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ARTICLE INFO ABSTRACT
Article history: Deep learning techniques for geometric processing have been gaining popularity in recent
Available online 5 April 2019 years, various deep models (i.e., deep learning methods based on neural networks) are

developed with enhanced performance and functionality in conventional geometric tasks
such as shape classification, segmentation, and recognition. Yet, deep models would rely on
large datasets for the training and testing purpose, which are generally lacking as 3D shape
geometry could not be easily acquired and/or reconstructed. In this paper, we propose a
new 3D shape dataset augmentation method by learning the deformation between shapes
in a highly reduced latent space while affording interactive control of shape generation.
Specifically, we model each shape using a concise skeleton-based representation, and
then we apply Gaussian Process Latent Variable Model (GPLVM) to embed all shape
skeletons into a low-dimensional latent space, where new skeletons could be generated
with diverse kinds of flexible control and/or quantitative guidance. A second network that
learns the displacement between shapes can be employed to produce new 3D shape from
newly-generated skeletons. Compared with popular computer vision techniques, our new
generative method could overcome remaining challenges of 3D shape augmentation with
new characteristics. Specifically, our new method is capable of transforming 3D shapes
in a more liberal way, preserving their geometric properties at a semantic level, and
creating new shape with ease and flexible control. Extensive experiments have exhibited
the capability and flexibility of our new method in generating new shapes using only few
samples. Our shape augmentation is an effective way to simultaneously improve the shape
creation capability and the shape extrapolation accuracy, and it is also of immediate benefit
to almost all deep learning tasks in geometric modeling and processing.
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1. Introduction and motivation

Popular deep learning techniques have already exhibited their supremacy towards improving the state-of-the-art in
speech recognition, visual object detection, image classification, and many other application domains LeCun et al. (2015).
Nonetheless, deep models, for example deep neural networks, usually need extremely large training dataset to guarantee
their prediction accuracy and generalization capability. In the field of computer vision, images are usually randomly ro-
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tated, translated, and scaled to broaden the variance range of image datasets, thereby improving the performance of deep
models Hernandez-Garcia and Koénig (2018). These simple augmentations applied on images heavily rely on the pixel rep-
resentation where image pixels representing colors or intensities are confined on a planar grid with canonical form. When
it comes to 3D shapes, which are usually represented by point clouds or triangular meshes, simply translating or rotating
shapes may not achieve the goal of increasing the variance of shapes because shapes before and after rigid translation and
rotation are actually considered to be the same in terms of geometry invariance. Thus, data augmentation for 3D geometric
shapes should comprise the augmentation of geometric information.

A feasible 3D shape augmentation algorithm should satisfy two conditions: (1) this augmentation should be able to
discover as-much-as possible shape variances along certain directions within a relative small dataset; (2) new shapes syn-
thesized by an augmentation algorithm should maintain semantic characteristics, and the generating process should as well
be constrained under flexible and intuitive user-controlled guidance. One natural way to generate new shapes based on a
few existing examples is shape interpolation Xu et al. (2006); Von-Tycowicz et al. (2015); Xia et al. (2015), which interpo-
late certain geometric properties of shapes and reconstruct new shapes by solving non-linear optimizations. However, these
methods are usually neither versatile nor intuitive to implement and they tend to be time-consuming in general, which
is not suitable for online augmentation during model training. Besides, point-to-point correspondences between shapes are
necessarily enforced in most cases, which is impracticable when models are created individually wherein the order of ver-
tices is not consistence across shapes. Another way is to synthesize shapes by recombining pre-segmented object parts.
Huang et al. (2016) explore a support-induced structural organization of object parts, shapes are first segmented and rep-
resented as a structure based graph, then shapes are created by substructures combination. These methods may generate
shapes in a novel way, while the quality of generated models can hardly be guaranteed. Deep learning methods, especially
3D convolutional neural networks Wu et al. (2016); Tatarchenko et al. (2017), generate reasonable results, but the simple
transfer of 2D image generation framework to 3D domain will be severely restricted by memory limitation and thereby
limit the resolution or equality of generated shapes. Moreover, these generating models are not easy to be controlled by
user guidance in a flexible yet versatile way.

In this paper we devise a novel 3D data augmentation framework by learning the deformation between shapes in a
highly reduced latent space while affording interactive and intuitive control during shape generation. Given a few shapes,
a shape space spanned by these shapes can be parameterized to a low-dimensional manifold Campbell and Kautz (2014).
Thus, we first adopt concise skeleton-based graphs to represent shapes and then use Gaussian Process Latent Variable
Model (GPLVM) Lawrence (2005) to map skeleton-represented shapes to a shared low-dimensional embedding space. This
latent space embedding in a lower dimension has two major advantages: (1) the skeleton-based representation affords in-
put shapes without the need of point-to-point correspondences, and could significantly reduce the shape space dimension
which allow users to explore with intuitive visual feedbacks; (2) GPLVM maps shapes from high-dimensional shape space
into a much reduced latent space and confine reasonable shapes in a low space, where flexible and interactive controls
could be applied in a most natural and intuitive manner. Then, we propose different kinds of navigation methods in the
low-dimensional (it may be noted that oftentimes 2D is enough) embedding space to synthesize new graphs by simply
choosing positions with low variance. Flexible user-guided navigation is enabled by moving the shape in latent space along
any user-preferred direction which can be accurately characterized by a local principal component analysis and possible
projection operator via an attraction force. Finally, a generative network is proposed to learn the deformation process be-
tween every two-model pair, and generate a new 3D shape from a newly produced skeleton graph. In particular, the salient
contributions of this paper can be summarized as follows:

e We pioneer a novel 3D shape dataset augmentation scheme by learning the deformation process in a dimensionality
reduced latent space, which gives rise to interactive and flexible shape generation control.

e We propose different kinds of shape navigation strategies in dimensionality reduced latent space, which affords flexible
and quantitative user guidance for generation of new shapes in the original high-dimensional shape space.

e We propose a novel deformation-learning network which transforms a source 3D shape to a target shape under the
guidance of a skeleton, which can produce excellent results even with small datasets.

e The 3D data augmentation framework is also of immediate benefit to other deep learning tasks in geometric modeling
and processing.

2. Related works

Closely relevant to the central theme, we now briefly review previous approaches and their related applications in two
categories: manifold learning and 3D shape generation, and geometric deep learning.

2.1. Manifold learning and 3D shape generation

The core of manifold learning techniques is to model data as low-dimensional manifolds. The Gaussian Process Latent
Variable Model proposed by Lawrence (2005) has proven to be powerful in manifold learning and data prediction. Camp-
bell and Kautz (2014) build a generative manifold of standard fonts by representing typefaces as closed curves. They take
a collection of existing font files and create a low dimensional space such that every location in this space generates a
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novel typeface through the interpolation and extrapolation of these fonts. Turmukhambetov et al. (2015) use the learned
manifold to provide interactive visual feedbacks. They learn a low-dimensional manifold from the data that models the joint
configuration of masses and the contour shape of objects, which are presented by Stokes parameters and elliptical Fourier
coefficients. Manifold learning methods excel in modeling moving styles, too. Bailey et al. (2016) map high-dimensional rig
control parameters to a three-dimensional latent space. They use a particle model to move within one of these latent spaces
to automatically animate interactive characters, as well as bridges to link each pose in one latent space that is similar to a
pose in another space. Levine et al. (2012) present a technique that animates characters performing user-specified tasks. A
low-dimensional space learned from the example motions is used to continuously control the character’s pose to accomplish
the desired task. Similarly, Yin et al. (2018b) generate closely interacting 3D pose-pairs from a set of video frames by sam-
pling over the space of close interactions. The sampling process starts with one or more manually designed seed 3D skeletal
pose-pairs, and the seed set is augmented via a Markov Chain Monte Carlo (MCMC). Other existing shape generation meth-
ods either interpolate between existing shapes or exchange their parts. Alhashim et al. (2014) define blend operations on a
spatio-structural graph, fundamental topological operations including split and merge are realized by allowing one-to-many
correspondences between the source and the target. Han et al. (2015) create new shapes by recombining existent styles and
contents. They perform style and content separation to analyze shapes by clustering their multi-scale corresponding patches
and create novel shapes by style transfer. Huang et al. (2016) generate new shapes by applying the derived high-level sub-
structures to part-based shape reshuffling between models. A bottom-up approach is presented to identify a set of basic
support substructures and combine them to form complicated substructures. Ranaweera et al. (2017) enable novice users
to work together to generate creative 3D shapes by allocating distinct parts of a shape to multiple players who model the
assigned parts in a sequence. Inspired by GP-LVM’s powerful ability of non-linear dimension reduction, we apply it in our
framework to embed all shapes into a latent space where flexible user control of shape generation can be easily defined.

2.2. Geometric deep learning

Researches in deep neural networks have advanced significantly in recent years. The majority of extant works, namely Wu
et al. (2016), generate 3D objects via 3D Generative-Adversarial network by leveraging volumetric convolution. To obtain
shapes preferred by users, a joint embedding space can be learned by autoencoder approaches. Girdhar et al. (2016) achieve
this by building an architecture that has two major components, an autoencoder that ensures the representation is gen-
erative, a convolutional network to predict shapes from images. Chen et al. (2018) learn implicit cross-modal connections
between shapes and texts by using association and metric learning approaches, and produce a joint representation for texts
and the properties of 3D shapes. Hu et al. (2018) expand the volumetric convolutional method to a framework, which recog-
nize the functionality of a single voxelized 3D object and synthesizes segmented surrounds. Dai et al. (2016) generate coarse
3D geometries and add details for those low-resolution predictions by finding neighbors in high resolution 3D geometric
shape database. These methods are limited in voxel presentation and suffers from huge calculations. Li et al. (2017) generate
new structures by introducing a novel network architecture which recursively maps a flat, unlabeled, arbitrary part layout
to a compact code using autoencoders, and maps a code back to a full hierarchy using an associated decoder. This method
yields generative models of plausible structures, but the curve information of each part is lost, which caused the ambigu-
ousness of results. Given a picture, point clouds can be generated by estimating the depth for visible parts and hallucinating
the rest as Fan et al. (2016) does. Qi et al. (2016) come up with a novel type of neural network that directly consumes point
clouds by using symmetric functions, and Qi et al. (2017) extend the network to a hierarchical neural network that applies
PointNet recursively by partitioning the input point set into local small points. More plausible results have come up after
the propose of PointNet++. Sung et al. (2017) synthetic novel models by jointly training embedding and retrieval networks,
where the first maps parts to a low-dimensional space and the second maps input parts to appropriate complements. Lastly,
a placement network is trained to put the complements on right places. Yin et al. (2018a) build a bidirectional net work
to learn the shape transformation process between two domains, while Achlioptas et al. (2017) perform a thorough study
of different generative networks operating on point clouds, including GANs and AEs, especially GANs trained in the latent
space learned by AEs. The limitation of those methods is that they can neither fully control the generation process nor gen-
erate shapes in a continues way. In this paper, we will combine traditional manifold learning method with neural network
to achieve flexible and controllable 3D shape generation or namely augmentation.

3. Latent space embedding and navigation

Fig. 1 shows the entire pipeline of our 3D shape augmentation framework. We firstly extract the skeleton for each shape
represented by point cloud to produce a consistent graph-based representation wherein shapes are modeled with the same
topology. Then we embed these graphs into a low-dimensional latent space using a latent variable model, where one can
explore to generate new graphs by simply choosing positions with low variance. In this section, we will introduce the details
of skeleton-based shape representation, latent space embedding and flexible navigation.
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Fig. 1. Our shape augmentation framework. We firstly contract the skeleton for each point cloud in our dataset, then project all the skeletons onto a shared
embedding space and explore new skeletons in this space. Finally, we use a deformation network to transform a point cloud we have to a new shape
whose pose is represented by the new generated skeleton. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this
article.)

3.1. Skeleton-based shape representation

As point clouds can hardly be aligned to each other, projecting high dimensional point clouds into a low-dimensional
embedding space seems intractable. Our key observation is that humans have the ability to distinguish between shapes
according to their skeletons, because skeletons contain the majority information about the differences between shapes of
the same category. Based on this assumption, we consider the skeleton as key information of the shape and extract the
skeleton for each point cloud as a concise representation of its interior architectural feature. For each shape, we compute
its skeleton via local Delaunay triangulation and topological thinning with Laplace matrix, as is stated by Cao et al. (2010).
Solving contraction problems in a global way for models with uneven thickness may cause strange results, it struggles
between contracting skeletons of thick parts and preserving curves of thin parts. We expand the method to a dynamic local
Principal Component Analysis (PCA) version. In every step, we extract its k nearest neighbors and perform a local PCA on
them. Then we determine that a point is already lying on a curve if their projection on one direction covers the majority of
information. Given the sorted local eigenvalue written as U, we keep the points that already satisfy our demand stable by
updating their Laplace matrix as

maxy, eu Uk
0 k >

el T
Mij = Dt Q)
vij —wjj otherwise

where vj; is the value of the row i and column j of the degree matrix, and wj; is the corresponding value of adjacency
matrix, o is an manually defined threshold. As shown in the left side of Fig. 2, the improved method can handle with
our model in a better way, the details in the dotted circle show how the octopus’ legs are better represented by curves
contracted by the improved method. After contraction, a skeleton graph is constructed by farthest-point sampling method
as Cao et al. (2010) does.

The skeletons obtained above still need to be further normalized, for skeletons should be aligned into same length to be
projected onto a low-dimensional latent space, and redundant points will affect the calculation of the distribution. To this
end, we cut the graph into branches by identifying nodes whose degree is greater than 2 as bifurcations. Then we cluster
these branches according to their positions as well as their lengths and directions. For each branch with one one-degree end
point, the position is defined as the position of the one-degree point, and for branches with two two-degree end points, the
position is defined as the middle position of the branch. The direction is determined by the first component of local PCA.
After that, branches of the same class are uniformly sampled with the same number of points, where the number is chosen
empirically in our experiments. We show the representation computing process in Fig. 2. For parts with stick bones, we can
further reduce the number of points by fitting bones to each part and optimizing their joints. After that, we reorganize the
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Skeleton contracted with local PCA Point clouds Skeletons Aligned vectors

Fig. 2. The left two octopus show skeleton contraction results with and without local PCA. The skeleton contracted with PCA shown in second row pre-
serves the curves of legs better. The right part shows our vector alignment procedure which maps point clouds to consistent vectors with same length.
Segmentation of skeletons and the organization of parts are indicated by different colors.

skeletons into vectors of the same length. Finally, we got 19 key points for each horse, 84 key points for each octopus, and
13 key points for each human shape.

3.2. Latent space embedding

For now, we have modeled the shapes with vectors of same length, then we will utilize the leverage of Gaussian Process
Latent Variable Model to learn a continuous, generative latent space. As stated by Rasmussen and Williams (2005), GP-LVM
assumes that the mapping procedure from embedding low dimensional space to high dimensional space is a Gaussian
process, which means, inputs and outputs appear in a continuous domain, and any discretely extracted set under the
function is normally distributed. Given aligned D dimensional vectors organized in matrix Y € RN*P, our goal is to find
the associated latent variables X € RN*Q, where N is the number of observations and Q is the dimensionality of latent
variables, especially, Q <« D. The GP-LVM defines a generative mapping from the latent pace to observation space that is
governed by Gaussian processes. The vectors of different outputs are drawn independently from the same Gaussian process
prior which is evaluated at the inputs X, the likelihood function is written as

N
pY 1 X)=]]pwnlX), (2)

n=1

where y, is the n-th vector in Y, and the probability for each y, is written as

pYn | X) =N(yn 10,C(X, X ]6)), (3)

where C(X, X | 6) is the covariance function that maps X to Y and 6 is the hyper-parameter. We can assign every X, € X
a prior density given by the standard normal distribution, A/(0, 1). The covariance function is organized in a matrix where
the value of row i and column j defines the covariance between two input vectors, which is calculated by a kernel function.
We choose the Radial Basis Function (RBF) kernel as the kernel function. For every two vectors in embedding space namely
x; and Xx;, the i-th row and j-th column of the covariance matrix is given by

1
c(xi. Xj | 0) zorzbfexp(—5¢||Xi —x; |, (4)

where o and ¢ are hyper-parameters, written as 6 = [0yf, ¢]. Substituting Eq. (3) and Eq. (4) into the likelihood function
of Eq. (2), we can obtain a complex, non-linear objective function to be maximized. Then we solve the optimization with
methods introduced in Titsias and Lawrence (2010) and initialize the values with a linear PCA reduction.
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Fig. 3. Schematic diagram of the principal curve fitted in reduced latent space (left) and the local PCA guided exploring directions (right). The red and blue
dots in (a) represent our embedding data, while black lines represent the self-consistent characteristic of principal curve. Arrows in (b) are local coordinates
(black) and the direction a user may actually want to go(orange).

3.3. Automatic exploration based on principle curve

In order to discover all possible shapes, we need ways to automatically explore and generate new shapes. We believe
the features obtained from models lie on a shared manifold, so discovering the embedding manifold means finding all the
shapes possible. Principle curves (Hastie and Stuetzle (1989)) and principle surfaces are believed to be one-dimensional and
two-dimensional form of manifold. We perform a principal curve extraction to obtain the underlying manifold, here we use
2D latent space for illustration. Given embedding data X € RN*2, principal curves are curves that self-consistent and pass
the middle of the data in a smooth way. That is to say, the positions of data are distributed on both sides of the curve
symmetrically. Given a one-dimensional smooth curve parameterized over R! written as f(1), we seek for the curve that
minimizes the cost

N
Ec=)llxi— fOa)lI?, (5)
i=1
where ; is the index of x;, which is sorted by the distance from start point of the curve to the projection point of x;, which
we call the projection index. Since one point might be projected on several positions on the curve, we define A; as the
largest index of the values of the smallest projection distance in all possible projection value t. The definition is given as

Ai =argmax{X: [|x — fM)| =infr [x— f(D}. (6)

Theoretically, as shown in Fig. 3(a), a self-consistent curve means that for every projection index A;, the curve lies exactly
on the median of points whose projection index is A;. However, there is usually only one point for a projection index, so we
find the curve that lies on the middle of the points of their projection index neighbors. In practice, we represent f(x) as a
collection of line segments, and initialize it with the first linear principal component of all data. The curve is calculated in
an iterative way, in which we calculate the projection index and update f(1;) as the middle position of the points whose
projection index are close to A; and repeat this step until the algorithm converges.

3.4. User-guided navigation based on local PCA

In addition to the automatic exploration, we also provide user-guided navigation method to augment the dataset in
an interactive way. Assuming there is a point who always tends to discover new shapes, a main direction is specified for
user to decide whether to find shapes novel or generate shapes that is similar to shapes in dataset. The local coordinate
system is defined by preforming local principal component analysis and the default direction is obtained by defining forces
around them. As shown in the right side of Fig. 3, given the current position in latent space, we find the point with its
nearest neighbors and perform a principal component analysis on them. The main direction is defined by its first principal
component, while the second principal component defines another. Always going through the main direction will produce
shapes similar to point clouds in dataset, while going through the direction vertical to the main direction will go away from
the manifold and generate shapes with novel features. Users can also easily define the advance direction simply by defining
the degree of deviation from the main direction.

We provide default advancing directions by defining forces on the current point in an embedding space. When current
point is moving too far from the manifold, it should be advised to go towards original points, while when the point is too
close to the path it has been explored, it should be advised to leave the path and find something novel. Forces acting on
the point includes attractive forces from original points and repulsive forces from points on the paths. The resultant force
for a point of position X is defined as
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where P is the path consisting of positions it has passed. Npei(X, X) and Nye;(X, P) are neighbors in original points and
neighbor points on the path, 1, y2, 1 and B are hyper-parameters. Assuming a point is subjected to a constant force
Fmain along the main direction, the recommended direction is

Fgir = Finain + € Fattr, (8)

where € is an empirical parameter used to define how much a point is affected by its neighbors.
4. Geometry displacement learning for shape synthesis

For now, we have embedded the shapes into a low-dimensional latent space and provided automatic and manually
controlled navigation methods. In this section, we will detail how to generate new shapes using the trained GP-LVM and a
shape generating network that learns the displacement between any two point clouds during transformation.

4.1. Skeleton construction

Generating new skeletons from latent space with our trained GP-LVM model is straightforward. We denote trained em-
bedding vectors as X* and super parameters as 6*. Consider X as our new point in embedding space, we get the model
with X as

Y C(X*, X*) C(X*,X)
[9] N (0’ [ CR XY CR%) ) ©)
Then we got the function of output y as

P | X*,0%) =N (CRE, X*|0H)C(X*, X* 6971y, %), (10)

with the covariance X as
Y=CX,X) — CX, X" |90")C(X*, X*| 9*)7]C()A(, X*16%). (11)

We treat the mean value as our predicted result and the covariance X as a confidence measurement for the prediction, a
lower value usually means a more reasonable result, which is shown in Section 5.

4.2. 3D point clouds generation for new shapes

Now we introduce our generation network used to generate new point clouds from skeletons. While deep learning
methods struggle learning proper weights with few training data, in traditional shape generation methods, new meshes are
usually generated by combining several parts extracted from neighbors under certain metrics, wherein the point-to-point
correspondences are built and source parts are deformed and transformed according to features of the target shapes. Is there
any way that combines the advantages of both, to generate shapes from a small dataset without part-to-part, or point-to-
point correspondence? We address this problem by changing the goal from learning the mapping between skeletons and
point clouds to learning the deformation process between every two models with a skeleton as guidance. The change of
learning target expands the training data. Given N point clouds and their corresponding skeletons, traditional one-to-one
learning networks have N pairs of training data, while, by learning the deformation process between any two model, we
use each data N time in one epoch and obtain N x N pairs of data, which is usually sufficient for a network to learn a
meaningful model.

The whole network structure is shown in Fig. 4. Our network consists of three components, feature extraction, posture
recognition and displacement learning. We utilize the strong power of PointNet Qi et al. (2016) and PointNet++ Qi et al.
(2017) in feature extraction part and posture recognition part. In feature extraction part, the network analyzes what it is
for each part and learns a feature for each point. This part takes whole point cloud models as input and passes them into
a multi-layer network. At each layer [, we sample and group the inputs locally, and pass the features of same group into
a shared multi-layer perceptron. The learned features in each group is passed into a symmetric function that maps a set
of inputs into a vector in layer [ 4+ 1. By interpolating feature vectors according to their coordinates in layer [ — 1, global
features are propagated back to each point. We believe that the learned features contain the local structural information of
the geometry. In the posture recognition part, key points are passed into another network which transforms the skeletons
into features that a network can understand. In displacement learning part, skeleton features and point cloud features are
concatenated and passed into three full-connected layers. Those layers analyze and integrate the information of two parts,
and end up with a vector for each point. The deformed point clouds maintain geometric details of input point clouds and
have the same posture with input skeletons.
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Fig. 4. Our shape generation network. Our network takes an existing point cloud and a skeleton as input, and outputs a new point cloud with the pose
indicted by the input skeleton. Each green rectangle represents a PointNet Qi et al. (2016) block, and the whole feature extraction part is in the form of
PointNet++ Qi et al. (2017).

We organize each training data as a tuple (I, T, S). Given input point cloud I and learned displacement T, we obtain the
deformed output model as S =1+ T. To measure the distances between deformed shape S and target shape S, we define
loss functions between two point clouds. To obtain a shape that is similar to target, we use the Chamfer’s distance as our
loss function

Lehamer(S, $) =y _minges [p —qli5 + Y _min_ s Ip —qll5. (12)
peg qes

In order to generate point clouds with smooth surface, we use the density loss defined in Yin et al. (2018a)

k
Laensity (5. $) = % 2.2 [d(p. Nils. pD) = d(p. Nil$. pD) (13)

peS i=1
where N;[S, p] is the nearest neighbors in point cloud S of point p, and k is the number of neighbors. In traditional
deformation methods, preservation of local topology is often added as a constraint to the optimal target equations. We add
it as a transformation loss which measures the change of the distance between every point and their neighbors before and
after the transformation. This constraint guides the point to a more correct position during the transformation instead of

simply putting it to the nearest position in the target, and therefore reduces outliers. The transformation is defined as

Loars(S. D= Y |d(p, RiI3. pD) — d(p', RL p'D) (14)
peS.p’el
where p’ is the point that is transformed to p during the deformation, R;[I, p'] is the neighbors on input shape I whose
distance to point p’ is smaller than a searching radius r, which is usually set as 0.02, and R.[S, p] is the corresponding
points transformed from R;[I, p’] in shape S. The entire loss function is as follows

Lloss(é, S)= Lchamfer(g, S)+ 8Ldensity(§v S)+ nLtrans(é, D, (15)

where § and n are hyper-parameters defined for training, which are usually set as 1.0 and 2.0 respectively. Theoretically,
since the deformation process is trained on every two point clouds, we can use any shape in dataset as a template model
to provide details. A KNN algorithm can also be performed according to the common sense that deformations between
similar shapes are likely to obtain better results. Since the dataset is small, the searching process won'’t be a waste of time.
Considerable results are shown in Section 5.

5. Experimental results
5.1. Data and parameters

We demonstrate our experimental results with three categories point clouds. For each category, we collect 3D shapes
from various websites, and transform them into point clouds by uniformly sampling on their surface using poisson disk
sampling method. We have 47 horse models, 84 octopus models and 50 human models with 2048 points in each model.
Shapes are normalized and moved to coordinate center. Each of the models is zoomed and rotated to make them oriented
in same direction. During navigation, we take new points’ nearest neighbor as input point cloud.
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Lower variance

Fig. 5. 2D manifold of skeletons learned for exploration and generation. The navigation path is shown in red while the local coordinate of each point
is shown in black lines. The yellow line is the direction recommended to go. The location of the original training skeletons are shown in gray, and the
color map from blue to red indicate the variance to be a reasonable 3D shape, where blue means high variance and red means low one. Skeletons and
corresponding shapes generated from paths are shown on the side.

5.2. Shape embedding and shape navigation

Fig. 5 shows an example of the manifold learnt with horse skeletons. The position of original postures in our embedding
space are shown as gray dots. We use blue and red color to indicate the value of the variance, blue means a lower variance
and a reasonable result. Variance around the original postures are lower, which is consistent with the perception that a
model is more reasonable if looks similar to the existing model.

We show the generation ability with our navigation methods. Navigation process can start from everywhere, user may
either choose a particular direction or navigate in default mode. In user-guided mode, user can choose an angle to define the
degree of deviation from the main direction. In auto mode, system will automatically choose the direction that can explore
interesting things. We show our user defined navigation method in Fig. 5 with horse dataset. We draw two navigation paths,
in the left path, we use the direction of the angle of 30 degrees from the main direction, in the right path, we use direction
recommended automatically by algorithms mentioned in Section 3. The navigation path is drawn in red. For each point,
we draw local coordinate in black lines and the recommended in yellow. In default mode, a point will always explore new
shapes around origin points. For a more intuitive representation of the results, we put the new skeletons into generation
network for final point clouds. New skeletons and generated horses are shown around the embedding space.

We show our principle curves in Fig. 6 with 3 datasets. We sample 8 points in each embedding space and display the
skeletons on the right side. Skeletons generated from points sampled along the curve results in representative results, which
means the curve is the manifold we are looking for. Sampling around the principle curve can automatically augment the
dataset and generate shapes similar to what we are looking for.

5.3. Shape generation

In this subsection, we demonstrate our generated results with some quantitative indicators. Fig. 7 shows some results
created by our network. For each skeleton, we show results of different input shapes as guidance and get similar outputs
even when the input shapes are quite different from each other, which means the network not only transform the shape in
a simple way, but learned the semantic meaning for each point instead. Note that the generated shapes maintained detail
information as the input gives, which will be extremely hard for those methods who generate details using skeletons only.

We also compare our methods with P2P-Net Yin et al. (2018a). We sample 2048 points for each skeleton, and feed the
skeletons and their corresponding point clouds to the P2P-NET network which works by learning the displacement between
skeletons and point clouds. As demonstrated in Fig. 8, although P2P-NET is capable of generating coarse shapes, the points
on the surface are a bit messy, while our method gives good results with fine details and smooth surface in the same
situation. We believe the undesired artifacts of P2P-NET are caused by the limitation of small datasets with which it can
hardly learn the generation process, while our generation method learns the displacement between each two shapes with a
skeleton as guidance where the generated new shapes naturally carry details of input shapes.

We evaluate the quantitative generation performance of our method and P2P-NET on the three datasets used above. We
remind that all the training and test point clouds are normalized such that the diagonal lengths of their bounding boxes are
equal to 1. We list several metrics as below and demonstrate our results measured with them in Table 1.
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Fig. 6. Principle curves (red) in 2D manifold. We show sample points on curve as white dots and list the skeletons in the order they appear from the left
end of the curve to the right end.

Table 1
Quantitative evaluation of our network with different metrics comparing to P2P-NET Yin et al. (2018a). Values
in bold indicate better results.

Dataset Separate rate Coverage Earth Mover’s distance
P2P-NET Ours P2P-NET Ours P2P-NET Ours
Horse 0.19% 0.07% 45.38% 69.01% 0.0573 0.0201
Octopus 0.95% 0.13% 26.60% 59.17% 0.0961 0.0231
Human 1.79% 0.11% 36.75% 66.99% 0.0870 0.0230

Point separation rate. For each point in a predicted point cloud, we search its closest point in its neighbors and regard
the distance from the nearest point as its distance to the surface of the point cloud. If the distance between point p and its
closest point is larger than 0.02, we consider p as a separated point. We define the separation rate of predicted points as
the percentage of separated points among all points in predicted point cloud. We report the mean separation rate of all test
examples in Table 1. Our lower separation rate indicates that our method generates a smoother surface.

Coverage. Defining matched point as the closest neighbor in target point clouds, we estimate the coverage indicator
for each point p as the fraction of the points in target point cloud that is matched to points in predicted point cloud.
Higher coverage score means the predicted point cloud can be represented by target point cloud in a better way. Table 1
demonstrates that compared to P2P-NET, the information contained in target shapes is better represented by our method.

Earth mover’s distance. The Earth Mover’s distance (EMD) Rubner et al. (2000) is a widely used solution of a transporta-
tion problem which attempts to transform one set to the other. The EMD between two point clouds S; € R3 and S, € R3
is defined as

demp(S1, S2) =Mmine:s, »s, Y (Ip — D(p)ll2), (16)
peS1

where @ is a bijection map between points in two point clouds. The EMD indicates the fidelity of our predicted model, we
demonstrate that compared to P2P-NET, our method generates shapes with stable and better fidelity.

5.4. Data augmentation for specific tasks

In this section, we show how our method can be used to improve specific training tasks under the framework we intro-
duced above and demonstrate our augmentation improvement with quantitative indicators. By design, our method augments
a small point cloud dataset without requesting any correspondence information, which is convenient and sufficient for tasks
such as shape classification, wherein the label of one shape is not related to the order of shape points. Thus, to augment
dataset for classification tasks, user can simply follow the method described above to generate new shapes of the same cat-
egory. Note that generated shapes are not strictly aligned with input shapes. For example, a point on the mouth of a human
shape may not be transformed to the mouth of the target shape. This inconsistency of points between existing and gener-
ated shapes is harmful for tasks such as shape segmentation and point-to-point correspondence, wherein data augmentation
is required to maintain contextual information of the dataset (for example, augmenting datasets with segmentation labels
should generate new shapes with consistent segmentation labels). However, the tags provided in the training dataset for
segmentation or correspondence can be used to improve our augmentation method simply by defining new constraints or
losses.
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Fig. 7. Horse, octopus and human models generated from our network. Shapes in column 3-6 are results with inputs referenced in subscript below and
skeletons in column 1.
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Skeletons Ground truth Results of our method Results of P2PNET

Fig. 8. Different models generated using our method and P2P-NET method. Since different input shapes have little effect on the results of our method, we
randomly choose one as input from dataset for each category.
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Fig. 9. Segmentation results before and after augmentation.

For example, to augment datasets tagged with segmentation labels, we can preserve the segmentation label by con-
straining the deformation process within points of same labels. To this end, we define the shape loss for tag-preserving
augmentation as

/chamfer(g’ S)= ZmianTp(S) Ip— qII% + Zmi”perq@) lp— ¢1||§ ) (17)
pe§ qes

where Tp(S) is the points on the shape S that have same tags with point p. To augment datasets with point-to-point
correspondences, we can simply change T,(S) to the corresponding points. Here we show our augmentation results for
segmentation task as an example. We apply PointNet++ Qi et al. (2017) part segmentation network to implement the
shape segmentation task. Note that PointNet++ is designed to be invariant to rigid transformation, thus our method is quite
suitable in this case. We evaluate the segmentation result with mloU, aka average IoUs, for all part types in each category,
as is used in Qi et al. (2017). We put horse, octopus and human datasets together to train the segmentation network. For
octopus category, we choose 36 shapes from the original dataset and use 30 of them as training data. For human and horse
datasets, we choose 40 of them as training data as before. We augment each training dataset to 100 shapes. Then we train
the network using datasets with and without augmentation and evaluate the performance using the same testing set. Fig. 9
shows the improvements of segmentation performance using augmented dataset compared to original training data, our
augmentation method improves the performance even when the data is nearly saturation.
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6. Discussion and conclusion

We propose a quantitative and flexible 3D shape dataset augmentation framework, which contains a point cloud embed-
ding method, a flexible navigation method as well as a generative network who learns deformation process in embedding
space. Our novel idea is to contract skeletons for point clouds and project them onto a shared embedding space and learn
the deformation process in an embedding space. Different kinds of navigation methods are provided for flexible control.
This method requires no point-to-point correspondence and yet is capable of generating new, high quality shapes from a
small dataset. The results presented in the previous section demonstrate the efficacy of our framework.

Despite the attractive properties of this methodology detailed in our system framework, our approach still has some
limitations that should be overcome in our future work. For the purpose of controlling the generation process in a quantita-
tive and flexible way, we use the skeleton-based representation and align the parts into a same-length vector. However, the
alignment method can not explore the topological variations in a better sense, thus the method is not suitable for dataset
with shapes of quite different topology, such as tables, desks and chairs. Furthermore, the skeleton extraction step may filter
out the information of details, which is predicted automatically by our network and thus not controllable by user. In the
future, we may try to change our way of presentation to encode more structure information. Currently, our point cloud is
represented by 2048 points, which is barely sufficient for models with huge details. To generate shapes with more details is
also an issue of interest to us.
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