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ABSTRACT

Modern healthcare systems knitted by a web of entities (e.g., hos-
pitals, clinics, pharmacy companies) are collecting a huge volume
of healthcare data from a large number of individuals with vari-
ous medical procedures, medications, diagnosis, and lab tests. To
extract meaningful medical concepts (i.e., phenotypes) from such
higher-arity relational healthcare data, tensor factorization has
been proven to be an effective approach and received increasing
research attention, due to their intrinsic capability to represent the
high-dimensional data. Recently, federated learning offers a privacy-
preserving paradigm for collaborative learning among different enti-
ties, which seemingly provides an ideal potential to further enhance
the tensor factorization-based collaborative phenotyping to handle
sensitive personal health data. However, existing attempts to feder-
ated tensor factorization come with various limitations, including
restrictions to the classic tensor factorization, high communication
cost and reduced accuracy. We propose a communication efficient
federated generalized tensor factorization, which is flexible enough
to choose from a variate of losses to best suit different types of data
in practice. We design a three-level communication reduction strat-
egy tailored to the generalized tensor factorization, which is able
to reduce the uplink communication cost up to 99.90%. In addition,
we theoretically prove that our algorithm does not compromise
convergence speed despite the aggressive communication compres-
sion. Extensive experiments on two real-world electronics health
record datasets demonstrate the efficiency improvements in terms
of computation and communication cost.
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1 INTRODUCTION

Recent years have witnessed an unprecedented growth of health
data (e.g., in the form of EHR, electronic health records) being col-
lected from a variety of institutions, including hospitals, clinics,
pharmaceutical companies, and health insurance providers. Com-
putational phenotyping, the process of extracting meaningful and
concise medical concepts (i.e., phenotypes) from the health data, is
an indispensable stepping stone towards in-depth medical decision-
making, including precision medicine, influenza surveillance, drug
discovery, to name a few. Computational phenotyping is known to
be challenging, given the fact that health data are collected from a
large number of individuals with each one’s medical record consist-
ing of various of medical procedures, medications, diagnosis and lab
tests. That is, the health data is massive and multidimensional. In
addition, in order to collaboratively learn phenotypes from the data
belonging to different institutes (known as collaborative phenotyp-
ing), the sensitive nature of the health data serves as an additional
restriction.

To learn phenotypes from the multidimensional EHR data, tensor
factorization has received increasing interest [12-14, 20, 27, 28, 36].
Tensor has the intrinsic capability to succinctly represent the mul-
tidimensional data [21] and has applications beyond health data
analytics, e.g., recommender systems [18], spatio-temporal data
analysis [26], computer vision [35], and signal processing [32]. The
CANDECOMP/PARAFAC or canonical polyadic (CP) tensor factor-
ization (TF) [7, 11] and its generalization GTF [15] are fundamental
tools for analyzing the tensors. Despite their effectiveness and wide
applications, the scalability is often a major issue preventing it from
being applied to larger scale health datasets, which are commonly
encountered nowadays. To improve the scalability of TF, distributed
tensor factorization (DTF) methods [6, 9, 12, 20, 27, 31, 41] are ca-
pable of processing large tensors that cannot be dealt by a single
machine. It also complies with the practical scenario for the health
data which is collected and held across multiple physically dis-
tributed medical institutions.

Most recently, federated tensor factorization (FTF) methods [20,
27] are proposed as a better DTF paradigm for decentralized data
in terms of privacy protection, while maintaining similar computa-
tional and storage scalability. It avoids communicating both the raw
tensor and individual mode related variables to the server, which
shares the same spirit of the more general federated learning [17],
i.e., to learn a joint model across all the clients without communicat-
ing individual-level data. By avoiding sharing the raw tensor and
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the patient mode related variables (e.g., patient factor and partial
gradient along the patient mode), FTF offers better patient privacy
protection.

Besides computational complexity and alleviating storage usage
which are the focus of most existing DTF methods, the communica-
tion overhead can be a third important bottleneck, especially for the
federated setting, where the participating institutions do not have
a dedicated communication network for communication purposes,
e.g., hospitals, clinics. Considering the asymmetric bandwidths, the
uplink communication (i.e. the communication from the client to
the server) can quickly become the bottleneck preventing these
clients from participating in the FTF. In federated computational
phenotyping, due to the great variety of the attributes (e.g., types
of medication can be thousands), the high dimensional tensor in-
curs high communications cost to communicate the intermediate
variables during each communication cycle.

1.1 Contributions

In this paper, we investigate how to reduce the uplink communica-
tion cost of the federated tensor factorization-based collaborative
phenotyping with guaranteed convergence and quality preserva-
tion. It is a challenging task, especially considering the communi-
cation efficiency issue is under studied in the broader distributed
tensor factorization literature. To be more flexible and suitable for a
variety of applications, we consider the federated generalized tensor
factorization (FGTF), which greatly extends the existing federated
classic TF [20, 27].

First, we aim to reduce the uplink communication cost in each
communication round. We design a two-level per-round commu-
nication reduction strategy: block-level and element-level, which
reduce (1 — %) and over 96.8% of the uplink communication, corre-
spondingly, where D is the number of blocks. For the block-level,
we exploit the multi-factor structure of TF/GTF by utilizing the
randomized block update. It enables each client to send only the
partial gradient of the sampled block, rather than the full gradient
of all blocks. For the element-level, we introduce gradient com-
pression techniques, which have found success in deep learning
training [2, 4, 19, 37, 42], to compress each element of the commu-
nicated partial gradient from the floating point representation to
low-precision representation. Since there exists error between the
true partial gradient and the compressed one, the convergence can
be slower and the output quality can be lower. We further introduce
the error-feedback mechanism [19] which records such error and
feeds it back to restore the shift.

With both levels of per-round communication reduction, we pro-
pose the federated GTF with communication compression and error-
feedback (FedGTF-EF). We analyze the convergence of FedGTF-
EF and obtain the O(%) rate after T iterations (Thm.4.1) under

common and mild assumptions (Assumptions 4.1-4.5). The conver-
gence is equivalent to the distributed stochastic gradient descent
(SGD) with full precision gradient communication and distributed
SGD with gradient compression and error-feedback [42]. In addi-
tion, since constraints and nonsmooth regularizations are common
in GTF, we further extend the convergence result to the proximal
setting (4.2) where the additional “simple regularizer” in Assump-
tion 4.6 is satisfied. Compared to the existing analysis with gradient
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Table 1: Symbols and notations used in this paper

Symbol Definition
x, X, X Vector, Matrix, Tensor
Xg> Mode-d matricization of X
-l £1-norm
|- llF Frobenius norm
® Hadamard (element-wise) multiplication
) Khatri Rao product
o Outer product
[ Inner product

compression and error-feedback, our convergence analysis accounts
for both the block randomized update strategy and the proximal
operation.

Second, we reduce the number of communication rounds to
further reduce the uplink communication. To do so, we introduce
periodic communication [4, 23, 33] into FedGTF-EF and denote
this algorithm as FedGTF-EF-PC, in which the clients send the
update to the server after 7 > 1 local iterations instead of com-
municating after every iteration. A key question is whether the
periodic communication will slow down the convergence. If so,
the number of iterations will increase and the overall number of
communications may not reduce. We analyze the convergence
of FedGTF-EF-PC in Thm. 4.3 and obtain the same convergence
O(\/LT) rate with FedGTF-EF under the same set of assumptions.

This indicates that FedGTF-EF-PC can indeed further reduce the
uplink communication cost by 1 — % As a result, our proposed
FedGTF-EF-PC can reduce up to 1 — ﬁ uplink communication
cost if the Sign compressor (Def.2.1) is used.

Third, we evaluate FedGTF-EF and FedGTF-EF-PC in the fed-
erated collaborative phenotyping task. We conduct experiments
on two real-world EHR datasets, which show that the proposed
method can effectively reduce uplink communication cost (99.90%
reduction), without compromising convergence and factorization
quality.

2 PRELIMINARIES AND BACKGROUND
2.1 Notation

The frequently used notation in this paper is summarized in Table
1. We denote an order D tensor by X € RE*---XID jts (iy, ...,ip)-th
element by MATLAB representation X(i1, ..., ip). Let 7 denote the
index set of all tensor entries, | 7| = Iif = Hfl):l I;. The mode-d un-
folding (also called matricization) is denoted by X 7 € RfaxIn Ma,
where (X 45 )(ig,j) and X(i1, ig, ..., ip) has the index mapping:
j=1+ Z% (g = D> Tk = Hlfl:ﬁ I4. Each column X 4 (:,j) is

=1,
q#d

k#d
called a mode-d fiber of X.

2.2 Generalized Tensor Factorization

Asillustrated in Fig.1, let us consider the EHR tensor X € RIX....XID
which consists of patient mode (I;), diagnosis mode (I2), medication
mode (I3), and so on. The regularized Generalized CANDECOMP-
PARAFAC (GTF) [15] extracts the phenotypes by decomposing the
EHR tensor into R phenotyps, where each consists of a patient fac-
tor, diagnosis factor, and a medication factor. GTF has the following
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Figure 1: Illustration of EHR tensor and phenotype extrac-
tion via tensor factorization [14].

objective function:

D
argminF(A,00) = " FAW. X + ) ralAc):
iel d=1

| m
st A= ZA(U(:, i)o..o A(D)(:, i),

i=1
which breaks down into three parts:

(1) Factorization constraint: The constraint of A = Zle A
,i) o ... 0 A(p)(:, i) approximates the low-rank CP tensor A €
RI%-»XID a5 the sum of R rank-one tensors, where Ay €
RIa*R js the d-th factor matrix and A(q)(:, i) is its i-th column.

For phenotyping, A1), A(z), A(3) correspond to the patient fac-

tor, diagnosis factor, and medication factor, correspondingly.

Element-wise loss function: f(A(i), X(i)) is the element-wise

loss between the low-rank CP tensor A and the input tensor

X. For the classic CP [7, 11], f(A(i), X(i)) := %(./l(i) - X(i))?,

which is the least square loss. GCP is more generalized in the

sense that the loss function can take other forms to best suit the
property of the input tensor. For example, f(-) can be chosen
based on the distribution of the tensor entries, e.g. logit loss for
binary data: fiogit = log(1 + A(i)) — X(i)A(i), foralli € I, or

f(-) can be the Huber loss for robustness purpose.

Regularization: ry(-) is the regularization applied to the factor

Ay, which can be the smooth [|A(y) ||}2: norm or the nonsmooth

lA(a)ll1 norm. In practice, the regularization can improve the

interpretability of the phenotypes.

—
&)
=

Existing federated computational phenotyping. Two recent
papers [20] and [27] consider federated tensor factorization and
apply it to the federated phenotyping. They have the following
limitations. 1) Both are limited to the CP model and [20] applies
least square solver as its client side local updater, which is difficult
to be extended to more general losses other than least square loss. 2)
Although extensible to using infrequent communication, each com-
munication round still incurs high communication cost since both
requires sending all factors in full precision. In addition, [20] also
requires communication of the Lagrangian dual variables which
doubles the communication cost. 3) Both alter the original objec-
tive function by introducing extra terms to enforcing consensus
of factors among all clients: [20] introduces linear constraint and
transforms it to Lagrangian dual formulation while [27] introduces
elastic penalty terms. These terms can lead the extracted factors to
deviate from the centralized solution, thus negatively impacting
the phenotyping accuracy.
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Figure 2: Illustration of collaborative phenotyping via feder-
ated tensor factorization [20].

2.3 SGD with Gradient Compression,
Error-Feedback and Periodic
Communication

Gradient Compression. Recently, one of the most successful ap-
proaches to mitigating the communication overhead is via gradient
compression, which compresses the gradient to be communicated
from the full precision representation (e.g. float or double number
representation) to a much lower precision representation (e.g. ag-
gressively compressed to 1-bit). The following definition introduces
one of the most popular compressors:

Definition 2.1. (Sign Compressor) For an input tensor x € RY, its
compression via Sign(-) is Sign(x) = ||x||1/d - sign(x), where sign
takes the sign of each element of x.

Error-Feedback. Due to aggressive compression, the algorithm
can converge slower (or even diverge) compared to the full precision
counterpart. The main cause is the error between the full precision
gradient and the compressed one. Error-feedback [19, 34, 42] is a
technique that memorizes this error in the current iteration and
feeds it back to the gradient of the next iteration. By doing so, it
can rigorously guarantee uncompromised convergence compared
to the full-precision SGD.

Periodic Communication. Instead of reducing the communica-
tion cost per-communication round, periodic communication or
local SGD [23, 33] reduces it by decreasing the communication
frequency in hope that the total number of communications rounds
can be reduced. Each clients will execute 7 > 1 local updates be-
fore communicating to the server. [4] shows that it is possible to
combine communication compression and periodic communication
together. [34] provides a unified framework by error-feedback to
analyze the convergence of gradient compression and local SGD.

3 PROPOSED METHODS

Under the federated setting as illustrated in Fig.2, the EHR tensor
X € RIX--»XIp will be collectively held by K institutions. The
k-th client’s local tensor is denoted by xk e RIUCXIZX"'XID, which
contains information about I, x individuals, such that 2115:1 Lk = 1.
That is, we consider the horizontally partitioned setting where
different hospitals share the same feature space. We also note that
there are related works addressing other settings like vertically
partitioned settings [8, 24, 25, 39] which are complementary to our
work. The aim of the federated computational phenotying is to
collaboratively compute the phenotyes from EHR tensor across
K institutions without sharing the raw tensor and patient mode
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Figure 3: Illustration of the execution of FedGTF-EF and
FedGTF-EF-PC.

variables. The objective function of the federated GTF is as follows

D
argmin F(A, xk ) + rd(A(d))’
(Aay--Am)) kz‘i dz=‘1 @
s.t. A =Aq)o...0Ap).

In fact, the above formulation can be extended to general multi-
block problems as well. Thus, our algorithms are not limited to
federated GTF problems but also to other nonconvex problems
possessing a multi-block decision variable structure, e.g. [40]. In
the following, we propose the federated generalized tensor fac-
torization with communication efficiency improvements via block
randomization, gradient compression, error feedback and periodic
communication. The execution of the proposed algorithm is illus-
trated in Fig.3.

3.1 FedGTF-EF: Communication Efficient GTF
with Block Randomization, Gradient
Compression and Error-Feedback

We reduce the uplink communication in each communication
round at two levels: block-level and element-level. The detailed
algorithm is displayed in Algorithm 1 with functionalities of key
steps annotated. At the block-level, to avoid sending all factors,
we use a randomized block (i.e., randomized factor) update, which
only requires the communication of the partial gradient of the
factor being sampled (the computation of the partial gradient will
be detailed in Sec.3.3). At the element-level, we compress each
element of the communication to a low-precision representation
before sending to the server (Line 6). Each client k keeps D local
pairs of Pf ) (the error-shifted full-precision partial gradient), Aéc d)

(the compressed gradient to be communicated), E(k Q) (error record
between the full precision gradient and the compressed gradient),
forall d = 1, ..., D factors. Depending on whether the regularizer is
smooth or not, either simple gradient descent (Line 8) or proximal
gradient descent (Line 9) can be chosen to update the sampled
factor, respectively.
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Algorithm 1FedGTF-EF: Communication Efficient GTF with Block
Randomization, Gradient Compression and Error-Feedback

Input: X, y[¢], A[0], randomized block sampling sequence
dg[0], ..., dg[T];
1: fort=0,...,T do
2 On Each Client Nodes k € 1, ..., K:
3: ifd = d(g)[t] then
4: Compute stochastic gradient G d)[ 1by eq.(4);
5: (d)[ 1 =vyl[t]G (d)[ 1+ E(kd)[t] %% error feedback
6: (d)[t] = Compress(P(d)[ 1), Send A(d)[t] (ie. A(d [t])[ ]) to the
server; %% compression
7: Receive & YK Ak [¢]Ge. & 2K Ak [¢]) from the server;
K Zk=12) K Zk=1(dg[1)) ;
8: Smooth regularization case: Ag)[t + 1] = Aglt] -
% Zle A(kd)[t]; %% update factor
9: Nonsmooth regularization case: A(g)[t + 1] = Prox,,(A(q)[t] -
% Zhe Afd)[m )
10: d)[t +1] = (d)[t] - A(d)[t]; %% update error memory
11:  elseif d # dg[¢] then
12: At +1] = Ag)lt], E(kd)[t +1] = E(kd)[t]; %% unselected blocks
are kept unchanged
13:  endif
14:  On Server Node:
15:  Receive (kdf[t])[t] from all client nodes; Broadcast
ZK A(kd m)[t] to all client nodes;
16: end for

3.2 FedGTF-EF-PC: Further Communication
Reduction by Periodic Communication

We further reduce the uplink communication cost by introducing a
third communication compression level: round level. That is, we
decrease the communication frequency from one iteration per-
communication to ¢ > 1 iterations per-communication, which
manifests a periodic communication behaviour [4, 23, 33]. The
detailed algorithm is provided in Algorithm 2. The major difference
with Algorithm 1 is that each client compresses and sends the
collective updates across 7 iterations (Line 9-10), instead of the
partial gradient in a single iteration. The error feedback (Line 9)
and error memory (Line 7, 13) are adjusted accordingly.

3.3 Efficient Partial Stochastic Gradient
Computation for FedGTF

After presenting the overall algorithms, we now present an effi-
cient partial stochastic gradient computation subroutine to compute
Gé‘d)[t] in Step 1 of Fig.3 and Line 4 of Algorithm 1 and 2. The first
mode (i.e., I1) is the individual mode (e.g., patient mode) which can
be kept local to each client. Thus, when d¢[t] = 1, we skip the com-
munication, which not only further reduces the communication
cost, but also is beneficial to the privacy since the individual-level
information is not shared.

Next, we specify the computation of the partial stochastic gradi-
ent G(d)[ ] based on the efficient fiber sampling technique [5, 10].
The deterministic partial gradient is V4, F (A) = Yog-Hy [15],
where Hy € RI1/1a*R s the mode-d Khatri-Rao product of the all
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Algorithm 2 FedGTF-EF-PC: Further Reducing Communication
Cost by Periodic Communication
Input: X, y[t], A[0], A¥[0] = A[0], Vk =1, ...,
pling sequence d¢[0], ..., d¢[T];
1: fort =0, ..., T do

K, randomized block sam-

2: On Each Client Nodes k €1, ..., K:

3: ifd= d(,’r)[t] then

4: Compute stochastic gradient G( d)[t] by eq.(4);

5 (d)[H' 2] (d)[t] y[t]G(d)[t] %% local update by stochastic
gradient descent

6: if (¢ mod 7) # 0 then

X k
7: E(d)[t+1] (d)[t] A(d)[t+1] (d)[t+ =], (d)[t+1]
A(g d)[t]; %% no communication
8: else
9: (d)[t] (d)[t] (d)[t +3D+ E(d)[ 1; %% error feedback

to accumulated update

10: A(kd)[ 1= Compress(P ) [£]), Send A(d)[ ] Ge. A(d pleD to
the server;
11: Receive Ag )[t+1] from the server, A )[t+1] (gd)[t+1]; %%
compress1on
12: end if
13: (d)[t +1] = (d)[t] - A(kd>[t]; %% update error memory
14 elseif d # dg[¢] then
. —_ gk .
15: (d>[t +1] = (d)[t] E<d)[t +1] = E(d)[t],
16:  end if
17:  On Server Node:
18:  Receive A(kdf[[])[t] from all client nodes; Broadcast A(gdg[t])[t +1] =
g 1 K k : .
A(dg[t])[t] - % 21 A(df[t])[t] to all client nodes;
19: end for

factors except the d-th,ie. Hy = A(p)©...0A(g441)0A(g-1)---OA(1);
and Y_ 4. is the d-unfolding of the element-wise partial gradient
Y e REX--XIp wwhere Y(i) = %)(36(1))) foralli € 7. We ap-
proximate V4, F (A) by sampling |S| fibers (i.e. |S| columns of
Y(q)) and the corresponding |S| rows of Hg, where S denotes the
index of the sampled fibers. The stochastic partial gradient is then

Glt] = Yegs (5 SHY(S, ), (3

where both Y_;4. (:,S) and Hy(S, :) can be efficiently computed,
because: 1) the computation of Y _ 4~ (:, S) only involves I; X |S]|
element-wise partial gradient computation [22] and 2) the computa-
tion of Hy(S, :) can be obtained without forming the full Khatri-Rao
product of Hy [32]. For the s-th row of Hy, its index (if, ..., i},) can
be obtained by the index mapping in Section 2.1. Then, H(s, :) =
A(l)(ii’ )®...® A(d_l)(itsi—l’ )@ A(d+1)(i;+1, )®...® A(D)(iB’ ),
where ® is the Hadamard product. Finally, the local stochatic gra-

dient G( d)[ ] can be efficiently computed by substituting its local

tensor partition Y¥ and local factors Ak

(d)
(. SHK(S, ),

into eq.(3), which gives
4

k .
ALY @ @ AL (15 1) ® AR, (i7,,.)®

(i}, 2). According to the complexity analysis, our gradient

Gf it =

< d >
where HF (s, 1) =

.® AfD)
computation in eq.(4) matches the state-of-the-art efficiency of GTF
computation, e.g., [10].
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4 ALGORITHM ANALYSIS

This section presents the convergence analysis and complexity
analysis of FedGTF-EF and FedGTF-EF-PC. A proof sketch of the
convergence analysis is provided in the appendix.

4.1 Convergence Analysis

Assumptions. In order to analyze the convergence, we make the
following assumptions which are common to many machine learn-
ing problems [4, 10, 34, 42]. Let the randomness of computing
stochastic gradient of Gag[e)) [t] be {[t], the randomness of sam-
pling the block be £[¢], the filtration upon iteration ¢ be F[t] =

{¢10], £[0], ..., {Te — 11, &[t = 1]}

ASSUMPTION 4.1. (Block-wise Smoothness of the Loss Function)
F(-) isL(d)—block—wise smooth, ford = 1, ..., D, i.e. forall A, B, F(B) <

L
F(A) + (VA Ba) = Aw) + =5~ [Ba) = A}

ASSUMPTION 4.2. (Unbiased Gradient Estimation) The stochastic
o . k _
gradient is unbiased: By (1) [Gdﬁ[][t]‘?’[t], §[t]] = VA(HIg[,])F(A[t])'

AsSUMPTION 4.3. (Bounded Variance) The stochastic gradient has
bounded variance:

21016, 0y 11 = Vi FAIDE| 7101 £101] < 07

ASSUMPTION 4.4. (Bounded Gradient) ||VA(d)F(A[t])|Ifv < ("121'

ASSUMPTION 4.5. (§-approximated Compression [19]) An operator
Compress : R — R¥ is an d-approximate compressor for § € (0,1]
if [|Compress(x) — x||Z < (1 - §)||x||3.

Many compressors satisfy the above condition [4]: top-k or ran-
dom k-sparsification, stochastic k-level quantization, stochastic
rotated quantization and the Sign compressor in Definition 2.3.

ASSUMPTION 4.6. (Simple Regularization Function) The regular-
ization functionsrg(-),d = 1, ..., D, are convex, lower semi-continuous
and admit closed-form proximal operator:

Prox,,(Bg) = argminA(d) %”A(d) - B(d)”?: + rd(A(d)).

Many common regularizations satisfy this assumption, for exam-
ple, the £1-norm for inducing sparsity which has the soft-thresholding
operator as its proximal operator.

4.1.1 Convergence Analysis of Algorithm 1.

Smooth regularization case. To prove the convergence, we ex-
tend the delayed gradient perspective in [19] to our block ran-
domized setting by introducing the following virtual variables

Agltl - £ ZF. Ef d)[t]. Then, we

have the following virtual recurrence: if d = dg[t], A(d)[t +1] =
At + 11— % ZK_ E@lt +1] = Ag)lt] - y[tl§ Xk Gfd)[ 1;
else if d # dgpy), K(d)[t + 1] = K(d)[t]. Thus, the recurrence
can be viewed as the block randomized SGD with the variable
A(d)[ ] which corresponds to A(g)[t] with delayed information
& Zi By

the smooth smooth regularization is as follows.

only for the proof: K(d>[t] =

[¢] added. The convergence of Algorithm 1 applied to

THEOREM 4.1. Suppose that Assumptions 4.1-4.5 hold.
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Let (A()[t], ... A(p)[t]) be the iterates of Algorithm 1 with Line 8.
Lety = min{ﬁ, }, for some p > 0. We have

[
—51/3
VTV Sl s

D
1 2
El5 dzl IV 4 F(AJoutput])[%]

8L . 4 ~ 2Lc?%p 1
< g (FAIOD = F) 4 |2 (FGAloD - F) + =7 ]\/ﬁ

(-5

8L%0%(c% + wz)]
D 52/3(T + 1)2/3 ’
where A[Output] = (A(y[Output], ..., A(py[Output]) is sampled
from A[0] to A[T] with uniform distribution, F* is the optimal value,
o = Zgzl as and w? = Zgzl w?

Remark 1. Under the similar assumptions, our convergence rate
matches the rates of the distributed synchronize SGD and the dis-
tributed SGD with gradient compression and error-feedback [42].
Thus, we can further reduce computation and uplink communica-
tion from a full-length gradient update and communication [4, 42]
to a single randomized block of the partial gradient update and
communication without slowing down the convergence rate.

+ [ZFalo) - F) +
e

Nonsmooth regularization case. This case corresponds to the
execution of Line 9 in Algorithm 1. An appropriate optimally con-
dition is based on the generalized gradient measure [10, 29, 30, 38]:
Gltl = ﬁ(A(d) —Proxy(¢),r, (Aa)[t] -y [t]1Va, F(A[t]))). The
following theorem shows the convergence of Algorithm 1 for the
nonsmooth regularization case.

THEOREM 4.2. Suppose that Assumptions 4.1-4.6 hold.
Let (Aq)[t], ... A(p)[t]) e the iterates of Algorithm 1 with proximal
operator (Line 9). Assume y[t] = ﬁ. We have

1~ 16L

B| )’ 5 lIGwloutput]i| < == (@(Alo]) - ¢*)
d=1 ©)
% 32(1—5)( 24 o),

where A[Output] is sampled from A[0] to A[T] with uniform distri-
bution, ®(A[0]) = F(A[0]) + 25:1 rq(A[0]) and @* is the optimal
value.

Remark 2. In the nonsmooth regularization case, the above con-
vergence result is weaker than the previous smooth case in that we
only ensure the difference between the initial loss and the optimal
value will get smaller, but the generalized gradient is not guaranteed
to approach 0 given that the variance and gradient norm related
terms will dominate with increasing T. However, our empirical
results show that the algorithm is able to converge to small losses.

4.1.2  Convergence Analysis of Algorithm 2. Now, we provide the
convergence rate of Algorithm 2 by extending the proof in [4] to
the block randomized setting, which is obtained under the same
assumptions with Theorem 4.1. The main idea for the analysis

I&fd”)g [t] -

[t] 7 ZR Gé‘d)[t] and build an iterative descent relation for it.

is to introduce the virtual sequence of A( Q) It +1] =

Meanwhile we keep track of the error between the true and vir-

tual averages of A” AYY

( d) [t], and the deviation between the

@ [t -
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local variables and the true average of A%“9[¢] — AK[¢]. Since both
deviations are well-bounded, it means AX[¢], A429]¢], Azldzgy [t] are
close to each other. Finally, we can obtain the convergence result
for the true sequence AX[¢] by substituting the deviations into the

descent relation obtained for A( d) 911].

THEOREM 4.3. Suppose that Assumptions 4.1-4.5 hold. Let

(A(l)[ ],.. (D)[t]) be the iterates ofAlgorzthm 2, fork=1,...K
andt =0,...,T. Lety[t] = \/Ti with0 < C < +. We have
E[Z 1Vaq F(AlOutput])|2] < (4C[F(A[0]) - F* ]+2CL02)\/m

SZCZLZ(l - 8)(c? + w?) 8C?L%* (0% + w?)\ 1?

dl * st
Dé? DK T+1

where A[Output] = (A(l)[Output] -» A(p)[Output]) is sampled

from A¥[0] to AK[TY, for allk =1,. K with uniform distribution,
F* is the optimal value, 0® = Zd Y andw = Z

Remark 3. Algorithm 2 maintains the same convergence rate of
o( \/ﬁ) as Algorithm 1, despite the periodic communication. The

communication gap 7 only affects the term with order O(ﬁ),

which is insignificant compared to the O( ﬁ) overall conver-

gence rate. Thus, without increasing the iteration complexity, the
periodic communication can further reduce communication cost.

4.2 Complexity Analysis

We provide the computation, storage and communication com-
plexities for FedGTF-EF and FedGTF-EF-PC given |S| fibers being
sampled by each client and the rank of the GTF being R.
Computational Complexity. Our method is very efficient when
compared to the following methods: 1) the classic CP-ALS and the
full gradient descent-based GTF, which cost O(DR [—[5:1 I); 2) the
sampled randomized CP-ALS in [5] and SGD-based GTF in [15] with
the same number of elements sampled, which cost O(RS| 25:1 I);
and 3) the same complexity as the full precision block randomized
SGD-based TF [10].

THEOREM 4.4. The per-iteration computational complexity of Al-
gorithm FedGTF-EF and FedGTF-EF-PC for each client is
O(B(Z2_ IRISI).

Communication Complexity. Assume we are using the Sign
compressor and comparing with full precision distributed SGD
with all blocks communicated. Let D = 4, 7 = 8, FedGTF-EF and
FedGTEF-EF-PC reduces up to 99.22% and 99.90% uplink commu-
nications. In general, we have:

THEOREM 4.5. FedGTF-EF reduces up to1 —

nication and FedGTF-EF-PC reduces up to 1 —
nication.

1 .
32D uplink commu-

B uplink commu-

Storage Complexity. The fiber sampling based stochastic partial
gradient avoids forming the whole element-wise partial gradient
tensor Y, which reduces the storage for this step from O(]_[g:1 I)
to O(|S|% 25:1 I;), thus achieving the same cost efficiency with
sampling-based random CP-ALS [5], full precision SGD [15] and
block randomized full precision SGD [10].
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Figure 4: Loss decrease with respect to 1) computation time measured by seconds (column 1, 3 for Bernoulli Logit Loss and
Least Square Loss respectively); 2) uplink communication cost measured by number of bytes (column 2, 4 for Bernoulli Logit
Loss and Least Square Loss respectively). Top: 3-rd order CMS; Middle: 4-th order CMS; Bottom: MIMIC-III.

5 EXPERIMENT
5.1 Experimental Setup

Datasets. We consider two real-world EHR datasets!
synthetic dataset, which are introduced below,

i). CMS [1] : A publicly available healthcare dataset with patients’
information protected. We adopt the rules in [20] to select the top
500 frequently observed diagnoses, procedures, and medications
to form a 4th order tensor of size 125,961 X 500 X 500 X 500 and a
3rd order tensor of size 91999 X 500 X 500 (with medication mode
omitted).

ii). MIMIC-III [16] : It is a publicly available relational dataset that
describes the patients information of the Intensive Care Units (ICUs).
Similar to CMS dataset, we form a 4 mode tensor representing
patients-diagnoses-procedures-medications with size 34, 272x500 X
500 X 500.

iii). Synthetic data : Synthetic data with size 4000 X 500 X 500 X 500
is generated as follows: for the nonzero entries, their values are
sampled from uniform distribution for the least square loss setting
and from binomial distribution for the logit loss setting, while
positions of the non-zero entries are the same for both loss settings
which are uniformly sampled from all entries with 10™* non-zero
ratio.

,aswell as a

Algorithms for comparison. We consider two different loss func-
tions: the Bernoulli logit loss fo4;; and the least square loss. For
the Bernoulli logit loss, we compare with: i) GCP (centralized)
[22]; ii) BrasCPD (centralized) [10]; iii) Centralized versions of
FedGTF-EF, iv) FedGTF-EF-cyclic and v) FedGTF-EF-prox. For

1Code available at: https://github.com/jma78/FedGTF-EF
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Figure 5: Ablation Study on 3-rd order CMS for Bernoulli
Logit Loss.

the least square loss, we compare with: i) BrasCPD (centralized)
[10]; ii) FlexiFact [6, 12]: a distributed tensor factorization algo-
rithm; iii) TRIP [20]: a federated tensor factorization algorithm op-
timized with ADMM, which has deterministic per-iteration update
solved in closed-form; iv) DPFact [27]: a federated SGD algorithm
designed for collaborative tensor factorization. For fair comparison,
we remove the differential privacy part of DPFact and substitute
the I3 1 regularization with the /; regularization as a new variant,
DPFact-prox.

Ablation study. We conduct ablation studies to illustrate the con-
tribution of each communication reduction mechanism to the over-
all communication efficiency, which includes i) DistBrasCPD: the
distributed version of BrasCPD [10] or FGTF with only the block-
randomized technique; ii) DistBrasCPD-comp: FGTF with both
block-randomized and gradient compression techniques; iii) DistSGD-
EF: distributed SGD with error-feedback that communicates full
gradients and all blocks; iv) DistSGD-EF-comp: DistSGD-EF with
gradient compression. Table 2 summarize the comparison with the
proposed algorithms.
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Table 2: Comparison of algorithms in ablation study.

Algorithm Element-level Reduction | Block-level Reduction | Round-level Reduction | Convergence Guarantee | Compression Ratio
DistBrasCPD X v X X 1-1/D
DistBrasCPD-comp v 4 X X 1-1/32D
DistSGD-EF X X X X 0
DistSGD-EF-comp v X X X 1-1/32
FedGTF-EF v v X v 1-1/32D
FedGTF-EF-PC v v v v 1-1/32Dt

—A— FedGTF-EF FedGTF-EF-PC (-=2) —>— FedGTF-EF-PC (=6)
—#— FedGTF-EF-prox —*— FedGTF-EF-PC (=4) —0— FedGTF-EF-PC (=8)
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Figure 6: Comparison of different number of workers on 3-
rd order CMS for Bernoulli Logit Loss.
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Figure 7: tSNE visualization of the patient representa-
tion learned by BrasCPD (left) and FedGTF-EF-PC(r =
8) (right). Each point represents a patient which is
colored according to the highest-valued coordinate in
the patient representation vector among the top 3 phe-
notypes extracted based on the factor weights A, =

A G OllAG G IR [AD) G-

For our proposed algorithms, in addition to FedGTF-EF and
FedGTF-EF-PC, we consider two variants: FedGTF-EF-cyclic (a
variant of FedGTF-EF with cyclic mode updates), FedGTF-EF-prox
(FedGTF-EF with [; regularization). We vary the value of 7 in
{2,4, 6,8} for FedGTF-EF-PC.

Experiment results. Our experiments show that FedGTF-EF and
FedGTF-EF-PC are able to greatly improve the communication effi-
ciency without slowing down the convergence and deteriorating
the factorization quality. In detail, we have the following four obser-
vations: i) FedGTF-EF and its variants reduce loss faster with much
less communication cost, for both the Bernoulli Logit Loss (Fig.4
first two columns) and the Least Square loss (Fig.4 last two columns)
compared to the baseline methods. The communication cost per
communication round is further reduced by increasing the local
update iterations 7 from 2 to 8 without hurting the performance
of the Bernoulli logit loss and with a slightly worse loss for the
least square loss. ii) FedGTF-EF, FedGTF-EF-PC and their variants
are computationally efficient due to the fiber-sampling technique,
i.e., they use lower computation cost compared to the baselines. By
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Fig.4, for both objective functions, FedGTF-EF-PC, FedGTF-EF and
its variants converges to similar losses as their centralized counter-
parts, while cost less time because more workers are involved in the
updating process for the federated setting. Note that although TRIP
converges faster in terms of time, but it tends to be trapped into bad
local minima caused potentially by its deterministic per-iteration
update. iii) FedGTF-EF, FedGTF-EF-PC and their variants converge

Table 3: Top 3 phenptypes extracted by FedGTF-EF-PC(r = 8)
on MIMIC-III data. Red, blue, and green indicate diagnoses,
procedures, and medication, respectively.

P10: Diabetic Heart Failure

Diabetes mellitus without mention of complication
Background diabetic retinopathy

Acute systolic heart failure

Acute on chronic systolic heart failure

Chronic diastolic heart failure

Acute on chronic combined systolic and diastolic heart failure
Insertion of one vascular stent

Open heart valvuloplasty of tricuspid valve without replacement
Operations on other structures adjacent to valves of heart
(Aorto)coronary bypass of three coronary arteries

Captopril (ACE inhibitor), Insulin, Pyridostigmine Bromide,

[sosorbide Dinitrate

P5: Hypertensive Heart Failure
Pure hypercholesterolemia
Cardiac tamponade

Ventricular fibrillation

Cardiac arrest

Acute systolic heart failure

Percutaneous insertion of carotid artery stent(s)
Pericardiocentesis

Extracorporeal circulation auxiliary to open heart surgery

Other endovascular procedures on other vessels

Rosuvastatin Calcium, Isosorbide Dinitrate, Hydrochlorothiazide,
Digoxin, Clonidine HCI

P4: Peripheral Arterial Disease
Congestive heart failure
Atherosclerosis of native arteries of the extremities

— with intermittent claudication

Acute venous embolism and thrombosis of

—superficial veins of upper extremity

Insertion of drug-eluting coronary artery stent(s)
(Aorto)coronary bypass of two coronary arteries

Interruption of the vena cava

Suture of artery

Angioplasty of other non-coronary vessel(s)

Carvedilol, Metoprolol succinate, Amiodarone HCI, Nitroglycerin,
Calcium Chloride
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to similar losses as the centralized counterpart, which indicates
communication efficiency can be improved without sacrificing the
factorization quality. iv) FedGTF-EF and FedGTF-EF-PC converge
faster in terms of running time with more workers. As shown in
Fig.4 upper left and Fig.6, with the number of workers increased
from 8 to 16, the time for FedGTF-EF to converge reduces 65.58%.

From the ablation study (Fig.5), we can see: i) Block-randomized
update and gradient compression can greatly reduce the communi-
cation cost by 75.00% and 96.88%, respectively. Therefore, gradient
compression plays a more important role in communication reduc-
tion. ii) With both block-randomized and gradient compression,
FedGTF-EF achieves a gradient reduction of 98.90% over FGTF. iii)
Periodic communication further reduces the communication cost
over FGTF by 99.94%, 99.97, 99.98%, and 99.99% with {2,4,6, 8}
rounds of local communications respectively.

Finally, we evaluate the quality of the federated factorization
factors by considering the patient subgroup identification following
[28], as illustrated in Fig.7. We use tSNE to map the R dimensional
vectors into the 2 dimensional space. We first identify the top 3
phenotypes that have the largest factor weights, which are the
phenotypes #4, #5,#10 in Fig.7 (phenotype details are shown in
Table 3). Then, we color the patients by assigning each patient to
one of the top 3 phenotypes using the largest patient weight among
the top 3 along the representation vector. Fig.7 shows FedGTF-
EF-PC with 7 = 8 local updates has comparable performance to
the centralized baseline BrasCPD in clustering the patients with
the same phenotype together. This demonstrates that our method
can achieve communication compression without sacrificing the
factorization quality.

6 CONCLUSION

In this paper, we study the under explored communication efficiency
problem in federated (more broadly the distributed) generalized
tensor factorization for collaborative phenotyping. We propose
FedGTF-EF with communication efficient designs of block random-
ized update and gradient compression with error-feedback, which
encompassed two levels of uplink communication reduction: re-
duced number of blocks and reduced per-element communication.
We further reduce the communication rounds by periodic averaging
to develop the FedGTF-EF-PC algorithm. The convergence guar-
antee is provided under common assumptions applied not only to
generalized tensor factorization problems but also to more general
machine learning problems possessing a multi-block structure. Our
algorithm can maintain low computational and storage complex-
ity while occupying much lower uplink communication cost. We
demonstrate its superior efficiency and uncompromised quality on
synthetic and two real-world EHR datasets.
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APPENDIX
A ADDITIONAL MATERIALS FOR
EXPERIMENTS

A.1 Parameter Settings

For MIMIC-III, CMS and synthetic datasets, each algorithm is run
for 500 iterations per epoch until converge, while for delicious
dataset, each algorithm is run for 1000 iterations per epoch. For
GCP algorithm, we tune the stepsize within the range of
{1078,107%,10719, 10711}, while for the rest algorithms, we tune
the stepsize by grid search through {22,21,20 271 272 2711},
The parameter for the proximal operator is set to 107 for all the
algorithms with the proximal operators (FedGTF-EF-prox, DPFact-
prox). For all the federated algorithms, we by default horizontally
partition the tensor (along I; mode) into 8 tensors without overlap-
ping and distribute each of them to 8 client nodes respectively. We
also test different numbers of workers (16 workers and 32 workers),
where the stepsizes are set to the same as for 8 workers. The best
stepsizes for each algorithms for different datasets are set as in
Table 4 and 5.

Each experiment is averaged over 5 repetitions. All experiments
are run on Matlab 2019a on an r5.12x1arge instance of AWS EC2
with Tensor Toolbox Version 3.1 [3].

A.2 Additional Experiments

Two additional groups of figures are presented here. Fig.8 shows
the loss decrease for both the Bernoulli loss and the Least Square
loss with respect to time and communication for the synthetic data.
Fig.9 shows the Bernoulli loss and the Least Square loss decrease
with respect to epochs in supplementary to the figures showed in
the main paper with respects to time and communication. Similar
conclusions can be drawn with the real-world EHR datasets in the
main paper. That is, the proposed algorithms achieve more efficient
convergence than the centralized baselines under the Bernoulli

Table 4: Best Stepsizes for the Bernoulli Logit Loss

Algorithm MIMIC-III | 4th order CMS | 3rd order CMS | Synthetic
GCP 10710 1010 10°10 1077
BrasCPD 274 271 274 273
Centralized FedGTF-EF 273 271 272 274
Centralized FedGTF-EF-cyclic 272 272 272 274
Centralized FedGTF-EF-prox 272 270 272 272
FedGTF-EF 273 272 272 274
FedGTF-EF-cyclic 274 272 272 274
FedGTE-EF-prox 272 273 274 271
FedGTF-EF-PC(7 = 2) 273 273 272 274
FedGTF-EF-PC(T = 4) 275 275 272 274
FedGTF-EF-PC(T = 6) 275 270 272 24
FedGTF-EF-PC(T = 8) 275 275 272 24

Table 5: Best Stepsizes for the Least Square Loss

Algorithm MIMIC-III | 4-th order CMS | 3-rd order CMS | Synthetic
BrasCPD 275 2 1072 27
FlexiFact - - 2 -
DPFact 274 2! 2710 272
DPFact-prox 274 2! 2710 272
FedGTF-EF 274 20 2~ 272
FedGTF-EF-prox 27> 20 2710 272
FedGTF-EF-PC(7 = 2) 274 20 2710 272
FedGTF-EF-PC(T = 4) 274 20 2710 272
FedGTF-EF-PC(7 = 6) 274 20 2710 272
FedGTF-EF-PC(T = 8) 24 20 2710 272
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Figure 8: Bernoulli Logit Loss and Square Loss with respect to computation time and communication for synthetic data.
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Figure 9: Bernoulli logit loss (column 1,2) and Least Square loss (column 3,4) decrease with respect to epochs.

logit loss and the distributed baseline under the least square loss. It B.1.3  Main proof sketch of Theorem 4.1. By block-wise Lipschitz
is also more communication-efficient than the algorithms without smoothness assumption of the loss function:
gradient compressor (BrasCPD distributed version) and without

the block randomized mechanism (DPFact and its variants). K X
F@Lt+11) < FALED = y[£1 (Vg 10 FAIED. 5 Y GlpleD
Kig ™

B CONVERGENCE ANALYSIS OF Ldgmw]) K 2
ALGORITHM 1 ¥ Z Gy 11

B.1 Proof Sketch of Theorem 4.1

e . . . . By Assumption 4.2 that
B.1.1  Auxiliary variables for the proof and iterative relation. The

following auxillary variables and virtual iterations are introduced {le] [K Zk 1 dg[z] |¢

only for the proof: K(d)[t] = Alt] - ZK Eé‘d)[ ]. Given the

. . < . . K
?uxlhary var1a~ble At we~have the followm%{ 1terakt1ve I‘elathI.l: By [”% Z G(kd kel = Vag  FALDI] 2 | A1), §[t]]
ifd = dg[t], A(d)[t +1] = A(d)[l'] ylt ] Z G [t]; else if ¢ 4y

. - @ e ™
d#dgn, Acg [t + 1] = A [t]
e At + 1] = Agg)lt] =B [||% > G(kdfltj)[t]||lz,|ﬂt], §[t]] 1 ) FALLD -
k=1 -

] VA(d§ F(A[ 1), we have

B.1.2  Additional Lemma. The following lemma extends Lemma 3
in [19] to our block randomized case. Taking conditional expectation on both sides of eq.(B.1.3) with re-
spect to filtration ¥ [¢] and randomness of {[¢] during the stochastic
gradient computation and plugging eq.(7) in, we have
LEmMA B.1. (Bounding the expectation of the block-wise feedback
error averaged among client nodes) Ford = 1,...,D and fort =
., T, assuming constant step size y[t] = y, we have

Byj| FALE + 1| 7Le], €[]

_ La,1nyle] Lg, 1n(y[2])?
< FALED = ye){1 = =5 ) Va0 FALEDIE + — %
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[ ZE(d)t+1||F] (5 D262 r ). (6) ‘
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Taking expectation with respect to £[t] condltloned on F[t] and
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Taking total expectation with respect to all the random variables in
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By setting p = 1 and using E[% 25:1 ||VA(d)F(A[Output])||12:] <
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} for some o > 0, we complete
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the proof of Theorem 4.1:
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D 82T + 123"

+ [f(F(A[OJ) P+
0

B.2 Proof Sketch of Theorem 4.2

B.2.1  Auxiliary variables for the proof and iterative relation. We
derive the convergence by regarding the iteration as using inexact
gradient, which is different from the approach used for the smooth
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case which is regarded as using delayed variable:

Z Al )

A(dgltj)[t +1] = PrOX(A(dgltJ)[t]

K
Prox(A<dk)[t] - y[t]% Z (Gfdfm)“]
£ é

mr ](E(d,f[f])[t 11 =By [1D).

We define the generalized gradient Z[t] = (Z(y)[t], ..., (Z(p)[t]),

where Zy)[t] = ﬁ(A(d)[t]—PFOXr(d>(A(d)[f]—Y[t]VA(d)F(A[f])))
Ifd = df[ A(d)[l’+ 1] = Pr‘OXr(d)(A(d)[t] —y[t]VA(d)F(A[t])), else

I
ifd # dg[ ] A(d)[t +1] = A(d)[t].
let ®(A[t]) = F(A[t]) + r(A[¢]).

B.2.2 Additional Lemma. We need Lemma 1 from [30].

LEMMA B.2. Lety = Proxy,(x — yg), for some g. Then fory, the
following inequality holds for any z,

ry)+{y-zg) <r@)+ %[IIZ—XH% = lly = x5 = lly = zll3]. (10)

B.2.3  Main Proof sketch of Theorem 4.2. By the block-wise smooth-
ness of F, the convexity of r(4)(-), and the optimality of A, ;) [t +1]
for Proxy,, (A t] - yVA(d)F(A[t])), we have

t]) 1 =
__)||A(d§[tj)[t+1]_A(d§[tj)[t]||12:~

D(A[t+1]) < D(A[t])+ (
ylt]
(11)

By Lemma B.2, we have
F(Aag et + 11 Aap () [ED) + rag (1) (Acgg e[t + 11
< F(A@ ([t + 1 A e [eD) + riae 1) A [t + 1D
+ (A eplt +1] - K(df[t])[t + 11 Vg, (1) F(Ag, e [t])

K
1
E ];(chdg[t])[ [ ](E(d§ ])[t + l] (dk[t [ ])))

Liag1e))
*( 2 2y[t])”A(d§ [l + 1] = At 112
L
(dg[t])
* ) )”A(df t])[t +1] - A(df t])[ ]”F

2 2 [t]

A 2
201t A el + 11 = Agagpeple + 1117

By bounding the third row of the above equation, choosing p1=

2y[t] and p2 = 2, with eq.(11), and letting y[¢] < 2L— we have
(dgle)
O(A[# +1]) < O(A[2]) + (Liag[e) = 5 [t])”A(d}:[t])[t +1] - A(dg[t])[t]”F
+y Z IV agte) FAwg 1)1 = Gy 1 11111
k 1K

11 k k 2
t] ? kz ”E(dflt])[t + 1] - E(dg[t])[t]”F'
=1
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Taking conditional expectation with respect to £[t] conditioned on
filtration F[¢], by Lemma B.1 and letting y[t] = ¢, we have

D
DAL+ 1) < AL + (L= 1) 2 It + 11~ Al

Lc2+18(1 5)

y(o? + o).

D D §

Taking total expectation (i.e. with respect to all random variables
in F[t]), averaging from t = 0 to T and using

B 52, 416w loutputll3] < L B1G @I = e

1]

— A(d)[t])/yH%], by setting y = E’ we complete our proof:

D oy
B 2. 5 IGaoutut 3]

< oL @(Afo]) - 07) + T

L 320-9)
Dé?

462

K = (6? + ).

REFERENCES

(1]
(2]

(71

(8]
(9]
[10]

(1]

[12]

[13]

[14]

[15]

=
&

[17]

[n.d.]. https://www.cms.gov/Research-Statistics-Data-and-Systems/
Downloadable-Public-Use-Files/SynPUFs/DE_Syn_PUF.

Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X Yu, Sanjiv Kumar, and
Brendan McMahan. 2018. ¢cpSGD: Communication-efficient and differentially-
private distributed SGD. In Advances in Neural Information Processing Systems.
Brett W. Bader, Tamara G. Kolda, et al. 2017. MATLAB Tensor Toolbox Version
3.0-dev. Available online. https://gitlab.com/tensors/tensor_toolbox

Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. 2019. Qsparse-local-
SGD: Distributed SGD with Quantization, Sparsification, and Local Computations.
In Advances in Neural Information Processing Systems.

Casey Battaglino, Grey Ballard, and Tamara G Kolda. 2018. A practical randomized
CP tensor decomposition. SIAM . Matrix Anal. Appl. 39, 2 (2018), 876-901.
Alex Beutel, Partha Pratim Talukdar, Abhimanu Kumar, Christos Faloutsos, Evan-
gelos E Papalexakis, and Eric P Xing. 2014. Flexifact: Scalable flexible factorization
of coupled tensors on hadoop. In Proceedings of the 2014 SIAM International Con-
ference on Data Mining. SIAM, 109-117.

J Douglas Carroll and Jih-Jie Chang. 1970. Analysis of individual differences in
multidimensional scaling via an N-way generalization of “Eckart-Young” decom-
position. Psychometrika 35, 3 (1970), 283-319.

Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. 2020. Vafl: a method of
vertical asynchronous federated learning. arXiv preprint arXiv:2007.06081 (2020).
Joon Hee Choi and S Vishwanathan. 2014. DFacTo: Distributed factorization of
tensors. In Advances in Neural Information Processing Systems. 1296-1304.

Xiao Fu, Shahana Ibrahim, Hoi-To Wai, Cheng Gao, and Kejun Huang. 2020.
Block-randomized stochastic proximal gradient for low-rank tensor factorization.
IEEE Transactions on Signal Processing 68 (2020), 2170-2185.

Richard A Harshman et al. 1970. Foundations of the PARAFAC procedure: Models
and conditions for an" explanatory" multimodal factor analysis. (1970).

Huan He, Jette Henderson, and Joyce C Ho. 2019. Distributed Tensor Decompo-
sition for Large Scale Health Analytics. In The World Wide Web Conference.
Joyce C Ho, Joydeep Ghosh, Steve R Steinhubl, Walter F Stewart, Joshua C Denny,
Bradley A Malin, and Jimeng Sun. 2014. Limestone: High-throughput candidate
phenotype generation via tensor factorization. Journal of biomedical informatics
52 (2014), 199-211.

Joyce C Ho, Joydeep Ghosh, and Jimeng Sun. 2014. Marble: high-throughput
phenotyping from electronic health records via sparse nonnegative tensor fac-
torization. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. 115-124.

David Hong, Tamara G Kolda, and Jed A Duersch. 2018. Generalized canonical
polyadic tensor decomposition. arXiv preprint arXiv:1808.07452 (2018).

Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-wei, Mengling Feng,
Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and
Roger G Mark. 2016. MIMIC-III, a freely accessible critical care database. Scientific
data 3 (2016), 160035.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi
Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. 2019. Advances and open problems in federated learning.
arXiv preprint arXiv:1912.04977 (2019).

182

(18

[19

[20

[21

[22

D
d [124 ]1an Lou

[25

[26

[27

[28

[29

[30

[32

[33

[35

[36

(37

[38

[39

[40

[41

Jing Ma, Qiuchen Zhang, Jian Lou*, Li Xiong, Joyce C. Ho

Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria Oliver.
2010. Multiverse recommendation: n-dimensional tensor factorization for context-
aware collaborative filtering. In Proceedings of the fourth ACM conference on
Recommender systems. 79-86.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi.

2019. Error Feedback Fixes SignSGD and other Gradient Compression Schemes.

In International Conference on Machine Learning. 3252-3261.

Yejin Kim, Jimeng Sun, Hwanjo Yu, and Xiaoqian Jiang. 2017. Federated tensor

factorization for computational phenotyping. In Proceedings of the 23rd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining.

Tamara G Kolda and Brett W Bader. 2009. Tensor decompositions and applications.

SIAM review 51, 3 (2009), 455-500.

Tamara G Kolda and David Hong. 2019. Stochastic Gradients for Large-Scale

Tensor Decomposition. arXiv preprint arXiv:1906.01687 (2019).

L Tan_Lm Sebastian U Stich, Kumar Kshitij Patel, and Martin Jaggi. 2018. Don’t

@}ﬁftMlnl Batches, Use Local SGD. arXiv preprint arXiv:1808.07217 (2018).

and Yiu-ming Cheung. 2018. Uplink communication efficient differen-
tially private sparse optimization with feature-wise distributed data. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, Vol. 32.

] Jian Lou and Yiu-ming Cheung. 2020. An Uplink Communication-Efficient
Approach to Featurewise Distributed Sparse Optimization With Differential
Privacy. IEEE Transactions on Neural Networks and Learning Systems (2020).

] Jing Ma, Qiuchen Zhang, Joyce C. Ho, and Li Xiong. 2020. Spatio-Temporal Tensor
Sketching via Adaptive Sampling. CoRR abs/2006.11943 (2020). arXiv:2006.11943
https://arxiv.org/abs/2006.11943

] Jing Ma, Qiuchen Zhang, Jian Lou, Joyce C Ho, Li Xiong, and Xiaogian Jiang. 2019.

Privacy-preserving tensor factorization for collaborative health data analysis.

In Proceedings of the 28th ACM International Conference on Information and

Knowledge Management. 1291-1300.

Ioakeim Perros, Evangelos E Papalexakis, Fei Wang, Richard Vuduc, Elizabeth

Searles, Michael Thompson, and Jimeng Sun. 2017. SPARTan: Scalable PARAFAC2

for large & sparse data. In Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. 375-384.

] Meisam Razaviyayn, Mingyi Hong, and Zhi-Quan Luo. 2013. A unified con-

vergence analysis of block successive minimization methods for nonsmooth

optimization. SIAM Journal on Optimization 23, 2 (2013), 1126-1153.

Sashank J Reddi, Suvrit Sra, Barnabas Poczos, and Alexander J Smola. 2016.

Proximal stochastic methods for nonsmooth nonconvex finite-sum optimization.

In Advances in Neural Information Processing Systems. 1145-1153.

Kijung Shin, Lee Sael, and U Kang. 2016. Fully scalable methods for distributed

tensor factorization. IEEE Transactions on Knowledge and Data Engineering 29, 1

(2016), 100-113.

Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evange-

los E Papalexakis, and Christos Faloutsos. 2017. Tensor decomposition for signal

processing and machine learning. IEEE Transactions on Signal Processing 65, 13

(2017), 3551-3582.

Sebastian U Stich. 2018. Local SGD Converges Fast and Communicates Little. In

International Conference on Learning Representations.

Sebastian U Stich and Sai Praneeth Karimireddy. 2019. The error-feedback

framework: Better rates for SGD with delayed gradients and compressed com-

munication. arXiv preprint arXiv:1909.05350 (2019).

] M Alex O Vasilescu and Demetri Terzopoulos. 2002. Multilinear analysis of image

ensembles: Tensorfaces. In European conference on computer vision. Springer.

Yichen Wang, Robert Chen, Joydeep Ghosh, Joshua C Denny, Abel Kho, You

Chen, Bradley A Malin, and Jimeng Sun. 2015. Rubik: Knowledge guided tensor

factorization and completion for health data analytics. In Proceedings of the 21th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

] Chen Xu, Jianqiang Yao, Zhouchen Lin, Wenwu Ou, Yuanbin Cao, Zhirong Wang,

and Hongbin Zha. 2018. Alternating multi-bit quantization for recurrent neural

networks. ICLR-2018, arXiv preprint arXiv:1802.00150 (2018).

Yangyang Xu and Wotao Yin. 2015. Block stochastic gradient iteration for convex

and nonconvex optimization. SIAM Journal on Optimization (2015).

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated machine

learning: Concept and applications. ACM Transactions on Intelligent Systems and

Technology (TIST) 10, 2 (2019), 1-19.

] Jinshan Zeng, Tim Tsz-Kit Lau, Shaobo Lin, and Yuan Yao. 2019. Global Conver-

gence of Block Coordinate Descent in Deep Learning. In International Conference

on Machine Learning. 7313-7323.

Shandian Zhe, Kai Zhang, Pengyuan Wang, Kuang-chih Lee, Zenglin Xu, Yuan Qi,

and Zoubin Ghahramani. 2016. Distributed flexible nonlinear tensor factorization.

In Advances in neural information processing systems. 928-936.

Shuai Zheng, Ziyue Huang, and James T Kwok. 2019. Communication-Efficient

Distributed Blockwise Momentum SGD with Error-Feedback. In Advances in

Neural Information Processing Systems.


https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-Public-Use-Files/SynPUFs/DE_Syn_PUF
https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-Public-Use-Files/SynPUFs/DE_Syn_PUF
https://gitlab.com/tensors/tensor_toolbox
https://arxiv.org/abs/2006.11943
https://arxiv.org/abs/2006.11943

	Abstract
	1 Introduction
	1.1 Contributions

	2 Preliminaries and Background
	2.1 Notation
	2.2 Generalized Tensor Factorization
	2.3 SGD with Gradient Compression, Error-Feedback and Periodic Communication

	3 Proposed Methods
	3.1 FedGTF-EF: Communication Efficient GTF with Block Randomization, Gradient Compression and Error-Feedback
	3.2 FedGTF-EF-PC: Further Communication Reduction by Periodic Communication
	3.3 Efficient Partial Stochastic Gradient Computation for FedGTF

	4 Algorithm Analysis
	4.1 Convergence Analysis
	4.2 Complexity Analysis

	5 Experiment
	5.1 Experimental Setup

	6 Conclusion
	Acknowledgments
	A Additional Materials for Experiments
	A.1 Parameter Settings
	A.2 Additional Experiments

	B Convergence Analysis of Algorithm 1
	B.1 Proof Sketch of Theorem 4.1
	B.2 Proof Sketch of Theorem 4.2

	References

