
 

1 

Chunks are not “Content-Free”: Hierarchical Representations Preserve Perceptual 
Detail within Chunks 

 Michael G. Allen (miallen@ucsd.edu) 
 University of California San Diego, Department of Cognitive Science 

9500 Gilman Dr., La Jolla, CA 92093 USA 

Isabella C. DeStefano (idestefa@ucsd.edu) 
 University of California San Diego, Department of Psychology 

9500 Gilman Dr., La Jolla, CA 92093 USA 

Timothy F. Brady (timbrady@ucsd.edu) 
 University of California San Diego, Department of Psychology, 

9500 Gilman Dr., La Jolla, CA 92093 USA 
 

Abstract 
Chunks allow us to use long-term knowledge to efficiently 
represent the world in working memory. Most views of 
chunking assume that when we use chunks, this results in the 
loss of specific perceptual details, since it is presumed the 
contents of chunks are decoded from long-term memory rather 
than reflecting the exact details of the item that was presented. 
However, in two experiments, we find that in situations where 
participants make use of chunks to improve visual working 
memory, access to instance-specific perceptual detail (that 
cannot be retrieved from long-term memory) increased, rather 
than decreased. This supports an alternative view: that chunks 
facilitate the encoding and retention into memory of perceptual 
details as part of structured, hierarchical memories, rather than 
serving as mere “content-free” pointers. It also provides a 
strong contrast to accounts in which working memory capacity 
is assumed to be exhaustively described by the number of 
chunks remembered.  
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Introduction 
A core principle of learning and memory is that we compress 
frequently encountered information into “chunks”, and these 
chunks allow us to efficiently represent the world (e.g., 
Feigenbaum & Simon, 1984). Chunking has long been 
known to enhance our otherwise extremely limited working 
memory capacity by allowing us to use learned knowledge to 
structure working memory (Miller, 1956; Cowan, 2005). For 
example, if remembering the set of letters “C”, “G”, “Q”, 
there exists no long-term associations that will help facilitate 
performance; whereas when remembering the letters “F”, 
“B”, “I”, existing associations will help connect these items 
together and thus they can be remembered as a single 
“chunk”, improving working memory performance.  

Despite a long history of work on chunking, key questions 
about the very nature of chunk storage and representation in      
working memory remain unaddressed. One particularly 
critical question is whether access to perceptual details of the 
particular instantiation is lost when you use a learned chunk 
to remember something in working memory. Consider the 
yellow circle inside of a white circle in Figure 1. If these were 

two arbitrary colors, you would need to store them as two 
separate representations to remember the inner and outer 
color (Wheeler & Treisman, 2002). However, in trying to 
remember this particular set of two colors, you might notice 
that this color pair corresponds to an existing chunk in your 
mind – “egg” – and use this to efficiently represent the colors. 
When you do this, does your working memory representation 
consist solely of this abstraction (“egg”), with all item-
specific information accessed only by decoding the chunk 
using long-term memories (Fig. 1, left)? If so, this would 
suggest specific ways the perceptual instantiation of this 
chunk in this situation would be largely lost (e.g., you would 
know it was white and yellow, but not which exact white and 
yellow) – a ‘content-free’ view of what is stored in working 
memory. Alternatively, it could be that the ‘egg’ chunk 
benefits memory by serving as an additional retrieval cue to 
structure memory – a distributed model of memory where 
you use the chunk pointer, like “egg”, to help you encode and 
maintain the specific colors present in this instance, rather 
than store it solely as an abstraction (Fig. 1, right). Such a 
view sees memory as distributed and hierarchical, with 
chunks and perceptual details maintained in parallel in 
working memory. 

The extent to which chunks serve as content-free labels vs 
serve as retrieval cues to distributed memory representations 
is a critical question. The most common view within the study 
of working memory, is to see chunks in working memory as 
‘content-free’ – single-level representations which rely on 
decoding from long-term memory to access their content. 
This is sometimes explicitly claimed (e.g., Huang & Awh, 
2018), or sometimes implicit in the manner that chunks are 
understood. For example, chunks are often used to measure 
working memory capacity, and this is only a useful measure 
of capacity if the chunk “pointers” (Ngiam et al, 2019) alone 
make up the “capacity” of the system (e.g., Cowan, 2001).  

Although less commonly considered, the distributed and 
hierarchical view of chunks is also plausible and broadly 
consistent with literature from visual working memory, 
where, for example, visual objects seem to serve as ‘chunks’ 
(Cowan, 2001) but do not result in all-or-none abstractions  
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Figure 1. The nature of chunking. When remembering a 
familiar chunk, do people remember solely the chunk ‘label’ 

or do they use this label to access the perceptual details? 
 

 (e.g., Brady et al. 2011). In fact, visual features ‘within’ an 
object tend to be loosely structured, and forgotten 
independently (Fougnie & Alvarez, 2011), more consistent 
with a distributed, hierarchical account of how objects 
structure memory. Chunks could function in a similar 
manner, providing structure but not serving as solely 
pointers. This view is aligned with “template theory” from 
studies of chess expertise. In this theory, templates are seen 
as structures that develop via chunk learning. Their “core” 
information consists of details that are regular across 
exposures and that are crucial for recognition and activation 
of the template. However, rather than being “content-free”, 
they also contain “slots” which, in the case of chess, are 
positions that may be filled in variable, instance-specific 
ways. Crucially, experts using such a template have a greater 
memory for the instance-specific pieces, as well as the 
regular, core properties of the learned template (Gobet & 
Simon, 1996).  

With few exceptions (e.g., Brady et al., 2009, Huang & 
Awh, 2018), the existence of templates or chunks that can 
facilitate the encoding and retrieval of instance-specific, 
perceptual details has almost never been directly tested 
within the study of working memory, however. In part this is 
because chunking has traditionally been studied with discrete 
stimuli (e.g., Gobet & Charness, 2018;  Cowan, Chen & 
Rouder, 2004). Where chess positions allow for some 
variability between pre-learned positions and current 
instantiations, verbal stimuli generally do not raise the issue 
of whether perceptual details remain accessible within 
chunks, because the chunk ‘pointer’ alone is sufficient to 
capture all of the verbal information (De Groot, Gobet and 
Jongman, 1996): if you chunk F, B and I into FBI, there are 
no remaining details not captured by the chunk. Simply 
knowing ‘FBI’ was the relevant chunk allows you to 
“decode” all the verbal information that was present.  

The study of visual working memory necessitates a 
revision of theories of chunking to allow for continuous 
stimuli typical in real-life vision. Without understanding 
what chunks in visual working memory consist of, we cannot 
interpret studies in which chunking improves apparent 
working memory capacity. For example, Brady et al. (2009) 
showed subjects 8 colors in a memory display arranged into 
4 concentric colored pairs (as in the ‘egg’ in Figure 1). In a 
‘patterned’ condition, the same color pairings were highly 
likely to recur throughout the experiments, whereas in a 

matched ‘uniform condition’, the configurations of colors 
were random on each trial. After learning occurred in the 
patterned condition, participants were able to remember 
twice as many colors as those in the uniform condition. The 
impact of this kind of result on fixed-capacity accounts of 
working memory rests on whether the chunks used to 
remember more colors retained instance-specific perceptual 
information of each display, or were abstractions which 
required decoding from long-term memory in order to 
respond at test. If chunking arises from pointers to long-term 
memory, this data is consistent with a single fixed capacity in 
terms of chunks (Cowan, 2001). However, if chunks are 
richer and more distributed, such learning reflects a clear 
increase in capacity, as participants would be holding more 
perceptual information in the chunked case.  

Huang and Awh (2018) provided the most relevant test of 
this issue. Following up on Brady et al. (2009), they argued 
that chunk learning in this paradigm was in fact content-free; 
and thus suggested that fixed capacity models of working 
memory were accurate. They presented two experiments, one 
involving color-pairs as in Brady et al. (2009), and one with 
letter pairs, either forming well-known words or not. They 
found that reaction times for choosing targets at test were 
consistently longer for chunked displays as compared with 
displays with no opportunities for chunking, an effect which 
increased as learning increased in the color-pairs study. They 
suggested that this provided evidence for a content-free 
account, based on the indirect inference that ‘decoding’ from 
long-term memory might be slower than accessing items 
actively stored in working memory. However, this approach 
is quite indirect and does not address the core issue of what 
is stored (e.g., Figure 1). In order to pull apart the content-
free position and the distributed, hierarchical view, it is 
necessary to test chunks in which long-term representations 
diverge somewhat from the particular instantiations on a 
given trial. While this is difficult for verbal stimuli, in the 
visual domain stimuli often vary continuously. In a case 
where you have formed a chunk of the concept “egg”, these 
views can be teased apart by asking whether you still know 
the exact yellow/orange of the yolk on a particular trial. If 
chunks are indeed content-free, then such instance-specific 
information should be lost when performance reflects the use 
of learned-chunks – i.e., there should be a trade-off between 
memory for information that is captured by regularities and 
memory for information that varies from trial to trial. If, 
however, chunks act as hooks onto instance information, with 
both activated as a hierarchical memory representation, then 
the varying instance information should still be available at 
test. In fact, if chunks actually facilitate the encoding and 
retrieval of the lower-level information, there would be no 
trade-off between instance specific information and chunk 
learning, and memory should actually improve for low-level 
details as chunks are formed. 

In the current work, we provide the first direct test of this 
critical question about chunking. Experiment 1 tests memory 
for colored objects, and Experiment 2 tests memory for letters 
arranged in pairs. We manipulate chunking by introducing 
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regularities in the displays in Experiment 1 (objects 
frequently appear in the same color) and by using pre-learned 
chunks in Experiment 2 (letter pairs that form words). In 
order to tease apart content-free vs. distributed accounts, both 
experiments include instance-specific information that varies 
from trial to trial: In Experiment 1, the luminance of the color 
varies, and in Experiment 2, letters appear in different fonts 
unrelated to the long-term chunks. Thus, memory 
performance on instance-specific information will uniquely 
tell apart content-free accounts and the distributed accounts 
of chunking.  

Experiment 1: Learning chunks 
Participants had to remember 3 colored objects on each trial. 
Items varied in color, and their hues were predictable but not 
deterministic across trials (e.g., the backpack was red 80% of 
the time), allowing participants to learn chunks (e.g., ‘red 
backpack’). Items also varied in luminance in an 
unpredictable way across trials. Most trials probed for what 
object and hue was in a given location (“regular tests”). 
However, on a subset of trials we probed this luminance value 
rather than the color hue of the object (“detailed tests”), 
allowing us to examine how detailed trial-specific 
information is affected by chunking.  

Methods 
Participants. Our sample consisted of 75 US-based Prolific 
users between the ages of 18-45 who reported normal or 
corrected-to-normal vision. 15 additional participants were 
excluded based on a priori exclusion criteria. In particular, we 
excluded individual trials with RTs less than 200ms or greater 
than 5000ms, and excluded participants if they had more than 
10% of trials excluded. We also excluded participants with 
poor accuracy. Since the test trials that focus on trial-specific 
information (luminance; “detailed tests”) would be expected 
to result in poor performance according to the content-free 
theory, we excluded participants based on accuracy only in 
the regular, hue tests, not detailed tests (<60%, chosen based 
on pilot data). 
 
Stimuli and Procedure. We had 6 real-world objects, picked 
such that they had no single representative color (backpack; 
stapler; pot; dresser; garbage can; chair). They could each 
appear in 6 possible colors, spaced equally along a color 
wheel in CIELAB color space, and corresponding to roughly 
red; yellow; green; teal; blue; purple. For each participant, 
each of the objects was assigned a ‘high probability color’ 
which it appeared in 80% of the time. The other 20% of the 
time the object would appear in a different, randomly chosen 
color (see Fig. 2). To allow probing of trial-specific 
information, our main question of interest, the items varied in 
luminance as well as color: thus, even if the backpack was 
generally red and was red on the current trial, it could range 
from dark red to light red. Luminance values were sampled 
from a normal distribution in L of LAB space with a standard 
deviation of 10 units, with the exception of the fact that on  

 
 

Figure 2. Participants had to remember the color and 
object at each of 3 locations. Colors and objects were paired 
reliably (80%) but not deterministically for each participant.  

 
detailed probe trials, L was always set to exactly -10 or +10 
from the mean, so that the shown luminance and foil 
luminance were always 20 units apart (2 stan. dev.)  in L. 

On each trial, participants saw 3 colored objects appear in 
separate spatial locations for 1500ms and then after a 700ms 
delay were probed on one of the items via a 4-alternative 
forced-choice (4-AFC). Most (75%) 4-AFC trials consisted 
of a 2x2 with the target object and another object that had not 
been present on the display, both presented in the color the 
target object had been vs. another unique color. However, 
25% of trials instead consisted of a detailed color test: rather 
than a unique color, the alternative color was a different 
luminance of the same color (e.g., a dark vs. light yellow; see 
Figure 3). Participants did 5 blocks of 60 trials each, and we 
analyzed data separately by block to understand how learning 
over the course of the experiment affected memory for the 
objects and their colors, in both regular and detailed tests. 

Results and Discussion 
We found the expected performance improvement with block 
in the regular tests (F(4,296)=7.81, p< 0.0001; Fig. 3). This 
is consistent with participants forming and using chunks.  

Note that in theory this increase could also arise due to a 
reliance solely on ‘guessing’, rather than either content-free 
or distributed chunking, to respond about the color: 
participants could simply remember which object was in each 
location while ignoring color, and then guess the probed 
objects’ color based solely on long-term memory (what 
Brady et al. 2009 called ‘post-perceptual inference’ in a 
similar paradigm). To examine this, we looked at the trials 
where items appeared in low probability colors. A solely 
guessing-based account predicts that performance should 
drop reliably on such trials as participants learn the chunks, 
even to below chance levels, as they treat all trials like high-
probability pair trials. Because there were relatively few such 
trials, we compared the first and second half of the 
experiment. We found performance on low probability trials 
was similar in the halves (72.1% vs. 73.3%; t(74)=0.54, 
p=0.590, dz=0.06), inconsistent with this guessing strategy. 
This suggests participants are generally aware of not only 
which object was in each location but also whether or not it 



 

4 

 
 

Figure 3. Participants improved at both regular and 
detailed memory as they learned the chunks. 

 
is in its usual color, consistent with both chunking-based 
accounts.  

Our major question was whether the improvement with 
learning — as people learn to encode the objects as ‘chunks’, 
like ‘red backpack’ or ‘yellow stapler’ — resulted in a cost to 
their detailed memory (for what yellow was present), as 
predicted by the content-free pointer account (e.g., Huang & 
Awh, 2018); or whether performance stayed stable or even 
increased in the detailed tests, as predicted by a distributed 
memory account. We found evidence favoring the distributed 
account. Performance in the detailed tests significantly 
increased over block, (F(4,296)=4.78, p=0.0009). 
Furthermore, detailed performance on only trials where 
chunking was most likely to have taken place, those (1) from 
the second half of the experiment, (2) where the item had 
appeared in its most frequent color, and (2) where the correct 
object was chosen (regardless of the color chosen), we found 
that selection of the correct luminance was far above chance 
(72.3% vs. 50% chance; t(74)=15.56, p<0.001, dz=1.80). 
Within individual subjects, a strong correlation was also 
found between performance on the regular tests and 
performance on the detailed tests, across all blocks 
(r(74)=0.68, p<.001), further demonstrating that chunks 
benefit performance on both types of tests, rather than 
inducing a trade-off.   

Considering only the regular tests, we also found, in 
contrast to Huang and Awh (2018), no difference in RT 
between tests in which the target was a high-probability 
pairing and tests in which the target was a novel pairing of 
object and color, even in the second half of the study 
(t(74)=0.02, p=0.98, dz=0.00).  

Experiment 2: Pre-learned chunks 
Although learning was present in Experiment 1, performance 
did not increase dramatically from block 1 to block 5. It is 
therefore possible that the presence of instance-specific 
information in Experiment 1 was a result of the chunks of 

object-color pairings not being fully learned. To test this idea, 
Experiment 2 relied on well-known words as chunks, probing 
memory for letters as well as the fonts the letters appeared in 
and manipulating whether words could be used as chunks to 
store the letters. The structure of the experiment was similar 
to Experiment 1, examining whether trial-specific 
information is lost when chunking via a 4-AFC task that 
combines trial-specific information with chunkable 
information. The prediction of the content-free account is that 
when participants use words to bolster memory performance 
(e.g., “TO”, “WE”), they store them simply as pointers to a 
long-term memory, losing instance-specific information (font 
type, which varies across trials). By contrast, the distributed 
memory account predicts that while chunking should 
improve memory for the object, it should come at no cost — 
and possibly a benefit — to memory for trial-specific details.  

Methods 
The participant number, exclusion rules and analyses were 
preregistered: https://aspredicted.org/blind.php?x=cp4k8d 
 
Participants. Consistent with our preregistration, our final 
sample consisted of N=75 participants. They were US-based 
Prolific users between the ages of 18-45 who reported normal 
or corrected-to-normal vision. Eleven additional participants 
were excluded according to the preregistered criteria, which 
were similar to Experiment 1 (performance below chance 
overall; or more than 10% of trials with an RT>5s or 
<200ms).  
 
Stimuli and Procedure. Participants performed 160 trials of 
a working memory experiment. On each trial, participants 
saw an encoding display for 2000ms, with 4 spatially-
separated sets of 2 letters and each letter randomly assigned 
one of two fonts (bold or italic). This was followed by a 
700ms delay, and then they were probed on a single randomly 
chosen letter. The test was always a 4-AFC test where they 
had to indicate which letter and font was present by clicking 
the appropriate options (see Figure 4). The foil letter was 
always a letter not presented on the display at all, and both 
the target letter and foil letter were presented as options in 
both of the possible fonts. Participants clicked to choose what 
letter they had seen. The critical manipulation was that on 
50% of trials, the letters were arranged so that each pair made 

 
 

Figure 4. Participants were probed on the letters and their 
font in a 4-AFC task; the letters sometimes formed word 

chunks and sometimes were randomly paired. 

https://aspredicted.org/blind.php?x=cp4k8d
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up a two-letter word (WE; TO; AS; IF; UP; MY), allowing 
chunking to facilitate memory for letter identity. On the other 
trials, the 8 letters were chosen randomly from the same set 
of 12 letters.   

Results and Discussion 
When the items formed 2 letter words participants were more 
accurate at knowing which letter was in the cued location 
(regardless of font): t(74)=12.16, p<0.001, dz=1.40; see Fig. 
5. This suggests participants did indeed form higher-level 
‘chunks’ of the letters to facilitate memory. 

Our critical question was what happens to memory for the 
font when the items are chunked. The content-free account 
predicts that font memory is worse for chunked items; 
whereas the distributed memory account suggests memory is 
better. The data were consistent with the distributed memory 
account: considering font memory alone, independent of 
letter, participants were more, not less accurate in reporting 
the font of letters that were part of words (t(74)=5.21, 
p<0.001, dz=0.60) even though the word chunks provided no 
information about the font the letter had appeared in. This 
benefit for font memory was also true only on trials where the 
letter they choose was correct: when reporting the correct 
letter, participants were more likely to report the correct font 
on chunkable trials than randomly-paired letter trials 
(t(74)=4.28, p<0.001, dz=0.49).  

Finally, we asked about ‘boundness’ — how dependent 
knowing the style was on knowing the letter. The content-
free account predicts that chunking letter identity decouples 
letter identity from font, reducing boundness. Consistent with 
our preregistration, we operationalized boundedness as 
described by Brady et al. (2013). In short, the boundedness 
score captures how much more likely you are to know the 
font given you know the letter (vs. not), adjusting for overall 
percent correct at both tasks. This adjustment is critical 
because the difficulty of the two tasks is in many ways 
arbitrary: by making the letters or fonts more vs. less distinct, 
the forced-choice task could be made more or less difficult 
for either. Thus, to assess their dependence on each other, 
performance in both must be taken into account. 

We found that the boundedness scores for chunked vs. 
random displays were statistically indistinguishable (23.5% 
vs. 22.7%; t(74)=-0.20, p=0.840, dz=0.02), and both were 
greater than 0 (t74)=7.08, p<0.001, dz=0.82; t(74)=7.67, 
p<0.001, dz=0.89). Thus, participants were more likely to 
know the font of letters they knew than ones they didn’t 
know, and this did not decrease with chunking.  

Finally, contrary to the result found in a similar 
experiment in Huang and Awh (2018), we did not find a 
difference in reaction time between word and nonword 
displays (t(74)=0.74, p=0.462, dz=0.09).  

Overall, we find a benefit, rather than a cost, to trial-
specific font memory when participants could encode letters 
as part of chunks (but see Zimmer and Fischer, 2020), in 
which chunking displays did not result in better memory for 
character type). This was true even though there were four 

 
 

Figure 5. Chunking improves both letter knowledge and 
trial-specific font knowledge. 

 
 ‘chunks’ of letters on the display, leaving — under many 
models (Cowan, 2001) — no extra storage capacity for 
independently storing additional font information in separate 
chunks. This suggests that the use of chunks enhanced, rather 
than removed, access to perceptual details.  

General Discussion 
Across two experiments, we tested the nature of memory 
representations that are present when chunking is used to 
scaffold performance in a working memory task. In 
Experiment 1, performance improved with increasing 
exposure to the high-probability object-color pairings. In 
Experiment 2, when letters formed words (pre-existing 
chunks), more individual letters were remembered from the 
display. Our key question for these studies was whether 
chunking in these tasks reflects the use of “content-free” 
chunks with no retention of instance-specific details, or 
whether the use of chunking does not imply losing such 
instance-specific detail, as in the proposed distributed 
memory account. We find support for the distributed memory 
account. In Experiment 1, the luminance of the objects’ 
colors varied throughout the trials. On 25% of tests, the foil 
color at test was the same as the target color but with a 
different luminance. On such tests, decoding from long-term 
memory would not help decide between the foil and target, 
since items were consistent only in their hue, not their 
luminance. Thus, the content-free view would predict a trade-
off between regular and detailed tests as chunking increases. 
However, Experiment 1 showed the opposite result. Using 
chunks to scaffold performance on the regular tests actually 
improved performance on the detailed tests too, supporting 
the hypothesis that chunking facilitates the encoding and 
retrieval of instance-specific information, and rejecting the 
content-free view. The strong correlation between 
performance on regular and detailed tests within individual 
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participants also provided support against the trade-off 
predicted by the content-free view.  

It is possible that the presence of instance-specific 
information in Experiment 1 was as a result of the chunks of 
object-color pairings not being fully learned. To account for 
this possibility, Experiment 2 relied on words as pre-existing, 
well learned chunks. The letter font varied trial to trial, and 
in cases where subjects could use words as chunks to improve 
memory, the content-free view would predict that they would 
consequently lose the instance-specific information of font 
type, which could not be decoded from long-term memory. 
Again, the opposite result was observed: participants were 
more accurate in reporting fonts when the letters were 
chunked into words. An analysis of the extent to which font 
was ‘bound’ with letter identity revealed that storage of the 
font detail was integrated with letter identity. These results 
support a view of working memory representations in which 
information is distributed across hierarchical levels; with 
learned chunks at one level facilitating efficient encoding of 
the memory display whilst maintaining access to instance-
specific information at lower levels. 

Chunk decoding and reaction times 
Previous evidence for the content-free view came from 
differences in reaction times across two experiments of 
Huang and Awh (2018). They found that subjects took longer 
to respond on trials in which performance was boosted by 
chunking, inferring that this reflected the “extra step” of 
decoding the chunk from long-term memory. However, the 
experiments reported here failed to replicate this result. No 
reaction time difference was found in Experiment 2 between 
the words and non-words conditions. Similarly, no difference 
was found in Experiment 1 between high and low probability 
test targets. It is unclear what to make of these reaction time 
data. Reaction time results are likely influenced by multiple 
factors other than any potential ‘decoding’ time that may or 
may not be present. For example, both the strength of 
participants’ memory as well as the complexity of the 
memory probe that must be processed influence reaction time 
(e.g., Baddeley & Ecob, 1973), so Huang and Awh’s previous 
results may have simply reflected a confound of one of these 
factors. Generally speaking, as an indirect measure, reaction 
time does not provide strong evidence of chunks being 
content-free. By contrast, the data from Experiment 1 and 2 
test the nature of the chunked representations directly and 
find them to contain rich instance-specific content.  

Relation to other theories of chunking 
The view of chunks as operating within levels of a 
hierarchical, distributed memory representation proposed 
here is supported by the “template theory” of chunking within 
chess expertise (Gobet & Simon, 1996). A template’s “core” 
information consists of details necessary for activation of the 
template, i.e., details which are consistent across different 
instantiations and which discriminate the template from other 
templates. The template’s “slots”, on the other hand, are 
capable of incorporating new information by virtue of the 

variability in information that can occupy those aspects of the 
template’s structure across instantiations. These slots can 
thus accommodate, and improve memory for, instance-
specific information, while simultaneously using learned 
representations (templates and chunks) to efficiently 
compress perceptual input. The difference between these 
views is that in the distributed, hierarchical view, the core and 
variable information may occupy the same aspect of the 
overall structure. The static and variable aspects of a chess 
template are separate pieces which can be simultaneously 
incorporated into a template and both encoded into memory. 
In chunks within the context of visual working memory, the 
regular, “core” information of learned abstractions such as 
“egg” will likely consist of generic shades of colors that the 
chunk is normally associated with, perhaps representing an 
integration across instances of chunk activation in perceptual 
contexts. The variable, instance-specific information in this 
case will also be a color shade of the egg-yolk – the specific 
shade of the current instantiation. Thus, the visual working 
memory case uniquely requires a hierarchical approach, with 
the pre-learned generic information at one level of the 
hierarchy and the instance-specific color information at a 
lower-level. Understanding how single pieces of information 
such as ‘egg-yolk color’ can be represented differently at 
multiple levels of the memory representation, and relatedly 
how chunks can form over continuous information, represent 
novel and potentially important areas of future research.  

Working memory capacity 
The proposed distributed view extends the historical view of 
chunking (Miller, 1956; Cowan, 2001) in ways which allow 
for a better understanding of the role of chunks in working 
memory and suggest a major rethinking of the nature of 
working memory capacity. Standard views of chunking 
generally suggest that while the number of items that can be 
remembered is increased by chunking, there is no genuine 
increase in working memory ‘capacity’ per se when chunks 
are used. For example, Cowan, Chen and Rouder (2004) 
argued that although teaching word-pairs to participants 
improved their recall of lists that included such pairs, they 
none-the-less had ‘constant capacity’. This is because 
according to their model of working memory, the pairs were 
stored as content-free chunk pointers. Thus, both unpaired 
individual words and learned word pairs each took a single 
‘slot’ in memory, and the same number of slots were used in 
all conditions. 

By contrast, the data presented here suggest that when a 
chunk is employed in order to encode a portion of a memory 
display, this allows more of the lower-level information to be 
captured as well. The chunk, as an encoding “hook”, 
facilitates the encoding and retrieval of this lower-level 
information into working memory, giving rise to a 
hierarchical memory representation (e.g., Brady et al. 2011). 
In this way, a single chunk allows for the encoding of a 
conjunction of features within the display, and the working 
memory representation consists of both the higher-level 
chunked “hook” and the lower-level information it is 
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encoding. Thus, our work suggests that working memory 
capacity is not exhaustively described at the level of how 
many chunks are encoded. Rather, capacity should be 
considered in the context of the full hierarchy. Under such a 
view, Cowan, Chen and Rouder (2004) — as well as many 
others — critically understate the improvement brought about 
by chunks: even if participants store the same number of 
‘pointers’ in both learned and unlearned conditions, 
participants do not, in fact, store the same amount of 
information actively in working memory in both conditions, 
as chunks function to facilitate perceptual encoding as well 
as being stored as pointers themselves. 

The question of whether chunks within visual working 
memory will always encode current-instance perceptual 
details is not answerable with the data presented here. It is 
possible that such details are available only because they are 
tested in the task and so known to be relevant. The ratio of 
regular to detailed tests in Experiment 1 (3:1) was designed 
to prioritize attention to and thus learning of the generic 
color-object pairings, but of course having so many detailed 
tests will quickly orient subjects to luminance information as 
well. Thus, the current work shows only that it is not a 
requirement for chunks to be content-free: in at least some 
cases, chunking can result in an increase in access to instance-
specific information. Investigating when this does or does not 
occur will be a question for future research. 

Conclusion 
We showed that chunks allow for a more efficient 
representation of perceptual details in working memory. 
Access to perceptual details is not lost when items are 
chunked, as is commonly assumed, but is improved by 
chunking. This is consistent with an account of chunks as 
distributed and hierarchical representations, with perceptual 
information at a lower level of the hierarchy accessed via the 
chunks; and inconsistent with views that see working 
memory capacity as described largely by how many chunks 
can be encoded (Cowan, 2001).  
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