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Fig. 1. Wireless interference network consisting of KT transmitters, each

equipped with a cache of size MT files and KR receivers, each equipped
with a cache of size MR files. The system also contains a library of N files.

and is known to all transmitters and receivers. The system

operates in two phases: the prefetching phase and the delivery
phase as described in [7]. In the prefetching phase, each

transmitter and receiver can store up to MTF and MRF
arbitrary packets from the file library, respectively. This phase

is done without the prior knowledge of the receivers’ future

requests. In the following delivery phase, each receiver Rxj

randomly requests a file Wdj , dj ∈ [N ] from the library.

These requests are represented by a demand vector denoted

as d � [d0, d1, · · · , dKR−1]. For a specific demand vector,

since the receivers have already cached some packets of

their requested files, the transmitters only need to deliver the

remaining packets to those receivers. The task in this phase

is to design an efficient transmission procedure based on the

cache placement in the prefetching phase so that the receivers’

demands can be satisfied. In order to guarantee that any

possible demands can be satisfied, we require that the entire

file library is cached among all transmitters, i.e., KTMT ≥ N .

For each cached packet wn,p ∈ FL
2 , the transmitter performs

a random Gaussian coding scheme ψ : FL
2 �→ CL̂ with

rate logP + o(logP ) to obtain the coded packet ŵn,p �
ψ(wn,p) consisting of L̂ complex symbols, so that each coded

packet carries one DoF. Assume that the communication will

take place in H blocks, each of which consists of L̂ time

slots. In addition, we allow only one-shot linear transmission

schemes in each block m ∈ [1 : H ] to deliver a set of

requested (coded) packets Pm to a subset of the receivers,

denoted by Rm. That is, each transmitter Txi, i ∈ [KT ] will

send a linearly coded message

sm
i =

∑
(n,p):wn,p∈CT

i ∩Pm

αm
i,n,pŵn,p, (2)

where CT
i denotes the cached contents of Txi and αm

i,n,p is the

linear combination coefficients used by Txi at the m-th block.

Accordingly, the received signal of the intended receivers

Rxj , j ∈ Rm in the m-th block is

ym
j =

KT−1∑
i=0

hjis
m
i + nm

j , (3)

where nm
j ∈ CL̂ is the random noise at Rxj in block m.

Each receiver will utilize its cached contents, consisting of

packets stored in the prefetching phase, to subtract some of the

interference caused by undesired packets. In particular, each

receiver will perform a linear combination operation Lm
j (.) if

possible in block m to recover its requested packets from all

received signals as follows

Lm
j (ym

j , ĈR
j ) = ŵdj ,p + nm

j , (4)

where ŵdj ,p ∈ Pm is the desired coded packet of Rxj and

ĈR
j denotes the Gaussian coded version of the packets cached

by Rxj . The channel created by (4) is a point-to-point channel

with capacity logP+o(logP ). Since each coded packet ŵdj ,p

is encoded with rate logP + o(logP ), it can be decoded with

vanishing error probability as L increases.

Since each coded packet carries exactly one DoF, a sum-

DoF of |Pm| can be achieved in block m. Therefore, the one-

shot linear sum-DoF of
∣∣∪H

m=1Pm

∣∣ /H can be achieved

throughout the delivery phase. As a result, the one-shot linear
sum-DoF is defined as the maximum achievable one-shot

linear sum-DoF for the worst-case demands under a given

caching realization [7], i.e.,

DoF

�
{CT

i }KT−1

i=0
,{CR

j }KR−1

j=0

�

L,sum = inf
d

sup
H,{Pm}H

m=1

∣∣∣⋃H
m=1 Pm

∣∣∣
H

.

(5)

The one-shot linear sum-DoF of the network is correspond-

ingly defined as the maximum achievable one-shot linear

sum-DoF over all possible caching realizations, i.e.,

DoF∗L,sum(N,MT ,MR,KT ,KR)

= sup
{CT

i }KT−1

i=0
,{CR

j }KR−1

j=0

DoF

�
{CT

i }KT−1

i=0
,{CR

j }KR−1

j=0

�

L,sum , (6)

in which the cached contents of all transmitter and receivers

satisfy the memory constraints, i.e., |CT
i | ≤ MTF, ∀i ∈ [KT ]

and |CR
j | ≤MRF, ∀j ∈ [KR].

B. Combinatorial Cache Placement Design

In this paper, the combinatorial cache placement design

based on hypercube, proposed in [28], [29] to reduce the

subpacketization level in wireless D2D networks is adopted

in the prefetching phase. The hypercube cache placement has

a nice geometric interpretation: each packet of the file can be

represented by a lattice point in a high-dimensional hypercube

and the cached content of each D2D node is represented

by a hyperplane in that hypercube (see Fig. 2). Based on

the hypercube cache placement and the corresponding com-

munication scheme, order-optimal rate can be achieved with

exponentially less number of packets compared to the Ji-Caire-

Molisch (JCM) scheme [5]. It turns out that by a non-trivial

extension, the hypercube scheme can also significantly reduce

the required subpacketization in cache-aided interference net-

works. The details of hypercube cache placement [28], [29] is

described as follows.

1) Hypercube Cache Placement Design for Wireless D2D
Caching Networks: Consider a wireless D2D network consist-

ing of a library of N files, each with F packets, and K users,
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Fig. 2. A 3-dimensional example of the hypercube cache placement. Each

subfile is represented by a unique lattice point in the 3-dimensional hypercube

(cube). Each of the 9 users caches a set of packets represented by plane of

lattice points. As a result, each user caches 9 × 9 = 81 subfiles in total.

each of which is equipped with a local cache memory of size

M files, or equivalently,MF packets. The caching parameter,

defined as t � KM/N ∈ [1 : K], represents the average

number of times that each file is cached among all users. In the

hypercube cache placement, each file Wn is split into (N/M)t

subfiles4 (assuming that N/M and t are both positive integers),

i.e., Wn =
{
Wn,(�0,�1,··· ,�t−1) : �j ∈ [N/M ], j ∈ [t]

}
. It can

be seen that each subfile of a file Wn is uniquely marked by

a t-tuple (�0, �1, · · · , �t−1) where �j, j ∈ [t] represents the

index of the lattice point along the j-th dimension. In the

prefetching phase, each user u ∈ [K] caches a set of subfiles{
Wn,(�0,�1,··· ,�t−1) : ∀n ∈ [N ]

}
, where �j = u mod (N/M),

for j = 	u/ (N/M)
, and �i ∈ [N/M ] for any i �= j. As a

result, each user will cache (N/M)t−1 subfiles from each

file Wn. It can be verified that the total number of subfiles

cached by any user is equal to N( N
M )t−1 = N (N/M)t

N/M =
N F

N/M = MF , satisfying the memory constraint. The hyper-

cube cache placement has a nice geometric interpretation.

Under the hypercube file splitting method, each subfile will

represent a lattice point with coordinate (�0, �1, · · · , �t−1) in

a t-dimensional hypercube, and N/M ∈ Z+ is the number of

lattice points along each dimension. We will further illustrate

the details of the hypercube cache placement via the following

example.

Example 1 (Hypercube Cache Placement): Consider a set

of K = 9 users labeled as 0, 1, · · · , 8 and a set of N = 9
files {Wn, n ∈ [9]}. Each user has a cache memory of size

M = 3 files. We first partition the users into t � KM/N = 3
groups denoted by U0 = {0, 1, 2}, U1 = {3, 4, 5} and U2 =
{6, 7, 8}. Each file Wn is split into (N/M)t = 27 subfiles,

i.e., Wn = {Wn,(�0,�1,�2) : �0, �1, �2 ∈ [3]}, each of which can

be represented by a unique lattice point in a 3-dimensional

cube (see Fig. 2). As a result, each lattice point will represent

4In the prefetching phase, each file is split into multiple smaller files and
each of these smaller subfiles is then spread across the user caches. We use

“subfile” to refer to these smaller subfiles. In the delivery phase, in order to

perform interference cancellation, each subfile needs to be further split into

multiple even smaller ones. We use “packet” to refer to such smaller files
resulting from splitting the subfiles. So a packet is the smallest unit that a

file is split into. To transmit these requested packets to the target receivers,

random Gaussian encoding must be applied to these packets and the output
is called coded packets. However, in the description of the general schemes,

we just refer the coded packet to as packet for simplicity when there is no

confusion.

a set of N = 9 subfiles, each from a distinct file. For the cache

placement, each user caches all subfiles represented by a plane

of lattice points of the cube. For example, user u0 = 2, u1 = 4
and u2 = 8 will cache subfiles represented by the green, red

and blue planes respectively in Fig. 2. We can see that the

set of subfiles {Wn,(2,1,2) : ∀n ∈ [9]} represented by the

lattice point (2, 1, 2), which is the intersection of the three

orthogonal planes of different colors, is cached exclusively by

users u0, u1 and u2. Similarly, each subfile is cached by three

distinct users. �
2) Hypercube Cache Placement Design for cache-aided

interference networks: Different from the D2D setting in [28],

in cache-aided interference networks, we have a set of explicit

transmitters and receivers instead of D2D users. However, the

hypercube approach can still be applied to design the cache

placement in the case illustrated as follows.

File Splitting: let DT � N/MT ∈ Z+ and DR � N/MR ∈
Z+ denote the number of transmitters and receivers on each

edge of the hypercube associated with the transmitters’ cache

and receivers’ cache respectively.5 For the set of KT = DT tT
transmitters {Txk : k ∈ [KT ]}, we denote the tT � KTMT /N
dimensions of the transmitters as UT

i = {k : 	k/DT 
 =
i}, ∀i ∈ [tT ].6 Similarly, for the set of KR = DRtR receivers

{Rxk : k ∈ [KR]}, we denote the tR � KRMR/N dimensions

of the receivers as UR
j = {k : 	k/DR
 = j}, ∀j ∈ [tR]. It can

be seen that |UT
i | = DT , ∀i ∈ [tT ] and |UR

j | = DR, ∀j ∈ [tR],
i.e., for both the transmitter and the receiver hypercubes, all

distinct dimensions (edges) contain the same number of lattice

points. With this file splitting, the prefetching phase is then

described as follows.

Prefetching Phase: The hypercube cache placement is

employed at both the transmitters’ and receivers’ sides. That

is, each file Wn is split into DT
tTDR

tR =
(

N
MT

)tT
(

N
MR

)tR

disjoint equal-size subfiles, denoted by

Wn = {Wn,T ,R}T ∈UT
0
�
UT

1
�
···
�
UT

tT−1

R∈UR
0
�
UR

1
�
···
�
UR

tR−1

, (7)

in which the definition of the operator
⊗

is as fol-

lows. For m ∈ Z+ sets A0,A1, · · · ,Am−1, we define

A0

⊗
A1

⊗
· · ·

⊗
Am−1 as the set of all un-ordered ele-

ments in A0 × A1 × · · · × Am−1, where × denotes

the Cartesian product. We use {·} to convert a m-tuple

to a set. For example, for a tuple (1, 2, 3), we have

{(1, 2, 3)} = {1, 2, 3}. Hence, A0

⊗
A1

⊗
· · ·

⊗
Am−1 �

{{A} : A ∈ A0 ×A1 × · · · × Am−1}. The subfile Wn,T ,R is

exclusively cached by a set of transmitters in T and a set

of receivers in R. Under this file splitting strategy, each

transmitter Txi caches a set of subfiles {Wn,T ,R : ∀T :
i ∈ T , ∀R, ∀n ∈ [N ]} and each receiver Rxj caches a set of

subfiles {Wn,T ,R : ∀T , ∀R : j ∈ R, ∀n ∈ [N ]}. As a result,

5Since we apply the hypercube cache placement at both the transmitters’

and receivers’ sides, there are two hypercubes associated with the cache-aided

interference network, including the transmitter hypercube which is a tT -

dimnesional hypercube with each edge containing N/MT lattice points (trans-
mitters), and the receiver hypercube which is a tR-dimnesional hypercube

with each edge containing N/MR lattice points (receivers).
6The superscript “T” means “Transmitter”. Readers should not confuse this

with the transpose operator.
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the number of subfiles cached by Txi, i ∈ [KT ] is equal to

NDT
tT−1DR

tR and hence the number of packets cached by

Txi, i ∈ [KT ] is equal to

NDT
tT−1DR

tR
F

DT
tTDR

tR
= MTF, (8)

where F
DT

tT DR
tR

is the number of packets of each subfile

(note that in the following delivery phase, each subfile needs to

be further split into multiple packets). Similarly, the number of

subfiles cached by Rxj , j ∈ [KR] is equal to NDT
tTDR

tR−1

and hence the number of packets cached by Rxj , ∀j ∈ [KR]
is equal to

NDT
tTDR

tR−1 F

DT
tTDR

tR
= MRF, (9)

which also satisfies the memory constraint. The application

of the hypercube cache placement method to cache-aided

interference networks is illustrated via the following example.

Example 2 (Hypercube Cache Placement for Interference
Networks): Consider a wireless network with KT = 4 trans-

mitters and KR = 4 receivers. Each transmitter and receiver is

equipped with a cache memory of size MT = 2 and MR = 2
files, respectively. The file library contains N = 4 files

denoted by A,B,C and D. Hence, we have the parameters

DT = N/MT = 2, DR = N/MR = 2, tT = KT /DT = 2
and tR = KR/DR = 2. In this case, both the transmitter

and receiver hypercubes are two-dimensional hypercubes (i.e.,

squares) with each edge containing two transmitters/receivers.

In the prefetching phase, each file Wn is split into

DT
tTDR

tR = 16 subfiles {Wn,T ,R} of equal sizes for any

T ,R ∈ {{0, 2}, {0, 3}, {1, 2}, {1, 3}} and. Each subfile is

then cached by the two transmitters in T and the two receivers

in R, respectively. For example, file A is split into 16 subfiles:7

A02,02, A02,03, A02,12, A02,13,

A03,02, A03,03, A03,12, A03,13,

A12,02, A12,03, A12,12, A12,13,

A13,02, A13,03, A13,12, A13,13,

where for example, A02,02 is cached by transmitters Tx0 and

Tx2 as well as receivers Rx0 and Rx2. The same file splitting is

done for files B,C and D. It can be seen that each transmitter

caches 8 subfiles of each file. Since each subfile contains F/16
packets, the total number of packets cached by each transmitter

is 4× 8×F/16 = 2F , which satisfies the memory constraint

of the transmitters. Similarly, the memory constraint of the

receivers is also satisfied. �

III. MAIN RESULT

The main result on the one-shot linear sum-DoF using

the hypercube cache placement approach is presented in this

section. Note that when KT MT +KRMR

N > KR, the sum-

DoF KR is always achievable by only utilizing a fraction of

the Tx/Rx cache memories such that for the updated system

with Tx/Rx cache memories M ′
T ≤ MT and M ′

R ≤ MR,

7With a slight abuse of notation, we write A{0,2},{0,2} as A02,02 for

simplicity and the same for other symbols.

we have
KT M ′

T +KRM ′
R

N = KR. Therefore, by applying the

proposed scheme on the updated system, the sum-DoF of KR

can be achieved. As a result, we focus on the case where
KT MT +KRMR

N ≤ KR.

Theorem 1: For a KT ×KR wireless interference network

with a library of N files, each consisting of F packets, and

with transmitter and receiver cache sizes of MTF and MRF
packets, respectively, given the hypercube cache placement

approach employed in the prefetching phase, and for any

δ � tT /tR ∈ Z+, DR = N/MR ≥ δ + 1, in which tT ∈
[1 : KT ], tR ∈ [KR], DR ∈ Z+, the one-shot linear sum-DoF

of KT MT +KRMR

N is achievable when KR ≥ KT MT +KRMR

N
with

F =
(
N

MT

)tT
(
N

MR

)tR
(
DR−2
δ−1

)(
DR−1
δ

)tR−1(δ!)tR

δ
(tR−1)!

(10)

Proof: The achievability of Theorem 1 is proved by the

general achievable scheme described in Section IV-C, which

focuses on the case KR ≥ MT KT +MRKR

N . The converse

results follows directly from [7] which will not be presented

in this paper.

The implications of Theorem 1 are two-fold, which includes

the optimality of the achievable one-shot linear DoF and the

reduced subpacketization level. Note that if either tT or tR is

not an integer, or both of them are not integers, we can still

achieve the sum-DoF of tT + tR for any values of tT and tR
using the memory-sharing method in [3] which will be briefly

introduced later. The following observations are ready.

A. Sum-DoF Optimality
As shown in [7], when KR ≥ KT MT +KRMR

N , the optimal

one-shot linear sum-DoF of the interference network studied

in this paper, DoF∗L,sum, over any possible cache placement

realizations, is bounded by KT MT +KRMR

N ≤ DoF∗L,sum ≤
2(KT MT +KRMR)

N , which implies that when KT MT +KRMR

N ≤
KR, the achievable one-shot linear sum-DoF under the hyper-

cube cache placement is equal to the achievable one-shot linear

DoF in [7] and is within a factor of 2 to the optimal one-shot

linear sum-DoF of the network. This result indeed shows

that the DoF of MT KT +MRKR

N can be achieved by different

cache placement methods, which provides the potential to

reduce the total number of packets required. In addition, to see

how much DoF gain can be obtained going beyond one-shot

linear transmissions, we refer the readers to Section VI of [7]

where the scaling law of the optimal sum-DoF is analyzed.

In particular, for the cases of large number of transmitters and

receivers (KT = KR = K → ∞ and other parameters are

fixed) and constant number of transmitters (KT = C,KR =
K → ∞), the one-shot linear scheme achieves the same

DoF scaling as the interference alignment alike schemes. This

implies that interference alignment alike multi-shot schemes

can only provide constant DoF gain over the one-shot linear

schemes which has much lower complexity.

B. Subpacketization Level Reduction
Under the hypercube cache placement strategy, the number

of packets per file, i.e., F , required for implementing the
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interference cancellation in the delivery phase is signifi-

cantly reduced compared to the NMA scheme. In particular,

the NMA scheme requires to split each file into
(

KT

tT

)(
KR

tR

)
subfiles in the prefetching phase and further split each

subfile into
tR![KR−(tR+1)]!
[KR−(tT +tR)]! packets in the delivery phase.

However, if we employ the hypercube cache placement

strategy, each file is going to be split into ( N
MT

)tT ( N
MR

)tR

subfiles in the prefetching phase, and is further split into(
DR−2
δ−1

)(
DR−1

δ

)tR−1 (δ!)tR

δ (tR − 1)! packets8 in the delivery

phase. In Section IV-D, we will show that for any system

parameters, the hypercube scheme requires less number of

packets than the NMA scheme and the gain of subpacke-

tization can be unbounded with the increase of the cache

sizes of transmitters and receivers. Together with the sum-DoF

optimality, the hypercube based scheme can achieve the same

one-shot linear DoF as in [7] while requiring a significantly

smaller F .

C. Non-Integer Caching Parameters tT and tR
When the caching parameters tT = KT MT

N and/or tR =
KRMR

N are not integers, we can still achieve the one-shot

linear sum-DoF of tT + tR using the memory-sharing method

of [3]. More specifically, we can split the Tx/Rx memories and

files proportionally so that for each of the new partitions, our

proposed scheme can be applied for the updated parameters

tT
′ and tR

′ which are integers. That is, for each new partition

of memories and files, it can be treated as a new interference

network with updated Tx/Rx cache memories M ′
T ,M

′
R, file

size F ′ and the corresponding caching parameters t′T =
KT M ′

T

N ∈ �+, t′R = KRM ′
R

N ∈ �+, where the proposed scheme

can be directly applied.

D. Non-Integer Values of δ

Although in Theorem 1 we have assumed that δ = tT /tR ∈
Z+, the sum-DoF of tT +tR can also be achieved even when δ
is not an integer. This can be done following a similar method

to memory sharing. Note that δ ≥ 1/tR due to tT ≥ 1
since the file library has to be stored at least once by all

the transmitters otherwise the receivers’ demands can not be

satisfied. Now we consider the case when both tT and tR are

positive integers but δ = tT /tR is not an integer. The scheme

to achieve the sum-DoF tT + tR is described as follows.

8Here we have implicitly assumed that DR − 2 ≥ δ − 1, i.e., DR ≥
δ + 1. This assumption can be justified as follows. In real-world wireless
networks, the number of receivers (users) KR can be larger than the number

of transmitters (base stations, BS) KT , since each BS can be associated with

multiple users. However, each BS can have much larger cache memory than

the users, i.e., MT � MR. Due to the large per-BS cache memory MT

but relatively small KT at the transmitter’s side and the smaller per-user

cache memory MR but larger KR at the users’ sides, it is reasonable to

assume that the caching parameters tT and tR are close to each other. Also,
since each user’s cache memory is very small compared to the file library,

i.e., MR/N � 1, then DR = N/MR � 1. For example, consider a

network with N = 500 files each having size 5 GB (e.g., Netflix movies),

KT = 5 BSs each capable of caching MT = 200 files (i.e., 1000 GB
memory per BS), and KR = 50 receivers each capable of caching MR = 10
files (50 GB memory per receiver). In this case, we have tT = KT MT /N =
5 × 200/500 = 2, tR = KRMR/N = 50 × 10/500 = 1 and therefore
δ = 2. Moreover, we have DR = N/MR = 500/10 = 50 which is

much larger than δ + 1 = 3. As a result, it can be seen that the assumption

DR ≥ δ + 1 is valid in practice.

We can split the Tx/Rx cache memories and the files

proportionally such that the updated caching parameters t′T
and t′′T of each partition correspond to δ′ and δ′′ both of

which are integers. More specifically, each Tx memory is

split into two parts M ′
T = αMT and M ′′

T = (1 − α)MT

for some 0 < α < 1, each Rx memory is split into two parts

M ′
R = βMR and M ′′

R = (1 − β)MR for some 0 < β < 1,

and each file Wn is split into two parts Wn = (W ′
n,W ′′

n)
where |W ′

n| = γ|Wn| and |W ′′
n | = (1− γ)|Wn| for some 0 <

γ < 1. We then apply the proposed scheme on the two Tx/Rx

memory and file partitions
(
M ′

T ,M
′
R, {W ′

n}n∈[N ], t
′
T , t

′
R

)
and(

M ′′
T ,M

′′
R, {W ′′

n}n∈[N ], t
′′
T , t

′′
R

)
where δ′ = t′T /t

′
R and δ′′ =

t′′T /t
′′
R are both integers. WLOG, we let β = γ. Therefore,

we have t′T = KT M ′
T

N = α
γ tT , t

′
R = KRM ′

R

N = tR and

t′′T = KT M ′′
T

N = 1−α
1−γ tT , t

′′
R = KRM ′′

R

N = tR and tT =

pt′T + (1 − p)t′′T , δ = pδ′ + (1 − p)δ′′ where p = t′′T−tT

t′′T−t′T
.

Next we consider two different cases: 1) δ ∈ [1/tR, 1), and 2)
δ ∈ (q, q + 1) for some q ∈ Z+.

• Case 1: δ ∈ [1/tR, 1). Let t′T = 1, t′′T = tR. For the

first memory and file partition, the coded caching scheme [3]

can be applied to achieve the sum-DoF of t′R + 1 = tR + 1;

For the second memory and file partition, we can apply the

proposed scheme with δ′′ = 1 to achieve the sum-DoF t′′T +
t′′R = 2tR. As a result, the overall sum-DoF of p(t′R + 1) +
(1 − p)(t′′T + t′′R) = tT + tR can be achieved.

• Case 2: δ ∈ (q, q + 1) for some q ∈ Z+. Let t′T =
qtR = 	δ
tR and t′′T = (q + 1)tR = �δ�tR. For the first

and second memory and file partitions with δ′ = t′T
t′R

= 	δ

and δ′′ = t′′T

t′′R
= �δ�, the proposed scheme can be directly

applied to achieve the sum-DoF of t′T + t′R = (	δ
 + 1)tR
and t′′T + t′′R = (�δ�+1)tR respectively. Therefore, the overall

sum-DoF p(t′T + t′R) + (1 − p)(t′′T + t′′R) = tT + tR can be

achieved. In both cases, let F ′ and F ′′ be the required number

of packets per file over the two memory and file partitions

which can be calculated by Eq. (21). Then the number of

packets per file is determined as F = F ′ + F ′′.

IV. ACHIEVABLE DELIVERY SCHEME

A. An Example

We first present the achievable delivery scheme under the

hypercube cache placement via the following example.

Example 3 (Achievable Delivery Scheme): We consider the

same network setting as Example 2. Let receiver Rxj request

the file Wdj . Without loss of generality, we assume that

Wd0 = A,Wd1 = B,Wd2 = C and Wd3 = D. In the

prefetching phase, each receiver has already cached 8 subfiles

of its requested file. Therefore, the transmitters only need to

deliver the 16 − 8 = 8 remaining subfiles to each receiver.

In particular, the following 32 subfiles need to be delivered to

the corresponding receivers:

A02,12, A03,12, A12,12, A13,12,
A02,13, A03,13, A12,13, A13,13

}
to Rx0,

B02,02, B03,02, B12,02, B13,02,
B02,03, B03,03, B12,03, B13,03

}
to Rx1,
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Fig. 3. Delivery phase for Example 3 in which four receivers Rxj , j ∈ [4] request four different files A, B, C and D respectively. L(x, y) denotes some
linear combination of x and y, i.e., L(x, y) = αx + βy, where α and β are some constants. There are in total 8 communication steps and in each of which

4 different packets are delivered to the receivers interference-free.

C02,03, C03,03, C12,03, C13,03,
C02,13, C03,13, C12,13, C13,13

}
to Rx2,

D02,02, D03,02, D12,02, D13,02,
D02,12, D03,12, D12,12, D13,12

}
to Rx3.

Note that in the hypercube-based delivery

scheme, each subfile needs to be further split into(
DR−2
δ−1

)(
DR−1

δ

)tR−1 (δ!)tR

δ (tR − 1)! packets. In this example,

since δ = tT

tR
= 1, DT = tT = DR = tR = 2, δ = 1, we have(

DR−2
δ−1

)(
DR−1

δ

)tR−1 (δ!)tR

δ (tR − 1)! =
(
0
0

)(
1
1

)
(2 − 1)! = 1,

implying that no further file splitting is needed and thus

32 packets will be delivered.

We now show how the above 32 packets can be grouped in

8 subsets, each of which contains 4 packets, such that the pack-

ets within the same subset can be delivered simultaneously

to the receivers without interference. Fig. 3 shows how the

32 packets to be delivered are grouped and transmitted. In each

communication step, tT + tR = 4 packets are delivered to the

receivers simultaneously, and the interference among different

users can be effectively eliminated by choosing proper linear

combination coefficients at the tT + tR = 4 transmitters. For

example, in step 1 of Fig. 3, four packets A02,12, B13,03, C12,13

and D03,02 are delivered to receivers Rx0, Rx1, Rx2 and Rx3

respectively. We write the transmitted signals Si, i ∈ [4] of

each transmitter Txi as a linear combination of a subset of

these four packets as follows:

S0 = h32Â02,12 − h13D̂03,02,

S1 = h23B̂13,03 − h02Ĉ12,13,

S2 = h01Ĉ12,13 − h30Â02,12,

S3 = h10D̂03,02 − h21B̂13,03,

where for each packet Wn,T ,R, Ŵn,T ,R denotes its physical

layer coded version. As a result, due to the careful choice of

the linear coefficients, some interference terms are canceled

over the air by zero forcing (e.g., Ĉ12,13 is canceled at Rx0).

The corresponding received signals by Rx0, Rx1, Rx2 and Rx3

after zero forcing are given by

Y0 = (h32h00 − h30h12)Â02,12 + (h23h01 − h21h03)B̂13,03

+ (h10h03 − h13h00)D̂03,02 +N0,

Y1 = (h23h11 − h21h13)B̂13,03 + (h32h10 − h30h12)Â02,12

+ (h02h11 − h01h12)Ĉ12,13 +N1,

Y2 = (h01h22 − h02h21)Ĉ12,13 + (h32h20 − h30h22)Â02,12

+ (h10h23 − h13h20)D̂03,02 +N2,

Y3 = (h10h33 − h13h30)D̂03,02 + (h23h31 − h21h33)B̂13,03

+ (h01h32 − h02h31)Ĉ12,13 +N3,

where Ni, i ∈ [4] represents the Gaussian noise.

We can see that receiver Rx0 can cancel the interference

caused by B13,03 and D03,02 since these two packets have

already been cached by Rx0 and the desired packet A02,12

can be successfully decoded by subtracting the undesired

but prefetched packets. Similarly, Rx1, Rx2 and Rx3 can

also cancel the interference caused by undesired packets by

utilizing their cached contents. Therefore, all the interfer-

ence including inter-user interference and interference that

can be nulled out by cached packets can be eliminated so

that all receivers can decode their desired packets. It can

be verified that there exist such linear combinations and all

receivers can decode their desired packets in all remaining 7
communication steps. Hence, the 32 packets, each consisting

of |Wn|/16 bits, can be delivered to the receivers in 8

communication steps, each containing F/16 = 1 resource

block. As a result, a sum-DoF of KT MT +KRMR

N = 4 can

be achieved. Hence, the proposed file subpacketization, cache

placement, precoding and scheduling strategy in the delivery

phase allow transmitters to collaboratively zero-force some of

the outgoing interference and allow receivers to cancel the

leftover interference using cached contents for any receivers’

demands. �
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B. Hypercube Permutation

Before we proceed to the description of the general achiev-

able scheme, we introduce two definitions of special permuta-

tions on a given set of points, i.e., the hypercube permutation
and circular hypercube permutation, which are essential to the

description of the general delivery phase.

Definition 1 (Hypercube Permutation): Given a set of D×
t points, denoted by Q, i.e., |Q| = Dt, we label each

of these points by a unique number ui,j ∈ [Dt], where

i ∈ [t], j ∈ [D]. Assume that these points are partitioned

into t disjoint groups, which we refer to as dimensions.

Each dimension consists of D points, denoted by Ui ={
ui,j : 	ui,j

D 
 = i, j = 0, 1, · · · , D − 1
}

, i ∈ [t]. Define a

hypercube permutation of the set Q, denoted by πHCB =
[π(0) π(1) · · · π(Dt − 1) ], as such a permutation of

the Dt points that satisfies the following condition: For any

set of points Ui, i ∈ [t], the positions in the permutation

(denoted by pos(·), meaning that pos(u) = i if π(i) = u)

of any two of them, ui,j1 and ui,j2 (j1 �= j2), should satisfy

|pos(ui,j1) − pos(ui,j2)| = kt, 1 ≤ k ≤ D − 1, k ∈ Z+ and

j1, j2 ∈ [D]. ♦
Definition 2 (Circular Hypercube Permutation): A

circular permutation of a set Q is a way of arranging the

elements of Q such that these arrangements are invariant

of circular shifts. Denote the set of circular permutations

of Q as Πcirc
Q . For example, if Q = {1, 2, 3}, then

Πcirc
Q = {[1 2 3 ], [1 3 2 ]}. A circular hypercube permutation

of a set Q is a way of arranging the elements of Q which are

invariant of circular shifts, and meanwhile, the corresponding

arrangement should be a hypercube permutation. ♦
We illustrate the concept of hypercube permutation and

circular hypercube permutation via the following example.

Example 4: For Q = {0, 1, 2, 3} with t = 2 dimensions

and D = 2 points in each dimension, i.e., U0 = {0, 1},
U1 = {2, 3}, we have

ΠHCB
Q =

{
[ 0 2 1 3 ], [ 0 3 1 2 ], [ 1 2 0 3 ], [ 1 3 0 2 ],

[ 2 1 3 0 ], [ 2 0 3 1 ], [ 3 1 2 0 ], [ 3 0 2 1 ]
}
. (11)

It is clear that, for any two points within one dimension,

0, 1 ∈ U0 or 2, 3 ∈ U1, we have |pos(0) − pos(1)| =
|pos(2) − pos(3)| = 2, which satisfies the condition

|pos(ui,j1) − pos(ui,j2)| = t (note that k = 1). Furthermore,

we have ΠHCB,circ
Q =

{
[ 0 2 1 3 ], [ 0 3 1 2 ]

}
. �

Lemma 1: For a set of points (users) Q of dimension t
and D points (users) in each dimension, denote the set of all
hypercube permutations as ΠHCB

Q , then
∣∣ΠHCB
Q

∣∣ = (D!)t(t)!.
The set of circular hypercube permutations of Q, denoted by
ΠHCB,circ
Q , has size

∣∣∣ΠHCB,circ
Q

∣∣∣ = (D!)t(t−1)!
D .

Proof: See Appendix A.

C. General Achievable Scheme

In this section, we present the general achievable scheme

which is formally described in Algorithm 1. Recall that

tT = KT MT

N and tR = KRMR

N , and we assume tT , tR ∈
Z+, MT KT +MRKR

N ≤ KR. In this paper, we focus on the case

δ � tT

tR
∈ Z+, implying that tT ≥ 1.

Algorithm 1 General Hypercube-Based Achievable Scheme

Prefetching Phase:
1: for i = 0, 1, · · · ,KT − 1 do
2: Group Txi into the transmitter dimension UT

j , where

j = 	 i
DT


.

3: end for
4: for i = 0, 1, · · · ,KR − 1 do
5: Group Rxi into the receiver label set UR

j , where j =
	 i

DR

.

6: end for
7: for n = 0, 1, · · · , N − 1 do

8: Split Wn into
(

N
MT

)tT
(

N
MR

)tR

disjoint equal-size

subfiles:

Wn = {Wn,T ,R} T ∈UT
0
�
UT

1
�
···
�
UT

tT−1

R∈UR
0
�
UR

1
�
···
�
UR

tR−1.

9: end for
10: for i = 0, 1, · · · ,KT − 1 do
11: Txi caches {Wn,T ,R : i ∈ T } for all n ∈ [N ].
12: end for
13: for j = 0, 1, · · · ,KR − 1 do
14: Rxj caches {Wn,T ,R : j ∈ R} for all n ∈ [N ].
15: end for

Delivery Phase:
16: for j = 0, 1, · · · ,KR − 1 do
17: for T ∈ UT

0

⊗
UT

1

⊗
· · ·

⊗
UT

tT−1 do
18: for R ∈ UR

0

⊗
UR

1

⊗
· · ·

⊗
UR
� j

DR
� \

{j}
⊗

· · ·
⊗

UR
tR−1 do

19: Split the subfile Wdj ,T ,R into(
DR−2
δ−1

)(
DR−1

δ

)tR−1 (δ!)tR

δ (tR − 1)! disjoint packets

of eqaul-sizes:{
Wdj ,T ,π̇,π̈

}
π̇=π[1:tR]
π̈=π[tR+1:tT +tR−1]

π∈ΠHCB
QU , π(0)=j, π(tR)=r� j

DR
�

{π(1),π(2),··· ,π(tR−1)}=R\{r� j
DR

�}

where Q∈ΓUR
0 ,δ+1

⊗
· · ·

⊗
ΓUR
� j

DR
�
,δ+1

⊗
· · ·

⊗
ΓUR

tR−1,δ+1.

20: end for
21: end for
22: end for
23: for T ∈ UT

0

⊗
UT

1

⊗
· · ·

⊗
UT

tT−1 do
24: for R ∈ ΓUR

0 ,δ+1

⊗
ΓUR

1 ,δ+1

⊗
· · ·

⊗
ΓUR

tR−1,δ+1 do

25: for π ∈ ΠHCB,circ
RU do

26: Each transmitter sends a linear combination

(Lemma 3) of the coded packets:

Si = Li,T ,π

({
Ŵdπ(�),T (�),π[�+1:�+tR],π[�+tR+1:�+tR+tT−1] :

� ∈ [tT + tR], i ∈ T (�)})

27: end for
28: end for
29: end for

The corresponding prefetching and delivery phases are

described as follows.

1) Prefetching Phase: The hypercube cache placement is

employed at both the transmitters’ and receivers’ sides in
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the prefetching phase. Refer to Section II-B.2 for detailed

descriptions.

2) Delivery Phase: In the delivery phase, the receivers’

demand vector d = [d0, d1, · · · , dKR−1] is revealed, i.e., each

receiver Rxj , j ∈ [KR] requests a file Wdj . Since some

subfiles of the requested file have already been cached by the

receiver in the prefetching phase, the transmitters only need

to send those subfiles which have not been cached by Rxj ,

i.e., {Wdj,T , ∀T , ∀R : j /∈ R}.

Following a similar methodology of [7], we need to further

split the set of subfiles to be delivered to the receivers into

packets so that they can be scheduled in subsets of size

tT + tR and delivered to the receivers simultaneously without

interference. In particular, for any packet in the subset of

tT + tR packets, it is requested by one particular receiver

and can be cancelled by another tR receivers by utilizing

their cached packets. Also, the transmitters can collaborate

to zero-force the the interference to another tT − 1 unin-

tended receivers. We describe how to do such a further

splitting based on the hypercube cache placement in the

following.

For any j ∈ [KR], T = {(τ0, τ1, · · · , τtT−1)} with

(τ0, τ1, · · · , τtT−1) ∈ UT
0 × UT

1 × · · · × UT
tT−1, and R =

{(r0, r1, · · · , rtT−1)} with (r0, r1, · · · , rtT−1) ∈ UR
0 × UR

1 ×
· · ·×UR

� j
DR
�\{j}×· · ·×UR

tR−1 (note that |T | = tT and |R| =

tR), we split Wdj ,T ,R into
(
DR−2
δ−1

)(
DR−1

δ

)tR−1 (δ!)tR

δ (tR−1)!
disjoint packets of equal-sizes, denoted by{

Wdj ,T ,π̇,π̈

}
π̇=π[1:tR]

π̈=π[tR+1:tT +tR−1]

π∈ΠHCB
QU , π(0)=j, π(tR)=r� j

DR
�

{π(1),π(2),··· ,π(tR−1)}=R\{r� j
DR

�}

, (12)

where Q ∈ ΓUR
0 ,δ+1

⊗
· · ·

⊗
ΓUR

� j
DR

�
,δ+1

⊗
· · ·

⊗
ΓUR

tR−1,δ+1 and the notations are defined as follows. For a

set S, ΓS,s is defined as a set whose elements are all subsets

of S with size s, i.e., ΓS,s = {A : A ⊆ S, |A| = s} , ∀s ∈
[1 : |S|]. For example, for S = {0, 1, 2}, we have

ΓS,2 = {{0, 1}, {1, 2}, {0, 2}}. For a set Q whose

elements are sets, QU denotes the union of the elements

in Q. For example, if Q = {{0, 1}, {2, 3}}, we have

QU = {0, 1} ∪ {2, 3} = {0, 1, 2, 3}. Moreover, for a

set S, and a hypercube permutation π ∈ ΠHCB
S and

two integers i, j, where i ≤ j, π[i : j] is defined as

π[i : j] = [π(i ⊕|S| 0), π(i ⊕|S| 1), · · · , π(i ⊕|S| (j − i))],
in which for two integers m,n, m⊕|S| n is defined as

m⊕|S| n = 1 + (m+ n− 1 mod |S|) . (13)

After such a further splitting, for a specific set of tT +
tR receivers and a corresponding hypercube permutation π,

the packet Wdj ,T ,π̇,π̈, which is desired by Rxj , can be can-

celled at receivers in π̇ by utilizing their individual cached

contents and can be zero-forced at receivers in π̈ through the

collaboration of some transmitters. Lemma 2 shows how this

further splitting is done. For a set T = {τ0, τ1, · · · , τtT−1}
whose elements are from the tT different transmitter dimen-

sions, i.e., τi ∈ UT
i , i ∈ [tT ], we define the corresponding

sets T (�) �
{
τ

(�)
0 , τ

(�)
1 , · · · , τ (�)

tT−1

}
, � ∈ [tT + tR], where

T (0) = T , i.e., τ
(0)
i = τi, ∀i ∈ [tT ] and

• when 1 ≤ � ≤ tT ,

τ
(�)
i =

{
τ

(0)
i + 1 mod DT 0 ≤ i ≤ �− 1,
τ

(0)
i � ≤ i ≤ tT − 1.

(14)

• when tT + 1 ≤ � ≤ tT + tR − 1,

τ
(�)
i =

{
τ

(0)
i 0 ≤ i ≤ �− tT − 1,
τ

(0)
i + 1 mod DT �− tT ≤ i ≤ tT − 1.

(15)

Lemma 2: Based on the hypercube cache placement, for
any receivers’ demand vector d, the set of packets needed to
be sent to the receivers can be grouped into disjoint subsets
of size tT + tR as⋃

T ∈UT
0
�
UT

1
�
···
�
UT

tT−1

R∈ΓUR
0 ,δ+1

�
ΓUR

1 ,δ+1

�
···
�

ΓUR
tR−1,δ+1

π∈ΠHCB,circ
RU

×
{
Wdπ(�),T (�),π[�+1:�+tR],π[�+tR+1:�+tR+tT−1] :

� ∈ [tT + tR]
}
. (16)

Proof: See Appendix B.

Given the grouping method of the packets in Lemma 2,

we will have DtT

T

(
DR

δ+1

)tR [(δ+1)!]tR (tR−1)!
δ+1 (using Lemma 1)

steps of communications. More specifically, the term DT
tT

corresponds to the number of possible choices of T ,
(

DR

δ+1

)tR

corresponds to the number of choices of R. We also have∣∣ΠHCB,circ
RU

∣∣ = [(δ+1)!]tR (tR−1)!
δ+1 which is a direct result of

Lemma 1, i.e., the number of different hypercube permutations

of the set RU partitioned into t = tR dimensions and D =
δ+1 points in each dimension. In each of these communication

steps, specific sets T and R and a hypercube permutation are

fixed, and each transmitter Txi, i ∈ T (�) transmits a linear

combination of the coded packets, i.e.,

Si = Li,T ,π

({
Ŵdπ(�),T (�),π[�+1:�+tR],π[�+tR+1:�+tR+tT−1] :

� ∈ [tT + tR], i ∈ T (�)
})
, (17)

in which for any packet Wdj ,T ,π̇,π̈, Ŵdj ,T ,π̇,π̈ denotes its

Gaussian coded version, and Li,T ,π(.) represents the linear

combination that Txi chooses to transmit set of packets

in (17).

The following lemma shows the existence of the linear

combination coefficients.

Lemma 3: For any subset of tT transmitters T ∈
UT

0

⊗
UT

1

⊗
· · ·

⊗
UT

tT−1, any set of tT + tR receivers RU

for which R ∈ ΓUR
0 ,δ+1

⊗
ΓUR

1 ,δ+1

⊗
· · ·

⊗
ΓUR

tR−1,δ+1, and

any circular hypercube permutation π ∈ ΠHCB,circ
RU , there

exists a choice of the linear combinations {Li,T ,π(.)}KT

i=1
in (17) such that the set of tT + tR packets in{
Wdπ(�),T (�),π[�+1:�+tR],π[�+tR+1:�+tR+tT−1] : � ∈ [tT +tR]

}
(18)
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can be delivered simultaneously without interference by the
transmitters in

⋃
�∈[tT +tR] T (�) to the receivers in RU.

Proof: The proof of Lemma 3 follows exactly the same

steps given in [7]. To show the existence of such linear

combinations, we require the linear coefficients to be designed

such that for any receiver in RU, its desired packets must be

received with non-zero coefficients, and the undesired subfiles

which can not be cancelled by utilizing its cached content,

must be zero-forced. Then we can show the existence of

such linear combinations simply by observing the fact that

the number of variables (coefficients) equals the number of

equations (received signal requirements). The details of the

proof are omitted here.

D. Subpacketization Complexity Analysis
In this section, we provide a comprehensive performance

comparison between the proposed hypercube-based based

scheme and the NMA scheme.

In the hypercube-based scheme, each file in the library

is split into
(

N
MT

)tT
(

N
MR

)tR

subfiles while in the NMA

scheme each file is split into
(
KT

tT

)(
KR

tR

)
subfiles. In the

delivery phase, to implement interference cancellation, each

requested subfile is further split into

ΔHCB(KT ,MT ,KR,MR, N)

�
(
DR − 2
δ − 1

)(
DR − 1

δ

)tR−1 (δ!)tR

δ
(tR − 1)! (19)

packets in the proposed hypercube-based scheme and

ΔNMA(KT ,MT ,KR,MR, N)

�
(
KR − tR − 1

tT − 1

)
(tT − 1)!tR! (20)

packets in the NMA scheme. To measure the subpacketization

complexity, we count the total number of packets that a

specific file needs to be split into which equals the number of

subfiles per file times the number of packets per subfile. When

counting the number of subfiles per file, both the pre-stored

and requested subfiles by any receiver should be included since

the total number of packets per file should reflect the size of the

smallest units (i.e., packets) that a file is split into. Therefore,

the total number of packets per file required for these two

schemes are

FHCB(KT ,MT ,KR,MR, N)
= DT

tTDR
tRΔHCB(KT ,MT ,KR,MR, N), (21)

FNMA(KT ,MT ,KR,MR, N)

=
(
KT

tT

)(
KR

tR

)
ΔNMA(KT ,MT ,KR,MR, N). (22)

Since the comparison of subpacketization levels is always

done under the same set of system parameters, we ignore the

these parameters in the expressions of ΔHCB,ΔNMA, FHCB

and FNMA for brevity. To compare the subpacketization level

between our scheme and the NMA scheme, we define the

multiplicative gap of the subpacketization levels between these

two schemes as follows.

Definition 3 (Multiplicative Gap of Subpacketization Lev-
els): For the system parameters KT ,MT ,KR,MR and N ,

the multiplicative gap G of the subpacketization levels

between the hypercube-based scheme and the NMA scheme,

is defined as

G(KT ,MT ,KR,MR, N) � FHCB(KT ,MT ,KR,MR, N)
FNMA(KT ,MT ,KR,MR, N)

.

(23)

For ease of notation, we ignore the parameters and simply

denote G = FHCB/FNMA. ♦
We next show that for any system parameters, the hypercube

scheme has a strictly lower subpacketization level than that of

the NMA scheme. Moreover, we show that there is an order

gain compared to the NMA scheme when t → ∞ if d and δ
are fixed.

Theorem 2: For any system parameters KT ,KR,MT ,MR

and N satisfying tT = KT MT

N ∈ Z+, tR = KRMR

N ∈
Z+, DT = KT/tT ∈ Z+, DR = KR/tR ∈ Z+ and δ �
tT /tR ∈ Z+, DR ≥ δ + 1, the multiplicative gap G is strictly

less than 1. Moreover,

G(d, t, δ) ≤ C0

(
C1

t

)t 1
t(δ−1)t−1

, (24)

where the constants (independent of t) are

C0 =
(d− 2)!e6

(d− δ − 1)!

(√
d− 1
δ

(d− 1)!
(d− δ − 1)!

(
2π
d− 1

)3/2
)−1

and

C1 =
(d− 1)!

(d−δ−1)!

(
e

d−1

)δ(
d

d− 1

)−(δ+1)(d−1)(
d−1

d−δ−1

)−(d−δ−1)

.

Proof: See Appendix C.

Theorem 2 shows that the proposed hypercube-based

scheme strictly outperforms the NMA scheme in terms of

subpacketizaiton while achieving the same one-shot liner sum-

DoF. In fact, the proposed scheme requires not only a smaller

number of subfiles per file but also a smaller number of

packets per subfile than the NMA scheme, demonstrating the

advantage of the hypercube-based design. From (24) we see

that if t ≥ C1, G(d, t, δ) ≤ C0/t
(δ−1)t−1. Therefore, for fixed

d and δ, we have the scaling G(d, t, δ) = O(1/t(δ−1)t−1) as

t → ∞, implying that there is an order gain in subpacketi-

zation of the hypercube-based scheme compared to the NMA

scheme. Fig. 4 shows the multiplicative gain G(d, t, δ) under

logarithmic scale for the case when δ � tT /tR = 1, 2 under

the setting tT = δtR = δt,DR = DR = d. It can be

seen that the gap decreases exponentially as t increases and

goes to zero as t goes to infinity (see Fig. 4(a), (b)), which

demonstrates an order gain in subpacketization reduction of

the proposed scheme compared to the NMA scheme. More-

over, from Fig. 4 (c), (d), it can be seen that the proposed

scheme also requires exponentially smaller number of subfiles

per file and packets per subfile.

V. DISCUSSION

In this section, we will first provide two possible exten-

sions of the proposed scheme, which are cache-aided
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Fig. 4. The multiplicative gap G between the hypercube scheme and the NMA scheme. The comparison is down under the setting tT = δtR = δt,
N/MT = N/MR = d, which implies KT = δKR = δdt. It can be seen that: (a) δ = 1. For a fixed d, G decreases (exponentially) quickly as t increases
and approaches zero as t goes to infinity, and (b) δ = 2. In this case, the number of transmitters increases and G decreases faster. (c) δ = 1. Comparison of

the No. of subfiles per file of the hypercube design to the NMA scheme (logarithmic scale). (d) δ = 1. Comparison of the No. of packets per subfile of the

two schemes (logarithmic scale).

Device-to-Device (D2D) interference networks and wireless

coded distributed computing networks. Second, we will dis-

cuss the connection to and differences from some related

existing works.

A. Extension to Cache-Aided D2D Interference Networks and
Wireless Distributed Computing Systems

In the setting of a typical cache-aided D2D interfer-

ence networks, all the nodes (or devices) are expected

to have homogeneous cache memory sizes. The proposed

hypercube-based scheme can be directly extended to such

D2D interference networks to achieve an order-optimal one-

shot linear sum-DoF while maintaining the promised sub-

packetization levels compared to the direct translation of the

NMA scheme. There are multiple approaches to apply the

hypercube-based approach to cache-aided D2D interference

networks. In the following, we will illustrate one example of

such applications. We consider a D2D interference network

with a library of N files and K nodes, each equipped with a

cache memory of size M files. We assume K is even and

t = KM/N ≤ K/2. We partition the network into two

groups with equal number of devices, i.e., each group has

K/2 devices. Let t′ = KM
2N ∈ Z+. In the prefetching phase,

in each group, we perform the hypercube cache placement

such that the two groups have identical cache placement. The

delivery phase has two steps, in the first step, one group of

nodes will perform as transmitters and the other group will

perform as receivers. Note that since KT = KR = K/2,

the proposed delivery scheme based on the hypercube cache

placement can be directly used. The achievable sum-DoF is

t = tT + tR = KM/N . In the first phase, the requests from

one group of receivers can be served. In the second step,

we exchange the groups of transmitters and receivers such

that the other group can be served with the same achievable

sum-DoF. Therefore, the total achievable sum-DoF is given by

t = KM/N .

Moreover, due to the similarity between the cache-aided

D2D interference network and Coded Distributed Comput-

ing (CDC, [30]), the hypercube cache placement can be

directly applied to the wireless CDC interference networks.

From the wireless D2D caching network example, it can

be seen that the proposed hypercube-based scheme can be

applied in a more practical half-duplex transmission settings.

For example, the hypercube cache placement scheme can

be employed in the file assignment phase in the CDC net-

works. Then we use the same delivery scheme as in the

wireless D2D caching networks to achieve an order optimal

communication-computation trade-off.

B. Comparison With Existing Works
In this section we discuss the connection to and the dif-

ferences from the most related works [13] and [27] and thus

highlight the uniqueness of the hypercube-based design.

The work of [13] shows that by adding multiple (L)

transmit antennas the supacketization level of coded caching

can be reduced approximately to its L-th root compared to the

shared-link coded caching scheme. It turns out that this scheme

can be extended to the cache-aided KT × KR interference
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networks to achieve the same sum-DoF as the hypercube-based

scheme proposed. However, due to the use of user/receiver

grouping, the scheme of [13] suffers sum-DoF loss (i.e., can

not achieve tT + tR) when either KR/tT or tR/tT is not

an integer, which means that it can not achieve sum-DoF

tT + tR when δ = tT /tR > 1, putting a major limitation to

its applicability. Moreover, [27] considered a similar setting

as [13] but a totally different cyclic cache placement based on

PDA was proposed to achieve the sum-DoF Kγ + L with a

quadratic (w.r.t. K) subpacketization. However, the proposed

scheme works only when Kγ ≤ L. The differences of our

work from these two works are summarized as follows.

1) Different design methodologies and parameter regimes.

The hypercube-based scheme applies the hypercube cache

placement with a nice geometric interpretation and does not

rely on receiver grouping which requires that tR ≥ tT and

puts a strong limitation in applying to interference networks.

In contrast, our work primarily focused on the case δ ≥
1, although by using a memory sharing alike method, the

hypercube-based design can be extended to the cases when

δ is not an integer or δ < 1 without sum-DoF loss (Note that

the scheme of [27] does not work when δ < 1). At the point

δ = 1, the scheme of [13] achieves a lower subpacketization

level than the hypercube-based scheme which can be shown

as follows. Assume MT ∈ Z+ (otherwise the transmitter

side cache placement in [13] does not work), then [13]

requires subpacketization
(KT /tT

tR/tT

)
= KT /tT = DT while the

hypercube-based scheme has FHCB = DtT

T DtR

R ΔHCB which

is larger than DT .

2) Symmetry in Cache Placement. Different from the

hypercube-based design, [13] employs asymmetric cache

placement methods at the transmitter and receiver sides.

One potential drawback is that the scheme of [13] can not

be directly applied to cache-aided Device-to-Device (D2D)

interference networks and the wireless CDC systems where

each user needs to be both transmitter and receivers in order

to fulfill the file requests of all users. However, due to

the symmetric cache placements at both the transmitter and

receiver sides, the hypercube-based scheme extends naturally

to such networks and incurs no extra cost when the users

switch their roles from transmitters to receivers or vice versa.

VI. CONCLUSION

In this paper, we considered the cache-aided interference

management problem where the transmitters and receivers are

equipped with cache memories of certain sizes to pre-store

parts of the contents. We adopt a new cache placement method

called hypercube at both the transmitters’ and receivers’ sides.

Based on the hypercube cache placement, we proposed a

corresponding delivery scheme where the one-shot linear DoF

of min
{

MT KT +MRKR

N ,KR

}
is achievable with exponentially

lower subpacketization compared to the well-known NMA

scheme. More specifically, via the design of the cache place-

ment and the communication scheme, a set of MT KT +MRKR

N
packets can be delivered to the receivers simultaneously and

interference-free, which is a joint effect of the zero-forcing

(collaboration of transmitters via cache placement design at

the transmitters’ side) and cache cancellation (neutralization

of known interference via the cache placement design at the

receivers’ side). The result shows that our proposed scheme

can achieve exactly the same sum-DoF performance as the

NMA scheme while requiring significantly lower supacketiza-

tion levels.

APPENDIX A

PROOF OF LEMMA 1

First, we show that given a set of |Q| = Dt points (users)

with t dimensions and D points in each dimension, the number

of different hypercube permutations is equal to
∣∣ΠHCB
Q

∣∣ =
(D!)tt!. According to Definition 1, for a hypercube permuta-

tion πHCB, the users belonging to the same dimension Ui can

only appear in positions pi,1, pi,2, · · · , pi,D−1 such that pi,j

mod t = Ci, ∀j ∈ [D−1], where Ci is a constant irrespective

of j and Ci ∈ [t − 1]. For two different dimensions Ui1 and

Ui2 , the corresponding modulo residues Ci1 �= Ci2 if i1 �= i2.

As a result, {C0, C1, · · · , Ct−1} = {0, 1, · · · , t − 1}. Thus,

given a group of users Ui and a prescribed modulo residue Ci,

there are D! ways to arrange these users to the corresponding

set of positions {pi,j : pi,j mod t = Ci, j ∈ [D − 1]}. Since

we have t such user groups (dimensions), according to the

multiplication principle, there are (D!)t ways to arrange all

the users Q to the positions {pi,j : pi,j mod t = Ci, j ∈
[D − 1], i = 0, 1, · · · , t − 1} under a prescribed modulo

residue assignment. Since there are t! different ways to assign

the modulo residues C0, C1, · · · , Ct−1 to the t user groups,

we conclude that
∣∣ΠHCB
Q

∣∣ = (D!)tt!.
Now, for any π ∈ ΠHCB

Q , it is easy to see that there are

Dt− 1 other permutations in ΠHCB
Q which are resulted from

circularly shifting the elements of π. Since circular shifting is

not allowed in the circular permutation, we have∣∣∣ΠHCB,circ
Q

∣∣∣ =

∣∣ΠHCB
Q

∣∣
Dt

=
(D!)t(t− 1)!

D
, (25)

which completes the proof of Lemma 1.

APPENDIX B

PROOF OF LEMMA 2

The proof of Lemma 2 can be completed by verifying

the following two conditions: 1) For a specific receiver Rxj ,

the number of packets it receives in the delivery phase equals

the number of packets which are desired but have not been

cached by Rxj ; 2) The number of packets received by all KR

receivers equals the number of packets desired by them.

Each set in the union of (16) is composed of tT +tR packets.

The number of such sets is equal to

DtT

T

(
DR

δ + 1

)tR ((δ + 1)!))tR (tR − 1)!
δ + 1

. (26)

Therefore, the total number of packets in (16) is equal to

DtT

T

(
DR

δ + 1

)tR ((δ + 1)!)tR (tR − 1)!
δ + 1

(tT + tR)

=
DtT

T KR(DR − 1)!(DR!)tR−1(tR − 1)!
((DR − δ − 1)!)tR

, (27)

where we used the fact that δ = tT /tR and tR = KR/DR.
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On the other hand, Rxj , ∀j ∈ [KR − 1] has cached

DtT

T DtR−1
R subfiles in the prefetching phase, so the number

of subfiles Rxj needs is equal to DtT

T DtR−1
R (DR − 1). Since

in the delivery phase, each desired subfile is further split into(
DR−2
δ−1

)(
DR−1

δ

)tR−1 (δ!)tR

δ (tR − 1)! packets, the total number

of packets needed by Rxj is equal to

DtT

T DtR−1
R (DR − 1)

(
DR − 2
δ − 1

)(
DR − 1

δ

)tR−1 (δ!)tR

δ

·(tR − 1)! =
DtT

T (DR − 1)!(DR!)tR−1(tR − 1)!
((DR − δ − 1)!)tR

. (28)

Therefore, the total number of packets needed by all KR

receivers is equal to

KRD
tT

T

(DR − 1)!(DR!)tR−1(tR − 1)!
((DR − δ − 1)!)tR

, (29)

which equals the total number of packets in (27), implying

that the set of packets needed by the receivers can be grouped

into subsets of size tT + tR, verifying the second condition.

Moreover, the number of packets received by Rxj in the

delivery phase is equal to

DtT

T

(
DR − 1

δ

)(
DR

δ + 1

)tR−1 ((δ + 1)!)tR (tR − 1)!
δ + 1

=
DtT

T (DR − 1)!(DR!)tR−1(tR − 1)!
((DR − δ − 1)!)tR

, (30)

which equals the number of packets calculated in (28), veri-

fying the first condition. As a result, the proof of Lemma 2 is

complete.

APPENDIX C

PROOF OF THEOREM 2

We will first show that for any system parameters

KT ,KR,MT ,MR and N , which satisfy KT = DT tT ,KR =
DRtR and δ = tT /tR ∈ Z+, we have 1) DtT

T <
(

KT

tT

)
, 2)

DtR

R <
(
KR

tR

)
, and 3) ΔHCB < ΔNMA. As a result, we obtain

G < 1.

We first prove that DtT

T <
(
KT

tT

)
. For ease of notation,

we denote DT as d and tT as t for the time being. We have

DtT

T(
KT

tT

) =
dt(
dt
t

) =
dtt!

dt(dt− 1)(dt− 2) · · · (dt− (t− 1))

=
(
t

t

) (
t− 1
t− 1

d

)
· · ·

(
t− (t− 1)
t− t−1

d

)
. (31)

Since we have assumed that d ≥ δ+1 ≥ 2 where δ ≥ 1, it can

be seen that t − i ≤ t− i/d, ∀i ∈ [t− 1], implying that each

individual term on the RHS of (31) is less than 1. As a result,

the product is less than 1, implying DtT

T <
(
KT

tT

)
. Similarly,

we can prove DtR

R <
(
KR

tR

)
.

Next we prove ΔHCB < ΔNMA. Denote tR as t and DR

as d, we have tT = δtR = δt. Thus, ΔHCB and ΔNMA can

be written as

ΔHCB =
(
d− 2
δ − 1

)(
d− 1
δ

)t−1 (δ!)t

δ
(t− 1)!

=
((d− 1)!)t (t− 1)!

((d− δ − 1)!)t (d− 1)
, (32)

ΔNMA =
(
dt− t− 1
δt− 1

)
(δt− 1)!t! =

(dt− t− 1)!t!
((d− δ − 1)t)!

. (33)

Therefore,

ΔNMA

ΔHCB
=

((d− δ − 1)!)t ((d− 1)t)!
((d− δ − 1)t)! ((d− 1)!)t

=
∏δt−1

i=0 ((d− 1)t− i)(∏δ−1
i=0 (d− 1 − i)

)t

= λ0λ1 · · ·λt−1, (34)

in which the parameter λk is defined as

λk �
∏(k+1)δ−1

i=kδ ((d− 1)t− i)∏δ−1
i=0 (d− 1 − i)

, ∀k ∈ [t− 1]. (35)

Note that λ0 > λ1 > · · · > λt−1. Next we show that λt−1 ≥
1. From (35), we have

λt−1 =

∏δt−1
i=(t−1)δ ((d− 1)t− i)∏δ−1

i=0 (d− 1 − i)

=
δ−1∏
i=0

(
t− (δ − i)(t− 1)

d− 1 − i

)

(a)

≥
δ−1∏
i=0

(
t− (δ − i)(t− 1)

δ + 1 − 1 − i

)

=
δ−1∏
i=0

(t− (t− 1)) = 1, (36)

where in (a) we used the assumption that d ≥ δ + 1. Hence,

we obtain that λt−1 ≥ 1. Since λ0 > λ1 > · · · > λt−1 ≥ 1,

we have ΔNMA
ΔHCB

= λ0λ1 · · ·λt−1 > 1, implying ΔHCB <
ΔNMA. Combining the above results, we conclude that the

multiplicative gap G is strictly less than 1 for any system

parameters, i.e., G = DT
tT DR

tR

(KT
tT

)(KR
tR

) · ΔHCB
ΔNMA

< 1. This proof

also shows that the hypercube based scheme requires less

number of subfiles per file in the prefetching phase and and

less number of packets per subfile in the delivery phase than

the NMA scheme.

Due to space limit, we refer the reader to Appendix C

of [31] for the proof of the the upper bound on G(d, t, δ) ≤
C0

(
C1
t

)t 1
t(δ−1)t−1 in Theorem 2. As a result, the proof of

Theorem 2 is complete.
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