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a b s t r a c t 

Image based modeling has an inherent problem that the complete geometry and appearance of a 3D 

object cannot be directly acquired from limited 2D images, namely reconstruction of a 3D object when 

only sporadic views are available is challenging due to occlusions and ambiguities within limited views. 

In this paper, we present a generative network architecture to address the problem of single image based 

modeling by learning multi-view manifold of 3D objects, which we call Multi-view GAN. Penalties for 

shape identity consistency and view diversity are introduced to guide the learning process, and Multi- 

view GAN can provide a powerful representation which consists of 3D descriptors both for shape and 

view. This disentangled and oriented representation affords us to explore the manifold of views, thus one 

can detail a 3D object without “blind spot” even if only single view is available. We have evaluated our 

method on multi-view and 3D shape generation with a wide range of examples, and both qualitative 

and quantitative results demonstrate that our Multi-view GAN significantly outperforms state-of-the-art 

methods. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 

Image based modeling is a highly efficient and WYSIWYG mod- 

eling method for 3D objects and even for large-scale scenes, there- 

fore it is one of the most attractive topics in computer graph- 

ics and computer vision. Over the past decades, researchers have 

made impressive progresses on image based modeling [1–4] . How- 

ever, most of these methods are limited to certain undesired re- 

strictions. For instance, a dense photo gallery from various views 

of an object is usually needed and these views should also be cal- 

ibrated using relative baseline as that in [2] , so it is impractical 

when users want to model the object from sporadic views or even 

one single view. In the case of modeling from one input image, 

depth information and neural networks are commonly needed to 

reconstruct the structure of the object, infer unseen parts and com- 

plete the shape by referencing existing database [5] . These restric- 

tions stem from an inherent shortcoming of image based modeling 

that the complete geometry and appearance of a 3D object cannot 

be acquired from limited 2D images. 

To overcome these challenges, a wide variety of approaches 

have been proposed, which can be grouped into two categories. 

Some works focus on view synthesis and build explicit or implicit 
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correspondences between views with neural networks [6,7] . Based 

on this, new views are generated from existing pixels or pieced 

codes that encoded from source views and modified with target 

view parameters. The synthesized results of these methods are de- 

sirable in similar views and image resolutions, but they may fail 

when there is a large difference between the viewpoint of the 

source image and the target image. Other works concentrate on 

learning the disentangled representations [8–10] , where supervised 

learning is applicable in embedding intrinsic features and view- 

points into designed descriptors. However, the learned descrip- 

tors tend to be more descriptive or discriminative than generative, 

which leads to limited content variation and image resolution in 

generated views. 

We re-consider the problem of single image based modeling as 

multi-view generation, which has significant and practical appli- 

cations in computer graphics. Given a single view of a 3D object, 

our goal is to generate images of the object viewed from plenti- 

ful viewpoints. Multiple generated 2D views constitute an efficient 

representation for 3D object modeling. This task is extremely chal- 

lenging due to the lack of 3D knowledge of the object when only 

observed in a single view. Additionally, the ambiguities of geome- 

try due to occlusions also make the problem intricate. Our contri- 

butions focus on learning multi-view manifold of 3D objects and 

generating new views with a learned representation. As shown in 

Fig. 1 , we present a multi-view manifold learning framework, we 

call Multi-view GAN, for single image based modeling. Multi-view 
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Fig. 1. Given a single view image as input, Multi-view GAN produces a unified rep- 

resentation which consists of a 3D shape descriptor and a view descriptor. The com- 

plete representation is learned from the manifold of training data, especially from 

the multi-view manifold. For single image based modeling, the representation can 

be used to synthesize identity preserved images at plentiful viewpoints specified by 

the view descriptors in embedding space of views. 

GAN provides a complete representation of 3D objects which can 

interlink the shape manifold and the view manifold in a reduced 

latent space. 

Generative Adversarial Networks (GANs) [11] can generate sam- 

ples following a data distribution through a two-player game be- 

tween a generator G and a discriminator D . Despite many recent 

promising developments, image synthesis remains to be the main 

objective of GANs [12,13] . Different from the discriminator in con- 

ventional GANs, our D not only does the task of real/fake image 

classification but also suggests generator to synthesize a group of 

identity preserved images with different viewpoints of the same 

object. We conduct G with an encoder-decoder structure to oper- 

ate a two-stage training process. Multi-view GAN first captures the 

data distribution in the latent space of shape. Afterwards, multi- 

view images are grouped as input and the encoder G enc outputs 

their shape descriptors which are then modified with noise vectors 

for view manifold learning. Identity consistency penalty, which is 

computed with feature matching results among views, is attached 

to the objective function in the second training stage. At the same 

time, in order to avoid mode collapse in view latent space, view di- 

versity is encouraged by the objective function developed from the 

standard deviation of global feature maps which are outputs of the 

later convolution layers in D . By this means, Multi-view GAN is ca- 

pable of capturing the data distribution both in the latent space of 

shape and view. 

The learned representation is generative, disentangled and ori- 

ented. The input to encoder G enc is an image of a 3D object from a 

general viewpoint, the outputs of decoder G dec are synthesized im- 

ages at numerous target viewpoints sampled in view manifold. In 

other words, the learned representation bridges G enc and G dec , and 

also enable us to detail 3D objects without “blind spot” by navigat- 

ing the manifold of view subspace and generate new shapes with 

the manifold of shape. A wide range of experiments in shape mor- 

phing and interpolation of views show that the proposed technique 

achieves significant improvement compared to existing methods. 

Our salient contributions can be summarized as follows: 

1. We propose Multi-view GAN, a holistic learning framework that 

can capture data distribution in multi-view manifold space and 

the whole latent space of 3D objects. 

2. We design a novel discriminator which is aware of geometry 

consistency and view diversity across a group of images. Mean- 

while, it certainly holds the ability to evaluate the probability 

that an image came from the training data rather than the gen- 

erator. 

3. We show the advantages of the learned representations by nav- 

igating in the manifold of views and shapes to detail a 3D ob- 

ject from more views and generating new 3D shapes. 

2. Related work 

2.1. Multi-view synthesis 

Generating new views of one object based on a few input views 

is a longstanding problem in computer graphics and vision. A large 

body of works benefit from explicit geometric reasoning to address 

this problem. Traditional methods for view synthesis directly re- 

use the pixels from available images. Debevec et al. [14] use the 

potential geometry to synthesize multiple views by rendering new 

views. Gortler et al. [15] capture the complete appearance of ob- 

jects and use a subset of the plenoptic function to describe the 

light field. The description is then used to render images of the ob- 

ject from new camera positions. Seitz and Dyer [16] synthesize im- 

age changes of viewpoint by prewarping two images prior to com- 

puting a morph and then postwarping the interpolated images. A 

number of recent works in this area have used a unified frame- 

work for these techniques [17,18] . These hand-built methods do 

not leverage training data and can therefore only generate already 

seen content. In cases when multiple images are available, modern 

multi-view stereo algorithms [19] have demonstrated their ability 

to generate impressive quality results. An alternative approach pro- 

posed by Flynn et al. [20] perform compositing through learned ge- 

ometric reasoning using a Convolutional Neural Networks (CNNs), 

and can generate intermediate views of a scene by interpolating 

from a set of surrounding views. Ji et al. [21] propose to rectify the 

two view images first with estimated homography by deep net- 

works, and then synthesize intermediate view images with other 

deep networks. These methods fundamentally rely on finding vi- 

sual correspondences and composting the corresponding input im- 

age rays for each output pixel. Therefore, they can only generate 

already seen content or break down when there are only a couple 

of views from very different viewpoints. 

Other multi-view generation methods utilize CNNs to function 

as image decoders [8] . Dosovitiskiy et al. [6] train a CNN that is 

capable of functioning as a renderer, but the network requires ex- 

plicitly factored representations of object identity, pose and color. 

Tatarchenko et al. [22] and Yang et al. [23] build on this work 

utilizing the insight that the graphics code, instead of being pre- 

sented explicitly, can be implicitly captured by an source image 

along with the desired transformation. A common module in these 

methods is a decoder CNN to generate pixels corresponding to the 

transformed view from an implicit/explicit graphics code. Due to 

the challenges of disentangling the factors from single-view and 

the use of globally smooth pixel-wise similarity measures, the gen- 

eration results tend to be blurry and in low resolution. More re- 

cently, Zhou et al. [24] trained a deep generative convolutional 

encoder-decoder model to generate an appearance flow vector in- 

dicating the corresponding pixel in the input view to copy from. 

However, direct transformations are clearly upper-bounded by the 

input. Park et al. [7] first explicitly infer the parts of the geome- 

try visible both in the input and novel views and then re-cast the 

remaining generation problem as image completion. 

2.2. Representation learning 

Synthesizing new views of objects can be thought as decoupling 

viewpoint and identity, and has long been studied as part of rep- 

resentation learning and view-invariant recognition. Hinton et al. 
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[25] learn a hierarchy of computational units, which locally trans- 

form their input, for generating rotations to an input stereo pair, 

and argue for the use of similar computational units for recog- 

nition. Cheung et al. [26] propose an auto-encoder with decou- 

pled semantic units representing identity, pose and other factors 

of variation and demonstrate that the proposed method is capa- 

ble of synthesizing new views of faces. Jaderberg et al. [27] argue 

for the use of computational layers that perform spatial transfor- 

mation over their input features as effective modules for recog- 

nition tasks. Jayaraman and Grauman [28] study the task of syn- 

thesizing features transformed by ego-motion and demonstrate its 

utility as an additional task for learning semantic representation 

space. Kulkarni et al. [8] propose a similarly motivated variational 

method for decoupling and manipulating the factors of variation 

for images of faces. While the representation learning approaches 

convincingly demonstrate the ability to disentangle factors of vari- 

ation, the view manipulations demonstrated are typically restricted 

to small rotations or categories with limited shape variance like 

digits and faces. 

Prior works also explore joint representation learning and face 

rotation for Pose-Invariant Face Recognition. In [29] , Multi-View 

Perceptron is used to untangle the identity and view representa- 

tions by processing them with different neurons and maximizing 

the data log-likelihood. Yim et al. [30] use a multi-task CNN to 

rotate a face with any pose and illumination to a target pose, and 

the L2 loss-based reconstruction of the input is the second task. 

Both works focus on image synthesis and the identity represen- 

tation is a by-product during the network learning. In contrast, 

DR-GAN [10] focuses on representation learning, of which face 

rotation is both a facilitator and a by-product. The discriminator in 

DR-GAN is a multi-task CNN which deal with real/fake image clas- 

sification along with identity and pose classification. On account 

of employing labeled dataset in supervised learning, the learned 

representation is discrete in view space and lack of generative 

capacity. Similarly, Tian et al. [9] introduce CR-GAN, which include 

a generation sideway to maintain the completeness of the learned 

embedding space. Compared with DR-GAN, CR-GAN yields better 

quality multi-view image generations from unseen data in wild 

conditions. However, the identity of the object is not well retained 

in a series of generations. 

3. Method 

3.1. Problem statement and overview 

Given a set of views x = { V i j | i = 1 , . . . , n, j = 1 , . . . , m } belonging 

to several 3D objects of the same class, where n is the number of 

objects in this class and m is the number of views of each object in 

this class, the goal of our generative network is to learn the view 

subspace as well as the whole latent space of these 3D objects. 

Furthermore, we train a decoder in the generator part to embed 

views of one object into the latent space in order to navigate in 

the manifold of views and get the complete representation of this 

object. 

As proposed in [11] , the Generative Adversarial Network (GAN), 

which consists of a generator G and a discriminator D , is capable 

of capturing the data distribution in the latent space. The gener- 

ator attempts to confuse the discriminator by keeping trying to 

synthesize realistic-looking images from a random noise vector z . 

The discriminator tries to distinguish between real images x and 

synthesized ones G ( z ) . In practice, D and G play a game with loss 

function: 

max 
D 

L 

D 
gan = E x ∼p data (x ) [ log D (x )] 

+ E z∼p z (z) [ log (1 − D (G (z)))] , (1) 

max 
G 

L 

G 
gan = E z∼p z (z) [ log (D (G (z))] . (2) 

This adversarial game has a global optimum when the distri- 

bution p z of the synthesized samples and the distribution p data 

of the real samples are the same. Compared to prior GANs, our 

Multi-view GAN also needs to capture the distribution p v iew 

of 

views in a subspace for each object. To this end, different from 

the discriminator in conventional GAN, our D not only does the 

task of real/fake image classification but also suggests G to gener- 

ate a group of images from different viewpoints of the same ob- 

ject. Therefore, two additional estimations are included in our ob- 

jectives. Given a group of real images x , D aims to classify it as the 

real group of views belong to the same object. While given a group 

of synthesized views from the generator ˆ x = { G (z i ) | i = 1 , . . . , n } , D 

attempts to classify ˆ x as fakes, using the following objectives: 

L 

D 
gan = 

n ∑ 

i =1 

E x i ∼p d ( x i ) 
[ log (D ( x i )] 

+ 

n ∑ 

i =1 

E z i ∼p z ( z i ) [1 − log (D (G ( z i ))] , (3) 

L 

D 
id = f id ( F 

g (x )) − f id ( F 
g ( ̂  x )) , (4) 

L 

D 
v iew 

= f v iew 

( F l (x )) − f v iew 

( F l ( ̂  x )) , (5) 

where L 

D 
id 

is the penalty for object identity consistency across dif- 

ferent views and L 

D 
v iew 

is the penalty for views diversity. These 

two penalties are computed by two functions f id and f v iew 

respec- 

tively using global features F g and local features F l from discrim- 

inator D . More details about features and functions will describe 

in Sections 3.2 and 3.3 The final objective for training D is the 

weighted average of all objectives: 

max 
D 

L 

D = λg L 

D 
gan + λid L 

D 
id + λv iew 

L 

D 
v iew 

. (6) 

Meanwhile, G aims to learn a mapping from a group of cor- 

relative and assembled codes to synthesized images ˆ x = { G (z i ) | i = 

1 , . . . , n } . Each of these codes consists of two parts: identity code 

and view code. To generate a group of synthesized images which 

seem like multi-views of the same object, identity codes in a code 

group are the same to each other, meanwhile view codes are sam- 

pled from a uniform distribution. G attempts to puzzle D with its 

generations using the following objectives: 

L 

G 
gan = 

n ∑ 

i =1 

E z i ∼p z ( z i ) [ log (D (G ( z i ))] , (7) 

L 

G 
id = f id ( F 

g ( ̂  x )) , (8) 

L 

G 
v iew 

= f v iew 

( F l ( ̂  x )) , (9) 

max 
G 

L 

G = λg L 

G 
gan + λid L 

G 
id + λv iew 

L 

G 
v iew 

. (10) 

On one hand, after training D and G alternately, D becomes 

more alertness with synthesized images and the additional penal- 

ties force G to generate images satisfying the criterion of identity 

consistency and views diversity. On the other hand, with the as- 

sembled codes and grouped views as inputs, views belonging to 

the same object are embedded to neighboring positions in the la- 

tent space, which consequently forms view subspace separated by 

identity codes. In other words, the learned representation is explic- 

itly disentangled. 
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Fig. 2. The network structure of our Multi-view GAN. The encoder-generator-discriminator structure is required for a two-stage training process. The network first captures 

the data distribution in the latent space of shape. Besides, the encoder is trained to produce descriptors that can be decoded into original images. Modified noise vectors 

and losses of group consistency and view diversity are used in the second training stage for view subspace learning. Feature maps from the earlier and the later convolution 

layers participate in the computation of losses respectively. 

3.2. Network architecture 

GANs have the ability to produce appealing samples, but the 

training processes of these networks are not always stable, espe- 

cially in the case of generating high-resolution images. In addi- 

tion, GANs have a tendency to capture only a subset of the varia- 

tion found in training data (mode collapse). These two weaknesses 

of GANs bring greater challenges to our task. One reason is that 

higher resolution means more details for our discriminator to esti- 

mate identity consistency through local features. Another reason is 

that the sample distribution of multi-views is concentrated natu- 

rally which may induce mode switch or mode collapse. In order to 

overcome these problems, we adopt WGAN-GP loss [31] in the task 

of real/fake image classification and add layers progressively during 

training as those in [32] . The network structure of Multi-view GAN 

is shown in Fig. 2 . 

In our Multi-view GAN, the generator G maps a 200-dimension 

latent vector z to a 256 × 256 image with upsampling and convo- 

lution. For the latent vector, identity code is the first 164 dimen- 

sions and view code is the remaining 36 dimensions. We randomly 

sample each dimension independently from a uniform distribution 

in the range of [ −1 , 1] . The discriminator D basically mirrors the 

generator except that it uses average pooling to achieve downsam- 

pling. During view manifold learning, feature maps of the first two 

layers in D also take part in the computation of penalties in Eqs. 

(4) and (8) . Meanwhile, feature maps of the last but one layer are 

used to compute penalties for views diversity in Eqs. (5) and (9) . 

Leaky ReLU [33] layers are used after convolution layers in both G 

and D . The encoder E has the same structure with D but without 

the fully connected layer for real/fake classification. 

The encoder-generator-discriminator structure is required for a 

two-stage training process. We firstly feed the network with im- 

ages of different objects. The inputs are not grouped but they have 

same viewpoint. Simultaneously the input vectors for G are com- 

pletely irrelevant neither in identity code nor in view code across 

a training batch. Identity consistency and view diversity penalties 

are not involved in this pre-training stage and our purpose here 

is only to obtain a coarse distribution of the training dataset. The 

encoder E is trained when G and D are fixed after the alternating 

training. Given an input image, E produces an output in the same 

form of latent vector. G reconstructs this image with the output 

code and the generation is compared with the target image. We 

adopt pixel-wise loss to enforce E to be trained as an inverse of G 

and be able to yield representations of training data. 

In the second training stage, for each image used in pre- 

training, E provides a 200-dimensional vector to locate the cor- 

responding object in the latent space. We truncate the vector at 

165th dimension and concatenate it with 36-dimensional noise 

vectors. This time we feed the network with grouped views and 

grouped latent vectors which have the same identity code. Iden- 

tity consistency penalty constrains the mapping results of similar 

vectors to indicate the same target. Variation of views is encour- 

aged by view diversity penalty. Based on the learned coarse data 

distribution, the network is further trained to learn the view sub- 

space as well as to disentangle identity and view information in 

the final representation. 

3.3. Identity consistency and views diversity 

The modified latent vectors in a group are the same in the first 

164 dimensions, which means they can represent neighbor parts 

in the latent space. However, these neighbor parts may indicate 

images that are different in shapes, colors or other aspects after 

the network learning the embedding. That is, the differences may 

not be exactly reflected in viewpoints and may disturb shapes 

described by fixed dimensions. Therefore, we introduce penalty 

functions of identity consistency and views diversity to constrain 

the generator to produce multi-views with the modified latent 

vectors. Afterwards, the network can learn the view subspace and 

disentangle identity and view information in the representation. 

The penalties enable discriminator to recognize a group of images 

that satisfy the establishing conditions of multi-views and provide 

guidance for the training of generator. 
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Fig. 3. Visualization and comparison of feature maps and convolution kernels from 

discriminator after the first training stage. Feature maps produced by the earlier 

layers present legible outlines or shapes. While feature maps produced by the later 

layers are more complicated to interpret, there is significant diversity among feature 

maps which result from the same kernel but correspond to different views. 

In systems for 3D reconstruction from collections of images, 

feature detection and matching are used to solve spatial positions 

of pixels. Our task can be seen as an inverse project of multi-view 

3D reconstruction. We have no need to estimate viewpoint param- 

eters or compute spatial positions because we just take advantage 

of feature matching to make up relations between images that in- 

dicate a same object. We adopt the scale-invariant feature trans- 

form (SIFT) algorithm [34] to extract features and use the k-nearest 

neighbors algorithm (KNN) to deal with feature matching. Match- 

ing results are then used to evaluate relations between images. 

While on aspect of increasing views diversity, we compute dif- 

ferences of global features between images which are fed into dis- 

criminator and use penalty function to stimulate these differences, 

which is similar to those projects that aim to increase variation of 

the generation of GANs. Salimans and Kingma [35] suggest mini- 

batch discrimination as a solution. They compute feature statis- 

tics not only from individual images but also across minibatches, 

thus encouraging the minibatches of generated and training im- 

ages to have similar statistics. This is implemented by adding a 

minibatch layer towards the end of the discriminator, where the 

layer learns a large tensor that projects the input activation to an 

array of statistics. A separate set of statistics is produced for each 

example in a minibatch and it is concatenated to the layer’s output 

so that the discriminator can use the statistics internally. Karras 

et al. [32] simplify this approach by computing the standard devi- 

ation for each feature in each spatial location over the minibatch 

while also improve the variation. We test this method in our learn- 

ing framework but there is no obvious improvement in variation of 

viewpoints. The reason may be that it is a vague-objective prob- 

lem for discriminator to find differences among statistical data. 

Hence, we append the standard deviation result to our objectives 

directly. 

We use feature maps which are outputs of convolution layers 

of our discriminator to perform penalty function tasks mentioned 

above. This idea is inspired by studies on the interpretability of 

Fig. 4. Examples of views generation (elevation angle). In each pair of rows, images 

in the top row are the generation results at four target viewpoints and images in 

the second row are the corresponding ground truth images. 

convolution neural networks [36,37] . We visualize the feature 

maps and convolution kernels after the first training stage and 

the results are shown in Fig. 3 . Similar to convolution neural 

networks which are trained for recognition and classification 

tasks, kernels for detecting edges, colors and textures appear in 

the earlier layers. Distinctly, feature maps produced by the earlier 

layers are results of those kernels and present legible outlines or 

shapes. Feature maps contain less information than original images 

universally. However, on account of the low quality outputs of 

GANs, feature matching between blurry images leads to inaccurate 

results. Legible outlines and shapes provide equilibrium between 

original images and synthesized images in feature matching. 

For kernel k i (i = 1 , . . . , 64) in the first convolution layer of D , it 

produces m (size of input images) feature maps F g j ( j = 1 , . . . , m ) . 

After feature matching among feature maps, we sort top 5 

matched feature quantities for every feature map. The sum of the 

top matched feature quantities is transferred into activation func- 

tion before computing the average matching score f id across all ker- 

nels in the layer. While feature maps produced by the later lay- 

ers are more complicated to interpret, there is significant diversity 

among feature maps which result from the same kernel but corre- 

spond to different views. Penalty for view diversity is computed as 

the standard deviation across feature maps of the same kernel for 

a group of input images. 

4. Experiments 

Our Multi-view GAN aims to learn the view subspace as well 

as the whole latent space of 3D objects and acquire complete 
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Fig. 5. Results of 180 ◦ rotations. We generate multiple new views based on the input image, then sample viewpoints of the same elevation and interpolate in rotation 

between viewpoints. Compared with CR-GAN and DR-GAN, our Multi-view GAN can generate far more realistic chairs and cars that are similar to the ground truth in all 

views. 

representations sequentially. The learned representations are dis- 

entangled and can be used to locate objects in the latent space 

for generation of other views or even shapes. We achieve this by 

training an encoder-generator-discriminator network in two stages 

successively. We have evaluated our Multi-view GAN quantitatively 

for feature matching among grouped images and qualitatively for 

shape morphing and interpolation of views. In order to verify 

the ability of our method to generate 3D shapes, we have also 

conducted experiments to reconstruct 3D objects with one single 

view as input. 



J. Cui, S. Li and Q. Xia et al. / Computers & Graphics 82 (2019) 275–285 281 

Fig. 6. Examples of morphing different chairs, cars and tables. Images in red frames are source images and the transformation is manipulated from origin images to 

terminal images through linear interpolation on shape descriptors. Cars and tables have less differences among objects in shape than chairs. In order to demonstrate the 

consecutiveness of the learned latent space, images in the yellow frame as well as images on both sides are non-transformed. 

Fig. 7. Visualization for the learned embedding space of Multi-view GAN. Markers with the same color indicate the same object. Aggregations of same color markers mean 

multi-views of the same object are embedded close to each other in the latent space. View subspace of chair No.9 is shown in Fig. 8 . 

4.1. Experimental settings 

Datasets. We evaluate our Multi-view GAN on datasets of dif- 

ferent object classes. We use renderings of 3D models of chairs, 

made public by Aubry et al. [38] as well as tables and cars from 

the ShapeNet [39] dataset. For each 3D object class, 90% of mod- 

els in this class are used for training and the rest 10% are testing 

instances. 

Aubry et al. [38] provide renderings of 1393 chair models, each 

rendered from 62 viewpoints: 31 azimuth angles (with a step of 

11 ◦) and 2 elevation angles (20 ◦ and 30 ◦), with a fixed distance to 

the chair. We find that the dataset includes some approximately 

duplicate models, which differ only in color, and some low-quality 

models. After removing these we end up with a reduced dataset of 

737 models, which we use in our experiments. We crop the ren- 

ders to have a small border around the chair and resize them to a 

common resolution of 256 × 256 pixels. 

We take models of tables and cars from ShapeNet [39] , a 

dataset containing tens of thousands of consistently aligned 3D 

models of multiple classes. We render a turntable of each model 

using 16 azimuth angles (from 0 ◦ to 350 ◦) and 4 elevation angles 

(from 0 ◦ to 45 ◦), which results in 64 images per model. Positions 
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Fig. 8. Visualization for the multi-view manifold and the navigation trajectory. In order to display the interpolation trajectory and navigation directions clearly, we add some 

intermediate interpolation points based on views in Fig. 5 . Images of similar viewpoints are embedded close to each other in the latent space. 

Fig. 9. Visualization for the interpolation trajectory of shape morphing. 

of the camera and the light source are fixed during rendering. For 

experiments in this paper we use renderings of 1328 car models 

and 1388 table models. All renderings are of 256 × 256 pixels. 

Implementation details. Our implementation is extensively mod- 

ified from a publicly available implementation of PG-GAN [32] . The 

batch size is set to be 128 at initial resolution of 4 × 4 and reduce 

to 8 at resolution of 256 × 256. All weights are initialized from 

a zero-centered normal distribution with a standard deviation of 

0.02. We train the networks using Adam optimizer [40] . We do not 

use any learning rate decay or ramp down, but for visualizing gen- 

erator output at any given point during the training, we use an 

exponential running average for the weights of the generator with 

decay 0.999. Moreover, the networks are trained after 12,0 0 0 thou- 

sands of images for each dataset. 

Evaluation metrics. We utilize the standard L 1 mean pixel-wise 

error and the structural similarity index measure (SSIM) for eval- 

uation [41,42] . When computing the L 1 error, we normalize the 

L 1 distance results into the range of [0, 1], lower numbers corre- 

sponding to better results. Then we calculate the mean value of 

these normalized results as the final L 1 error. SSIM is in the range 

of [ −1 , 1] and the closer to 1 indicates more structural similarity. 

4.2. Multi-view generation 

In this section we show that the network is able to generate 

multi-views of a 3D object with a single view as input. We com- 

pare our method with DR-GAN and CR-GAN by computing the L 1 
error and SSIM between generation results and ground truth im- 

ages. In Fig. 4 we show some examples of elevation transfer. For 

4 views of each object the effect of view subspace learning is al- 

ready visible. Synthesized images at target viewpoints are distinct 

and fine details preserved. 
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Fig. 10. Failure cases of our method. When dealing with complex structures or 3D objects with rich local details, the embedding is sometimes not accurate. It may be 

caused by partial learning of the latent space which means the identity codes can not cover the features of shape. As a result the adding of view codes may give rise to a 

few changes in shape as well as changes in viewpoints (see images in the first row). In other cases, the ambiguity may lead to incomplete generations and/or generations 

without any meaning (see images in the second row). 

Fig. 11. We run a multi-view reconstruction algorithm to obtain a textured mesh with generated views from single view as input. Our method results in better meshes 

where views generated by CR-GAN failed. 

Fig. 5 shows some representative examples of viewpoint ro- 

tation. Specifically, we generate multiple novel views from the 

input image, then sample viewpoints of the same elevation and 

interpolate in rotation between viewpoints and finally cover an 

180 ◦ rotation around the object. Compared with CR-GAN and 

DR-GAN, our Multi-view GAN can generate far more realistic 

chairs and cars that are similar to the ground truth in all views. 

Meanwhile, images synthesized by DR-GAN or CR-GAN cannot 

maintain high frequency components and are blurry. Besides, in 

spite of the difficulties in generating images from a viewpoint 

that has wide gap with the input view, our Multi-view GAN can 

synthesize reasonable images in the condition of large viewpoint 

transformation where DR-GAN and CR-GAN fail in sharp contrast. 

In terms of neighbouring views, our Multi-view GAN produces 

favorable images with smoother transition and better identity 

preservation. We provide quantitative comparison to these two 

methods in Table 1 . We note that, although commonly used, L 1 
and SSIM metrics are not fully correlated with human perception. 

While our method is clearly better than others in the L 1 baseline, 

and all methods get comparable SSIM scores. 

4.3. Modeling transformations 

Remarkably, the generative network can not only imagine pre- 

viously unseen views of a given object, but also invent new objects 

by interpolating between given ones. It is the foundation of shape 

Table 1 

We compare our method to DR-GAN and CR-GAN by computing the L 1 error and 

SSIM score. For each class of objects, statistics is the average of results from all 

generated views. 

Method Tables Cars Chairs 

L1 SSIM L1 SSIM L1 SSIM 

MV-GAN 0.133 0.908 0.142 0.89 0.236 0.885 

CR-GAN 0.168 0.879 0.235 0.892 0.267 0.865 

DR-GAN 0.206 0.892 0.261 0.887 0.264 0.87 

manifold navigation. We show how Multi-view GAN is able to gen- 

erate chairs, cars and tables that are significantly transformed rel- 

ative to the original images. in Fig. 6 , each row shows a different 

type of transformation. In the examples of morphing chairs, im- 

ages on both sides are source images. Even in the presence of large 

transformations, the quality of the generated images is basically as 

good as without transformation. The image quality typically de- 

grades a little in case of sharp variation of chair shapes (such 

as transformation from rotating office chairs pedestal to separated 

legs). Cars and tables, by contrast, have less differences among ob- 

jects in shape. In order to demonstrate the consecutiveness of the 

learned latent space, images in the central column as well as on 

both sides are non-transformed. The network easily deals with ex- 

treme color-related transformations. Also when handling changes 

in structures, the network is able to find reasonable transition (see 
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the transformation of numbers of table legs and frames in the sec- 

ond to the last row) or use correlative shapes in the latent space. 

To obtain interpolation in shapes, we simply linearly change the 

identity code parts in the latent vector from one object to another. 

The interpolation result is used to locate newly produced shapes in 

the latent space and then participate in sampling views that have 

same viewpoints with source images. 

4.4. Latent space learning 

Figs. 7 and 8 show the embedding space learned by our Multi- 

view GAN. We use T-distributed Stochastic Neighbor Embedding 

(t-SNE) algorithm [43] to visualize the latent vectors of 9 differ- 

ent chairs. Markers with the same color indicate the same object. 

Multi-view images of the same chair are embedded close to each 

other in the latent space of shape, which means the identities are 

well preserved by shape descriptors in the latent vectors. The em- 

bedding of shape descriptors reflects the distribution of shapes and 

other appearance attributes. Chairs with hollow back are embed- 

ded neighbouring to each other (see chair No.7 and No.8). Situa- 

tion is the same for sofas (see chair No.3 and No.6). Transition on 

appearance can also be observed from chains of neighbouring em- 

bedded chairs (Moving along the path from No.6, No.2, No.1 and 

to No.4 we can see legibly gradual varying of colors and shapes). 

View subspace of chair No.9 is shown in Fig. 8 . Images of similar 

viewpoints are embedded close to each other in the view subspace. 

4.5. Discussion 

Visualization for the multi-view manifold and the navigation 

trajectory are shown in Fig. 8 . In order to display the interpola- 

tion trajectory and navigation directions clearly, we add some in- 

termediate interpolation points based on views in Fig. 5 . Images 

of similar viewpoints are embedded close to each other in the la- 

tent space. Visualization for the interpolation trajectory of shape 

morphing is shown in Fig. 9 . Fig. 10 shows failure cases of our 

method. When dealing with complex structures or 3D objects with 

rich local details, the embedding is sometimes not accurate. It may 

be caused by partial learning of the latent space which means the 

identity codes can not cover the features of shape. As a result the 

adding of view codes may give rise to a few changes in shape 

as well as changes in viewpoints (see images in the first row). 

In other cases, the ambiguity may lead to incomplete generations 

and/or generations without any meaning (see images in the second 

row). 

4.6. Application 

Constructing 3D geometry of an object from a single image is 

an attractive problem of computer vision research. Recent methods 

using deep networks generally use a voxelized 3D reconstruction 

as output [5,44] . However, computational and spatial complexities 

of using such voxelized representations in encoder-decoder net- 

works restricts the output resolution considerably. We develop the 

performance of our learning framework in generating novel views 

for reconstruction purposes. We generate multiple novel views 

from the input image to cover a full 360 ◦ rotation around the ob- 

ject sampled at 15 ◦ intervals as well as 45 ◦ elevation sampled at 

5 ◦ intervals. Afterwards, we run a multi-view reconstruction algo- 

rithm [45] on these images to obtain a textured mesh from these 

views. Fig. 11 demonstrates examples of reconstructed 3D models. 

By generating views consistent in terms of geometry and details, 

our method results in better meshes. 

5. Conclusions 

We propose Multi-view GAN, a holistic learning framework that 

can capture data distribution in multi-view manifold. We design 

a novel discriminator which is aware of consistency in geometry 

and diversity in view across a group of images. Meanwhile, it cer- 

tainly holds the ability of real/fake image classification. We show 

the prominence of learned representations in navigating the man- 

ifold of views to detail a 3D object as well as in generating new 

shapes. Our method generates realistic images and outperforms 

state-of-the-art techniques for novel view synthesis on datasets 

of renderings where ground truth is known. Our synthesized im- 

ages are even accurate enough to perform multi-view 3D model 

generation. 

We hope that the proposed image generation pipeline might 

be also suitable to real photographs. For the future work, we can 

improve the network to reply to views with complex background 

from realistic environment. On the other hand, the learned view 

descriptors are not corresponding to specific view parameters for 

different objects. The reason is that there is no uniform original 

point or coordinate axis for heterogeneous 3D shapes. We should 

also concordant descriptors in different subspace by consistency 

analysis on images of the same viewpoints. 
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