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Image based modeling has an inherent problem that the complete geometry and appearance of a 3D
object cannot be directly acquired from limited 2D images, namely reconstruction of a 3D object when
only sporadic views are available is challenging due to occlusions and ambiguities within limited views.
In this paper, we present a generative network architecture to address the problem of single image based
modeling by learning multi-view manifold of 3D objects, which we call Multi-view GAN. Penalties for
shape identity consistency and view diversity are introduced to guide the learning process, and Multi-
view GAN can provide a powerful representation which consists of 3D descriptors both for shape and
view. This disentangled and oriented representation affords us to explore the manifold of views, thus one
can detail a 3D object without “blind spot” even if only single view is available. We have evaluated our
method on multi-view and 3D shape generation with a wide range of examples, and both qualitative
and quantitative results demonstrate that our Multi-view GAN significantly outperforms state-of-the-art

methods.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Image based modeling is a highly efficient and WYSIWYG mod-
eling method for 3D objects and even for large-scale scenes, there-
fore it is one of the most attractive topics in computer graph-
ics and computer vision. Over the past decades, researchers have
made impressive progresses on image based modeling [1-4]. How-
ever, most of these methods are limited to certain undesired re-
strictions. For instance, a dense photo gallery from various views
of an object is usually needed and these views should also be cal-
ibrated using relative baseline as that in [2], so it is impractical
when users want to model the object from sporadic views or even
one single view. In the case of modeling from one input image,
depth information and neural networks are commonly needed to
reconstruct the structure of the object, infer unseen parts and com-
plete the shape by referencing existing database [5]. These restric-
tions stem from an inherent shortcoming of image based modeling
that the complete geometry and appearance of a 3D object cannot
be acquired from limited 2D images.

To overcome these challenges, a wide variety of approaches
have been proposed, which can be grouped into two categories.
Some works focus on view synthesis and build explicit or implicit
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correspondences between views with neural networks [6,7]. Based
on this, new views are generated from existing pixels or pieced
codes that encoded from source views and modified with target
view parameters. The synthesized results of these methods are de-
sirable in similar views and image resolutions, but they may fail
when there is a large difference between the viewpoint of the
source image and the target image. Other works concentrate on
learning the disentangled representations [8-10], where supervised
learning is applicable in embedding intrinsic features and view-
points into designed descriptors. However, the learned descrip-
tors tend to be more descriptive or discriminative than generative,
which leads to limited content variation and image resolution in
generated views.

We re-consider the problem of single image based modeling as
multi-view generation, which has significant and practical appli-
cations in computer graphics. Given a single view of a 3D object,
our goal is to generate images of the object viewed from plenti-
ful viewpoints. Multiple generated 2D views constitute an efficient
representation for 3D object modeling. This task is extremely chal-
lenging due to the lack of 3D knowledge of the object when only
observed in a single view. Additionally, the ambiguities of geome-
try due to occlusions also make the problem intricate. Our contri-
butions focus on learning multi-view manifold of 3D objects and
generating new views with a learned representation. As shown in
Fig. 1, we present a multi-view manifold learning framework, we
call Multi-view GAN, for single image based modeling. Multi-view
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Fig. 1. Given a single view image as input, Multi-view GAN produces a unified rep-
resentation which consists of a 3D shape descriptor and a view descriptor. The com-
plete representation is learned from the manifold of training data, especially from
the multi-view manifold. For single image based modeling, the representation can
be used to synthesize identity preserved images at plentiful viewpoints specified by
the view descriptors in embedding space of views.

GAN provides a complete representation of 3D objects which can
interlink the shape manifold and the view manifold in a reduced
latent space.

Generative Adversarial Networks (GANs) [11] can generate sam-
ples following a data distribution through a two-player game be-
tween a generator G and a discriminator D. Despite many recent
promising developments, image synthesis remains to be the main
objective of GANs [12,13]. Different from the discriminator in con-
ventional GANs, our D not only does the task of real/fake image
classification but also suggests generator to synthesize a group of
identity preserved images with different viewpoints of the same
object. We conduct G with an encoder-decoder structure to oper-
ate a two-stage training process. Multi-view GAN first captures the
data distribution in the latent space of shape. Afterwards, multi-
view images are grouped as input and the encoder Gepc outputs
their shape descriptors which are then modified with noise vectors
for view manifold learning. Identity consistency penalty, which is
computed with feature matching results among views, is attached
to the objective function in the second training stage. At the same
time, in order to avoid mode collapse in view latent space, view di-
versity is encouraged by the objective function developed from the
standard deviation of global feature maps which are outputs of the
later convolution layers in D. By this means, Multi-view GAN is ca-
pable of capturing the data distribution both in the latent space of
shape and view.

The learned representation is generative, disentangled and ori-
ented. The input to encoder Gec is an image of a 3D object from a
general viewpoint, the outputs of decoder Gy are synthesized im-
ages at numerous target viewpoints sampled in view manifold. In
other words, the learned representation bridges Genc and Gge., and
also enable us to detail 3D objects without “blind spot” by navigat-
ing the manifold of view subspace and generate new shapes with
the manifold of shape. A wide range of experiments in shape mor-
phing and interpolation of views show that the proposed technique
achieves significant improvement compared to existing methods.
Our salient contributions can be summarized as follows:

1. We propose Multi-view GAN, a holistic learning framework that
can capture data distribution in multi-view manifold space and
the whole latent space of 3D objects.

2. We design a novel discriminator which is aware of geometry
consistency and view diversity across a group of images. Mean-
while, it certainly holds the ability to evaluate the probability

that an image came from the training data rather than the gen-
erator.

3. We show the advantages of the learned representations by nav-
igating in the manifold of views and shapes to detail a 3D ob-
ject from more views and generating new 3D shapes.

2. Related work
2.1. Multi-view synthesis

Generating new views of one object based on a few input views
is a longstanding problem in computer graphics and vision. A large
body of works benefit from explicit geometric reasoning to address
this problem. Traditional methods for view synthesis directly re-
use the pixels from available images. Debevec et al. [14] use the
potential geometry to synthesize multiple views by rendering new
views. Gortler et al. [15] capture the complete appearance of ob-
jects and use a subset of the plenoptic function to describe the
light field. The description is then used to render images of the ob-
ject from new camera positions. Seitz and Dyer [16] synthesize im-
age changes of viewpoint by prewarping two images prior to com-
puting a morph and then postwarping the interpolated images. A
number of recent works in this area have used a unified frame-
work for these techniques [17,18]. These hand-built methods do
not leverage training data and can therefore only generate already
seen content. In cases when multiple images are available, modern
multi-view stereo algorithms [19] have demonstrated their ability
to generate impressive quality results. An alternative approach pro-
posed by Flynn et al. [20] perform compositing through learned ge-
ometric reasoning using a Convolutional Neural Networks (CNNs),
and can generate intermediate views of a scene by interpolating
from a set of surrounding views. Ji et al. [21] propose to rectify the
two view images first with estimated homography by deep net-
works, and then synthesize intermediate view images with other
deep networks. These methods fundamentally rely on finding vi-
sual correspondences and composting the corresponding input im-
age rays for each output pixel. Therefore, they can only generate
already seen content or break down when there are only a couple
of views from very different viewpoints.

Other multi-view generation methods utilize CNNs to function
as image decoders [8]. Dosovitiskiy et al. [6] train a CNN that is
capable of functioning as a renderer, but the network requires ex-
plicitly factored representations of object identity, pose and color.
Tatarchenko et al. [22] and Yang et al. [23] build on this work
utilizing the insight that the graphics code, instead of being pre-
sented explicitly, can be implicitly captured by an source image
along with the desired transformation. A common module in these
methods is a decoder CNN to generate pixels corresponding to the
transformed view from an implicit/explicit graphics code. Due to
the challenges of disentangling the factors from single-view and
the use of globally smooth pixel-wise similarity measures, the gen-
eration results tend to be blurry and in low resolution. More re-
cently, Zhou et al. [24] trained a deep generative convolutional
encoder-decoder model to generate an appearance flow vector in-
dicating the corresponding pixel in the input view to copy from.
However, direct transformations are clearly upper-bounded by the
input. Park et al. [7] first explicitly infer the parts of the geome-
try visible both in the input and novel views and then re-cast the
remaining generation problem as image completion.

2.2. Representation learning

Synthesizing new views of objects can be thought as decoupling
viewpoint and identity, and has long been studied as part of rep-
resentation learning and view-invariant recognition. Hinton et al.
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[25] learn a hierarchy of computational units, which locally trans-
form their input, for generating rotations to an input stereo pair,
and argue for the use of similar computational units for recog-
nition. Cheung et al. [26] propose an auto-encoder with decou-
pled semantic units representing identity, pose and other factors
of variation and demonstrate that the proposed method is capa-
ble of synthesizing new views of faces. Jaderberg et al. [27] argue
for the use of computational layers that perform spatial transfor-
mation over their input features as effective modules for recog-
nition tasks. Jayaraman and Grauman [28] study the task of syn-
thesizing features transformed by ego-motion and demonstrate its
utility as an additional task for learning semantic representation
space. Kulkarni et al. [8] propose a similarly motivated variational
method for decoupling and manipulating the factors of variation
for images of faces. While the representation learning approaches
convincingly demonstrate the ability to disentangle factors of vari-
ation, the view manipulations demonstrated are typically restricted
to small rotations or categories with limited shape variance like
digits and faces.

Prior works also explore joint representation learning and face
rotation for Pose-Invariant Face Recognition. In [29], Multi-View
Perceptron is used to untangle the identity and view representa-
tions by processing them with different neurons and maximizing
the data log-likelihood. Yim et al. [30] use a multi-task CNN to
rotate a face with any pose and illumination to a target pose, and
the L2 loss-based reconstruction of the input is the second task.
Both works focus on image synthesis and the identity represen-
tation is a by-product during the network learning. In contrast,
DR-GAN [10] focuses on representation learning, of which face
rotation is both a facilitator and a by-product. The discriminator in
DR-GAN is a multi-task CNN which deal with real/fake image clas-
sification along with identity and pose classification. On account
of employing labeled dataset in supervised learning, the learned
representation is discrete in view space and lack of generative
capacity. Similarly, Tian et al. [9] introduce CR-GAN, which include
a generation sideway to maintain the completeness of the learned
embedding space. Compared with DR-GAN, CR-GAN yields better
quality multi-view image generations from unseen data in wild
conditions. However, the identity of the object is not well retained
in a series of generations.

3. Method
3.1. Problem statement and overview

Given a set of views x = {V;j|li=1,...,n,j=1,..., m} belonging
to several 3D objects of the same class, where n is the number of
objects in this class and m is the number of views of each object in
this class, the goal of our generative network is to learn the view
subspace as well as the whole latent space of these 3D objects.
Furthermore, we train a decoder in the generator part to embed
views of one object into the latent space in order to navigate in
the manifold of views and get the complete representation of this
object.

As proposed in [11], the Generative Adversarial Network (GAN),
which consists of a generator G and a discriminator D, is capable
of capturing the data distribution in the latent space. The gener-
ator attempts to confuse the discriminator by keeping trying to
synthesize realistic-looking images from a random noise vector z.
The discriminator tries to distinguish between real images x and
synthesized ones G(z). In practice, D and G play a game with loss
function:

I‘l’ng Egan = Exepgaa [log D(x)]

+ E,p,»[l0g(1 — D(G(2)))]. (1)

mélX ['gan = IEz~pz(z)[IOg(D(G(Z))l (2)

This adversarial game has a global optimum when the distri-
bution p, of the synthesized samples and the distribution pgqyq
of the real samples are the same. Compared to prior GANs, our
Multi-view GAN also needs to capture the distribution p,, of
views in a subspace for each object. To this end, different from
the discriminator in conventional GAN, our D not only does the
task of real/fake image classification but also suggests G to gener-
ate a group of images from different viewpoints of the same ob-
ject. Therefore, two additional estimations are included in our ob-
jectives. Given a group of real images x, D aims to classify it as the
real group of views belong to the same object. While given a group
of synthesized views from the generator X = {G(z;)|i=1,...,n}, D
attempts to classify X as fakes, using the following objectives:

n
[:gDan = ZIEXind(Xi)[log(D(x,-)]
i=1

+ Y Eyp [l —log(D(G@E))], 3)

i=1
28 = fa(FE()) — fua(FE(R)), (4)
Loew = Fuiew(F' (X)) = fuiew(F (%)), (5)

where El% is the penalty for object identity consistency across dif-
ferent views and Eﬁiew is the penalty for views diversity. These
two penalties are computed by two functions fiy and f;., respec-
tively using global features F¥ and local features F' from discrim-
inator D. More details about features and functions will describe
in Sections 3.2 and 3.3 The final objective for training D is the

weighted average of all objectives:
max D= AngDan + Xid L2+ Miew LD - (6)

Meanwhile, G aims to learn a mapping from a group of cor-
relative and assembled codes to synthesized images X = {G(z;)|i =
1,...,n}. Each of these codes consists of two parts: identity code
and view code. To generate a group of synthesized images which
seem like multi-views of the same object, identity codes in a code
group are the same to each other, meanwhile view codes are sam-
pled from a uniform distribution. G attempts to puzzle D with its
generations using the following objectives:

Loan = iEzi~pz(2i)[lOg(D(G(zi))]’ (7)
i=1

Ly = fia(FE(X)), (8)

Lo = Fuiew(F' (%)), (9)

max LE = AgLggn + Mg LG + MviewL ey (10)

On one hand, after training D and G alternately, D becomes
more alertness with synthesized images and the additional penal-
ties force G to generate images satisfying the criterion of identity
consistency and views diversity. On the other hand, with the as-
sembled codes and grouped views as inputs, views belonging to
the same object are embedded to neighboring positions in the la-
tent space, which consequently forms view subspace separated by
identity codes. In other words, the learned representation is explic-
itly disentangled.
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Fig. 2. The network structure of our Multi-view GAN. The encoder-generator-discriminator structure is required for a two-stage training process. The network first captures
the data distribution in the latent space of shape. Besides, the encoder is trained to produce descriptors that can be decoded into original images. Modified noise vectors
and losses of group consistency and view diversity are used in the second training stage for view subspace learning. Feature maps from the earlier and the later convolution

layers participate in the computation of losses respectively.
3.2. Network architecture

GANs have the ability to produce appealing samples, but the
training processes of these networks are not always stable, espe-
cially in the case of generating high-resolution images. In addi-
tion, GANs have a tendency to capture only a subset of the varia-
tion found in training data (mode collapse). These two weaknesses
of GANs bring greater challenges to our task. One reason is that
higher resolution means more details for our discriminator to esti-
mate identity consistency through local features. Another reason is
that the sample distribution of multi-views is concentrated natu-
rally which may induce mode switch or mode collapse. In order to
overcome these problems, we adopt WGAN-GP loss [31] in the task
of real/fake image classification and add layers progressively during
training as those in [32]. The network structure of Multi-view GAN
is shown in Fig. 2.

In our Multi-view GAN, the generator G maps a 200-dimension
latent vector z to a 256 x 256 image with upsampling and convo-
lution. For the latent vector, identity code is the first 164 dimen-
sions and view code is the remaining 36 dimensions. We randomly
sample each dimension independently from a uniform distribution
in the range of [—1, 1]. The discriminator D basically mirrors the
generator except that it uses average pooling to achieve downsam-
pling. During view manifold learning, feature maps of the first two
layers in D also take part in the computation of penalties in Eqs.
(4) and (8). Meanwhile, feature maps of the last but one layer are
used to compute penalties for views diversity in Egs. (5) and (9).
Leaky RelU [33] layers are used after convolution layers in both G
and D. The encoder E has the same structure with D but without
the fully connected layer for real/fake classification.

The encoder-generator-discriminator structure is required for a
two-stage training process. We firstly feed the network with im-
ages of different objects. The inputs are not grouped but they have
same viewpoint. Simultaneously the input vectors for G are com-
pletely irrelevant neither in identity code nor in view code across
a training batch. Identity consistency and view diversity penalties
are not involved in this pre-training stage and our purpose here

is only to obtain a coarse distribution of the training dataset. The
encoder E is trained when G and D are fixed after the alternating
training. Given an input image, E produces an output in the same
form of latent vector. G reconstructs this image with the output
code and the generation is compared with the target image. We
adopt pixel-wise loss to enforce E to be trained as an inverse of G
and be able to yield representations of training data.

In the second training stage, for each image used in pre-
training, E provides a 200-dimensional vector to locate the cor-
responding object in the latent space. We truncate the vector at
165th dimension and concatenate it with 36-dimensional noise
vectors. This time we feed the network with grouped views and
grouped latent vectors which have the same identity code. Iden-
tity consistency penalty constrains the mapping results of similar
vectors to indicate the same target. Variation of views is encour-
aged by view diversity penalty. Based on the learned coarse data
distribution, the network is further trained to learn the view sub-
space as well as to disentangle identity and view information in
the final representation.

3.3. Identity consistency and views diversity

The modified latent vectors in a group are the same in the first
164 dimensions, which means they can represent neighbor parts
in the latent space. However, these neighbor parts may indicate
images that are different in shapes, colors or other aspects after
the network learning the embedding. That is, the differences may
not be exactly reflected in viewpoints and may disturb shapes
described by fixed dimensions. Therefore, we introduce penalty
functions of identity consistency and views diversity to constrain
the generator to produce multi-views with the modified latent
vectors. Afterwards, the network can learn the view subspace and
disentangle identity and view information in the representation.
The penalties enable discriminator to recognize a group of images
that satisfy the establishing conditions of multi-views and provide
guidance for the training of generator.
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Fig. 3. Visualization and comparison of feature maps and convolution kernels from
discriminator after the first training stage. Feature maps produced by the earlier
layers present legible outlines or shapes. While feature maps produced by the later
layers are more complicated to interpret, there is significant diversity among feature
maps which result from the same kernel but correspond to different views.

In systems for 3D reconstruction from collections of images,
feature detection and matching are used to solve spatial positions
of pixels. Our task can be seen as an inverse project of multi-view
3D reconstruction. We have no need to estimate viewpoint param-
eters or compute spatial positions because we just take advantage
of feature matching to make up relations between images that in-
dicate a same object. We adopt the scale-invariant feature trans-
form (SIFT) algorithm [34] to extract features and use the k-nearest
neighbors algorithm (KNN) to deal with feature matching. Match-
ing results are then used to evaluate relations between images.

While on aspect of increasing views diversity, we compute dif-
ferences of global features between images which are fed into dis-
criminator and use penalty function to stimulate these differences,
which is similar to those projects that aim to increase variation of
the generation of GANs. Salimans and Kingma [35] suggest mini-
batch discrimination as a solution. They compute feature statis-
tics not only from individual images but also across minibatches,
thus encouraging the minibatches of generated and training im-
ages to have similar statistics. This is implemented by adding a
minibatch layer towards the end of the discriminator, where the
layer learns a large tensor that projects the input activation to an
array of statistics. A separate set of statistics is produced for each
example in a minibatch and it is concatenated to the layer’s output
so that the discriminator can use the statistics internally. Karras
et al. [32] simplify this approach by computing the standard devi-
ation for each feature in each spatial location over the minibatch
while also improve the variation. We test this method in our learn-
ing framework but there is no obvious improvement in variation of
viewpoints. The reason may be that it is a vague-objective prob-
lem for discriminator to find differences among statistical data.
Hence, we append the standard deviation result to our objectives
directly.

We use feature maps which are outputs of convolution layers
of our discriminator to perform penalty function tasks mentioned
above. This idea is inspired by studies on the interpretability of
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Fig. 4. Examples of views generation (elevation angle). In each pair of rows, images
in the top row are the generation results at four target viewpoints and images in
the second row are the corresponding ground truth images.

®

convolution neural networks [36,37]. We visualize the feature
maps and convolution kernels after the first training stage and
the results are shown in Fig. 3. Similar to convolution neural
networks which are trained for recognition and classification
tasks, kernels for detecting edges, colors and textures appear in
the earlier layers. Distinctly, feature maps produced by the earlier
layers are results of those kernels and present legible outlines or
shapes. Feature maps contain less information than original images
universally. However, on account of the low quality outputs of
GANs, feature matching between blurry images leads to inaccurate
results. Legible outlines and shapes provide equilibrium between
original images and synthesized images in feature matching.

For kernel k;(i=1,...,64) in the first convolution layer of D, it
produces m (size of input images) feature maps F&;(j=1,...,m).
After feature matching among feature maps, we sort top 5
matched feature quantities for every feature map. The sum of the
top matched feature quantities is transferred into activation func-
tion before computing the average matching score f;; across all ker-
nels in the layer. While feature maps produced by the later lay-
ers are more complicated to interpret, there is significant diversity
among feature maps which result from the same kernel but corre-
spond to different views. Penalty for view diversity is computed as
the standard deviation across feature maps of the same kernel for
a group of input images.

4. Experiments

Our Multi-view GAN aims to learn the view subspace as well
as the whole latent space of 3D objects and acquire complete
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Fig. 5. Results of 180° rotations. We generate multiple new views based on the input image, then sample viewpoints of the same elevation and interpolate in rotation
between viewpoints. Compared with CR-GAN and DR-GAN, our Multi-view GAN can generate far more realistic chairs and cars that are similar to the ground truth in all

views.

representations sequentially. The learned representations are dis- for feature matching among grouped images and qualitatively for
entangled and can be used to locate objects in the latent space shape morphing and interpolation of views. In order to verify
for generation of other views or even shapes. We achieve this by the ability of our method to generate 3D shapes, we have also
training an encoder-generator-discriminator network in two stages conducted experiments to reconstruct 3D objects with one single

successively. We have evaluated our Multi-view GAN quantitatively view as input.
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Fig. 7. Visualization for the learned embedding space of Multi-view GAN. Markers with the same color indicate the same object. Aggregations of same color markers mean
multi-views of the same object are embedded close to each other in the latent space. View subspace of chair No.9 is shown in Fig. 8.

4.1. Experimental settings

Datasets. We evaluate our Multi-view GAN on datasets of dif-
ferent object classes. We use renderings of 3D models of chairs,
made public by Aubry et al. [38] as well as tables and cars from
the ShapeNet [39] dataset. For each 3D object class, 90% of mod-
els in this class are used for training and the rest 10% are testing
instances.

Aubry et al. [38] provide renderings of 1393 chair models, each
rendered from 62 viewpoints: 31 azimuth angles (with a step of
11°) and 2 elevation angles (20° and 30°), with a fixed distance to

the chair. We find that the dataset includes some approximately
duplicate models, which differ only in color, and some low-quality
models. After removing these we end up with a reduced dataset of
737 models, which we use in our experiments. We crop the ren-
ders to have a small border around the chair and resize them to a
common resolution of 256 x 256 pixels.

We take models of tables and cars from ShapeNet [39], a
dataset containing tens of thousands of consistently aligned 3D
models of multiple classes. We render a turntable of each model
using 16 azimuth angles (from 0° to 350°) and 4 elevation angles
(from 0° to 45°), which results in 64 images per model. Positions
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Fig. 8. Visualization for the multi-view manifold and the navigation trajectory. In order to display the interpolation trajectory and navigation directions clearly, we add some
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Fig. 9. Visualization for the interpolation trajectory of shape morphing.

of the camera and the light source are fixed during rendering. For
experiments in this paper we use renderings of 1328 car models
and 1388 table models. All renderings are of 256 x 256 pixels.

Implementation details. Our implementation is extensively mod-
ified from a publicly available implementation of PG-GAN [32]. The
batch size is set to be 128 at initial resolution of 4 x 4 and reduce
to 8 at resolution of 256 x 256. All weights are initialized from
a zero-centered normal distribution with a standard deviation of
0.02. We train the networks using Adam optimizer [40]. We do not
use any learning rate decay or ramp down, but for visualizing gen-
erator output at any given point during the training, we use an
exponential running average for the weights of the generator with
decay 0.999. Moreover, the networks are trained after 12,000 thou-
sands of images for each dataset.

Evaluation metrics. We utilize the standard L; mean pixel-wise
error and the structural similarity index measure (SSIM) for eval-

uation [41,42]. When computing the L; error, we normalize the
L, distance results into the range of [0, 1], lower numbers corre-
sponding to better results. Then we calculate the mean value of
these normalized results as the final L; error. SSIM is in the range
of [-1, 1] and the closer to 1 indicates more structural similarity.

4.2. Multi-view generation

In this section we show that the network is able to generate
multi-views of a 3D object with a single view as input. We com-
pare our method with DR-GAN and CR-GAN by computing the L,
error and SSIM between generation results and ground truth im-
ages. In Fig. 4 we show some examples of elevation transfer. For
4 views of each object the effect of view subspace learning is al-
ready visible. Synthesized images at target viewpoints are distinct
and fine details preserved.
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Fig. 10. Failure cases of our method. When dealing with complex structures or 3D objects with rich local details, the embedding is sometimes not accurate. It may be
caused by partial learning of the latent space which means the identity codes can not cover the features of shape. As a result the adding of view codes may give rise to a
few changes in shape as well as changes in viewpoints (see images in the first row). In other cases, the ambiguity may lead to incomplete generations and/or generations

without any meaning (see images in the second row).
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Fig. 11. We run a multi-view reconstruction algorithm to obtain a textured mesh with generated views from single view as input. Our method results in better meshes
where views generated by CR-GAN failed.

Fig. 5 shows some representative examples of viewpoint ro-
tation. Specifically, we generate multiple novel views from the
input image, then sample viewpoints of the same elevation and
interpolate in rotation between viewpoints and finally cover an
180° rotation around the object. Compared with CR-GAN and
DR-GAN, our Multi-view GAN can generate far more realistic
chairs and cars that are similar to the ground truth in all views.
Meanwhile, images synthesized by DR-GAN or CR-GAN cannot
maintain high frequency components and are blurry. Besides, in
spite of the difficulties in generating images from a viewpoint
that has wide gap with the input view, our Multi-view GAN can
synthesize reasonable images in the condition of large viewpoint
transformation where DR-GAN and CR-GAN fail in sharp contrast.
In terms of neighbouring views, our Multi-view GAN produces
favorable images with smoother transition and better identity
preservation. We provide quantitative comparison to these two
methods in Table 1. We note that, although commonly used, L;
and SSIM metrics are not fully correlated with human perception.
While our method is clearly better than others in the L; baseline,
and all methods get comparable SSIM scores.

4.3. Modeling transformations

Remarkably, the generative network can not only imagine pre-
viously unseen views of a given object, but also invent new objects
by interpolating between given ones. It is the foundation of shape

Multi-view
GAN

o &
@
& B

Table 1

We compare our method to DR-GAN and CR-GAN by computing the L; error and
SSIM score. For each class of objects, statistics is the average of results from all
generated views.

Method Tables Cars Chairs

L1 SSIM L1 SSIM L1 SSIM
MV-GAN 0.133 0.908 0.142 0.89 0.236 0.885
CR-GAN 0.168 0.879 0.235 0.892 0.267 0.865
DR-GAN 0.206 0.892 0.261 0.887 0.264 0.87

manifold navigation. We show how Multi-view GAN is able to gen-
erate chairs, cars and tables that are significantly transformed rel-
ative to the original images. in Fig. 6, each row shows a different
type of transformation. In the examples of morphing chairs, im-
ages on both sides are source images. Even in the presence of large
transformations, the quality of the generated images is basically as
good as without transformation. The image quality typically de-
grades a little in case of sharp variation of chair shapes (such
as transformation from rotating office chairs pedestal to separated
legs). Cars and tables, by contrast, have less differences among ob-
jects in shape. In order to demonstrate the consecutiveness of the
learned latent space, images in the central column as well as on
both sides are non-transformed. The network easily deals with ex-
treme color-related transformations. Also when handling changes
in structures, the network is able to find reasonable transition (see
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the transformation of numbers of table legs and frames in the sec-
ond to the last row) or use correlative shapes in the latent space.
To obtain interpolation in shapes, we simply linearly change the
identity code parts in the latent vector from one object to another.
The interpolation result is used to locate newly produced shapes in
the latent space and then participate in sampling views that have
same viewpoints with source images.

4.4. Latent space learning

Figs. 7 and 8 show the embedding space learned by our Multi-
view GAN. We use T-distributed Stochastic Neighbor Embedding
(t-SNE) algorithm [43] to visualize the latent vectors of 9 differ-
ent chairs. Markers with the same color indicate the same object.
Multi-view images of the same chair are embedded close to each
other in the latent space of shape, which means the identities are
well preserved by shape descriptors in the latent vectors. The em-
bedding of shape descriptors reflects the distribution of shapes and
other appearance attributes. Chairs with hollow back are embed-
ded neighbouring to each other (see chair No.7 and No.8). Situa-
tion is the same for sofas (see chair No.3 and No.6). Transition on
appearance can also be observed from chains of neighbouring em-
bedded chairs (Moving along the path from No.6, No.2, No.1 and
to No.4 we can see legibly gradual varying of colors and shapes).
View subspace of chair No.9 is shown in Fig. 8. Images of similar
viewpoints are embedded close to each other in the view subspace.

4.5. Discussion

Visualization for the multi-view manifold and the navigation
trajectory are shown in Fig. 8. In order to display the interpola-
tion trajectory and navigation directions clearly, we add some in-
termediate interpolation points based on views in Fig. 5. Images
of similar viewpoints are embedded close to each other in the la-
tent space. Visualization for the interpolation trajectory of shape
morphing is shown in Fig. 9. Fig. 10 shows failure cases of our
method. When dealing with complex structures or 3D objects with
rich local details, the embedding is sometimes not accurate. It may
be caused by partial learning of the latent space which means the
identity codes can not cover the features of shape. As a result the
adding of view codes may give rise to a few changes in shape
as well as changes in viewpoints (see images in the first row).
In other cases, the ambiguity may lead to incomplete generations
and/or generations without any meaning (see images in the second
row).

4.6. Application

Constructing 3D geometry of an object from a single image is
an attractive problem of computer vision research. Recent methods
using deep networks generally use a voxelized 3D reconstruction
as output [5,44]. However, computational and spatial complexities
of using such voxelized representations in encoder-decoder net-
works restricts the output resolution considerably. We develop the
performance of our learning framework in generating novel views
for reconstruction purposes. We generate multiple novel views
from the input image to cover a full 360° rotation around the ob-
ject sampled at 15° intervals as well as 45° elevation sampled at
5° intervals. Afterwards, we run a multi-view reconstruction algo-
rithm [45] on these images to obtain a textured mesh from these
views. Fig. 11 demonstrates examples of reconstructed 3D models.
By generating views consistent in terms of geometry and details,
our method results in better meshes.

5. Conclusions

We propose Multi-view GAN, a holistic learning framework that
can capture data distribution in multi-view manifold. We design
a novel discriminator which is aware of consistency in geometry
and diversity in view across a group of images. Meanwhile, it cer-
tainly holds the ability of real/fake image classification. We show
the prominence of learned representations in navigating the man-
ifold of views to detail a 3D object as well as in generating new
shapes. Our method generates realistic images and outperforms
state-of-the-art techniques for novel view synthesis on datasets
of renderings where ground truth is known. Our synthesized im-
ages are even accurate enough to perform multi-view 3D model
generation.

We hope that the proposed image generation pipeline might
be also suitable to real photographs. For the future work, we can
improve the network to reply to views with complex background
from realistic environment. On the other hand, the learned view
descriptors are not corresponding to specific view parameters for
different objects. The reason is that there is no uniform original
point or coordinate axis for heterogeneous 3D shapes. We should
also concordant descriptors in different subspace by consistency
analysis on images of the same viewpoints.
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