ToTh
2T +ThTs5 + ToTs) (T + 1o + T5)
SN T, 1 en

— 2.9 TT, 6’

where equality holds only if 77 = 75 = 7T35. Hence, we
complete the proof of Corollary 1.

4:30 UTC from IEEE Xplore. Restrictions apply.

$/éaublicati0nsﬁstandards/I]:;ublications/rights/indexhtml for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3098593, IEEE

Transactions on Cloud Computing

APPENDIX C
THE PROOF OF THEOREM 1

Here, we will provide the correctness proof of the general
FLCD scheme for K > 3 and prove the communication-
computation tradeoff shown in (10).

In this case, we will first prove (10) in Theorem 1 and
then prove the correctness of the FLCD scheme. To derive the
communication load, we will need to count the number of bits
transmitted. By the FLCD design, the number of bits in each
IV set V57 is [m|T} bits. The reason for it is as follows. If
k€ Ki C K1,k € [K], there are |[Ki|—1 = m—1 = |m] files
that the nodes in S,, \ k have the access to but node & does not.
These files are defined by the files mapped to the nodes S, \ k
and a node k’ € K4 \ k. Therefore, node k requests [m| IVs,
each of size T} bits, from the nodes of S, \ k. Similarly, if
k € K& C Ko,k € [K], the number of bits in each IV set VX
is (K4 —1)T» = (|m] — 1)T} bits that node k requests from
the nodes of S,, \ k. Since |m|T] = (|m] —1)Ty, each IV set
VEd is |m]TY bits. Consider all shuffle groups S,,,n € [N].

Each of the r nodes of S, sends a message of size LTJIT{
bits. Hence, the communication load is given by
JFLCD @) 1 N |m T}
N(K]T{+K2T2/) r—1
_ rlm|Ti/(r — 1)
(I — [m]ir)T] + (|m]rir — [m] K) - by 1y

_ rim[(lm] =1)/(r = 1)
(K — [m]mr)([m]| —1) + (m]iwr — [m]K)[m]
rlm](lm| —1)/(r = 1)

F([m]n — [m %+ [m]2m) + K (m([m] — 1) — [m]?)
1 rlm]([m] - 1)

r—1 rlmm+ K((lm] +1)(lm] —1) = [m]?)
1 rlml(m) - 1)
r—1 rim]m—-K

(22)

where (a) is because V¥ contains [m |7} bits. Hence, we
obtain (10) in Theorem 1.

It remains to prove the correctness of the FLCD scheme
when K > 3. In order to show this, we will need to verify
that every node k collects all IVs V}, 1, ..., v, v. This can be
seen because node k will receive every IV set V¥ for all n
such that k € S,,. Moreover, V¥ contains every IV computed
by the nodes of S, \ k but not at node k. This includes all
IVs from files mapped at nodes S,, \ k and at one node from
lC;- \ k where k € IC; By considering all N node groups, this
covers all files not available to node k. Therefore, node k will
receive all requested I'Vs that are not locally computed.

APPENDIX D
PROOF OF COROLLARY 2

In this section, we prove the Corollary 2 which states that

LFLCD (1) < ﬁ (1 - %) when m is not an integer and K >

3. LFECD(r) is given in (10). Assume that m = |m] +a > 1

and 0 < a < 1,a € R such that m is not an integer. Then,
using the fact that @ — a? > 0, it can be seen that

[m]? = [m]? +alm|* — a|m]
< |mJ® = |m|* +a|m]? —alm] +a—a*. (23)
Then, we obtain

(Lm] +a)(lm)* = lm]) < (lm] +a = 1)(Im]* - a).

(24
Using the fact that [m]? > 1 > a, (24) implies
[m)? —|m| _ |m]+a—1
e = mlta >
Since m = |m| + a, we obtain
[m)* — [m] m—1
2 ) —m < o
which implies
[m)? — [m] 1
LmJ(LmJ+1)—m<1 m’ @7)
Finally, since 7 = [m] + 1 and m = £, we obtain
[m|* — [m] r
[m]r —m <1—K. (28)
Hence,
FLCD,,\ _ I [m]? — [m] 1 _r
L (r)_r—1<LmJTh—m <r—1(1 E)
(29)

Therefore, we complete the proof of Corollary 2.
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