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Salient Object Detection via Multiple
Instance Joint Re-Learning

Guangxiao Ma ", Chenglizhao Chen

Abstract—Inrecent years deep neural networks have been widely
applied to visual saliency detection tasks with remarkable detection
performance improvements. As for the salient object detection in
single image, the automatically computed convolutional features
frequently demonstrate high discriminative power to distinguish
salient foregrounds from its non-salient surroundings in most cases.
Yet, the obstinate feature conflicts still persist, which naturally
gives rise to the learning ambiguity, arriving at massive failure
detections. To solve such problem, we propose to jointly re-learn
common consistency of inter-image saliency and then use it to boost
the detection performance. Its core rationale is to utilize the easy-
to-detect cases to re-boost much harder ones. Compared with the
conventional methods, which focus on their problem domain within
the single image scope, our method attempts to utilize those beyond-
scope information to facilitate the current salient object detection.
To validate our new approach, we have conducted a comprehensive
quantitative comparisons between our approach and 13 state-of-
the-art methods over 5 publicly available benchmarks, and all the
results suggest the advantage of our approach in terms of accuracy,
reliability, and versatility.

Index Terms—Salient Object Detection Inter-image Corres-
pondence, Multiple Instance Learning, Joint Re-Learning.

I. INTRODUCTION

HE problem of salient object detection is to locate
the most eye-attracting object in a given scene. The
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strongest attractors of the human vision system are stimuli that
pop-out from their near surroundings, usually referred as
saliency. As one of the most frequently used pre-processing
tools, the detected salient object can be fed into various down-
stream applications, including adaptive compression of im-
ages [1], video surveillance [2]-[4], video saliency [5]-[8],
person re-identification [9], medical image analysis [10], im-
age classification [11], object tracking [12], video summa-
rization [13], and video expression [14]. To reveal the image
saliency, many conventional methods focus on the designation
of the contrast computation over hand-crafted low-level cues,
and such implementations are usually time-consuming with no-
ticeable problems, i.e., the contrast itself is in terms of difference
between visual cues.

After entering the deep learning era [15], [16], the perfor-
mance of salient object detection has been significantly im-
proved by using the high discriminative convolutional features.
However, due to the varying nature of image scene, those similar
regions which belong to different images may be assigned with
completely different saliency value if their near surroundings
are changed, and see demonstrations in Fig. 1.

In fact, the aforementioned problem is mainly induced by the
feature conflicts, which evade the feature margin between the
salient foregrounds and its non-salient near surroundings and
finally lead to the learning ambiguity. Although various deep
architectures have been proposed in recent years [17]-[19], the
core rationale of these methods still follows the conventional
common thread [20], i.e., by using the deep convolutional fea-
tures to automatically support contrast computation within a
multi-scale/multi-level manner [21], [22].

In terms of the co-saliency community [23]-[26], the prob-
lem of learning ambiguity can be slightly alleviated by apply-
ing the “inter-image” feature clustering [27] before saliency
revealing. However, because these methods conduct their clus-
tering procedure globally to group those sub-regions with simi-
lar non-local appearance, the performance improvement toward
those hard-to-detect cases (i.e., usually with distinct feature pat-
tern) is still limited. From the perspective of salient object detec-
tion over video data [28]—-[34], the learning ambiguity problem
can be much alleviated due to the newly available “inter-frame”
motion clues, which consistently outperform the solely spatial
information based on image salient object detection methods.
Also noticing the phenomenon that massive easy-to-detect cases
might exhibit strong “non-local” similarity to those hard ones,
the obstinate learning ambiguity may be alleviated by learning
common consistency of its inter-image saliency.
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A. Two Similar Scenes with B. Strong Non-local Similarity
Different Saliency Detection with Joint Re-Learned Saliency

The Conventional Pre-Learned Our Jointly Re-Learned Deep
Deep Saliency Model (MDF16) Saliency Model (MDF+OUR)

Fig. 1. The motivation of our method. (A) demonstrates the conventional deep
methods which easily output completely different saliency results even for those
images with similar non-local regions. (B) shows the results of our joint re-
learning rationale, which utilizes those easy-to-detect cases to facilitate those
hard ones.

Inspired by all of the above, we propose to jointly re-learn
the common consistency of inter-image saliency and then use
it to promote the detection performance, and its underneath
rationale is illustrated in Fig. 1(B). To achieve this, we inter-
actively consider both the inter-image object-level similarity
and the non-local correlation to build the inter-image corre-
spondences. Thus, based on the saliency outputs of the current
off-the-shelf saliency model, we can focus our saliency model on
those hard-to-detect cases to improve the detection performance
while using those easy cases with inter-image correspondences
to alleviate the learning ambiguity. Specifically, we summarize
the salient contributions of this paper as follows:

® We propose to construct the inter-image non-local cor-
respondences, which is indispensable for our subsequent
saliency re-learning to reduce the learning ambiguity.

e Our method can simultaneously learn the “most in-
formative” inter-image consistency while suppressing
the remaining conflicted inconsistency within the semi-
supervised manner.

® We newly design a novel saliency re-learning framework
to jointly reveal the common consistency of those hard-to-
detect cases while converging towards the saliency-critical
learning objective.

e The proposed re-learning scheme is universally effective
to boost the detection performance of any existing state-
of-the-art saliency model.

II. RELATED WORKS

A. The Conventional Methods Using Handcrafted Features

Image saliency detection has been extensively studied over
the past decade. Early salient object detection methods [20],
[35] follow the bottom-up methodology to assemble low-level
saliency clues via elaborately designed contrast computations

over the handcrafted features. Following the key rationale that
the salient regions in the visual field would first pop out from
their surroundings, the conventional saliency revealing schemes
are mainly based on the multi-scale and multi-level contrast
computation [31], [36], [37].

B. The Deep Learning Network Based Methods

After entering the deep learning era, the automatically com-
puted deep convolutional features have exhibited huge advan-
tages over the conventional handcrafted features. Li er al. [21]
propose to utilize the convolutional neural network (CNN)
based contextual deep features to represent the multi-scale con-
trast degree to perform superpixel-wise saliency prediction. Lee
et al. [38] propose to pre-compute the low-level spatial saliency
features and then feed it to the fully connected layers enhancing
the non-local coherency to improve the detection performance.
Liu et al. [39] build a two stage network, which respectively per-
forms the coarse salient object location and the saliency detail
refinement to achieve multi-level saliency detection. Although
large performance improvements have been made, these meth-
ods are time-consuming due to the usage of fully connected
layers, not to mention that the spatial topology info vanishing
can induce performance bottle-neck.

Recently, significant performance improvements have been
made in the full convolutional network (FCN) based methods
due to the end-to-end flexible/efficient architecture, which can
simultaneously conserve the spatial topology info while con-
ducting the pixel-wise saliency predictions efficiently, e.g., Luo
et al. [40] directly use the FCN providing non-local deep features
for the high-quality saliency detection. Meanwhile, the most
recent methods follow the rationale that the saliency common
consistency of the FCN” inter-layer outputs as the fine-level in-
formation can effectively boost the detection performance (i.e.,
the convolutional steps cause salient object boundary blurring)
of those coarse-level layers. Li ef al. [41] propose to obtain the
multi-level contextual info by stacking sequential FCN blocks
with varying convolutional scope. Hou ef al. [22] reveal the
multi-scale and multi-level saliency consistency by introduc-
ing the short connections from the FCN’ inner side layers to
the current problem domain. Lu ef al. [42] propose to utilize a
multi-scale context-aware feature extraction module, which con-
tains multiple dilated convolutions, to interactively robust the
saliency detection. Wang et al. [43] propose to capture hierar-
chical deep saliency information via using a skip-layer network
structure to predict human attention from multiple convolutional
layers with various reception fields.

As Wang et al. [44] point out, although the usage of multi-
scale and multi-level info can indeed boost the detection per-
formance, massive failure detections still exist, e.g., the hollow
effects for those large size salient object, the fragmental de-
tections toward those salient object with complex appearance,
and the false-alarm detections for those scenarios with distinct
non-salient backgrounds. And we believe all these failure de-
tections are mainly induced by the feature conflicts between
the salient foregrounds and the non-salient backgrounds, which
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may easily lead to the learning ambiguity causing the above
mentioned defects.

C. The Inter-image Co-Saliency Based Methods

Co-saliency detection aims at finding out multiple salient re-
gions, which usually exhibit strong inter-image common con-
sistency over the handcrafted feature spanned sub feature space,
from a group of related images. Almost all the current state-of-
the-art co-saliency methods [23]-[26], [45], [46] are following
the common bottom-up thread, and the key rationale of these
methods is to conduct feature clustering before applying the
contrast based saliency revealing. And all these methods fol-
low the assumption that similar regions should exhibit similar
saliency detections. By assigning equally saliency value to those
pre-grouped sub-regions [47], the overall saliency detection can
be potentially boosted.

Liu et al. [23] propose to simultaneously conduct multi-level
hyper feature clustering (e.g., object prior, regional similar-
ity, boundary connectivity) over the hierarchical segmentations.
Then, for each clustered region, the intra image saliency clues
are fused as the final saliency estimation. Ge et al. [24] pro-
pose to utilize a two-round saliency propagation to boost the
inter-image co-saliency, i.e., it utilizes the image-level propa-
gation to coarsely locate the co-salient regions, and then the
regional-level propagation is conduced to refine previously esti-
mated saliency degree. Different from [23], [24] which mainly
focus on the designation of the inter-image clustering proce-
dure, Li er al. [25] focus their work on the designation of
the fusion scheme, which attempts to utilize both averaging
and multiplication to fuse multiple ranking scheme to reveal
saliency clues. Further, Ye er al. [45] utilize the pre-revealed
co-saliency as the binary labels to conduct weakly super-
vised learning. Then, the saliency predictions from multiple
weak classifiers are integrated to boost overall performance.
Li et al. [48] propose to utilize the pixel-wise correspondences
between the input image and an example image to transfer
saliency annotations from an existing example onto an input
image. Similarly, Ren et al. [46] propose to directly trans-
fer saliency values from the retrieved sub-group images using
the newly constructed inter-image correspondences. Specially,
Zhang et al. [26] propose to utilize the CNN based high-level
representations to guide the inter-image patch-wise clustering.
Meanwhile, by simultaneously seeking the intra-image contrast
and the inter-clustering consistency, those salient foregrounds
can be easily highlighted while compressing those non-salient
backgrounds.

Although many performance improvements have been made
by the above mentioned co-saliency methods, there still exists
one obstinate limitation which leads the co-saliency methods to
reach the performance bottle-neck, i.e., the real saliency degree
of those clustered inter-image regions may be totally different
(see demonstrations in Fig. 3), which easily lead to the learn-
ing ambiguity and then cause massive failure detections. Dif-
ferent from all these co-saliency methods which only focus on
their clustering from the appearance similarity perspective, our
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method further constraints the inter-image alignments to bias
toward the saliency consistency.

III. RE-LEARNING PRELIMINARIES

Since we propose to utilize the inter-image common con-
sistency to solve the learning ambiguity problem, we need to
acquire accurate inter-image correspondences first. In fact, sim-
ilar images should have large probability to contain non-local
regions with strong correlation toward the saliency assignment.
Given an input image (I), we utilize the common GIST+HOG
descriptor to retrieve a sub group images (IS, with maximum im-
age number being 5) which share similar scene topology to the
given target image. And only those inter-image correspondences
between I and IS are needed to be built.

A. Bi-Level Inter-Image Alignment

We demonstrate our bi-level inter-image alignment in Fig. 2
(marked with yellow color). Based on the SIFT-Flow [49] pro-
viding inter-image pixel-wise correspondences, our alignment
procedure interactively considers both the superpixel based
mid-level correlation and the object proposal based object-level
similarity and see demonstrations in Fig. 4.

We utilize the SLIC [50] to conduct mid-level superpixel
decomposition (with total 500 superpixels). And the Edge-
Boxes [51] method is adopted to formulate the object-level rect-
angle proposals (with total 1000 potential proposals). Mean-
while, the pixel-wise inter-image feature distance can be ob-
tained via SIFT-Flow method [49], which can be represented as
[|£(%), f(7)|]2, where f denotes the SIFT-Flow feature represen-
tation, ¢ denotes the i-th pixel in the given input image I, and j de-
notes the j-th pixel belonging to the retrieved sub-set images IS.
Therefore, we can formulate the inter-image mid-level binary
alignments QM = {0, 1}{¢X¢} and the inter-image object-level
binary alignments QP = {0, 1}{?*?} as Eq. (1), where ¢ and
0 respectively denote the aligned superpixel number and the
aligned object proposal number.

b1 d1s

arg min ZZ QM(3, 5) - d(Ss, S5)

QM.QP T 55

01 O1s

+Y > QP(k,1) - g(Py, P),

k=11=1

s.t, QM x 110t — 110} QP x 1101 = 1116}
(1)

Here S; denotes the i-th superpixel, and P}, denotes the k-th
object proposal. In fact, the first term Eq. (1) measures the mid-
level correlation between the given input image I and one of its
retrieved images IS, and the feature distance d can be detailed
as Eq. (2).

 Dues, 2oves, QS(w,v) - | f(w), f(v)]]2
d(S“ S]) - Zuesi Zvesj QS(U, 7)) 5

@)
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A. The Conventional FCN Based Methods
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Method Overview. (A) The current commonly-used approaches are frequently using the FCN method to conduct end-to-end training for image saliency

detection. (B) Our method is to reveal the common consistency between the current image and other similar images which contain similar non-local regions with

the current salient foregrounds.
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Fig.3. Comparison of our inter-image alignments and the co-saliency methods
frequently adopted alignments. The conventional methods only focus on the
appearance similarity, while our method further bias toward the inter-image
saliency consistency. Actually, our method can effectively avoid to align salient
regions with non-salient regions, even those regions are similar in appearance.

(a) SLIC Decomposition

(b) Non-local Alignment (c) Object-level Alignment

Fig. 4. The demonstration of our bi-level inter-image alignment.

where QS = {0, 1}1"W>*#} denotes the SIFT-Flow guiding
pixel-wise correspondences, and W and H respectively repre-
sent the image width and height.

Meanwhile, the right term Eq. (1) denotes the object-level
similarity, and its behind rationale is that those inter-image
aligned suerpixels should exhibit strong object-level similarity,

which can be formulated as Eq. (3).

9(Pe, P) =Y > d(Su,Su). 3)

uEPk ’UEP[

To this end, we can obtain the inter-image object-level alignment
info Q by pursuing the optimization over Eq. (1), which can be
effectively solved via the one-fixed-the-other-solved iterations.
Since both parts of Eq. (1) are mutually constraint with each
other, for each iteration steps, we respectively perform the top-
K (i.e., we initially set K = 10) best alignments alternatively.
Meanwhile, to guarantee the convergency, we shrink the slack
variable KK — 1 after each iteration.

Also, in order to strike the trade-off between performance
and computation cost of Eq. (1), we simultaneously consider
both the objectness score and the overlapping rate to initially
select V' object-level rectangle proposals for each image from
the Edgeboxes provided potential proposals. Therefore, our ini-
tially selected object-level proposals can simultaneously exhibit
high objectness score while averagely distributed over the entire
image. Meanwhile, the total number of the selected object-level
proposals (we empirically assign V' = 100) should also be as few
as possible while maintaining informative to constraint accurate
superpixel-level alignment, which can be detailed as following:

v
{P*} = arg max Zscorei—l—ZHci,chg, 4)

i,j€[1,V] i#5

where score; denotes the objectness score of the ¢-th object-level
proposal, and the right term controls the overlapping rate of the
selected object proposal (P*), ¢; denotes the center location of
the j-th proposal.

Compared to the solely SIFT-Flow correspondence guided
inter-image non-local alignment method [52], our method can
improve the alignment average correct rate from 69% to 89%
for all the adopted benchmark dataset.
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B. Multi-Scale Deep Feature Computation

By using the alignment info QP (Eq. (1)), we can easily align
each object proposal in the given image (we name it as “tar-
get proposal”) to multiple object proposals from the retrieved
sub-group images. Thus, the training dataset can be formu-
lated as object-level instance pairs. As we mentioned previously,
our deep model focuses on the inter-image common saliency
consistency learning rather than the conventional appearance
similarity. So the desired deep features should be able to rep-
resent the non-local contrast info of the given instance pair.
Therefore, for each instance pair, we utilize VGG16 to auto-
matically compute the high-dimensional deep feature to rep-
resent the “target superpixel” which is located at the center
location of the given target proposal. Meanwhile, we also uti-
lize the VGG16 deep feature of the near surrounded regions of
the target superpixel to represent the non-local contrast. There-
fore, we can get a 16384-dimensional features (4096 x 4) to
represent the inter-image object-level contrast info. And the
deep feature of the i-th instance pairs can be formulated as :

Fi = {&, &}, where & presents the two scale convolutional
feature (4096 x 2) of the ¢-th superpixel in the given target im-
age, and ; also denotes the two scale convolutional feature
of the j-th superpixel in the corresponding retrieved sub-group
image.

IV. OUR NOVEL SALIENCY RE-LEARNING MODEL

Given a pre-learned saliency model, our method proposes to
re-learn those “hard-to-detect instances” whose correct saliency
detection failed to be performed by the given saliency model. The
behind rationale of our method is that those hard-to-detect in-
stances may be correctively re-learned if its aligned inter-image
object-level info is already correctly classified by the given
saliency model. To achieve this, our re-learning model should
simultaneously acquire the following three attributes:

First, in order to improve the detection performance while
avoiding the over-fitting problem, our re-learning model should
focus on those hard-to-detect instances;

Second, those hard-to-detect instances aligned info should
be potentially able to alleviate the conventional feature conflicts,
thus only those Instance Paris that may “potentially bring perfor-
mance improvements” will be feeded to our re-learning model;

Third, for those hard-to-detect instances, our re-learned
saliency model should be able to conduct high-quality image
salient object detection.

To full-fill the above mentioned first two aspects, we propose
to utilize semi-supervised Instance Pair Filter (Fig. 2) to identify
those valuable Instance Pairs. Thus, those filtered Instance Pairs
are all with the formulation as: { CFhard + CFeasy}. Finally,
our saliency model will be jointly re-learned based on those
filtered Instance Pairs, and the overall architecture of our method
can be found in Fig. 2.

A. Bi-level Pseudo GT for Image Pool

Since the inter-image alignment performance is positively
correlated to the image pool size, we propose to train our
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SRC Saliency Man  CRFa CRFc Pseudo-GT

Fig. 5. The demonstration of our bi-level CRF saliency assumptions, where
the BLUE represents the pseudo salient regions, the BLACK represents
the pseudo non-salient regions, and those filtered regions are marked by
RED color.

Instance Pair Filter within the semi-supervised manner to en-
sure the scalability of the adopted image pool. Thus, given an
existing pre-trained deep saliency model from which our method
attempt to re-learn, we propose to utilize a bi-level CRF (Con-
ditional Random Fields) to formulate pseudo-GT of the adopted
image pool, and the CRF kernel function between pixel ¢ and
pixel j can be formulated as Eq. (5).

Based on the saliency predictions of the given deep saliency
model, we respectively conduct two CRF binary assumptions
with two sets of pre-defined CRF parameters, i.e., the proxim-
ity parameter 0, the similarity degree parameter 03, and the
smoothness degree parameter 0. .

— — 2 2
(i.7) = wWen ‘{x7y}1 {x,y}j| |Ii _ Ij‘
k(ij) w exp ( 292 202

B

appearance

o @eap (_ {2y} {x,y}jl2> )

202

smoothness

where the {z,y}; denotes the location of the i-th pixel, I; de-
notes the corresponding color vector, w is the weighting param-
eter which is identical to the paper [53]. To formulate pseudo
GT for our adopted image pool, we attempt to assign CRF
with aggressive 6,5, = {5,1,2} (CRFa) to focus on the bi-
nary assumption’s accuracy. Meanwhile, we use another CRF
with conservative 6, 5 4 = {200, 50, 20} (CRFc) to bias toward
the binary assumption’s integrity. Hence, based on the above
computed two-level binary saliency assumptions (i.e., CRFa
and CRFc), the corresponding pseudo GT can be formulated as
followed:

1) We regard the intersections of the obtained two-level bi-
nary CRF assumptions (i.e., (CRFc N CRFa), as those
most trustworthy salient foreground regions and see
BLUE regions in Fig. 5.
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TABLE I
LABELING SCHEME FOR INSTANCE PAIR FILTER TRAINING

Conditions Labels

T T
IOU(pG?i,j, GTiIg) < 'T; and |-Positive
IOU(GTi'j7 pGT; j) > To

Otherwise 0-Negative

2) We regard the residual between the entire image and
the union of two-level binary CRF assumptions as those
most trustworthy non-salient background regions and see
BLACK regions in Fig. 5.

Also, because of the large uncertainty degree, we filter out
those remaining regions and see RED regions in Fig. 5. By using
our bi-level pseudo GT, the accuracy lower bound of our inter-
image alignment achieves about 81%.

B. Semi-Supervised Instance Pair Filter

We propose to perform weakly supervised learning to train
our Instance Pair Filter, i.e., FC5 (see details in Fig. 2) full
connected layers followed with one binary classifier, and then
we use it to identify those “valuable” instance pairs. Here we
formulate the training label of those instance pairs in Table I
where IOU(+) denotes the Intersection Overunion Ratio, GT
and pGT respectively denote the real ground truth and the
previously obtained pseudo ground truth, superscript I and IS
respectively denote the given target image and its retrieved
and aligned sub-group images, the subscript ¢ and j respec-
tively indicate the image index and the superpixel index, and
Ty, Ts are two predefined hard threshold to control the trust-
worthy degree toward our labeling scheme, which we empiri-
cally assign Ty = 15%, To = 90% to balance the trade-off be-
tween training sample number and the corresponding trustwor-
thy degree. In Table I, the condition IOU(pGT}{;, GTj;) < T,
can well locate those hard-to-detect cases, and the condition
IOU(GTj;, pGTE) > T ensures those aligned instance, ex-
hibiting identical saliency degree. By using the labeling scheme
in Table I, all Instance Pairs have already been assigned with
training label (1/0), and we randomly select 30 k positive in-
stance pairs and 50 k negative instance pairs to construct our
training dataset to train our Instance Pair Filter. The qualitative
demonstrations toward the advantage of our Instance Pair Filter
can be found in Fig. 6.

C. Joint Saliency Re-Learning

Since those filtered instance pairs can well handle the feature
conflicts and alleviate the learning ambiguity, we propose to train
multiple binary classifiers for the initial saliency estimations.
And then, we utilize the joint learning scheme to achieve high-
quality final saliency predictions.

We formulate our saliency training dataset (containing NV fil-
tered instance pairs) as ({CFhard,, CFeasy,,},Z,), where
n=1.,N, 1<m < M, Z denotes the binary saliency
ground truth of the n-th superpixel, and M denotes the maxi-
mum number of aligned inter-image info, which we empirically
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SRC GT MDF without Instance with Instance
Pair Filter Pair Filter
Fig. 6. Demonstrations of the advantage of our Instance Pair Filter.

setitto 5. Thus, by taking the trust degree as descent ranking or-
der, we can parallel learn m binary saliency classifiers, and L,
denotes the corresponding loss. Meanwhile, we utilize the afore-
mentioned FC5 full connected layers followed with an additional
binary classifier to assemble these binary saliency classifiers to
respect the joint saliency loss Ljin, which can be formulated
as follows:

M
Ljoint =0 (th (Z Om *8m - Wm>> )
m=1

where d,,, € {0, 1} denotes the output of our Instance Pair Filter,
o(-,-) measures the image-level class-based entropy loss [22],
h(-) denotes the sigmoid function, g,, denotes the similarity
between the target instance and its m-th aligned info (Eq. (3)),
and w,,, denotes the output of the last FC5 layer when training
the m-th binary saliency classifier. Thus, we can formulate the
assembled final loss (i.e., totally M+1 classifiers) as Eq. (7) to
achieve high-quality saliency prediction.

(6)

M
Lfinal = Ljoint + Z Oy - Lma

m=1

(N

where «,, (Eq. (8)) denotes the assemble weight which is in-
versely correlating to the m-th classifier’ error e,

1- €m

1
Ay, = 3 log ®)

€m

To this end, the re-learned final saliency can be predicted via per-
forming the spatial-weighting scheme [20] over the outputs of
the re-learned saliency model, and we show the pictorial demon-
strations in Fig. 7 and Fig. 8.

D. Differences Between [52] and Our Method

Here we summarize the main differences between [52] and
our method in the following 3 aspects:
1) the inter-image correspondences constructed by [52]
are solely based on the SIFT-Flow providing pixel
-level/patch-level similarly, which may produce incorrect
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than others.

2)

3)

alignments toward those large inter-image displacement.
As for our method, we interactively consider both the
mid-level correlation and the object-level similarity to al-
leviate the displacement induced problem, improving the
inter-image correspondences accuracy.

our method utilizes the newly designed instance filter to
further exclude those inter-image correspondences which
may not be really helpful for the saliency re-learning (e.g.,
those incorrect correspondences), while the [52] is less
considerate of such perspective.

the core rationale of [52] is to directly formulate the
saliency degree via utilizing the inter-image correspon-
dences to transfer saliency labels/anotations from the re-
trieved images. Thus, [52] needs to know the saliency
labels/anotations beforehand, yet such saliency ground
truth is not needed in our “semi-supervised” saliency
re-learning framework. Also, by increasing the image pool
size, we can effectively avoid the situation that the similar
images can not be retrieved.

RFCN Our(SRM)

RFCN Our(SRM)

SRM Our(RADF) RADF Our(BRN) BRN Our(PAGRN) PAGRN

9o | 95 | 3o 3w

SRM Our(RADF) RADF Our(BRN) BRN Our(PAGRN) PAGRN

Visual comparison of saliency maps (Part I). Note that GT stands for Ground truth. Apparently, our method can produces more accurate saliency maps

V. EXPERIMENTS AND RESULTS

We have conducted massive quantitative experiments to val-
idate the effectiveness of our method. We also have com-
pared our method with 13 state-of-the-art methods over 5
public available dataset to demonstrate the advantages of our
method.

A. Evaluation Datasets

ECSSD [35]. This dataset consists of 1,000 semantically
meaningful natural images coupling with complex backgrounds,
which includes many semantically meaningful but structurally
complex images for evaluation. The images are acquired from
the internet and 5 helpers were asked to produce the ground truth
masks.

HKU-IS [17]. This dataset consists of 4,447 images, and most
of these images simultaneously contain multiple salient objects.

PASCALS-S [64]. This dataset consists of 850 images with
multiple salient objects. This dataset was built using the
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than others.

validation set of the PASCAL VOC 2010 segmentation chal-
lenge. The ground truth saliency masks were labeled by 12 sub-
jects.

SOD [65]. This dataset consists of 300 challenging images,
and it was originally designed for image segmentation. This
dataset is very challenging since many images contain multiple
salient objects either with low contrast or overlapping with the
image boundary.

DUTS-TE [63]. DUTS dataset is currently the largest saliency
detection benchmark, and contains training images (DUTS-TR)
and test images (DUTS-TE) with high quality pixel-wise anno-
tations. Both the training and test sets contain very challenging
scenarios for saliency detection. This dataset consists of 5,019
images, which has moderate complex and diversified contents.

B. Training Details

Since our bi-level inter-image alignment requires a large num-
ber of images to ensure its effectiveness, an additional training
dataset (randomly selected 5 K images from DUTS-TR [66])
is adopted to facilitate the re-learning procedure of the origi-
nal method, i.e., training set of Our(DSS) is composed of the
original adopted MSRA-B and the newly adopted DUTS-TR-5
K. We trained the proposed network for 80 K iterations, using
Stochastic Gradient Descent (SGD) with a moment 0.9, weight
decay 0.005, and learning rate 0.001.

C. Evaluation Metrics

We evaluate our model using four widely adopted metrics
as suggested by Borji et al. [67] including the precision-recall

==t
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Visual comparison of saliency maps (Part IT). Note that GT stands for Ground truth. Apparently, our method can produces more accurate saliency maps

(PR) curve, the F-measure, Mean Absolute Error (MAE) and
Area Under Curve (AUC). Given a predicted saliency map, we
perform binary segmentation with hard threshold T, resulting in
a pair of precision and recall values when the binary mask is
compared against the ground truth. If it is deemed as successful
detection, the final precision-recall curves are obtained by vary-
ing T from O to 255. As the recall rate is inversely proportional
to the precision, the tendency of the trade-off between precision
and recall can truly indicate the overall video saliency detection
performance. And the F-measure is an important performance
indicator when the precision rate conflicts the recall rate, which
can be computed by

(1+ %) x Pre x Rec

9
B2 x Pre + Rec ’ ®

F — measure =

where the Pre and the Rec denote the corresponding precision
rate and recall rate respectively. According to the suggestion
proposed by Achantay et al. [68] , we set 32 = 0.3 to weigh
precision more than recall. We report the maximum F-measure
score among all pairs of precision and recall values. Although
commonly used, PR curves have limited value because they fail
to consider true negative pixels. For a more balanced compar-
ison, we adopt the MAE as another evaluation criterion. MAE
measures the numerical distance between the ground truth and
the estimated saliency map, and is more meaningful in evaluat-
ing the applicability of a saliency model in a task such as object
segmentation. It is defined as the average pixelwise absolute dif-
ference between the binary ground truth (GT) and the saliency
map (SAL). The MAE evaluates the saliency detection accuracy
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Quantitative comparisons of the proposed approach and 13 baseline methods including GU13 [54], MB15 [55], BSCA15 [56], MDF16 [21], MST16 [57],

DSS17[22], AMU17[15], SRM17[58], UCF17[59], RADF18 [16]RFCN18 [60], BRN18 [61] and PAGRN18 [62] over DUTS-TE [63], ECSSD [35], HKU-IS[17]
dataset. The first two columns respectively demonstrate the PR curves and the F-measure curves under different thresholds, and the last column demonstrate the
averaged precision rate and averaged recall rate corresponding to the maximum F-measure. The mark (+) denotes that an additional DUST-TR-5K dataset is added

to the training dataset.

by Eq. (10).
1 w H
MAE = ;; ISAL(x,y) — GT(x,y)|, (10

where W and H represent width and height of the given image,
SAL(x,y) denotes the saliency value of the pixel with coordi-
nates (x,y), and GT denotes the corresponding binary ground
truth. The ROC curve can be conveniently generated according
to the true positive rates and false positive rates obtained dur-
ing the calculation of the PR curve. The AUC is the area under
the ROC curve. A perfect model will score an AUC of 1, while
random guessing will score an AUC around 0.5.

Ziepos Rank; —
M x N ’

where Rank; represents the serial order of the i-th element, M is
the number of positive samples and [V is the number of negative
samples.

Mx(M+1)
2

AUC = an

D. Comparison Results

We have compared our method with 13 state-of-the-art
methods, including GUI13 [54], MBI15 [55], BSCAI15 [56],
MDF16 [21], MST16 [57], DSS17 [22], AMU17 [15],

SRM17 [58], UCF17 [59] , RADF18 [16] RFCNI18 [60],
BRNI18 [61] and PAGRNI18 [62]. For fair comparison, the
saliency map/executable code of the compared methods are
all provided by authors with parameters/implementations
unchanged.

To validate the effectiveness of our method, we evaluate the
performance of our re-learning scheme by respectively combin-
ing 7 most recent state-of-the-art methods, i.e., Our-MDF16,
Our-DSS17, Our-SRM17, Our-RADF18, Our-RFCN18, Our-
BRN18 and Our-PAGRN18. And both the qualitative and the
quantitative results suggest the significant performance im-
provements, and the details can be found in Fig. 7, Fig. 8, Fig. 9
and Fig. 10.

As we can see from the PR curves and F-measure curves
in Fig. 9 and Fig. 10, almost the top-ranked curves are all
our re-learned method, i.e., all those re-learned deep model
Our(+) are marked with solid lines, while the original base-
line methods are marked with dash lines. Also it can be found
in the last column of Fig. 9 and Fig. 10 that our method can
consistently achieves almost 4%~8% F-max score improve-
ments. Meanwhile, as for PR curves with small dynamic thresh-
olds (i.e., with large Rec rate), the Pre rates of our method
are also substantially larger than the corresponding baseline
methods.
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Quantitative comparisons of the proposed approach and 13 baseline methods including GU13 [54], MB15 [55], BSCA15 [56], MDF16 [21], MST16 [57],

DSS17 [22], AMU17 [15], SRM17 [58], UCF17 [59] , RADF18 [16] RECN18 [60], BRN18 [61] and PAGRN18 [62] over PASCAL-S [64] and SOD [65] dataset.
It should be noted that the result of PAGRN18 over the SOD dataset is not available. The mark (+) denotes that an additional DUST-TR-5K dataset is added to the

training dataset.

We also compare our approach with the existing methods in
terms of F-meature and MAE scores. The quantitative results are
shown in Table II and III. Our approach achieves the best score
(F3 and MAE) on easy datasets, such as ECCSD [36]. Besides,
we also observe that the proposed approach behaves even better
on more difficult datasets, such as HKUIS [21], DUTS [66], and
PASCAL-S [64], which contain a large number of images with
multiple salient objects.

As we can see in Fig. 7 and Fig. 8, our method can effectively
correct those low contrast foregrounds and backgrounds in-
duced by false-alarm detections. As we can see in the last row of
Fig. 10, the overall performance of the adopted baseline meth-
ods can be ranked as PAGRN18 > BRN18 > RADF18 >
RFCN18 > SRM17 > DSS17 > MDF16. After using our
re-learning scheme to boost the detection performance, the
overall performance can be significantly improved while
maintaining identical ranking order, i.e., Our(PAGRN18) >
Our(BRN18) > Our(RADF18) > Our(RFCN18) > Our
(SRM17) > Our(DSS17) > Our(MDF16). Meanwhile, as
the performance of our re-learning scheme is dependent on
the quality of the inter-image alignments, the performance
improvement degree may be limited if the given target image
exhibits large difference toward the retrieved sub-group images,
and this problem can be effectively solved via expanding the
image pool size.

S
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Fig. 11.  Component evaluation results, including the averaged PR curve and
the averaged F-measure curve over the HKU-IS [17] dataset, ECSSD [35] and
SOD [65] dataset.

E. Component Evaluation

To validate the effectiveness of our method, we perform the
component evaluation via using averaged PR curve and averaged
F-measure curve over the HKU-IS [17] dataset, ECSSD [35]
and SOD [65] dataset. Here we regard the RADF18 as the base-
line method.

As we can see the detailed results in Fig. 11, where the con-
ventional RADF (C1) exhibits the worst performance. Also we
can notice that solely using our re-learning framework over the
RADF can not guarantee to achieve an improved performance
(C2), because the constructed inter-image correspondences may
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TABLE 1T
COMPARISON OF QUANTITATIVE RESULTS INCLUDING MAXIMUM F-MEASURE (LARGER IS BETTER), MAE (SMALLER IS BETTER) AND AUC (LARGER IS BETTER),
AND THE MARK (+) DENOTES THAT AN ADDITIONAL DUST-TR-5K DATASET IS ADDED TO THE TRAINING DATASET. THE TOP THREE RESULTS ARE
HIGHLIGHTED IN RED, GREEN, AND BLUE, RESPECTIVELY. THE RESULT OF PAGRN18 OVER SOD DATASET IS NOT AVAILABLE, SO THE RESULT OF
SOD-OUR(PAGRN) Is ABSENT

Method(Year) DUTS-TE [63] ECSSD [35] HKUIS [17] PASCAL-S [64] SOD [65]
Fzs MAE AUC F; MAE AUC F; MAE AUC F; MAE AUC Fz; MAE AUC
Our(RADFI8) 88 058 954 957 034 971 948 028 970 867 081 933 87  .108 879
Our(RFCN18) 859 063 953 957 047 965 948 046 974 831 086 938 849 128  .895
Our(BRN18) 882 037 949 966 035 975 945 032 969 888 058 949 872 093  .869
Our(SRM17) 861 032 969 944 033 945 836  .027 988 878 053 .95 815 .110 .89
Our(DSS17) 838 064 941 932 065 956 920 052 942 850  .090 917 825 136  .834
Our(MDF16) 777 082 922 870 072 930 875  .094 932 786 119 821 797 135 859
Our(PAGRN18) 889 038 914 953 042 950 938 030 949 876 .079 911 / / /
RADFI8(+) [16] 841  .061 940 941 039 969 944 033 966 .845 099 917 846  .113  .866
RECNI8(+) [60] .798  .070 949 912 060 .966 901 048 971 833  .095 932 822  .141  .889
BRNI8(+) [61] 843 051 966 936 044 983 922 041 981 856  .068 953 851 105  .902
SRMI7(+) [58] 829 048 967 928 041 988 917 .04l 934 851  .080 960 846  .107 919
DSS17(+) [22] 831 068 941 921 072 955 912 058 968 813 097 915  8I8  .141  .891
MDFI6(+) [21] 731 092 918 830 .13 939 841 .11 946 771  .135 909 803  .152 .88l
PAGRNI18 [62] 856 056 954 926 061 968 917  .048 970 851 092  .935 / / /
TABLE III

CONTINUED TABLE : COMPARISON OF QUANTITATIVE RESULTS INCLUDING MAXIMUM F-MEASURE (LARGER IS BETTER) , MAE (SMALLER IS BETTER) AND AUC
(LARGER IS BETTER). THE TOP THREE RESULTS ARE HIGHLIGHTED IN RED, GREEN, AND BLUE, RESPECTIVELY

Method(Year) DUTS-TE [63] ECSSD [35] HKUIS [17] PASCAL-S [64] SOD [65]

Fg MAE AUC Fg MAE AUC Fg MAE AUC Fg MAE AUC Fg MAE AUC
BSCAIL5 [56] 0593 0.199 0.875 0.758 0.183 0922 0.719 0.174 0910 0.666 0.224 0.871 0.659 0.266 0.840
MBI5 [55] 0.616 0.176 0898 0.739 0.171 0919 0.728 0.150 0929 0.676 0.198 0.884 0.664 0.233  0.853
MSTI16 [57] 0599 0.152 0.857 0.731 0.149 0.884 0.721 0.128 0.893 0.666 0.186 0.847 0.660 0.219 0.798
AMU17 [15] 0.777 0.085 0960 0915 0.059 0982 0.897 0.053 0983 0.833 0.095 0956 0.799 0.146 0913
UCF17 [59] 0772 0.112 0961 0903 0.078 0982 0.888 0.073 0984 0.821 0.120 0957 0.808 0.164  0.930
GUI13 [54] 0496 0225 0772 0.636 0.223 0.808 0.637 0201 0.827 0567 0.258 0.765 0.563 0.280 0.736

not be really helpful to alleviate the learning ambiguity problem.
On the contrary, those incorrect inter-image correspondences
may further lead the learning ambiguity even worse. Thus, we
propose to utilize the “semi-supervised instance pair filter” to al-
leviate the above mentioned limitations toward the inter-image
regional alignments, achieving a significant performance im-
provement, and see the quantitative curves C3 and C4.

Also, since the inter-image alignment performance is pos-
itively correlated to the retrieval image pool size, the overall
detection performance can be further improved by using the
pseudo GT to increase the available retrieval pool size, and see
the quantitative curves C4 and C5. Meanwhile, it should be noted
that the top-K choice in Section III-A is also important for the
overall detection performance (see the differences respectively
between {C3, C4} and {C5, C6}), and we assign it to 10 as the
optimal choice.

F. Limitations

Our method tends to be time-consuming in general. In fact,
excluding the time consumption of the pre-learned deep saliency

mode (i.e., RADF, DSS, MDF), our method needs an additional
0.9 s. In more detail, on a desktop computer with i7-6700 k
4.00 GHz CPU, GTX 1080 GPU, 32 GB RAM, the image
retrieval takes about 0.01 s (with CPU parallel computation),
the SIFT-Flow guided inter-image alignment takes about 0.4 s
(with CPU parallel computation), the deep feature computation
takes about 0.4 s, and the saliency prediction takes about 0.1 s.
Since the most time-consuming steps of our method are mainly
induced by the CPU related computations, we will attempt to full
implement these steps on GPU (i.e., the CUDA acceleration) in
our near future work.

VI. CONCLUSION

In this paper, we have proposed a novel saliency re-
learning method to improve the detection performance of those
pre-learned deep saliency model. Based on any pre-learned deep
saliency model, our objective is to utilize those easy-to-detect
training instance to facilitate those hard ones. We establish the
inter-image correspondences by interactively considering both
the object-level similarity and the non-local superpixel-wise
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correlation, thus the conventional feature conflicts can be effec-
tively resolved. Meanwhile, we have newly designed a novel
deep network to jointly learn common consistency of inter-
image saliency for the high-quality image saliency detection.The
quantitative comparisons between our new method and the
state-of-the-art methods have confirmed the effectiveness of our
method.
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