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Abstract. Mining massive spatio-temporal data can help a variety of
real-world applications such as city capacity planning, event manage-
ment, and social network analysis. The tensor representation can be used
to capture the correlation between space and time and simultaneously
exploit the latent structure of the spatial and temporal patterns in an
unsupervised fashion. However, the increasing volume of spatio-temporal
data has made it prohibitively expensive to store and analyze using ten-
sor factorization.

In this paper, we propose SkeTenSmooth, a novel tensor factorization
framework that uses adaptive sampling to compress the tensor in a tem-
porally streaming fashion and preserves the underlying global structure.
SkeTenSmooth adaptively samples incoming tensor slices according to
the detected data dynamics. Thus, the sketches are more representative
and informative of the tensor dynamic patterns. In addition, we propose
a robust tensor factorization method that can deal with the sketched ten-
sor and recover the original patterns. Experiments on the New York City
Yellow Taxi data show that SkeTenSmooth greatly reduces the memory
cost and outperforms random sampling and fixed rate sampling method
in terms of retaining the underlying patterns.

Keywords: Spatio-temporal data · Tensor sketching · Tensor
completion

1 Introduction

The increasing availability of spatio-temporal data has brought new opportu-
nities in application domains including urban planning, informed driving, and
infectious disease spread modeling [2,8,24]. Unfortunately, the rapid growth in
these data streams can be prohibitively expensive to store, communicate and
analyze. In addition, the high-dimensional, multi-aspect spatio-temporal data
poses analytic challenges due to the correlations in the measurements from both
time and space. Moreover, human-intensive and domain-specific supervised mod-
els are not tractable due to the constant and evolving deluge of measurements.

Given the high-dimensional, multi-aspect nature of spatio-temporal data, a
tensor serves as an efficient way to represent and model such data [5,8,24]. As

c© Springer Nature Switzerland AG 2021
F. Hutter et al. (Eds.): ECML PKDD 2020, LNAI 12457, pp. 490–506, 2021.
https://doi.org/10.1007/978-3-030-67658-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67658-2_28&domain=pdf
https://doi.org/10.1007/978-3-030-67658-2_28


Spatio-Temporal Tensor Sketching via Adaptive Sampling 491

an example, each element of the tensor can represent the occurrences of an
event at a specific location (encoded as latitude and longitude) within a specific
time interval. Compared with the low-dimensional matrix-based methods such
as [15], tensors can capture the correlation between each mode. Furthermore,
tensor factorization offers an unsupervised, data-driven approach to identify the
global structure of the data via a high-order decomposition. It is also more
interpretable compared to deep learning methods [30]. Unfortunately, existing
models require the full tensor information (i.e., all the data samples must be
stored) and do not readily scale to extremely large tensors.

The computation and storage limitations of large tensors motivate the need
to approximate such tensors with relatively small “sketches” of the original ten-
sors. Not only are these manageable-sized tensor sketches more readily stored on
a single machine, the computationally expensive tasks such as tensor decompo-
sition can be performed on the smaller tensors while still preserving the under-
lying structure. Although sketching has been proposed as a linear algebra tool
for reducing the memory cost, traditional methods involve the linear transfor-
mation of the original tensor with a “fat” random projection matrix to reduce
the dimensions [21,27]. However, the transformation has inherent shortcomings:
1) the design of the random projection matrix may not capture the evolving
patterns without a priori information; and 2) continuous sketching is compu-
tationally expensive since it involves the inversion of a fat random projection
matrix.

An alternative sketching approach is based on tensor sparsification – subsam-
pling the original tensor while preserving the original tensor structure. Compared
with the random projection method, sampling incurs negligible online complex-
ity. Existing tensor sparsification methods include random sampling based on
the tensor spectral norm [19], sampling according to the entry values [28], and
sampling according to the pre-computed tensor distribution [4]. However, these
tensor sparsification algorithms suffer from the following limitations: 1) they
cannot deal with streaming data where measurements are not available a pri-
ori and the tensor is incrementally updated; 2) there is no formal mechanism
to reconstruct the original streams [7]. While tensor reconstruction is often a
byproduct of dealing with missing data, reconstruction of the original streams
can help track dynamic and abrupt changes at particular locations.

In this paper, we propose SkeTenSmooth, a factorization framework that
uses adaptive sampling to generate tensor sketches on-the-fly and preserves the
underlying global structure. We explore the problem of serially acquired time
slices (measurements appear once they are available). We introduce SkeTen,
a tensor sketching method that adaptively adjusts the sampling intervals and
samples time slices according to the feedback error between the prior estimate
and the true value. Thus it can capture the time slices that are not well modeled
by the prior forecasting model, while avoiding the storage of the time slices
that contain redundant information (i.e., patterns that are already captured).
Furthermore, we propose a novel method SkeSmooth to decompose the tensor
sketches and reconstruct the underlying temporal trends. Unlike previous tensor
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Fig. 1. The overall flow of SkeTenSmooth, including SkeTen and SkeSmooth.

factorization algorithms that deal with randomly missing entries, the sketched
tensor has missing time slices (i.e., no data from a specific time point) which
poses additional challenges. Thus, we introduce a robust tensor factorization
algorithm that incorporates temporal smoothness constraints using auxiliary
information about the data gained from SkeTen. Figure 1 shows the overall flow
of the proposed framework. We briefly summarize our contributions as:

1) Tensor sketching with adaptive sampling. We propose SkeTen, a tensor
sketching technique that helps process large volumes of data with low memory
requirements and preserves the underlying temporal dynamics.

2) Tensor factorization with smoothness constraint. We propose a ten-
sor factorization framework, SkeSmooth, that decomposes the smaller ten-
sor “sketches” with smoothness constraints to achieve robust recovery of the
underlying latent structure and the missing entries.

3) Case study on New York taxi data. We illustrate the ability to produce
small tensor “sketches” and generate smooth temporal factors on real data.

2 Preliminaries and Notations

This section summarizes the notations used in this paper. Note that we use X
to denote a tensor, X to denote a matrix, and x to denote a vector. The mode-d
matricization of a tensor is denoted by X(n). The row and column vectors are
represented by xi:,x:r respectively.

2.1 Tensor Factorization

Definition 1. (Khatri-Rao product). Khatri-Rao product is the “columnwise”
Kronecker product of two matrices A ∈ R

I×R and B ∈ R
J×R. The result is a
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matrix of size (IJ ×R) and defined by A�B = [a1 ⊗ b1 · · · aR ⊗ bR]. ⊗ denotes
the Kronecker product. The Kronecker product of two vectors a ∈ R

I , b ∈ R
J is

a ⊗ b =

⎡
⎢⎣

a1b
...

aIb

⎤
⎥⎦

Definition 2. (CANDECOMP-PARAFAC Decomposition). The CANDECO-
MP-PARAFAC (CP) decomposition is to approximate the original tensor Y by
the sum of R rank-one tensors where R is the rank of tensor Y. For a three-mode
tensor Y ∈ R

I×J×K , the CP decomposition can be represented as

O ≈ X =
R∑

r=1

a:r ◦ b:r ◦ c:r, (1)

where a:r ∈ R
I , b:r ∈ R

J , c:r ∈ R
K are the r-th column vectors within the three

factor matrices A ∈ R
I×R, B ∈ R

J×R, C ∈ R
K×R, ◦ denotes the outer product.

In this paper, the spatio-temporal tensor has three dimensions. The first dimen-
sion is the temporal dimension, while the other two are longitude and latitude
dimensions representing the spatial modes.

3 SkeTen: Tensor Sketching via Adaptive Sampling

The main idea of SkeTen is to discard slices along the temporal mode that are
“predictable”. Intuitively, this adaptive sampling strategy will capture sudden
temporal changes of the incoming streams, which is difficult for other meth-
ods such as random sampling and fixed rate sampling to capture. Moreover,
SkeTen does not require a priori knowledge of the data and can adjust the
sampling interval in real-time. SkeTen consists of two main components. The
adaptive sampling module uses a prediction model to measure the “predictabil-
ity” of the data. The second component selects random time series projections
to reduce the training time of the prediction models.

3.1 Adaptive Sampling

SkeTen introduces an adaptive sampling method that can adjust according to
the detected temporal dynamics and thus can better capture the underlying
patterns even with the same amount of data stored. In SkeTen, individual time-
series prediction models are developed for each spatial location. The adaptive
sampling strategy then analyzes the slice feedback error, or the feedback error
across all the locations.

Definition 3. (Slice Feedback Error). Each tensor fiber along the temporal
mode, X (:, j, k), is denoted as a time-series stream, xj,k. If x

(t)
j,k represents the
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true value at a particular time t, where 0 ≤ t ≤ T , then the slice feedback error
at time t, Et is defined as:

Et =
K∑

k=1

J∑
j=1

∣∣∣x̂(t)j,k − x
(t)
j,k

∣∣∣/max{x(t)j,k, δ}, (2)

where x̂
(t)
j,k is the estimated value based on the prediction model, and δ is a small

sanity bound.

The slice feedback error reflects how well the current time series models fit
the current trends for each time series fiber. If there is a sudden increase across
multiple spatial locations (i.e., an increase in the slice feedback error), then the
sampling interval should be shortened to better capture the evolving trends.

Time Series Prediction Model. SkeTen uses an Autoregressive Integrated
Moving Average (ARIMA) model to predict the values of the temporal slices.
Given a time-series sequence {xi}, i = 1, · · · , t, where i is the time index,
ARIMA(p, d, q) is defined as

∇dxt =
p∑

j=1

αjxt−j + εt +
q∑

j=1

βjεt−j + c (3)

where p is the order of lags of the autoregressive model, d is the degree of
differencing, and q is the order of the moving average model. αj , j = 1, · · · , p
and βj , j = 1, · · · , q represent the coefficients of AR and MA, respectively, εt is
the white noise at time t, and c is the bias term. An ARIMA model is trained
on each tensor fiber for the initial sampled time slices.

ARIMA has several convenient properties that make it more suitable than
other time series prediction models in our setting. (1) The auto-regressive part
of ARIMA ({α1, · · · , αp}) generates the coefficients that are later exploited
in SkeSmooth for the smoothness constraint in Sect. 4.1. This is essential for
recovering the original temporal patterns with missing time slices. (2) It doesn’t
require a large number of training samples so the compression can occur much
earlier than more complex models. (3) The coefficients can be used to under-
stand the adaptive sampling for the PID controller which we will explain next.
In preliminary experiments, we tried several state-of-the-art deep learning mod-
els such as ConvLSTM [29], but the compression rates and sampled slices only
improved marginally. Thus, ARIMA is an optimal choice for our setting.

Feedback Control. SkeTen uses a controller system to detect rapid changes
in the slice feedback error and adaptively adjusts the sampling rate. We adopt
a PID controller similar to [6,13] to change the sampling interval over time.
The PID controls the Proportional, Integral and Derivative errors. Proportional
error is defined as Γp = γpEt to control the sampling intervals by keeping
the controller proportional to the current slice feedback error. Integral error is
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Algorithm 1: SkeTen
Input: ARIMA models for each tensor fiber, incoming tensor slices

X (:, j, k), (j ≤ J, k ≤ K), set of PID controller parameters
{γp, γi, γd}, next sampling point ns

1 while not reach the end of data streams do
2 if next time slice t == ns then
3 sample the next time slice to the sketched tensor;
4 compute slice feedback error according to eq. (2);
5 compute the PID controller error Γ according to eq. (4);
6 obtain the new interval according to eq. (5);
7 update the next sampling point ns = ns + newInterval;

8 else
9 move on to the next time slice.

defined as Γi = γi

Mt

∑Mt

m=0 Et, where Mt represents how many errors have been
taken until time t. Thus the integral error considers the past errors to eliminate
offset. Derivative error is defined as Γd = γd

Et−Et−1
tm−tm−1

to prevent large errors in
the future. Therefore, the full PID controller is defined as

Γ = Γp + Γi + Γd,

s.t. γp, γi, γd ≥ 0, γp + γi + γd = 1. (4)

The PID errors can thus be interpreted as control actions based on the past,
the present and the future [3]. We set the PID parameters according to the
common practice that proportional > integral > derivative [6]. With the PID
error, the sampling interval is adjusted according to

newInterval = max{1, θ(1 − e
Γ−ξ

ξ )}, (5)

where θ and ξ are predefined user-specific parameters. The adaptive sampling
process is presented in Algorithm 1.

3.2 Random Projection of ARIMA Coefficients

For large scale spatio-temporal data with many spatial locations (countless val-
ues of longitude and latitude), training the prediction model (i.e., ARIMA) may
be computationally infeasible. To reduce the computational cost and retain the
temporal fidelity of the data, we propose a random projection algorithm to train
a limited number of ARIMA models, while preserving the competitive perfor-
mance of the trained models. Inspired by the Locality Sensitive Hashing (LSH)
algorithm, which has demonstrated its success in Approximate Nearest Neigh-
bor search, our proposed projection method has the following steps: (1) train L
ARIMA models gi, i = 1, ..., L from L time series tsi, i = 1, ..., L, where each of
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Algorithm 2: Random Projection of ARIMA Coefficients
Input: Tensor fiber set T = {ts1, ..., tsM}, number of models to train L

1 for i=1,...,L do
2 train ARIMA model gi for the randomly selected time series tsi

3 for j=1,...,M do
4 for i=1,...,L do
5 map each tsj into bucket i according to arg min

gi

||gi(tsj) − tsj ||

the L time series are chosen at random from the time series set T containing all
tensor fibers tsj , j = 1, ...,M ; (2) construct L buckets from the time series set
T , each bucket i corresponds to an ARIMA model gi; (3) map each time series
tsj , j = 1, ...,M from T into bucket i according to the RMSE between the true
and the predicted values using the ARIMA model gi. In this way, we treat the
fitting of each time series to the randomly selected time series as a special “ran-
dom projection”, and then map each time series according to the least RMSE to
each bucket i. This process (detailed in Algorithm 2) allows locations that may
not have been spatially close to be clustered to the same model and can decrease
the training time, which is the bottleneck of the adaptive sampling process.

We compare our proposed random projection algorithm for the ARIMA coef-
ficients with the k-means algorithm where similar time series can also be clus-
tered and thereby reducing training time. Figure 2 (c), (d) demonstrate that
despite the high computation cost of the k-means algorithm, it provided limited
improvement over the random projection algorithm.

4 SkeSmooth: Smooth Tensor Factorization

We then consider analyzing the sketched tensor using the CP decomposition to
capture the underlying multi-linear latent structure of the data and reconstruct
the unsampled time slices. Built on the success of the Quadratic Variation (QV)
matrix constraint [30,33], we consider the delay effect of the time series and
utilize the coefficients from the pre-trained ARIMA model from SkeTen to make
the temporal pattern smooth and robust to missing entire time slices.

4.1 Formulation

CP Decomposition with Missing Data. We consider the sketched tensor
as an incomplete data problem where the goal is to both learn the underlying
patterns of the data and reconstruct the unsampled values. Previous CP-based
tensor completion algorithms [1,23] have formulated the completed tensor X as:

X = W ∗ X + (1 − W) ∗ [[A,B,C]], (6)
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where ∗ denotes the element-wise product, the observed tensor is factorized as
X = [[A,B,C]] and the binary weight tensor W is of the same size as X such
that

wi,j,k =
{

1, if wi,j,k is known
0, if wi,j,k is missing.

ARIMA-Based Regularization Matrix. Standard CP decomposition with
missing data assumes the entries are missing at random, whereas SkeTen yields
a sketched tensor with entire time slices missing. Moreover, they do not account
for temporal information which can improve interpretability and robustness. In
spatio-temporal datasets, successive observations at the same spatial location
(i.e., x

(t)
j,k and x

(t+1)
j,k ) are unlikely to change significantly. Thus, adjacent time

slots are generally smooth. SkeSmooth incorporates the coefficients generated
by the various ARIMA models as auxiliary information into the regularization
matrix L. Based on Eq. (3), we observe that ai can be approximated as:

ai = α1ai−1 + α2ai−2 + · · · + αpai−p, p < i (7)

Thus by utilizing the learned predictive models in SkeTen (the autoregressive
coefficients and the order of the number of time lags, p), the algorithm can better
reconstruct the missing time slices and learn the underlying patterns.

Although each ARIMA model may have different order of time lags, pj,k,
we use the largest order p = max pj,k and set the coefficients αpj,k+1, · · · , αp,
to zero if pj,k < p. Since each tensor fiber is clustered to the ARIMA model
that fits best, we can thus get the weight for each ARIMA model as the number
of tensor fibers clustered to it. We then compute the weighted average of the
autoregressive coefficients to produce the regularization matrix, L, defined as:

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−αp 0 0 0 · · · 0
...

. . .
...

...
. . .

...
−α1 · · · −αp 0 · · · 0

1 −α1 · · · −αp · · · 0
...

. . . . . .
...

. . .
...

0 · · · 1 −α1 · · · −αp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

SkeSmooth Optimization Problem. The objective function for SkeSmooth
after adding the smoothness constraint is:

min
X

1
2
‖Y − W ∗ [[A,B,C]]‖2F +

ρ

2
‖LA‖2F , s.t. Y = W ∗ X , (9)

where Y denotes the sketched tensor with missing entries. Thus higher values of
the regularization parameter, ρ, will yield smoother temporal factors. However,
this may potentially reduce the overall fit of the tensor.
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Algorithm 3: SkeSmooth
Input: Sparse tensor sketch Y, weight tensor W ∈ R

I×J×K , smooth
parameter ρ.

1 Randomly initialize the factor matrices
A ∈ R

I×R,B ∈ R
J×R,C ∈ R

K×R

2 while A,B,C not converge do
3 compute tensor Z = W ∗ [[A,B,C]];
4 compute function value f = 1

2‖Y − Z‖2F ;
5 update gradient Gn according to Eq. (10);
6 update A, B and C with l-bfgs.

4.2 Algorithm

We use a first-order method to solve the optimization problem, similar to [1].
The gradient-based method has been shown to be robust to overspecification of
the rank. As the regularization matrix is only enforced on the temporal mode
(first mode), only the gradient for the temporal mode involves the gradient of
the regularization matrix. Thus the updates for all three modes are:

G(1) = −(Y(1) − Z(1))(C � B) + ρLT LA;

G(2) = −(Y(2) − Z(2))(C � A);

G(3) = −(Y(3) − Z(3))(B � A);
s.t. Z = W ∗ [[A,B,C]], (10)

where Y(n) is the matricization on the n-th mode of the tensor sketch. Our
gradient-based algorithm uses the limited-memory BFGS for the first order opti-
mization. The optimization process is shown in Algorithm 3.

4.3 Complexity Analysis

The time complexity of SkeSmooth is dominated by the matricized tensor times
Khatri-Rao product (MTTKRP) operations, which is computed in Eq. (10) as
the matricized residual tensor Y(n)−Z(n) times the Khatri-Rao product between
two factor matrices. For simplicity purpose, we denote an N-th order tensor
X ∈ R

I×···×I as the representation of the residual tensor Y(n) − Z(n). For each
mode, computing MTTKRP takes O(nnz(X )R), where R is the approximate
rank of the tensor, nnz(X ) represents the number of non-zero elements of X .
While computing the term ρLT LA for the first mode takes O(I2R2). Thus the
overall time complexity for SkeSmooth is O(nnz(X )NR + I2R2).
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5 Experiments

We evaluate SkeTenSmooth on a large real-world dataset, the New York City
(NYC) Yellow Taxi data (see [18] for experiment settings). The goal of our
evaluation is to assess both SkeTen and SkeSmooth from three aspects:

1. Effectiveness of SkeTen: Analyze memory compression without hurting
the performance. Use SkeTen to evaluate the latent structure preservation.

2. Effectiveness of SkeSmooth: Evaluate with the sketched tensor on the
effectiveness of the smoothness constraint.

3. Sketching result on prediction tasks: Analyze how the decomposed factor
matrices perform on a downstream prediction task, to indirectly evaluate
whether the sketching results are meaningful.

5.1 Dataset

We evaluate SkeTenSmooth on the NYC Yellow Taxi Data1, which is collected
and published by the New York City Taxi and Limousine Commission. To
demonstrate the scalability of our methods, we collect data from January, 2009
to June, 2015, which has 1,090,939,222 trips in total, on a daily basis2. We inves-
tigate the NYC area using the latitude range of [40.66, 40.86] and longitude range
of [−74.03,−73.91]. We partition the NYC area with a 0.001×0.001 degree grid,
where 0.001 degree is roughly 111.32 meters. Then we form a tensor X of size
2341 × 120 × 200, for time, latitude and longitude modes respectively. The first
60% of the tensor is used for training and is thus considered as offline data, while
the latter 40% is used to test SkeTen and SkeSmooth.

5.2 Evaluation Metrics

The tensor decomposition performance is evaluated by two criteria: Factor Match
Scores (FMS) and Tensor Completion Scores (TCS) [1]. FMS is defined as:

score(X̄ ) =
1
R

∑
r

(
1 −

∣∣ξr − ξ̄r

∣∣
max

{
ξr, ξ̄r

}
) ∏

x=a,b,c

xT
r x̄r

‖xr‖‖x̄r‖
,

ξr =
∏

x=a,b,c

‖xr‖, ξ̄r =
∏

x=a,b,c

‖x̄r‖

where X̄ = [[Ā, B̄, C̄]] is the estimated factor and X = [[A,B,C]] is the true
factor. xr is the rth column of factor matrices. FMS measures the similarity
between two tensor decomposition solutions. It ranges from 0 to 1, and the best
possible FMS is 1. We choose the factorization result of the complete tensor
using CP-OPT [1] as a true factor to compare with.
1 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.
2 We also conducted experiments on hourly basis (a finer granularity), which shows

consistent results with the daily basis. Results can be found in Supplement in [18].

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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Fig. 2. Overall sampling rates, FMS and TCS over the change of θ ((a) and (b)). FMS
and TCS over dropped rates ((c) and (d)).

TCS indicates the relative error of the missing entries, and is defined as

TCS =

∥∥(1 − W) ∗ (X − X̄ )
∥∥

‖(1 − W) ∗ X‖ ,

The best possible TCS is 0.

5.3 Parameter Selection

In SkeTen, parameters involved in achieving the adaptive sampling algorithm
include: the PID controller parameters {γp, γi, γd}, θ and ξ for the interval adjust-
ment. The PID parameters are set as {γp, γi, γd} = {0.7, 0.2, 0.1}3. Parameter
θ determines the magnitude of the sampling interval adaptation, its impact is
shown in Fig. 2(a) and (b). From Fig. 2(b), we observe that as θ increases, the
reconstruction performance measured by FMS and the TCS decreases due to
the enlarged average sampling intervals (shown in Fig. 2(a)). The optimal choice
shown in the figure is θ = 1. When θ = 0.1, the reconstruction performance (TCS
and FMS) is worse than when θ = 1 due to an insufficient interval adjustment.
ξ is determined as 3.5 for the tolerance of PID error.

For SkeSmooth, the smoothness constraint ρ is chosen as 600 after grid search
through {500, 600, 700, 800, 900, 1000}, and the rank of the tensor is determined
as 5 after grid search in {5, 10, 15, 20, 25} (see Supplement in [18] for more
details). The number of lags is determined as p = 3 based on the majority of all
the trained ARIMA models. We use the number of tensor fibers mapped into the
same bucket as weights, and compute the final coefficients for the regularization
by weighted average of the coefficients of the randomly trained ARIMA models
and is determined as α = [0.55,−0.19, 0.04]4.

3 We experimented with several PID settings, and it hardly affected the sampling
rate as long as we set the controller ID according to proportional > integral >
derivative. We thus consider our system robust to the control parameters and choose
the optimal setting in empirical studies.

4 The k-means based coefficients are computed the same way using the Dynamic Time
Warping (DTW) distance and are determined as αk−m ean s = [0.51,−0.07, 0.007].
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5.4 Tensor Sketching

Here we consider a streaming setup where the tensor sketching will be applied
to a succession of incoming time slices.

Baselines. We compare SkeTen with two baseline sampling techniques:

– Fixed rate sampling samples the data with a predefined, fixed interval.
– Random sampling has been proposed as a way to sparsify the tensor [19].

By evaluating the performance of fixed rate sampling and random sampling,
we can gain a better understanding of the benefits of adaptive sampling under
the setting of time-evolving streams and how it may provide more informative
representations of the streams at the same storage cost.

Evaluation. We evaluate the three sampling methods for different levels of
dropped data by using the proposed SkeSmooth algorithm. The performance is
measured by both FMS and TCS. We explore the sketching level from 50% to
90%. Figure 2 (c) and (d) show the FMS and TCS of different sampling methods
when applied to SkeSmooth algorithm. As more data are sampled, FMS gradu-
ally approaches 1, which means the extracted temporal patterns are equivalent to
the true patterns. Notice that when the level of sampling is 50%, adaptive sam-
pling and fixed-rate sampling method show FMS as high as 0.9886 and 0.9803,
which means that with only 50% of the original data, SkeSmooth can success-
fully recover the original temporal pattern. Adaptive sampling achieves slightly
better reconstruction performance than fixed-rate sampling, because the daily
taxi data are fairly regular and periodical so the interval adjustments for adap-
tive sampling helps marginally. Both adaptive sampling and fixed-rate sampling
are better than the random sampling, illustrating that carefully designing the
sampling strategy is critical for pattern and data reconstruction.

5.5 Tensor Decomposition with Sketches

To evaluate the performance of tensor sketching, we first need to look into how
it can preserve the temporal trend and the latent structures on the temporal
dimension. We decompose the sketched results to generate the factor matrices as
latent patterns, and use these factor matrices to reconstruct the original tensor.
We compare SkeSmooth with the following state-of-the-art methods: CP-WOPT
[1], HaLRTC [16], SPC [30], BCPF [32], t-SVD [31], t-TNN [12].

Evaluation. Since not all baseline algorithms are CP-based tensor completions,
it is infeasible to compare the FMS. Therefore, we use TCS as the evaluation
metric. Figure 3 illustrates the TCS as a function of the level of data dropped for
different sketching methods. We note that SkeSmooth outperforms the baseline
tensor completion algorithms in achieving a lower TCS (relative error), verifying
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(b) Fixed rate Sampling
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(c) Random Sampling

Fig. 3. Tensor Completion Scores Comparison between SkeSmooth and the Tensor
Completion baselines for different sampling mechanisms: (a) adaptive sampling; (b)
fixed rate sampling; (c) random sampling.

its robustness in dealing with the missed time slices in the sketched tensor. In
particular, we observe the noticeable improvement using the ARIMA-based coef-
ficients in comparison with the SPC algorithm which adopts the QV smoothness
constraint. This observation is consistent for all sampling mechanisms.

5.6 Prediction Task

It is also critical to analyze how meaningful the generated temporal patterns
are by performing a downstream prediction task using the decomposed factor
matrices. We fit a multivariate Long short-term memory (LSTM) model, which
is well-suited for the traffic demand prediction task [26]. For the prediction task,
the taxi demand is predicted on a daily basis where each day’s number of pickups
are treated as the daily demand with a train-test partition of 70-30. The LSTM
model uses the factorized temporal mode factor matrix A of size I × R, where
each feature within A (Ai; of size 1 × R) represents a latent transportation
pattern. The LSTM model is configured as one hidden layer of 30 LSTM units
with ReLu activation function, followed by an output dense layer5.

Table 1 presents the root-mean-square error (RMSE) differences for adaptive
sampling (SkeTen), fixed rate sampling, and random sampling with varying per-
centage of data dropped from 50% to 90%. Results demonstrate that adaptive
sampling outperforms other two sampling methods in maintaining the predictive
power with 60%-80% data dropped. As more data are dropped, the test error
(RMSE) increases, indicating that it becomes harder to fit the LSTM model.

6 Related Works

We review the previous work regarding the tensor sketching and tensor comple-
tion approaches in this section.

5 The model is trained by the RMSprop optimizer with a fixed learning rate (0.01)
and a batch size of 8 for 50 epochs.
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Table 1. Predictive performance (test RMSEs) for adaptive sampling, fixed rate sam-
pling, and random sampling with 50% to 90% of data dropped.

Sampling techniques 50% 60% 70% 80% 90%

Adaptive sampling 0.0155 0.0270 0.0303 0.02827 0.0450

Fixed-rate sampling 0.0173 0.0278 0.0309 0.0427 0.0452

Random sampling 0.0154 0.0282 0.0317 0.0342 0.0322

6.1 Tensor Sketching

Sketching has been proposed and investigated as an indispensable numerical
linear algebra tool to help process large volume of data [27]. Thus far, there
have been two research directions. Random projection is the predominant form of
tensor sketching. [20] developed an approach to randomly compress a big tensor
into a much smaller tensor by multiplying the tensor with a random matrix
on each mode. [21] extended this work to improve the permutation matching
performances of the resulting factor matrices. [10] expanded the work further
to the online setting. However, these compression methods cannot avoid the
inherent bottleneck of the matrix-tensor multiplication operators.

An alternative for tensor sketching is tensor sparsification. The goal of tensor
sparsification is to generate a sparse “sketch” of the large tensor. [19] proposed
random sampling based on the tensor spectral norm. Entries are sampled with
probability proportional to the magnitude of the entries. [28] extended this work
with: 1) the extension from cubic tensors to general tensors; 2) the criteria and
treatment of “small” entry values. They proposed to keep all large entries, sam-
ple proportionally to moderate entries, and uniformly sample small entries. [4]
proposed a new sampling method that samples entries based on a pre-computed
tensor distribution. These tensor sparsification algorithms do not consider the
data streaming setting and require prior knowledge about tensors.

6.2 Tensor Factorization and Completion

Tensor completion is more considered as a byproduct when dealing with missing
data in the tensor factorization process. As a result, CP decomposition and
Tucker decomposition are two major types of tensor completion methods [23].
[1] proposed CP-WOPT, a tensor CP decomposition algorithm that can handle
missing entries using a binary weight tensor. Tucker-based tensor completion
including geomCG [14], HaLRTC/FaLRTC [16], and TNCP [17], etc. There are
other approaches besides CP and Tucker decomposition, such as t-SVD [31]. [23]
and [22] provide comprehensive surveys on the topic of tensor completion.

Tensor completion has also been widely applied to spatio-temporal data
analysis for traffic prediction [11,25], urban mobility pattern mining [24], and
urban event detection [5]. [33] applied a similar tensor completion algorithm with
smoothness constraints as in [30] and [33] to the imputation of missing internet
traffic data, that tries to minimize the difference between adjacent time slots.
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[9] explored the similarity for each element within one dimension and used this
as auxiliary information to better recover the original tensor. Nevertheless, the
above algorithms did not consider the tensor streaming problem. [25] proposed a
dynamic tensor completion (DTC) algorithm, where traffic data are represented
as a dynamic tensor pattern, but will still require the entire tensor.

7 Conclusions

SkeTenSmooth is a tensor factorization framework that generates tensor sketches
in a streaming fashion using adaptive sampling mechanism and decomposes the
sampled smaller tensor sketch with an ARIMA-based smoothness constraint. It
is well suited for the incrementally increased spatio-temporal data analysis that
can greatly reduce the storage cost and sample complexity, while preserving
the latent global structure. SkeTenSmooth includes two main components: 1)
SkeTen as a tensor sketching algorithm that tackles the memory efficiency issue
by adaptively adjusting the sampling interval based on the model prediction
error; and 2) SkeSmooth incorporates an ARIMA-based smoothness constraint,
which better demonstrates the auto correlation between each time point of a
time series. Experiments on the large-scale NYC taxi dataset illustrate that with
adaptive sampling strategy, SkeTen can greatly reduce the memory cost by 80%
and still preserve the latent temporal patterns and the predictive power. Future
work will focus on the distributed setting to improve scalability and efficiency.
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