
2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3098593, IEEE
Transactions on Cloud Computing

3

of m.

II. PROPOSED SYSTEM MODEL WITH VARYING IV SIZE

The considered system model is motivated by the fact that
the relative size of IVs is a design choice for many MapReduce
applications. The goal of this work is to utilize the design
freedom in defining map and reduce functions to develop new
low-complexity CDC designs that support varying IV sizes.
This distinguished feature yields novel CDC designs with
greater flexibility, i.e., designs that can operate under a wider
range of system parameters. This is in contrast to previous
CDC designs (e.g., [4], [6], [11]) that can only operate with
constant IV sizes. For this reason, we adopt a more general
system model of the original CDC work [4].

We consider a network of K nodes, labeled 1, . . . ,K.
The whole dataset is split into N equally sized input files,
{w1, . . . , wN}, based on the specific design. The system aims
to compute K output functions, φk(w1, . . . , wN), k ∈ [K],
each of which requires all N files as input. The output
function φk is assigned to node k.3 In general, as the dataset
may be large, node k only has access to a subset of files
Mk ⊆ {w1, . . . , wN} and each file is available at r nodes.
Since nodes do not have access to all N files such that
they cannot directly compute their assigned output function,
a MapReduce framework is used which has three phases as
follows. While in a typical MapReduce framework, the IV
sizes are fixed, in the following, we describe a MapReduce
framework that allows varying IV sizes. The proposed FLCD
scheme is based on this modified framework.

Map Phase: Nodes compute IVs from locally available files.
Each node k uses each locally available file wn ∈ Mk as input
to the map functions, {g1,n, . . . , gK,n}, to compute the IVs,
{v1,n, . . . , vK,n}, with possibly different lengths, i.e., vk,n =
gk,n(wn) and |vk,n| = Tk bits. The relative IV sizes, Tk, k ∈
[K], are based on the choice of the specific map and reduce
function designs.

Shuffle Phase: Each node k broadcasts a (coded) message
set Xk on a shared-link, over which Xk sent by node k can
be received by all other nodes without errors. All (coded)
messages, Xk, are designed so that each node k can collect
every IV vk,n for n ∈ [N]. In general, messages, Xk, may
include coded combinations of IVs such that nodes can decode
requested IVs using locally computed IVs.

Reduce Phase: Each node k computes the reduce func-
tion, hk(vk,1, . . . , vk,N), with all IVs, {vk,1, . . . , vk,N}, as
input. The map and reduce functions are designed such that
hk(vk,1, . . . , vk,N) = φk(w1, · · · , wN).

Under this framework we define the computation load, r, as
the mean number of times each file is mapped to the system

r � 1

N

K∑
k=1

|Mk|, (1)

which can be understood as the number of times that each IV is
computed in the system. In conventional uncoded MapReduce

3Each output function can be a collection of many functions. When there
are more functions than nodes, we can group the functions into K non-
overlapping sets and define these sets as output functions.

we find r = 1 where each file is only mapped once on the
computing network. In this paper, for simplicity, we will just
consider the case when r is an integer.4 Next, we will present
an example of TeraSort to illustrate the the system model de-
scribed above and put particular focus on the heterogeneous IV
sizes. TeraSort is widely used as a benchmark for MapReduce
platform.

Example 1: TeraSort Map and Reduce Function Design: The
K computing nodes aim to use TeraSort to sort a large set of
integers in the range of [0, Z) in a distributed manner. We
design K reduce functions, where node k is assigned reduce
function hk, ∀k ∈ [K]. The reduce functions sort integers
of a specific range defined by bounds z0, z1, . . . , zK in an
ascending order with z0 = 0 and zK = Z > 0. Reduce
function hk, sorts integers in the range of [zk−1, zk). Then,
map functions are designed to hash the integers of each file
into bins defined by the bounds. Map function gk,n returns
the IV vk,n which includes the integers of file wn in the
range of [zk−1, zk). After the map phase, the nodes shuffle the
corresponding IVs such that each node k collects all integers in
range [zk−1, zk) to be sorted with reduce function hk. After the
reduce phase, the integers will be sorted across the computing
network. �

Compared to previous works in CDC, we study a more
general framework where IVs can have varying sizes that
are dictated by the map and reduce function designs. Let the
number of bits of IV vk,n be Tk bits, which only depends on
the corresponding reduce function, hk. Then, we define the
communication load, L, as the number of bits transmitted on
the shared-link normalized by the total number of bits from
all IVs

L �
∑K

k=1 |Xk|
N

∑K
k=1 Tk

, (2)

where |Xk| is the total number of bits from all transmitted
messages in Xk.

Definition 1: The optimal communication load or the opti-
mal communication-computation tradeoff is defined as

L∗(r) Δ
= inf{L : (r, L) is feasible}. (3)

♦
Next, we will present an example based on the previous
TeraSort example to illustrate the possibility to vary the sizes
of IVs in practice.

Example 2: Design Choice of Relative IV Sizes: The design
of the map and reduce functions dictates the sizes of the IVs.
Continuing Example 1, assuming the N files are the same size
and the integers follow a uniform distribution, the size of IV
vk,n is Tk = zk−zk−1

Z · |wn| with high probability where |wn|
is the size in bits of each file. The bounds, z0, z1, . . . , zK , can
be chosen accordingly to have desired varying IV sizes. �

In contrast to the proposed system model that supports
varying IV sizes, the state-of-the-art CDC designs typically
assume constant IV sizes. We will provide a brief description
of these as below.

4The case of non-integer r can be solved by using the similar memory-
sharing scheme used in classical coded caching literature [21].

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:24:30 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3098593, IEEE
Transactions on Cloud Computing

4

III. STATE-OF-THE-ART ACHIEVABLE DESIGNS WITH
FIXED IV SIZES

Currently, there are only two CDC designs whose perfor-
mance has been demonstrated through empirical evaluations
over Amazon EC2 as shown in [4]–[6], [27]. These both
assume constant IV sizes. The first is the LMYA design of
[4], [27]. Under the system model in [4], the LMYA design
achieves the information theoretic optimal communication-
computation load tradeoff of

LLMYA(r) = L∗(r) =
1

r

(
1− r

K

)
. (4)

We will show in this paper that, this tradeoff is only optimal
under the specific design framework of [4], which assumes the
same IV sizes across the network.

In short, the LMYA design operates by mapping a file at
every unique set of r nodes. Then, for the Shuffle phase, every
unique node group of size r+1 nodes forms a shuffle group.
The shuffle group is special in that each node requests IVs
from a file that is locally available at every other node in the
shuffle group. Each message of Xk sent from node k is a
network coded multicast message that serves r independent
requests of the other nodes in the shuffle group. Each of the r
nodes in each shuffle group can successfully decode requested
IVs from the coded multicast message of Xk. Hence, there
is a multiplicative gain of r in terms of communication load
using this coded multicasting scheme compared to the conven-
tional unicast approach. Although the promising theoretical
performance achieved by the LMYA design, it has a high
complexity because it requires N =

(
K
r

)
input files, where

each file is mapped to a set of r nodes. Also, the scheme
requires G =

(
K
r+1

)
shuffle groups, significantly increasing

the overhead in CDC implementations as shown in [4], [27].
The second practically implemented design is the KR design

of [5], [6] which has a reduced complexity as it only requires
N =

(
K
r

)r−1
files and G =

(
K
r

)r−1 (K
r − 1

)
shuffle groups.

While files are mapped to node groups of size r nodes,
the mapping is not to every unique set of r nodes. This
significantly reduces the complexity. Both files and shuffle
groups have been reduced exponentially compared to those of
the LMYA design. Moreover, the multiplicative gain of coded
multicasting is maintained and the communication load is

LKR(r) =
1

r − 1

(
1− r

K

)
, (5)

which is asymptotically optimal as r goes to infinity. However,
this scheme only works for homogeneous systems (i.e., the size
of all Mk are the same) and only holds for the limited param-
eter settings where m = K

r is an integer. This requirement can
be very restrictive. For example, if K = 25, then the possible
choices of r are only 1, 5, 25, where r = 1 (conventional
MapReduce system) and r = 25 (no needed communication)
are not interesting cases. The optimal choice of r might
not be achievable with the KR design. Moreover, both the
LMYA and KR designs only operate under the assumption of
homogeneous IV sizes.

Node 1 Files 1 2

1 1 2
1 1 2

1 1 2

Co
m

pu
te

d
IV

s

Requests:

Node 2

Files 3 4 5

3 4 5
3 4 5

3 4 5

Co
m

pu
te

d
IV

s

Requests:

Node 3

Files 7 86

7 86
7 86

7 86

Co
m

pu
te

d
IV

s

Requests:

4 5

87

1 2

6

3

1 2
7 86 4 53

7 86

4 53 , ,

, ,

876
1 2

, ,
, 1 2,

4 53 , ,

| , |=| |=| |

Fig. 1: Uncoded MapReduce with r = 1, N = 8 files
and K = 3 nodes from Example 3. Nodes unicast locally
computed intermediate values (IVs) to the other nodes over a
shared link.

IV. EXAMPLES OF THE PROPOSED FLCD FOR K = 3

In this section, we present two examples to illustrate the key
idea of the proposed FLCD scheme for the special case K = 3
nodes. Although the specific designs described here are differ-
ent from those of the general design for K > 3, these examples
outline the fundamental concepts of our system model and
demonstrate how to design the Shuffle phase when IVs have
varying size. Moreover, the examples demonstrate that under
our general design framework which allows different IV sizes,
the fundamental tradeoff, LLMYA of [4] originally derived
for the homogeneous IV sizes no longer holds. Example 3
outlines the conventional uncoded MapReduce approach based
on unicast where each input file is mapped at exactly r = 1
node. Even for this uncoded case, we show that allowing
variable IV sizes results in a lower communication load than
that of [4]. In Example 4, FLCD is applied to a network of
K = 3 nodes and each input file is mapped to r = 2 nodes.
This example uses coded multicasting, and our design with
varying IV sizes again improves on the communication load
of [4].

Example 3: Conventional Uncoded MapReduce: As shown
in Fig. 1, a network of K = 3 nodes aims to compute 3 output
functions, one assigned to each node. There are N = 8 input
files and each is mapped to r = 1 computing node. Nodes 1, 2
and 3 map the files of M1 = {w1, w2}, M2 = {w3, w4, w5}
and M3 = {w6, w7, w8}, respectively. In the map phase, each
node computes 3 IVs, one for each output function, from each
of its locally available files. Moreover, the map functions are
designed such that 2T1 = T2 = T3 and IVs for node 1’s reduce
function (red circles) contain half the number of bits of IVs
for node 2 and 3’s reduce functions (green triangles and blue
squares, respectively).

The shuffle phase is necessary so each computing node can
collect the needed (or requested) IVs for its reduce function
corresponding to its assigned output function. Nodes 1, 2
and 3 will be required to have the access to all the 8 IVs
represented by red circles, green triangles, and blue squares,

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:24:30 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3098593, IEEE
Transactions on Cloud Computing

5

respectively, as shown in Fig. 1. In order to accomplish this,
each node transmits the required IVs to the other two nodes
on the shared-link. For instance, node 1 transmits IVs v2,1
and v2,2, represented by green triangles numbered 1 and 2, to
node 2. Similarly, node 2 transmits IVs v3,3, v3,4 and v3,5,
represented by blue squares numbered 3, 4 and 5, to node 3.
Finally, after the shuffle phase, each node uses the appropriate
IVs as input to reduce functions to compute the desired output.
In this example, we see that Node 1 maps 2 files, requests 6
IVs, and the length of each IV is shorter with T1 bits. Node 2
and 3 each maps 3 files, requests 5 IVs, and the size of each
IV is longer with T2 = T3 bits.

Next, we derive the resulting communication load in this
case, denoted by Lunicast(1). Note that, the total number of
bits in all IVs is N(T1 + T2 + T3). Also, the number of bits
transmitted on the shared-link is 6T1 + 5T2 + 5T3 as seen in
Fig. 1 where 6 IVs of length T1 (red circles), 5 IVs of length
T2 (green triangles), and 5 IVs of length T3 (blue squares) are
transmitted among the nodes. Hence, given 2T1 = T2 = T3,
we obtain

Lunicast(1) =
6T1 + 5T2 + 5T3

N(T1 + T2 + T3)

=
6T1 + 10T1 + 10T1

8(T1 + 2T1 + 2T1)
=

13

20
, (6)

which is less than LLMYA(1) = 1
r

(
1− r

K

)
= 1

1

(
1− 1

3

)
= 2

3
achieved by [4]. �

Example 4: Coded MapReduce with FLCD: We study the
same network of Example 3, where K = 3 nodes aim
to compute 3 output functions from N = 8 input files.
Here, nodes 1, 2 and 3 will need to collect all IVs repre-
sented by the red circles, green triangles and blue squares,
respectively, as shown in Fig. 2. Unlike the conventional
MapReduce, in FLCD, each file is strategically mapped to
r = 2 nodes. Specifically, nodes 1, 2 and 3 map the files
of M1 = {w1, w2, w3, w6}, M2 = {w1, w3, w4, w5, w7, w8}
and M3 = {w2, w4, w5, w6, w7, w8}, respectively. Nodes
compute IVs from their locally available files. Similar to
before, we let IVs have different lengths, i.e., 2T1 = T2 = T3.
In this example, we see that Node 1 maps 4 files, requests 4
IVs, each IV is of a shorter length T1. Node 2 and 3 each
maps 6 files, requests 2 IVs, and each IV is of a longer length
T2.

In the shuffle phase, we look for coded multicasting op-
portunities where a coded message can serve two independent
node requests as shown in Fig. 2. In particular, the IVs v3,1
and v3,3, represented by blue squares numbered 1 and 3, are
available at nodes 1 and 2 and requested by node 3. Similarly,
IVs v2,2 and v2,6, represented by green squares numbered 2
and 6, are available at nodes 1 and 3 and requested by node 2.
Hence, node 1 can transmit the coded pair v3,1 ⊕ v2,2 where
“⊕” represents the bit-wise XOR operation. Note that v3,1
and v2,2 have the same size. Nodes 2 and 3 can recover their
requested IVs from this coded multicast using their locally
computed IVs. The transmitted coded message from node 3 is
(v1,7, v1,8)⊕ v2,6. Here, “(,)” represents the concatenation of
two IVs which is necessary since the IVs for output function 1
are half the size of those for output functions 2 and 3. Using

Node 1 Files 1 2 63

1 1 2 63
1 1 2 63

1 1 2 63

Co
m

pu
te

d
IV

s

Requests:

Node 2

Files 1 3 4 7 85

1 3 4 7 85
1 3 4 7 85

1 3 4 7 85

Co
m

pu
te

d
IV

s

Requests: 2 6

Node 3

Files 2 4 5 7 86

2 4 5 7 86
2 4 5 7 86

2 4 5 7 86

Co
m

pu
te

d
IV

s

Requests:

4 5 87

1 3

4 5(,)

⊕

3

1 2

⊕ 7 8(,)⊕ 6

| , |=| |=| |

shared
link

Fig. 2: Coded MapReduce using FLCD with K = 3, r =
2, and N = 8 of Example 4. Coded multicast messages are
transmitted from one node to the other two nodes through a
shared link.

locally computed IVs node 1 can recover v1,7 and v1,8 and
node 2 can recover v2,6. The transmitted coded message from
node 2 can be designed similarly to those of node 3.

As shown from Fig. 2, given that 2T1 = T2 = T3, the
coded messages transmitted for all nodes have the same size
of T2 = T3 bits. For instance, the coded message from node
2 to node 1 and 3 is generated by doing the XOR of the
concatenation of two IVs of length T1 (for a total length of 2T1

bits) and one IV of length T3. The resulting coded message
has a length of 2T1 = T3 bits. Hence, the communication load
is given by

LFLCD(2) =
KT2

N(T1 + T2 + T3)

=
3 · 2T1

8(T1 + 2T1 + 2T1)
=

3

20
, (7)

which is significantly less than that of that of Example 4 where
Lunicast(1) = 13

20 due to the use of coded multicasting. It also
improves upon the fundamental communication-computation
trad-eoff LLMYA(2) = 1

6 , calculated from (4). �
Remark 1: Interestingly, for Examples 3 and 4, the proposed

FLCD schemes achieve a lower communication load, L, than
those of the LMYA design, even though the latter was proven
to be optimal given K and r in [4]. The reason is that the
optimality proof of [4] enforces an assumption that the size
of each IV is the same. Therefore, the derived lower bound
on achievable communication load does not apply to FLCD.
We demonstrate here that relaxing this requirement allows for
designs with a better communication load. This is because we
can reduce the size of IVs that are transmitted more frequently
over the network. For instance, in both Examples 3 and 4, there
are more transmitted IVs requested by node 1 (red circles),
than the IVs requested by node 2 (green triangles) and node 3
(blue squares). Therefore, the size of IVs requested by node 1
are reduced relative to the other IVs. Furthermore, the number
of IVs requested by a node is proportional to the difference
between the total number of files and the number of locally

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:24:30 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3098593, IEEE
Transactions on Cloud Computing

6

mapped files. In other words, by FLCD, the nodes that map
less files request IVs of smaller sizes.

V. ACHIEVABLE COMMUNICATION LOAD AND
COMPLEXITY OF FLCD

In this section, we will summarize the achievable commu-
nication load of the proposed FLCD and provide a theoretical
complexity comparison against other state-of-the-art designs.
Detailed descriptions of the FLCD schemes and empirical
evaluations are deferred until Section VI and Section VII,
respectively. Next, we will first discuss results of the FLCD
scheme for the special case of K = 3, and then discuss results
for the general FLCD scheme of K > 3.5

A. Results of FLCD Scheme for K = 3

When K = 3, the only non-trivial case is r = 2.6 In this
case, for FLCD each multicast from any node serve r = 2
independent node requests. This case allows for arbitrary IV
sizes and shows the fundamental tradeoff of [4] does not apply
under the more general design framework with heterogeneous
IV sizes.

Proposition 1: When K = 3 and r = 2, for general IV sizes
T1, T2, T3 > 0, the communication load of FLCD is

LFLCD(2) =
3T1T2T3

2(T1T2 + T1T3 + T2T3)(T1 + T2 + T3)
, (8)

where Tk, k ∈ [3] are the sizes of the IVs for function k.
The required number of input files is LCM(T1, T2, T3) ×(

1
T1

+ 1
T2

+ 1
T3

)
and the required number of shuffle groups

is 1.
Proof: Proposition 1 is proved in Appendix A.

Remark 2: When K = 3, r = 2 and T1 = T2 = T3,
FLCD is equivalent to the LMYA design and LFLCD(2) =
1
6 = LLMYA(2). When T1, T2 and T3 are not equal, we have
the following corollary.

Corollary 1: When K = 3, r = 2 and T1, T2 and T3 are
not equal,

LFLCD(2) <
1

6
= LLMYA(2). (9)

Proof: Corollary 1 is proved in Appendix B.
From Corollary 1, it can be seen that in this case, the
fundamental limit of [4] is no longer optimal when we allow
different IV sizes.

B. Results of General FLCD Scheme of K > 3

When K > 3, FLCD achieves a multiplicative
communication-computation load tradeoff where each multi-
cast serves r − 1 nodes. By the design of specific relative IV
sizes, FLCD for K > 3 is flexible in that it operates for any
integer r such that 2 ≤ r ≤ K

2 . The performance of FLCD in
terms of the communication-computation load tradeoff and the

5The case of K ≤ 2 is straightforward. Hence, we do not consider this
case.

6When K = 3, FLCD is designed only for r = 2 since the case of r = 1
is conventional uncoded MapReduce. When r = 3, each node maps the entire
library and strategic map and shuffle designs are unnecessary.

required number of input files and shuffle groups is presented
in Theorem 1 in the following.

Theorem 1: When K > 3 and 2 ≤ r ≤ K
2 , let m � K

r and
m̂ � �m	+ 1, the communication load of FLCD is

LFLCD(r) =
1

r − 1

(�m	2 − �m	
�m	m̂−m

)
, (10)

and the required number of input files and shuffle groups is
N = G = �m	(m̂r−K) × m̂(K−�m�r) and IV sizes are either
equal to T ′1 or T ′2 where �m	T ′1 = (�m	 − 1)T ′2.

Proof: Theorem 1 is proved in Appendx C.
Remark 3: For K > 3, when K

r = m is an integer, we find
LFLCD(r) = LKR(r) = 1

r−1

(
1− r

K

)
, i.e., the FLCD and

the KR designs have the same communication-computation
load tradeoff. When m is not an integer, the FLCD can still
operate as shown in Section VI, but the KR scheme is no
longer feasible. Note that while the KR scheme can be used
in conjunction with a memory sharing approach to operate on
a non-integer m, this will result in a communication load that
is greater than the original LKR(r) given in (5). In contrast,
the proposed FLCD is directly designed to operate on a non-
integer m without the need for memory sharing. Surprisingly,
for an non-integer m, we find that when allowing varying
IV sizes, the communication load of FLCD is less than that
of a system with constant IV sizes. This is described in the
following corollary.

Corollary 2: When K > 3 and m = K
r is not an integer,

then
LFLCD(r) <

1

r − 1

(
1− r

K

)
, (11)

where r ≥ 2 and r ∈ Z
+.

Proof: Corollary 2 is proved in Appendix D.
Remark 4: It can be seen from Section VI-B that although

the proposed FLCD scheme allows flexible IV lengths, the
designed IV lengths and computation loads at each node to
achieve (10) will be approximately the same as m becomes
large. This result is summarized in the following corollary.

Corollary 3: Assume K > 3 and r ≥ 2. Let m = K
r . Then,

we have the following:
(i) Asymptotically equal IV sizes: There exists some T > 0

such that
lim

m→∞Tk = T, ∀k ∈ [K]. (12)

(ii) Asymptotically equal number of files mapped at each
node:

lim
m→∞ |Mk| = Nr

K
, ∀k ∈ [K]. (13)

Proof: Corollary 3 can be directly obtained in Sec-
tion VI-B.

From (12) of Corollary 3, we see that when K
r = m

is large, the IV sizes of different nodes in the network are
approximately equal. In this case, the constraint of equal IV
size commonly used in other designs is relaxed only slightly.
Hence, an important consequence of Corollary 3 is that for
small variation in IV size, FLCD can fit a much wider range
of parameters since FLCD operates for any integer r ≤ K

2 .
This is opposed to the previous low complexity design [6]
which only operates for integer K

r .

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:24:30 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3098593, IEEE
Transactions on Cloud Computing

7

TABLE I: Flexibility and Complexity of Achievable CDC Designs

LMYA Design [4] KR Design [6] FLCD
K r m L N G L N G L N G
16 3 5.33 0.27 560 1820 − − − 0.41 150 150
16 4 4 0.19 1820 4368 0.25 64 192 0.25 256 256
16 5 3.2 0.14 4368 8008 − − − 0.17 324 324
22 3 4.33 0.29 1540 7315 − − − 0.43 392 392
22 4 5.5 0.20 7315 26334 − − − 0.27 900 900
22 5 4.4 0.15 26334 74613 − − − 0.19 1600 1600
25 3 8.33 0.29 2300 12650 − − − 0.44 576 576
25 4 6.25 0.21 12650 53130 − − − 0.28 1512 1512
25 5 5 0.16 53130 177100 0.2 625 2500 0.2 3125 3125

C. Comparison to State-of-the-Art CDC Designs

In Table I, we list the key parameters L (communication
load), N (number of files) and G (number of shuffle groups)
of different CDC designs considered in this paper. First, as
discussed before, the LMYA design [4] has a relatively high
complexity. For example, it requires N > 104 and G > 105

for K = 25 and r = 5. As shown in the empirical evaluations
(see Section VII), a large G greatly negates the promised gain
of CDC. Second, the KR design [6] has the least complexity in
terms of N and G, but is rather limited to network parameters
with integer m. Third, the proposed FLCD scheme can operate
on all (K, r) pairs of Table I and has over 10× reduction
in G compared to LMYA [4]. Empirical evaluations of these
designs on Amazon EC2 (see Section VII) will confirm that
FLCD outperforms both of the LMYA and KR designs in
MapReduce total execution times.7

Next, in Section VI, we will introduce the general FLCD
schemes that achieve (8) and (10), respectively.

VI. DESCRIPTION OF THE GENERAL FLCD SCHEME

In this section, we will first present the general design of
FLCD when K = 3 and r = 2 and then we will introduce the
general design of FLCD for K > 3.

A. General FLCD Scheme for K = 3 and r = 2

Given arbitrary IV sizes T1, T2, T3 > 0, we first present the
general design of FLCD when K = 3. We first split the files
into three non-overlapping sets M{1,2}, M{1,3} and M{2,3}.
The files of M{1,2} are mapped at nodes 1 and 2, M{1,3} are
mapped at nodes 1 and 3 and M{2,3} are mapped at nodes 2
and 3. Also, given the IV sizes, T1, T2 and T3 bits, the file
sets are defined such that

|M{1,2}|T3 = |M{1,3}|T2 = |M{2,3}|T1, (14)

where |M{i,j}| is the number of files in M{i,j}. Then, we
define V3

{1,2} as the set of IVs for node 3’s output function
from the files of M{1,2}. The IV sets V2

{1,3} and V1
{2,3} are

defined similarly. Each IV set Vk
{i,j} is split into two equal size

sets Vk,i
{i,j} and Vk,j

{i,j} to be transmitted in a coded message
from node i and j, respectively. In the shuffle phase, node

7Note that, in Table I, the LMYA scheme has a lower communication load
L than FLCD. While FLCD can have a lower L for K = 3, it is not always
the case for K > 3. This stems from the fact that the upper bound of L is
reduced by a factor of r − 1 for FLCD, but a factor of r for LMYA.

1 transmits V3,1
{1,2} ⊕ V2,1

{1,3}, node 2 transmits V3,2
{1,2} ⊕ V1,2

{2,3}
and node 3 transmits V2,3

{1,3}⊕V1,3
{2,3}. Due to (14), we can see

for each coded transmission, the message sets being XOR’d
together have the same length in bits.

Each coded transmission successfully serves independent
requests of two nodes simultaneously via the shared-link such
that the receiving nodes use locally computed IVs to resolve
the requested IVs from this coded transmission. For example,
node 2 receives V3,1

{1,2}⊕V2,1
{1,3} from node 1. Since node 2 has

already computed V3,1
{1,2} locally, it can XOR V3,1

{1,2} with the
received message, V3,1

{1,2}⊕V2,1
{1,3}, to recover V2,1

{1,3}. From the
Shuffle phase, each node receives and decodes all needed IVs
from files that are not locally available. For example, node 2
can resolve the IV sets V2,1

{1,3} and V2,3
{1,3} which collectively

contain all IVs from the files M{1,3} that are not available to
node 2 but available at nodes 1 and 3. Hence, we can conclude
the correctness of FLCD for K = 3 and r = 2.

The communication load of FLCD for K = 3 is shown in
(8) and its proof is can be found in Appendix A.

B. General FLCD scheme for K > 3

Next, we present the proposed FLCD design for the general
case of K > 3. It comprises of a strategic file mapping and
shuffle design, which centers around supporting varying IV
sizes, such that each node can compute its assigned output
function in the reduce phase and the total number of requested
IVs bits are kept the same for different nodes. Compared
to prior work of [25], [26], which focus on CDC networks
with heterogeneous function assignments, the FLCD proposed
here takes a different approach to explore heterogeneous IV
sizes instead of function assignments, assuming that only one
reduced function is assigned to each node. This approach
leads to a new class of asymptotic homogeneous CDC design
proposed here that are amenable for practical implementations
due to the reduced packetization.

Assume 2 ≤ r ≤ K
2 where r and K are positive integers.

Let m = K
r and m̂ = �m	 + 1. We split all the computing

nodes into two non-overlapping sets K1 and K2. Each node in
K1 maps a 1

m̂ fraction of the entire dataset and each node in
K2 maps a 1

�m� fraction of the entire dataset. Moreover, K1

and K2 contain K1 = m̂K − �m	m̂r and K2 = �m	m̂r −
�m	K nodes, respectively. Note that K1 + K2 = K. The
number of times that the nodes in K1 collectively map the
file library is r1 = K − �m	r. Similarly, the nodes in K2

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:24:30 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3098593, IEEE
Transactions on Cloud Computing

8

collectively map the entire dataset r2 = m̂r −K times. Note
that r1 + r2 = r. We further split K1 and K2 into r1 and r2,
respectively, equally sized non-overlapping sets K1

1, . . . ,Kr1
1

and K1
2, . . . ,Kr2

2 , where |Ki
1| = K1

r1
= m̂ and |Ki

2| = K2

r2
=

�m	. Nodes in each set Ki
� collectively map the file library

exactly once. Moreover, we design the map functions such that
vk,n is of size T ′1 bits if k ∈ K1 and size T ′2 bits if k ∈ K2

where �m	T ′1 = (�m	 − 1)T ′2. This design choice ensures
each node requests the same number of bits of IVs from each
shuffle group. When m is large (e.g., K is large and r is fixed),
it can be shown that all IVs will have approximately the same
size, i.e,

lim
m→∞

T ′1
T ′2

=
�m	 − 1

�m	 = 1, (15)

and the number of files mapped to each node are approxi-
mately the same

lim
m→∞

|Mk1 |
|Mk2

| =
N

�m	+ 1
· �m	

N
= 1, (16)

for any nodes k1 ∈ K1 and k2 ∈ K2. This proves Corollary 3.
Map Phase: We split the dataset into N = m̂r1 × �m	r2

files and define N groups, S1, . . . ,SN . Each such group is
called a placement group. The placement groups Sn, n ∈ [N]
consist of all possible sets with cardinality of r nodes such
that each set contains exactly one node from every node set
K1

1, . . . ,Kr1
1 ,K1

2, . . . ,Kr2
2 . Each file, wn, n ∈ [N] is then

placed into every node in Sn. In this way, the library is mapped
exactly r times and each node in Sn maps file wn to compute
the corresponding IVs v1,n, . . . , vK,n.

Shuffle Phase: In FLCD, each placement group Sn also
forms a shuffle group. The nodes in Sn shuffle IVs requested
by one node and locally computed by the other r − 1 nodes
in Sn. We define the set of IVs, Vk

n , to be those requested
by node k and locally computed by the other nodes in Sn.
Then we split Vk

n into r − 1 equal size subsets Vk,j
n , where

j ∈ Sn \ k and node j is responsible for transmitting the IVs
of Vk,j

n . Specifically, each node j ∈ Sn broadcasts the coded
message

⊕
k∈Sn\j Vk,j

n to the rest of nodes in Sn. It can be
seen that due to the requirement that �m	T ′1 = (�m	 − 1)T ′2,
the transmitted messages from node j, Vk,j

n , k ∈ Sn \ j, have
the same length in bits.

The communication load of FLCD for K > 3 is shown in
(10). The correctness of FLCD for K > 3 and the proof of
(10) can be found in Appendix C.

Remark 5: When K > 3, the size of the IVs in FLCD are
exactly the same for integer m. In this case, we have K1 = 0,
K2 = K. This means that all the computing nodes are in K2

and each maps a 1
m fraction of the file library. Hence, in this

case, all the IVs are of size T ′2 bits.

C. An Example of FLCD for K > 3

Example 5: Our goal is to use the FLCD on a network of
K = 18 computing nodes with a computation load of r = 4.
We find K

r = m = 9
2 is not an integer and the KR design

cannot be used. However, by allowing varying IV sizes in
the network we can use FLCD. Define m̂ = �m	 + 1 = 5,
we split the nodes into two sets K1 and K2 of size K1 =

119 10

Requests:

31 42
119 10
1412 13

Computed
IVs

Node 3 Node 4

75 86

5 76 8

Requests: 31 42

1 32 4

Node 1 Node 2

5 9 12⊕⊕ 1 10 13⊕⊕

14⊕⊕32 76 11⊕⊕4 8

1412 13

75 86
Computed

IVs

Requests:

1412 13
75 86Computed

IVs

9 10 11

31 42

119 10

119 10

Requests: 1412 13

75 86Computed
IVs

12 13 14

31 42

Multicast
Messages

shared
link

Fig. 3: Illustration of the data shuffle within a specific shuffle
group S1 of the FLCD scheme for a CDC network with K =
18 and r = 4 of Example 5. Given the IVs computed from
locally available files, each node can recover its requested IVs
from the coded transmissions.

m̂K − �m	m̂r = 10 and K2 = �m	m̂r − �m	K = 8 nodes,
respectively. In particular, the 10 nodes of K1 will each map
1
m̂ = 1

5 of the files and the 8 nodes of K2 will each map
1
�m� = 1

4 of the files. These node sets are each split into 2

equally sized disjoint subsets such that K1 = K1
1 ∪ K2

1 and
K2 = K1

2∪K2
2. The file library is split into N = 52 ·42 = 400

equally sized files where a file is mapped at a set of r = 4
nodes, Sn with one node from each set of {K1

1,K2
1,K1

2,K2
2}.

As an example, let S1 = {1, 2, 3, 4} where nodes 1, 2, 3 and
4 belong to the sets K1

1, K2
1, K1

2, and K2
2, respectively. A file

is mapped to these nodes that is not mapped to any other of
the 14 nodes.

Each set Sn, n ∈ [N] also represents a shuffle group. Fig. 3
shows the IVs requested and transmitted by the nodes of S1 =
{1, 2, 3, 4}. Each node requests IVs that are locally computed
at the other nodes, presenting multicast opportunities. For
example, the nodes of S1\{1} = {2, 3, 4} also form placement
groups with the 4 nodes of K1

1 \ {1}. Therefore, there are 4
files available to the nodes of {2, 3, 4}, but not node 1. Without
loss of generality, let these files be w1, w2, w3 and w4, then
node 1 requests the IVs of V1

1 = {v1,1, v1,2, v1,3, v1,4} from
the shuffle group S1. Similarly, node 2 requests the 4 IVs
of V2

1 = {v2,5, v2,6, v2,7, v2,8}. Then, we see nodes 3 and 4
each request 3 IVs from S1 because the nodes of {1, 2, 4} and
{1, 2, 3} form placement groups with the 3 nodes of K1

2 \ {3}
and K2

2 \ {4}, respectively. Again, without loss of generality,
node 3 requests the IVs of V3

1 = {v3,9, v3,10, v3,11} and node
4 requests the IVs of V4

1 = {v4,12, v4,13, v4,14} from S1. Since
the IVs requested by nodes 1 and 2 are T ′1 bits each and the
IVs requested by nodes 3 and 4 are T ′2 bits each, we see each
node requests the same number of bits from this shuffle group
S1 since �m	T ′1 = 4T ′1 = 3T ′2 = (�m	 − 1)T ′2.

Fig. 3 depicts the IVs of V1
1 (red squares), V2

1 (green

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:24:30 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3098593, IEEE
Transactions on Cloud Computing

9

squares), V3
1 (blue rectangles), and V4

1 (magenta rectangles).
In particular, the width of the IVs reflect their relative size.
In practice, the IVs requested by a particular node will be
concatenated as shown in Fig. 3 where the IVs are lined up
side-by-side. We visualize that each node requests the same
amount because the width of the concatenated messages are
the same. Then, each concatenated IV set is split into r−1 = 3
messages to be transmitted by 3 different nodes. For example,
V1
1 is split into V1,2

1 , V1,3
1 , and V1,4

1 to be transmitted by
nodes 2, 3 and 4, respectively. Note that, in practice, V1,i

1 ,
i ∈ {2, 3, 4} each contain fractions of IVs and not necessarily
whole IVs in order to split V1

1 into 3 equal size subsets.
Each node i ∈ S1 = {1, 2, 3, 4} transmits

⊕
j 	=i Vj,i

1 to the
other nodes of S1. For example, node 1 transmits the coded
combination of V2,1

1 (green rectangle that includes v2,5 and
a fraction of v2,6), V3,1

1 = {v3,9} (blue rectangle with the
number 9) and V4,1

1 (magenta rectangle with the number 12).
The size of the transmission from each node is 4

3T
′
1 = T ′2

bits. Accounting for each shuffle group Sn, n ∈ [N], the
communication load is LFLCD =

400·4·T ′2
N(|K1|·T ′1+|K2|·T ′2) ≈ 0.2581

where we normalize by the total bits of all IVs which is
N(|K1| · T ′1 + |K2| · T ′2) bits.

VII. EMPIRICAL EVALUATION ON AMAZON EC2

A. Experiment Setup

In order to evaluate the effectiveness of the proposed FLCD
approach, we perform a TeraSort algorithm [28] on Amazon
EC2 with K = 16, 22, 25 worker nodes and an additional
master node. Each computing node is a t2.large EC2
instance with 2 vCPUs, 8 GiB of RAM and 24 GB of solid-
state drive (SSD) storage. We developed Python software to
implement a TeraSort algorithm using the proposed FLCD,
LMYA [21], KR [6], and the conventional uncoded design.
Nodes sort 12 GB of data comprised of 6 × 108 key-value
pairs (KVs) in total. Each key is a 16-bit unsigned integer
(uint16) and each value a length-9 array of 16-bit unsigned
integers. Each node is assigned an output function to sort
KVs with keys in a specific range. We design the map and
reduce functions using the method outlined in Examples 1
and 2 so that the length of the IVs satisfy the requirement of
FLCD and �m	T ′1 = (�m	 − 1)T ′2 for non-integer m. as well
as for the homogeneous requirements of the LMYA and KR
designs. The map functions hash the KVs by placing KVs in
bins based on their keys. The bins correspond to the specific
range of keys each node is assigned to sort. We use the open
Message Passing Interface (MPI) library to facilitate the inter-
node communications. To prevent bursty communication rates,
the incoming and outgoing traffic rate of each computing node
is limited to 100 Megabits per second (Mbps) using the Linux
tc command. The execution is split into 6 steps described as
follows.

1) CodeGen: The worker nodes define placement and shuf-
fle groups and reduce function assignments. The place-
ment groups define partitions of the data and the set of
KVs that each node will map based on the specific CDC
design. The shuffle groups are defined using the MPI

Algorithm 1 CDC: Master Node Processing Flow

Input: r, K, CDC design
1: Record timestamp % CodeGen start
2: Define dataset file partitions, file mappings and function

assignments based on r, K and CDC design
3: Send dataset partitions and file assignments to all worker

nodes
4: Wait for worker nodes to finish establishing MPI-

communicators for shuffles groups
5: Record timestamp % CodeGen end, Map start
6: Wait for all worker nodes to load and map assigned files
7: Record timestamp % Mep end, Encode start
8: Wait for all worker nodes to encode IVs
9: Record timestamp % Encode end, Shuffle start

10: Wait for all worker nodes to shuffle encoding IVs
11: Record timestamp % Shuffle end, Decode start
12: Wait for all worker nodes decode received IVs
13: Record timestamp % Decode end, Reduce start
14: Wait for all worker nodes to sort locally collected IVs for

assigned bin
15: Record timestamp % Reduce end, Execution com-

plete
Output: timestamps

Create function to create a new MPI-communicator
and facilitate the shuffle phase.

2) Map: The worker nodes load data from the solid-state
drive (SSD) and use map functions to hash KVs into
bins defined by the reduce functions, or the range of
values the nodes are responsible for sorting.

3) Encode: Based on the CDC design, the worker nodes
form the coded messages of IVs that will be used for
the multicast transmissions. The IVs are combined using
bit-wise XOR and concatenation operations. Note that
this step does not apply to the corresponding uncoded
design.

4) Shuffle: Nodes sequentially transmit the (coded) mes-
sages to the other nodes in the same shuffle groups
based on the shuffle design of the specific CDC design.
For data transmission, the coded designs use the MPI
bcast function and the uncoded design uses the MPI
scatter function.

5) Decode: Using the received and locally computed coded
messages, the nodes resolve the necessary IVs for their
assigned reduce functions. Note that this step does not
apply to the uncoded design.

6) Reduce: The nodes execute their assigned reduce func-
tions to sort the IVs within their corresponding assigned
range. In this way, the data set is sorted across the
computing network.

We provide the developed Python code for this eval-
uation on the Github page https://github.com/C3atUofU/
Coded-Distributed-Computing-over-AWS.

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:24:30 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3098593, IEEE
Transactions on Cloud Computing

10

Algorithm 2 CDC: Worker Node Processing Flow

Input: r, K, rank, CDC design
1: Receive dataset partitions, file mappings and function

assignments from master node
2: for each participating shuffle group do
3: Create MPI-communicator for shuffle group
4: end for
5: for each assigned file do
6: Load file into local memory from storage
7: Hash all elements of files to appropriate bins (compute

IVs)
8: end for
9: for each participating shuffle group do

10: for node k in shuffle group do
11: if k == rank then
12: Split and encode IVs into message that serves

shuffle group
13: else
14: Split and encode IVs into message used for

decoding
15: end if
16: end for
17: end for
18: for node k ∈ [K] do
19: if k == rank then
20: for each participating shuffle group do
21: broadcast encoded messages to MPI-

communicator of associated shuffle group
22: end for
23: else
24: receive messages from transmitting worker node
25: end if
26: end for
27: Use decoding and received messages to resolve requested

IVs
28: Sort elements from assigned bin
Output: Sorted data subset

B. Processing Flow

The processing flow for our empirical evaluations is outlined
in Algorithm 1 and 2 for the master node and worker nodes,
respectively. For the experiment, the master node comes up
with explicit file mapping and function assignments based
on r, K and the CDC design being used and transmits this
information to worker nodes. Then, the master node keeps
timing for each of the 6 steps in the execution by monitoring
the progress of worker nodes and recording the time when
workers nodes complete a step.

In Algorithm 2, the rank indicates the specific numerical
label of the worker node. Lines 1 through 4 outline the
CodeGen step. Worker nodes receive file mapping and func-
tion assignments from the master node. From this, worker
nodes form shuffle groups in the network and create MPI-
communicator for each shuffle group they participate in. Then,
lines 5 through 8 outline the map phase where nodes load
files and hash elements from the loaded files creating the IVs.

Note that, the bins used for hashing are defined by the reduce
function design, or the range of keys each worker node is
responsible for sorting in the reduce phase. Lines 9 through 17
outline the encoding where each worker node cycles through
the shuffle groups that it is a part of and encodes IVs to
make messages for decoding and broadcasting to other nodes
of shuffle group. Lines 18 through 26 outline the shuffle
phase where nodes sequentially broadcast messages over the
network. Lines 27 and 28 outline the decoding step and reduce
phase, respectively. After Algorithm 2 is done, the dataset is
sorted across worker nodes in the network.

C. Results

Evaluation results are shown in Fig. 4 and Table II (K =
16), where shuffle times for different K are shown in Fig. 4(a)
to Fig. 4(c) and total times are shown in Fig. 4(d) to Fig. 4(f).
In addition, the “Speedup” column in Table II refers to the fac-
tor speed-up compared to conventional uncoded MapReduce.
The following observations are made based on these results.
• For most points in Fig. 4(a) to Fig. 4(c), the shuffle

time decreases proportionally to r and almost coincide
with the theoretical results (10). This is the first time
that theoretical predictions of the shuffle time of a CDC
design are validated by empirical evaluations for a large
range of r.8 There are a few points in (b) and (c) where
the shuffle times lie above (10), possibly due to the
underlying topology of EC2 and the MPI protocol. For
instance, the efficiency and overhead of the multicast
changes depending on the number of nodes in the mul-
ticast group, whereas this is assumed to be constant in
calculating the theoretic prediction (10).

• In Fig. 4(d) to Fig. 4(f), for most of the points, total
time decreases significantly with increasing r despite the
time of Map Phase increasing greatly as r grows due to
increased computations at each node. This demonstrates
the multiplicative gain of CDC holds even for the total
time.

• The proposed FLCD scheme outperforms LMYA when
comparing total time. From Fig. 4(d) to Fig. 4(f), for each
value of K, with the choice of r that minimizes the total
time, FLCD has a total time 12% ∼ 52% lower than
LMYA.

• While the FLCD and KR have similar shuffle and total
time, the FLCD has greater flexibility. Table II shows that
when K = 16, the scenario of r = 5 cannot be achieved
by the KR scheme, and the gain in terms of the total time
of FLCD is 19% compared to KR scheme (r = 4). This
observation is important because in practical networks
may be storage limited and r = 5 may be an upper limit
for example. Note that for the case of K = 25 and r = 5,
the KR scheme has the lowest total time, possibly because
the KR scheme requires a much smaller N than that of
the FLCD for this setting (see Table 1) and a smaller
CodeGen time and Map time (see Table IV).

8The communication rate in the experiment is set to be 100 Mbps. The
theoretical curve is computed using the total traffic load divided by 100 Mbps.
Therefore, the bandwidth occupation is nearly 100%

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:24:30 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3098593, IEEE
Transactions on Cloud Computing

11

0
200
400
600
800

1000

1 2 3 4 5 6 7 8
0

200
400
600
800

1000

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Fig. 4: Empirical evaluations of the proposed FLCD, LMYA [4], KR [6] on Amazon EC2 for implementing the TeraSort
Algorithm using K = 16, 22, 25 computing nodes. In the first row, (a)-(c) show shuffle time versus computation load r for the
three schemes and the theoretical prediction of shuffle time from (10). In the second row, (c)-(d) show total time versus r.

• From Table II, the FLCD (r = 5) has a 47% reduction
in total time compared to the LMYA scheme with r = 2.
Due to the high complexity of the LMYA, the maximum
implementable r is limited to 3.

• Table II shows a 2.15 ∼ 4.24× speed-up of the FLCD de-
sign compared to the conventional uncoded MapReduce
approach.

Additional evaluation results are also provided in Tables III
and IV, which include a detailed break down of the times
of each step for K = 22, 25 worker nodes similar to the
case for K = 16. These evaluations show similar behavior
of all the schemes considered in this paper and demonstrate
the significant advantage of the proposed FLCD. For example,
in Table III, we see that the KR and LMYA scheme are
only feasible for r = 2 and r = 1, respectively, but the
FLCD scheme allows for up to r = 6. In addition, we
observe from Tables III and IV a clear trend that the IV ratio
approaches 1 as K

r increases (or equivalently r decreases).
This confirms that the proposed design leads to asymptotic
homogeneous systems for which the reduced communication
load and implementation complexity are achieved with only
small variations in IV sizes.

VIII. DISCUSSION

This work and others [4], [6] have demonstrated a signif-
icant speed-up for the distributed computing application of
TeraSort. The proposed FLCD is specifically designed for
the TeraSort application. The application of FLCD to other
computing problems is unknown. Hence, it will be interesting
to consider other applications that can benefit from a similar
speed-up using FLCD. The target applications will need to
have a communication bottleneck in the Shuffle phase. CDC
works by trading computation load for communication load. If
there is a computation bottleneck (i.e. Map computations take
up most of the execution time), increasing the computation

load will certainly not reduce the overall execution time, even
if the communication load is reduced. Other applications that
are shuffle-heavy, such as Grep, InvIndex, RankInvIndex and
SelfJoin [3], may be good candidates for implementation using
FLCD. This will be considered as our future work.

For general applications, the following approach can be used
to control the IV size. When there are many functions to be
computed on a dataset, we will assign multiple functions to
each node. We have the flexibility of defining and assigning
these function groups. In this work, we can think of a reduce
function as a cumulative set of functions. In this way, each
node is assigned one reduce function. Furthermore, we can
think of an IV as a cumulative set of map computations, where
each computation is for a function assigned to some node.
In this way, the size of the IV is controlled by the function
grouping and assignment. For example, if all functions are
associated with the same size IVs, the cumulative IV size is
proportional to the number of functions assigned to a node.
Therefore, the reduce function assignments can be designed
in such a way to control the IV size.

Another consideration in the implementation of CDC is
the cost of duplicating a dataset r times over the network.
Moreover, the dataset needs to be strategically split up and
placed at specific nodes. For the experiments of this paper,
each node stores the entire dataset on the hard-drive and then
loads the appropriate files based on the file mapping. For
some systems it may be unrealistic to duplicate the data many
times. Or, it may not be possible to realize a specific CDC
file mapping given some predefined storage on the computing
nodes. Sending files to the nodes before the Map phase can
take lots of time, which may outweigh the benefits of reduced
communication load in the shuffle phase. However, there are
some interesting results in the literature which begin to tackle
this problem. For example, [29] considers the problem of
coded caching whose designs are generally “translatable” to

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:24:30 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3098593, IEEE
Transactions on Cloud Computing

12

TABLE II: Empirical Evaluation with K = 16 worker nodes

Design r

IV
size
ratio

CodeGen
(sec.)

Map
(sec.)

Encode
(sec.)

Shuffle
(sec.)

Decode
(sec.)

Reduce
(sec.)

Total
Time
(sec.) Speedup

Uncoded 1 1 0.05 14.94 − 906.46 − 14.63 936.07 −
LMYA [4] 1 1 0.79 15.14 0.81 891.69 0.79 13.55 922.76 1.01×
LMYA [4] 2 1 15.23 27.34 1.10 409.37 0.58 11.40 465.01 2.01×
LMYA [4] 3 1 101.37 39.72 1.16 379.90 0.62 13.143 535.91 1.75×

KR [6] 2 1 0.437 30.45 0.77 831.83 0.76 13.65 877.89 1.07×
KR [6] 4 1 1.83 55.32 0.74 238.13 0.44 10.74 307.21 3.05×
KR [6] 8 1 1.08 122.46 1.13 88.50 0.32 11.81 225.31 4.15×
FLCD 2 1 0.29 30.85 1.10 831.12 0.63 9.16 873.14 1.07×
FLCD 3 4 : 5 0.89 45.51 1.53 376.31 0.63 10.89 435.75 2.15×
FLCD 4 1 2.04 49.09 1.60 238.66 0.49 14.02 305.91 3.06×
FLCD 5 2 : 3 5.08 75.28 1.90 150.34 0.49 15.44 248.52 3.77×
FLCD 6 1 : 2 3.60 109.86 2.22 159.08 0.56 25.32 300.65 3.11×
FLCD 7 1 : 2 3.03 125.84 1.96 71.51 0.46 18.18 220.98 4.24×
FLCD 8 1 3.43 115.23 1.89 88.14 0.39 13.89 222.97 4.20×

TABLE III: Empirical Evaluation with K = 22 worker nodes

Design r

IV
size
ratio

CodeGen
(sec.)

Map
(sec.)

Encode
(sec.)

Shuffle
(sec.)

Decode
(sec.)

Reduce
(sec.)

Total
Time
(sec.) Speedup

Uncoded 1 1 0.02 12.20 1 903.78 − 6.96 922.95 −
LMYA [4] 1 1 2.92 7.79 0.61 901.73 0.41 8.56 921.40 1.00×
LMYA [4] 2 1 44.00 24.28 0.89 419.50 0.43 8.83 497.93 1.85×

KR [6] 2 1 5.17 16.85 0.58 858.61 0.56 9.71 891.46 1.04×
FLCD 2 1 0.74 15.82 0.86 857.72 0.51 7.14 882.788 1.05×
FLCD 3 6 : 7 3.26 40.22 1.25 395.67 0.45 9.93 450.76 2.05×
FLCD 4 5 : 6 16.88 48.11 1.60 374.86 0.53 10.49 452.37 2.04×
FLCD 5 4 : 5 107.76 75.53 2.05 169.41 0.68 10.03 365.46 2.53×
FLCD 6 3 : 4 187.30 118.03 3.12 193.69 1.08 12.62 515.83 1.79×

TABLE IV: Empirical Evaluation with K = 25 worker nodes

Design r

IV
size
ratio

CodeGen
(sec.)

Map
(sec.)

Encode
(sec.)

Shuffle
(sec.)

Decode
(sec.)

Reduce
(sec.)

Total
Time
(sec.) Speedup

Uncoded 1 1 0.06 13.94 − 904.55 − 6.24 924.78 −
LMYA [4] 1 1 3.24 6.79 0.52 903.93 0.37 6.26 921.10 1.00×
LMYA [4] 2 1 74.66 13.82 0.82 421.94 0.43 8.47 520.14 1.78×

KR [6] 5 1 125.21 28.37 0.94 174.34 0.56 8.06 337.50 2.74×
FLCD 2 11 : 12 1.04 15.13 0.78 865.01 0.39 8.46 890.82 1.04×
FLCD 3 7 : 8 9.99 37.96 1.19 401.59 0.44 8.67 459.83 2.01×
FLCD 4 5 : 6 57.57 51.24 1.52 383.38 0.53 9.16 503.51 1.84×
FLCD 5 1 212.71 93.77 2.17 174.78 0.79 8.39 492.62 1.88×

CDC. Specifically, the authors of [29] consider a random file
placement and demonstrate that multicasting opportunities still
exist in this setting. In fact, an order optimal trade-off still
exists. Alternatively, it would be interesting to study a network
with some storage constraints such that not all file mappings
are possible. Perhaps there exists some hybrid design using
concepts of random placement and deterministic placement
that achieves a significant communication load improvement.

Furthermore, an interesting direction for future work is
to explore more communication efficient CDC designs with
flexible IV sizes that can serve r nodes within each shuffle
group, as opposed to serving only r−1 nodes as in the present
FLCD design for K > 3. This has the potential to generalize
the proposed FLCD design for the special case of K = 3
to arbitrary K, and possibly yield a better communication-
computation trade off in this general MapReduce framework.

IX. CONCLUSIONS

In this work, we developed a new flexible, low complexity
design (FLCD) to expedite computing platforms such as
MapReduce and Spark by trading increased local computation
with reduced communication across the network. Built upon
a combinatorial design for the Map and Shuffle phase, the
FLCD schemes utilize the design freedom in defining map
and reduce functions to facilitate varying IV sizes under a
general MapReduce framework. This new approach led to an
interesting class of asymptotic homogeneous CDC systems
that can adapt to a wide range of network parameters and
facilitate low complexity implementation, while requiring only
small variations in the IV sizes. We provided the most com-
prehensive empirical evaluations to date on Amazon EC2 for
the comparisons of the CDC schemes. Our evaluations of the

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:24:30 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3098593, IEEE
Transactions on Cloud Computing

13

FLCD covered noticeably more network configurations than
previous designs permitted and showed substantial reductions
of 12%-52% in total time under the same network parameters.
These successfully validated the flexibility and low complexity
of the FLCD schemes.

ACKNOWLEDGEMENT

This work was supported through the National Science
Foundation grants CCF-1817154. We thank Aaron Goh for the
help on the Amazon EC2 implementations of the algorithms
used in this paper.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–
113, 2008.

[2] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.,” HotCloud, vol. 10, no.
10-10, pp. 95, 2010.

[3] Zhuoyao Zhang, Ludmila Cherkasova, and Boon Thau Loo, “Per-
formance modeling of mapreduce jobs in heterogeneous cloud envi-
ronments,” in 2013 IEEE Sixth International Conference on Cloud
Computing. IEEE, 2013, pp. 839–846.

[4] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed com-
puting,” IEEE Transactions on Information Theory, vol. 64, no. 1, pp.
109–128, 2017.

[5] K. Konstantinidis and A. Ramamoorthy, “Leveraging coding techniques
for speeding up distributed computing,” in 2018 IEEE Global Commu-
nications Conference (GLOBECOM), 2018, pp. 1–6.

[6] K. Konstantinidis and A. Ramamoorthy, “Resolvable designs for speed-
ing up distributed computing,” IEEE/ACM Transactions on Networking,
pp. 1–14, 2020.

[7] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding
framework for distributed computing with straggling servers,” in 2016
IEEE Globecom Workshops (GC Wkshps), Dec 2016, pp. 1–6.

[8] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Compressed coded
distributed computing,” in 2018 IEEE International Symposium on
Information Theory (ISIT), June 2018, pp. 2032–2036.

[9] M. Kiamari, C. Wang, and A. S. Avestimehr, “On heterogeneous
coded distributed computing,” in GLOBECOM 2017-2017 IEEE Global
Communications Conference. IEEE, 2017, pp. 1–7.

[10] Y. H. Ezzeldin, M. Karmoose, and C. Fragouli, “Communication vs
distributed computation: An alternative trade-off curve,” in 2017 IEEE
Information Theory Workshop (ITW), Nov 2017, pp. 279–283.

[11] S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “A scalable
framework for wireless distributed computing,” IEEE/ACM Transactions
on Networking, vol. 25, no. 5, pp. 2643–2654, 2017.

[12] N. Woolsey, R. Chen, and M. Ji, “A new combinatorial design of
coded distributed computing,” in 2018 IEEE International Symposium
on Information Theory (ISIT). IEEE, 2018, pp. 726–730.

[13] N. Woolsey, R. Chen, and M. Ji, “Cascaded coded distributed computing
on heterogeneous networks,” arXiv preprint arXiv:1901.07670, 2019.

[14] N. Woolsey, R. Chen, and M. Ji, “Coded distributed computing with
heterogeneous function assignments,” arXiv preprint arXiv:1902.10738,
2019.

[15] S. R. Srinivasavaradhan, L. Song, and C. Fragouli, “Distributed com-
puting trade-offs with random connectivity,” in 2018 IEEE International
Symposium on Information Theory (ISIT), June 2018, pp. 1281–1285.

[16] K. Konstantinidis and A. Ramamoorthy, “Camr: Coded aggregated
mapreduce,” in 2019 IEEE International Symposium on Information
Theory (ISIT), 2019, pp. 1427–1431.

[17] F. Xu and M. Tao, “Heterogeneous coded distributed computing: Joint
design of file allocation and function assignment,” arXiv preprint
arXiv:1908.06715, 2019.

[18] K. Wan, M. Ji, and G. Caire, “Topological coded distributed computing,”
arXiv preprint arXiv:2004.04421, 2020.

[19] J. Jiang and L. Qu, “Coded distributed computing schemes with
smaller numbers of input files and output functions,” arXiv preprint
arXiv:2001.04194, 2020.

[20] Z. Bar-Yossef, Y. Birk, T.S. Jayram, and T. Kol, “Index coding with
side information,” Information Theory, IEEE Transactions on, vol. 57,
no. 3, pp. 1479–1494, 2011.

[21] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
Information Theory, IEEE Transactions on, vol. 60, no. 5, pp. 2856–
2867, 2014.

[22] M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching
attains order-optimal memory-rate tradeoff,” Networking, IEEE/ACM
Transactions on, vol. 23, no. 4, pp. 1029–1040, Aug 2015.

[23] K. Wan, D. Tuninetti, M. Ji, G. Caire, and P. Piantanida, “Fundamental
limits of decentralized data shuffling,” IEEE Transactions on Informa-
tion Theory, 2020.

[24] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching in
wireless d2d networks,” IEEE Transactions on Information Theory, vol.
62, no. 2, pp. 849–869, Feb 2016.

[25] N. Woolsey, R.-R. Chen, and M. Ji, “A new combinatorial coded
design for heterogeneous distributed computing,” arXiv preprint
arXiv:2007.11116, 2020.

[26] N. Woolsey, R.-R. Chen, and M. Ji, “A combinatorial design for
cascaded coded distributed computing on general networks,” arXiv
preprint arXiv:2008.00581, 2020.

[27] S. Li, S. Supittayapornpong, M. A. Maddah-Ali, and S. Avestimehr,
“Coded terasort,” in 2017 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE, 2017, pp. 389–398.

[28] M. Noll, “Benchmarking and stress testing an hadoop cluster
with terasort, testdfsio & co,” Online: http://www. michael-
noll.com/blog/2011/04/09/benchmarking-andstress-testing-an-
hadoopcluster-with-terasort-testdfsio-nnbench-mrbench, 2011.

[29] M. A. Maddah-Ali and U. Niesen, “Decentralized caching attains order-
optimal memory-rate tradeoff,” arXiv preprint arXiv:1301.5848, 2013.

Nicholas Woolsey (S’17) is Ph.D. student of the
Department of Electrical and Computer Engineer-
ing at University of Utah and defended his Ph.D.
in December, 2020 receiving the 2020 Best ECE
Dissertation Award. He is currently with Trabus
Technologies, San Diego, CA as a signal process-
ing engineer developing decentralized wireless net-
work technologies. His research interests include
combinatorial designs and algorithms for resource
allocation, coding and efficient communications in
distributed computing, private and caching networks.

From 2014 to 2017, he was an Electrical Engineer at Northrop Grumman
Corporation (NGC), Ogden, UT developing test and evaluation methods,
modernization solutions and signal processing algorithms for the sustainment
of aging aircraft and ground communication systems. While at NGC, he
received the “Outside the Box” Grant to investigate the design of a modern
receiver that interfaces aging technology and the 2016 Brent Scowcroft Team
Award for performing exceptional systems engineering work. He received a
B.S. degree in Biomedical Engineering from University of Connecticut in
2012 and M.Eng. degree in Bioengineering from University of Maryland,
College Park in 2015 with a focus on signal processing, imaging and optics.

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:24:30 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3098593, IEEE
Transactions on Cloud Computing

14

Rong-Rong Chen received the B.S. degree in Ap-
plied Mathematics from Tsinghua University, P.R.
China in 1993, and the M.S. degree in Mathematics
and the Ph.D. degree in Electrical and Computer En-
gineering from the University of Illinois at Urbana-
Champaign in 1995, and 2003, respectively. She
was an Assistant Professor at the University of
Utah from 2003-2011 and has been an Associate
Professor from 2011 to present. Her main research
interests are in the area of communication systems
and networks, with current emphasis on distributed

computing, machine learning, caching networks, statistical signal processing,
image reconstructions, and channel coding. She was the recipient of the M. E.
Van Valkenburg Graduate Research Award for excellence in doctoral research
in the ECE department at the University of Illinois at Urbana-Champaign
in 2003. She was a recipient of the prestigious National Science Foundation
Faculty Early Career Development (CAREER) award in 2006. She was rated
among the Top 15% Instructors of College of Engineering at University of
Utah in 2017 and 2018. She has served as an associate editor for IEEE
Transactions on Signal Processing and as a guest editor of IEEE Journal on
Selected Topics in Signal Processing. She has served on the technical program
committees of leading international conferences in wireless communication
and networks.

Mingyue Ji (S’09-M’15) received the B.E. in Com-
munication Engineering from Beijing University of
Posts and Telecommunications (China), in 2006,
the M.Sc. degrees in Electrical Engineering from
Royal Institute of Technology (Sweden) and from
University of California, Santa Cruz, in 2008 and
2010, respectively, and the PhD from the Ming Hsieh
Department of Electrical Engineering at University
of Southern California in 2015. He subsequently was
a Staff II System Design Scientist with Broadcom
Corporation (Broadcom Limited) in 2015-2016. He

is now an Assistant Professor of Electrical and Computer Engineering
Department and an Adjunct Assistant Professor of School of Computing
at the University of Utah. He received the IEEE Communications Society
Leonard G. Abraham Prize for the best IEEE JSAC paper in 2019, the
best paper award in IEEE ICC 2015 conference, the best student paper
award in IEEE European Wireless 2010 Conference and USC Annenberg
Fellowship from 2010 to 2014. He has served as an Associate Editor of IEEE
Transactions on Communications from 2020. He is interested the broad area of
information theory, coding theory, concentration of measure and statistics with
the applications of caching networks, wireless communications, distributed
storage and computing systems, distributed machine learning, and (statistical)
signal processing.

APPENDIX A
THE PROOF OF PROPOSITION 1

We consider the FLCD scheme for K = 3 and r = 2. It
can be seen directly that the FLCD scheme is correct from
its description in Section VI-A. Here, we will derive the
communication load (8).

From the FLCD description in Section VI-A, it can be seen
that this scheme is correct straightforwardly. Note that, by (14),
the number of total bits of each IV set Vk

{i,j} is the same since
it contains |M{i,j}| IVs of size Tk bits each. Let the number
of bits in each IV set Vk

{i,j} be B, then |M{i,j}|Tk = B and
we obtain

LFLCD(2) =
3(B/2)

N(T1 + T2 + T3)

=
3B

2(|M{1,2}|+ |M{1,3}|+ |M{2,3}|)(T1 + T2 + T3)

=
3B

2
(

B
T3

+ B
T2

+ B
T1

)
(T1 + T2 + T3)

=
3T1T2T3

2(T1T2 + T1T3 + T2T3)(T1 + T2 + T3)
. (17)

Hence, we finish the proof of Proposition 1.

APPENDIX B
PROOF OF COROLLARY 1

In this section, we will prove Corollary 1, which states that
LFLCD(2) < 1

6 = LLMYA(2) when T1, T2 and T3 are not
all equal. Here, LFLCD(2) and LLMYA(2) refer to equations
(8) and (4), respectively. Note that, when K = 3 and r = 2,
we obtain that LLMYA = 1

2

(
1− 2

3

)
= 1

6 . Then, by using the
Arithmetic Mean-Geometric Mean (AM-GM) Inequality twice
to obtain

T1T2 + T1T3 + T2T3

3
≥ 3

√
(T1T2T2)2, (18)

and
T1 + T2 + T3

3
≥ 3

√
T1T2T2. (19)

In both (18) and (19), equality holds only when T1 = T2 = T3.
By using (18) and (19), we can obtain that

(T1T2 + T1T3 + T2T3)(T1 + T2 + T3)

≥ 3
√
(T1T2T2)2 · 3

√
T1T2T2 = 9T1T2T2. (20)

Therefore

LFLCD(2) =
3T1T2T2

2(T1T2 + T1T3 + T2T3)(T1 + T2 + T3)

≤ 3T1T2T2

2 · 9T1T2T2
=

1

6
, (21)

where equality holds only if T1 = T2 = T3. Hence, we
complete the proof of Corollary 1.

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:24:30 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2021.3098593, IEEE
Transactions on Cloud Computing

15

APPENDIX C
THE PROOF OF THEOREM 1

Here, we will provide the correctness proof of the general
FLCD scheme for K > 3 and prove the communication-
computation tradeoff shown in (10).

In this case, we will first prove (10) in Theorem 1 and
then prove the correctness of the FLCD scheme. To derive the
communication load, we will need to count the number of bits
transmitted. By the FLCD design, the number of bits in each
IV set Vk,j

n is �m	T ′1 bits. The reason for it is as follows. If
k ∈ Ki

1 ⊆ K1, k ∈ [K], there are |Ki
1|−1 = m̂−1 = �m	 files

that the nodes in Sn\k have the access to but node k does not.
These files are defined by the files mapped to the nodes Sn \k
and a node k′ ∈ Ki

1 \ k. Therefore, node k requests �m	 IVs,
each of size T ′1 bits, from the nodes of Sn \ k. Similarly, if
k ∈ Ki

2 ⊆ K2, k ∈ [K], the number of bits in each IV set Vk,j
n

is (|Ki
2|− 1)T2 = (�m	− 1)T ′2 bits that node k requests from

the nodes of Sn \k. Since �m	T ′1 = (�m	−1)T ′2, each IV set
Vk,j
n is �m	T ′1 bits. Consider all shuffle groups Sn, n ∈ [N].

Each of the r nodes of Sn, sends a message of size �m�T ′1
r−1

bits. Hence, the communication load is given by

LFLCD (a)
=

1

N(K1T ′1 +K2T ′2)
·N · r · �m	T ′1

r − 1

=
r�m	T ′1/(r − 1)

(m̂K − �m	m̂r)T ′1 + (�m	m̂r − �m	K) · �m�
�m�−1 · T ′1

=
r�m	(�m	 − 1)/(r − 1)

(m̂K − �m	m̂r)(�m	 − 1) + (�m	m̂r − �m	K)�m	
=

r�m	(�m	 − 1)/(r − 1)

r(�m	m̂− �m	2m̂+ �m	2m̂) +K(m̂(�m	 − 1)− �m	2)
=

1

r − 1
· r�m	(�m	 − 1)

r�m	m̂+K((�m	+ 1)(�m	 − 1)− �m	2)
=

1

r − 1
· r�m	(�m	 − 1)

r�m	m̂−K

=
1

r − 1

(�m	2 − �m	
�m	m̂−m

)
, (22)

where (a) is because Vk,j
n contains �m	T ′1 bits. Hence, we

obtain (10) in Theorem 1.
It remains to prove the correctness of the FLCD scheme

when K > 3. In order to show this, we will need to verify
that every node k collects all IVs Vk,1, . . . , vk,N . This can be
seen because node k will receive every IV set Vk

n for all n
such that k ∈ Sn. Moreover, Vk

n contains every IV computed
by the nodes of Sn \ k but not at node k. This includes all
IVs from files mapped at nodes Sn \ k and at one node from
Ki

j \ k where k ∈ Ki
j . By considering all N node groups, this

covers all files not available to node k. Therefore, node k will
receive all requested IVs that are not locally computed.

APPENDIX D
PROOF OF COROLLARY 2

In this section, we prove the Corollary 2 which states that
LFLCD(r) < 1

r−1

(
1− r

K

)
when m is not an integer and K >

3. LFLCD(r) is given in (10). Assume that m = �m	+ a > 1

and 0 < a < 1, a ∈ R such that m is not an integer. Then,
using the fact that a− a2 > 0, it can be seen that

�m	3 − �m	2 + a�m	2 − a�m	
< �m	3 − �m	2 + a�m	2 − a�m	+ a− a2. (23)

Then, we obtain

(�m	+ a)(�m	2 − �m) < (�m	+ a− 1)(�m	2 − a).
(24)

Using the fact that �m	2 ≥ 1 > a, (24) implies

�m	2 − �m	
�m	2 − a

<
�m	+ a− 1

�m	+ a
, (25)

Since m = �m	+ a, we obtain

�m	2 − �m	
�m	2 + �m	 −m

<
m− 1

m
, (26)

which implies

�m	2 − �m	
�m	(�m	+ 1)−m

< 1− 1

m
. (27)

Finally, since m̂ = �m	+ 1 and m = K
r , we obtain

�m	2 − �m	
�m	m̂−m

< 1− r

K
. (28)

Hence,

LFLCD(r) =
1

r − 1

(�m	2 − �m	
�m	m̂−m

)
<

1

r − 1

(
1− r

K

)
.

(29)

Therefore, we complete the proof of Corollary 2.

Authorized licensed use limited to: The University of Utah. Downloaded on October 01,2021 at 17:24:30 UTC from IEEE Xplore. Restrictions apply.

