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ABSTRACT

Electronic health records (EHR) are often generated and collected
across a large number of patients featuring distinctive medical
conditions and clinical progress over a long period of time, which
results in unaligned records along the time dimension. EHR is also
prone to missing and erroneous data due to various practical rea-
sons. Recently, PARAFAC?2 has been re-popularized for successfully
extracting meaningful medical concepts (phenotypes) from such
temporal EHR by irregular tensor factorization. Despite recent ad-
vances, existing PARAFAC2 methods are unable to robustly handle
erroneousness and missing data which are prevalent in clinical prac-
tice. We propose REPAIR, a Robust tEmporal PARAFAC2 method
for IRregular tensor factorization and completion method, to com-
plete an irregular tensor and extract phenotypes in the presence
of missing and erroneous values. To achieve this, REPAIR designs
a new effective low-rank regularization function for PARAFAC2
to handle missing and erroneous entries, which has not been ex-
plored for irregular tensors before. In addition, the optimization of
REPAIR allows it to enjoy the same computational scalability and in-
corporate a variety of constraints as the state-of-the-art PARAFAC2
method for efficient and meaningful phenotype extraction. We
evaluate REPAIR on two real temporal EHR datasets to verify its ro-
bustness in tensor factorization against various missing and outlier
conditions. Furthermore, we conduct two case studies to demon-
strate that REPAIR is able to extract meaningful and useful pheno-
types from such corrupted temporal EHR. Our implementation is
publicly available!.
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1 INTRODUCTION

Tensors are a popular algebraic structure for a wide range of applica-
tions, due to their exceptional capability to model multidimensional
relationships of the data. Among them, regular tensors with aligned
dimensions for all modes have been extensively studied, for which
various tensor factorization structures are proposed depending on
the applications, e.g. Canonical Polyadic (CP) [8, 13, 15], Tucker
[35], and tensor singular value decomposition (SVD) [21, 22]. On the
contrary, the irregular tensor with unaligned size along one of its
modes is under studied [4, 14], despite its prevalence in real-world
practice.

As the motivating example considered in this paper, electronic
health records (EHR) are datasets collected during clinic practice,
which encompasses clinical records of a large number of distinct pa-
tients across a long period of time. EHR data do not always directly
and reliably map to medical concepts that clinical researchers need
or use [20]. Tensor factorization methods have shown great poten-
tial in discovering meaningful and interpretable clinical concepts
(or phenotypes) from complicated health records [2, 16-18, 32, 37].
The resulting tensor factors are reported as phenotype candidates
that automatically reveal patient clusters on specific diagnoses and
procedures [9]. Such analysis can be particularly useful for under-
standing disease subtypes and clinical progressions in different
subpopulations for new and rapidly evolving diseases such as the
current COVID-19 pandemic. Yet, temporal EHR data poses addi-
tional challenges for phenotype analysis due to: 1) the irregularity
of the data along the time dimension, and 2) the potentially missing
and erroneous entries during the data collection over long period
of time. Concretely, the records are unaligned in time from patient
to patient because of the varying disease states and progressions,
which lead to variable number of clinic encounters and different
time gaps between consecutive visits. In addition, they are prone
to corruptions due to various reasons during clinical practice, for
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example, equipment failure, inexperienced clinical staff, and in-
accurate information recording. As a result, most existing tensor
factorization frameworks for regular tensors are not applicable or
do not work well.

PARAFAC?2 [12] is a dedicated multidimensional algebraic frame-
work for modeling irregular tensors, which has a natural factoriza-
tion structure for handling variable sizes along the unaligned mode.
In particular, for temporal EHR, recent advances have improved its
computational scalability as well as its factorization interpretability
[2]. Despite these improvements, existing PARAFAC2 methods are
not robust to missing and erroneous elements in the data, which
severely limits its applicability to practical temporal EHR data anal-
ysis.

For regular tensor factorization frameworks, robust mechanisms
are well developed to handle missing and erroneous data, among
which the robust low-rank tensor minimization (RLTM) is one of
the most successful approaches [1, 10, 11, 25-27, 29, 34]. Different
low-rank regularization functions are adopted by these methods,
which vary according to different types of tensor factorization.
However, it is still unknown how to impose low-rank regularization
for PARAFAC? and design an explicit RLTM mechanism to handle
missing entries and remove erroneous entries.

To fill this gap, we propose REPAIR, a Robust tEmporal PAFA-
FAC2 method for IRregular tensor factorization and completion
(c.f. Figure 1), which is the first robust irregular tensor recovery
method. Given each patient input data Oy with erroneous and
missing entries, REPAIR performs RLTM to separate out the erro-
neous entries E; from the underlying clean and completed compo-
nents Xy, and uses the clean tensor to form a common low rank
space for PARAFAC2 based candidate phenotype extraction, i.e.
X ~ UrSEVT. We achieve this by addressing two main challenges:
First, specific low-rank regularizations need to be designed for
PARAFAC? to suit its decomposition structure which has not been
explored in existing work. Second, the robust factorization needs
to incorporate additional constraints such as temporal smoothness,
non-negativity and sparsity [2] to obtain more meaningful and
accurate phenotypes.

We summarize our contributions below:

(1) We propose a robust PARAFAC2 tensor factorization method for
irregular tensors with a new low-rank regularization function
to handle potentially missing and erroneous entries in the input
tensor. This is the first work that explicitly handles missing and
erroneous data for irregular tensor factorization.

We design an efficient two-phase optimization to simultane-
ously: 1) learn and complete the clean underlying tensor by
decomposing the original tensor {Oy} into the underlying low-
rank tensor {Xy} and the sparse error tensor {Ex} ( Fig. 1 blue
box); and 2) extract phenotypes by factorizing the clean ten-
sor X; = US; VT (Fig. 1 red box). The phenotype extraction
phase incorporates many practical constraints for improving
interpretability of the extracted phenotypes, including temporal
smoothness, non-negativity and sparsity.

We evaluate REPAIR on two real-world temporal EHR datasets
with a set of experiments, which verify the improved recovery
and factorization robustness against missing and erroneous
values. Through two case studies: identification of higher-risk
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Table 1: Symbols and notations used in this paper

Symbol Definition
a, A A Vector, Matrix, Tensor
Ap k-th frontal slice of A
A Mode-n matricization of A
I 1l {1-norm
- 1lF Frobenius norm
[l Il Nuclear norm
* Hadamard (element-wise) multiplication
Khatri Rao product
o Outer product
() Inner product

patient subgroups, and in-hospital mortality prediction, we
further demonstrate the superior utility of the factorization
outputs of REPAIR to facilitate downstream temporal EHR data
analysis.

2 BACKGROUND

In this section, we define the notations and present background on
robust low-rank tensor minimization followed by PARAFAC2 and
its application for temporal EHR phenotyping. Table 1 summarizes
commonly used notations.

For temporal EHR, let the observed tensor be O = {Oy} €
{RT*J} (c.f. leftmost tensor in Figure 1) with 3 modes, where each
frontal slice Oy represents patient k’s record of J types of diagnosis,
treatments or lab test results (along mode 2), across I clinical
encounters (along mode 1) varying from patient to patient. The
aim of temporal EHR phenotyping is to discover medical concepts
by making use of all K frontal slices, i.e. the information of all K
patients, and discerning as much inter-relationship across different
patients (i.e. across frontal slice) as possible.

2.1 Robust Low-rank Tensor Factorization and
Completion

For regular tensors (i.e. assuming {Oy} are aligned in all dimen-
sions), the robust low-rank tensor minimization (RLTM) is one of
the most successful approaches to handle incomplete and corrupted
input tensors. For such a regular tensor O, RLTM separates it into
an underlying clean and completed tensor X and an error tensor
€. In practice, the clean part is often low-rank while the erroneous
part is sparse. Thus, RLTM imposes a low-rank regularization func-
tion || - ||, and a sparsity regularization function || - [l; on X and &,
correspondingly:

argmin [ X[l + poll€ll1, s.t. Po(0) = Po(X + &), (1)
X

where Q is the index set of non-missing entries and Pq keeps
entries in Q and zeros out others (i.e., missing entries), py is a
balancing constant. RLTM is a multidimensional extension to the
robust low-rank matrix minimization [7], but it is intrinsically
more difficult. The main challenge lies in introducing a proper low-
rank definition and designing an effective and efficient low-rank
regularization. Unlike a low-rank matrix, the low-rank definition
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PARAFAC?2 for Phenotype Extraction

Figure 1: Overview of REPAIR: robust irregular tensor PARAFAC?2 factorization for EHR phenotyping on input patients’ data O.
Oy contains erroneous and missing entries, which can be decomposed into erroneous E;. and clean and completed components
denoted by X;. Po(0x) = Po(Ef + Xi). The underling clean tensor is decomposed by PARAFAC2 into X ~ U S, V™.

for tensor is not unique and should be adapted according to each
tensor decomposition model (e.g., CP, Tucker, tensor SVD).

For example, Tucker model defines the rank of X based on the ma-
trix rank of its matricization, i.e. the vector (rank(X(y)), rank(X z)),
rank(Xs))). CP decomposes X € RIXEXE into the sum of R rank-
one tensors by X = Zlle A(:;,r)oB(:,r) o C(:,r), where A, B, C are
factorization matrices and the smallest R to achieve such decompo-
sition is defined to be the rank R* of X under CP model. It is difficult
to accurately estimating R* for CP (in fact, NP-hard to determine),
as well as to deal with matrix rank used by Tucker. More tractable
relaxations are then proposed with various low-rank regularization
functions [10, 25, 26, 34].

Despite their varieties, the existing low-rank regularization func-
tions are designed for regular tensor factorization models and
cannot be applied to an irregular tensor factorization model like
PARAFAC?2. In fact, they are not even well-defined on irregular
tensors and PARAFAC2. Thus, there lacks a tractable and effective
low-rank regularization for PARAFAC2 applicable to large-scale
irregular tensors.

2.2 PARAFAC?2 for Temporal EHR

PARAFAC? is the state-of-the-art tensor factorization structure for
irregular tensors that do not align naturally along one of its modes.
The classic PARAFAC2 (c.f. Fig. 1 red box) for irregular tensor {X }
is formalized below [24]:

DEFINITION 1. (Classic PARAFAC2 model)

K
argmin

1
5%k - U Se V11,
(U L {Sk 1,V 1

st. U = QuH, Q[ Q) = L Sy is diagonal, where Q. € RIXR g
orthogonal, I € RR*R is the identity matrix and R is the target rank
of the PARAFAC2 decomposition.

For temporal EHR data, the factorization matrices have the fol-
lowing interpretation:

> U € R ¥R contains the temporal evolution for patient
k: the r-th column of Uy indicates the evolution of the r-th
phenotype for all Iy clinical visits for patient k.
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>V € RI¥R reflects the phenotypes. Each non-zero entry
of V indicates the membership of the corresponding j-th
medical feature in the r-th phenotype.

> S € RFR¥R js a diagonal matrix with the importance
membership of patient k in each one of the R phenotypes.
It is often organized into W € REXK with each row of W
composed by the diagonal of S, i.e. W(:, k) = diag(Sg).

SPARTan [32] scales PARAFAC2 to large temporal EHR pheno-
typing by introducing a sparse MTTKRP (abbreviated for Matricized-
Tensor-Times-Khatri-Rao-Product) module, which takes advantage
of the high input sparsity to reduce the per-iteration cost. Following
its efficiency improvement, COPA [2] further introduces various
constraints/regularizations to improve the interpretability of the
factor matrices for more meaningful pheonotype extraction. For
example, COPA introduces the M-spline constraint [33] to Uy to
capture the temporal smoothness, non-negative constraint to S to
get positive weight, and sparsity (e.g., {1 norm regularization) to V
to induce sparse phenotype definitions.

In sum, despite their improvements on computational efficiency
and output interpretability, existing PARAFAC2 methods do not
explicitly address the problem of extracting meaningful phenotypes
from EHR datasets with moderate ratio of missing and error entries,
which severely limits them from more robust clinical usage.

3 PROPOSED METHOD
3.1 Low-rank Regularization for PARAFAC2

As mentioned, the effective low-rank regularization has not been
studied for irregular tensors. Recent work [38] proposes to recover
each of {X}’s frontal slices matrix by matrix by robust low-rank
matrix completion techniques [6, 28]. The drawback of this ap-
proach is that it cannot capture the internal structural correlations
across frontal slices, i.e. common information among patients, for
temporal EHR phenotyping. As can be seen from our experiments,
this approach does not provide satisfactory recovery performance.
On the contrary, we propose to impose the low-rankness on {Xy }
through adding nuclear norm constraints on the internal factoriza-
tion matrices H, V, W, which are shared by all frontal slices thus
capable of capturing cross-slice information.
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DEFINITION 2. For irregular tensor
X = {Xg} ~ PARAFAC2({Qx},H,V, W),
the low-rank regularization function is defined as

X1z == [HIlx + VI + [[W]l. @

Our low-rank regularization function enjoys the following nice
properties: 1) it is natural to the decomposition structure of the
PARAFAC2 model; 2) it can effectively recover the underlying clean
and completed tensor {Xy } by capturing cross frontal slice infor-
mation.

3.2 REPAIR: Model

Having defined the low-rank regularization function in Defini-
tion 2, we formalize the objective function for the REPAIR model
in Definition 3. It applies the RLTM framework (i.e. eq.(1)) to
PARAFAC?2, which separates the underlying clean and completed
tensor X = {Xy} and the erroneous tensor & = {E} given the
missing and corrupted observation tensor O = {Oy }. Meanwhile,
REPAIR decomposes {Xy} into PARAFAC2 structure. The tensor
recovery of X is enforced by the linear constraint between O, X,
€ in eq (4), low-rank regularization for X = {X.} and sparsity con-
straint for &€ in the first row of eq (3). The tensor factorization of X
is enforced by the PARAFAC2 loss for X, the temporal smoothness,
nonnegativity, and sparsity constraints in the second row of eq (3)
and additional constraints in eq (5).

For EHR phenotype discovery, various constraints should be
imposed on the factorization matrices to yield meaningful and high-
interpretability phenotypes. The REPAIR model accommodates
such interpretability-purposed constraints in eq.(3) including: tem-
poral smoothness for ¢; (H), non-negativity for {c2(Sx)}, sparsity
for c3(V).

DEFINITION 3. (REPAIR objective function)

PARAFAC2 loss for X sparsity for &
—_—
: 2
argmin " (I1X¢ = UgSe V117 + pollPo (B )+
QwHSLV (D)
nonnegativity
low-rankness for X smoothness sparsity
— K —
prlHIL + p2 VIl + psl Wi+ c1(H) + > ca(Se) + es(V),
k=1
®)

linear constraint between O,X, €
s.t. fork=1,..,K, Pq(Or)=PoXr +Eg) , (4)
Sy = diag(W(k,:)), Sk is diagonal, Uy = QrH, Q[ Q) =1

constraints for PARAFAC2 decomposition

®)

relation between 8, W

where H, {S},1 € RRXR O, e RIXR,

3.3 REPAIR: Optimization

To solve the REPAIR model, a straightforward approach is to in-
troduce auxiliary variables for the low-rank and interpretability
regularizations, then solve the problem by multi-block Alternat-
ing Direction Method of Multipliers (ADMM) [3]. Inspired by the
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more flexible Alternating Optimization ADMM (AO-ADMM) [19],
we design a two-phase alternative optimization algorithm to ac-
commodate more constraints. The REPAIR optimization proceeds
by iterating between the two phases: I) updating the factorization
matrices {Qg }, H, V, W; II) separating the X and € from O. For I),
we factorize the intermediate (inaccurate) recovered tensor X by
solving an approximated PARAFACZ2; for II), we follow standard
ADMM to convert the linear constraint of eq.(4) by introducing
Lagrangian dual variable {Fg} to get rid of the constraint as shown
in Definition 3. This way, REPAIR can accommodate a variety of
constraints for each factorization for better interpretability. Also,
the optimizations for each factor are more independent, which
makes it easier to deal with.

DEFINITION 4. The augmented Lagrangian dual objective is,

K
> (1% = QuHSEVTIE - (X8, 0 — X ~ i)
k=1

k
U
+ 2210k = X = Bl + poll Po (B 1 )

+ (o1 lIHIl + p2lI VIl + p3lWIL) + (c1 (H) + c2(W) + c5(V) )
s.t.Sg = diag(W(k.:)), Q/Qx =1L fork=1,...K.

Phase I: Approximated PARAFAC2. In the first phase, we up-
date the factorization matrices {Q}, H, V, W with {X;} and {E}
fixed, which can be intuitively seen as decomposing the latest re-
covered tensor {Xy } into PARAFAC?2. In practice, we observe that
it is enough to run PARAFAC2 by one iteration in this phase to
achieve the overall convergence, which avoids heavy computation
of solving precise PARAFAC2.

Update Qy.: To update QX we need Lemma 1 below:
LEmMA 1. The Orthogonal Procrustes problem is:

Q" = argmin ||QA - B||%,
Q:QTQ=I
which has the closed-form solution: Q* = PZT, where [P,%,Z] =
svd(BAT) and svd(-) is singular value decomposition.

When applied to the update of Qy, with other factors fixed, we
have

Qi = argmin [|X; — QHS V|| (6)
Qi:Q]Qi=1

Let B = X; and A = HS V" and by Lemma 1:

Q =PrZ;, where[P,%,Z;] = svd(X VS HT). (7)

Update H: After obtaining {Qy}, we denote Y; = QZXk, for
k =1,..,K, and let Y be the tensor with Y being its frontal slice.
We then update H, V, W alternatively by solving three constrained
least squares sub-problems. Due to the symmetry of the three sub-
problems, we elaborate the update for H as an example.

H = argmin [|Y5) — H(V © W) 7|12 + p1[H]|x + ¢ (H).
H
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Table 2: Additional Symbols for REPAIR Optimization

Symbol Definition

P0, p1, pg, p3 Balancing hyper-parameters

H!, V!, W Auxiliary variable for low-rank constr.

Fﬁl, F{V v Lagrangian dual for low-rank constr.

r] 7w '7V Lagrangian constant for low-rank constr.
H¢ V¢, W¢ | Auxiliary variable for interpretability constr.
I'f. Iy, Iy | Lagrangian dual for interpretability constr.
% Myy» Ny [Lagrangian constant for interpretability constr.

We introduce two auxiliary variables H! and H€ to separate the
low-rank and interpretability constraints:

argmin [[Y5) — H(V © W) T[4 + p1 [H[J. + c1 (HE),
H,H!,H¢

s.t.H = H, H® = H.

The above can be solved by ADMM after introducing the La-

grangian dual variables I‘}I, I}, and constants r]h, 1§y, correspond-
ingly:
argmin [|Y 1) — H(V O W) T 12 + p1|[H! [l + c1 (HC)
H,H! H¢
l
~ (thy B+ e
r]C
—(T%, H-H°) + 7H||H ~HC12.
To solve it by ADMM, we have the following update sequence
for H, H!, H® and dual FII_I, Fﬁ:

H= (y(l)(v ©W) + T} + I + b H + ngC)
S®
(VT = WTW) + (a1

where O is the Khatri Rao product, * is the Hadamard product and
T is the pseudo-inverse.

l
H! = argmm H ||Hl H|I2 — (T, B —H) + py[H s,
H!
which has the proximal operator [30] with respect to the nuclear
norm || - ||+, a.k.a. singular value thresholding [6], as its closed-form
solution:
1

r
H' = prox gy . (H+ L) = Phiag(max(0,0 - 2L)Z7, (9)
"51 My I]H
1
where [P,Diag(o),Z] = svd(H + F_IH)‘
H
’]C
H = argmin — % [[H ~ HII} — (T HC ~ H) + 1 (H°),

HC
which has the proximal operator with respect to the constraint
function c¢q (+) as its closed-form solution:

Cc

H = prox 1. (H+ —CH). (10)
Mg ’7H
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The Lagrangian dual variables are update as follows:
- gy (H—HE); (11)
~ Ny (H-H'). (12)

Update V, W: The update for V (along with V!, V¢) and W (along
with W/, W¢) are similar to H:

c _ 1c
1—‘H_FH
I _ 1l
1—‘H_l—‘H

V= (Yo (HOW) + T} +TF + 7, V! + 56 ve)

(HTH) « (WTW) + (7}, + rﬁ,)l)%;

I} IS (13)
V= prox ey .. (V+ —IV);VC =prox__ . (V+ —)
iy Ny v Vv
TG =TS — S (V- VO TL = T, — ph (v - V).
= (Y3 (VO H) + T}, +T¢, +nh, W'+ nf, W)
T
((VTV) = (HTH) + (3 +05)1)
r, re, (19)

Cc2

w! —proxm i W+ —— Wy W€ = prox_1_ 1 (W+—)
’]W W ’7

w
¢, =T, - qW(W—wC);réV =Tl -yt (W -wl).

Phase II: Robust Underlying Tensor Recovery. In this second
phase, we update the low-rank tensor {X } which is the underlying
clean and completed tensor, and the sparse tensor {Ej} which is
the corrupted tensor, as well as the Lagrangian dual variable {l"g ).

Update {X} }: It amounts to

X = argmin X - QrHS, VT |1Z — (TS, 0p — Xg — Eg)
k
’7];) 2
+ 7||0k - Xk = Exllzs
which has the solution
Xy = QpHSE VT —TE + 1k (04 — Ey). (15)

Update {Ey }: The update of Ej. separates into Pg (Ex ) and Pq1 (Eg):

1
Pa(Er) = Pa(proxm | (O - Xp = —TI5),  (16)

'/lé ’70
where prox gy LY., (+) is the proximal operator for the £1-norm, a.k.a.

soft- thresholdmg
Par(Br) = Por (O = Xy). (17)
Update {Fg}: This is Lagriangian dual variable update:

I = T8 — 1k (0) - X; — Eyp). (18)

3.4 REPAIR: Algorithm and Complexity

The complete REPAIR algorithm is summarized in Algorithm 1.
The following theorem summarizes the computational complexity
of Algorithm 1.
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Algorithm 1 The complete REPAIR algorithm

Input: Input tensor O; Model parameters pg-p3; Optimization pa-
rameters n’s; Interpretability constraint types c1, ¢z, c3; Initial
rank estimation R.

1: while Not reach convergence criteria do
%% Phase I begins
while Not reach inner loop max do
Update {Q} by eq.(7);
Update H, V, W-related variables sequantially;

end while

%% Phase II begins

Update {Xy} by eq.(15);

Update {E;} by eq.(16)&(17);

Update {TS} by eq.(18).

11: end while

Output: Phenotype factor matrices {U} = {QrH]}, {St}, V; Recov-

ered tensor {Xg}.

2
3
4
5:
6:
7
8
9

10:

THEOREM 1. (Per-iteration computational complexity of REPAIR
algorithm) For an input tensor Oy : RIXJ | for k = 1,...,K and ini-
tial target rank estimation R, Algorithm 1’s per-iteration complexity
is O(3R*JK).

Proor. REPAIR’s per-iteration complexity breaks down as fol-
lows: Line 4 costs O(min{R?I, RI?}), where I denotes the maxi-
mum among {I} }; Line 5, updating H, V, W costs O(3R2]K), updat-
ing H!, v, W! costs O(R*(R+ ] +K)), updating H®, V¢, W¢ costs
O(R(R + J + K)); Line 8-10 cost O(4 ZIk(:l Ii.]). As a result, the

per-iteration complexity is O(3R?JK). O

REMARK 1. Ifthe tensor {Y}} is sparse and sparse MTTKRP [32]
is adopted for updating H,V, W, the O(3R?JK)-term further reduces
to O (3R2nnz(Y)K), where nnz(Y) denotes the maximum number of
none-zero columns among {Yy}. In practice, because of large number
of patients K, R < J,K and R + ] + K < nnz(Y)K, the overall
per-iteration complexity is O(3R?nnz(Y)K), which is the same as
SPARTan and COPA.

4 EXPERIMENTS

4.1 Experiment Setup

4.1.1 Datasets.

We evaluate REPAIR on two real-world publicly-available temporal
EHR datasets: CMS? and MIMIC-III.

CMS: Centers for Medicare and Medicaid Services (CMS) contains
synthesized data of Medicare beneficiaries in 2008 and their claims
from 2008 to 2010. We construct a three-mode tensor with patients
(along mode-3), diagnosis or ICD9 codes (along mode-2), and clinical
visits (along mode-1). Each tensor value O indicates the number
of times a patient k has a diagnosis j during visit i. We keep records
of patients with at least 2 hospital visits. The resulting number of
patients is 50,000 with 284 features (diagnosis categories) and the
maximum number of observations for a patient is 1500. The number

Zhttps://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-
Public-Use-Files/SynPUFs/DE_Syn_PUF.html
3https://mimic.physionet.org/
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of non-zero elements is 49 million. 89% of the non-zero elements
are 1, and 11% are 2.

MIMIC-III: The intensive care unit (ICU) dataset is collected be-
tween 2001 and 2012. Similar to CMS, we construct the three-mode
tensor and keep records of patients with at least 2 hospital visits.
We select 202 ICD-9 codes that have the highest frequency as in
[23]. The resulting number of patients is 2323 with 202 features
(diagnosis codes) and the maximum number of observations for a
patient is 41. The number of non-zero entries is 3 million. 96% of
non-zero elements are 1, and 4% are 2.

4.1.2  Methods for Comparison.

Since there are no existing robust methods for irregular tensor fac-
torization with missing and erroneous data, we compare with two
groups of methods: 1) state-of-the-art irregular tensor factorization
methods, which however have no mechanisms to handle missing
and erroneous data; 2) we adapt existing robust methods for regular
tensor factorization to irregular tensors for comparison.

1) Irregular tensor factorization methods.

e SPARTan [32]- scalable PARAFAC2: A recently-proposed
methodology for fitting PARAFAC2 on large and sparse data.
It does not explicitly address missing or erroneous data.

e COPA [2]- scalable PARAFAC2 with additional regu-
larizations: A state-of-the-art irregular tensor factorization

method. It further introduces various constraints/regularizations

to improve the interpretability of the factor matrices for more
meaningful pheonotype extraction.

2) Adapted robust regular tensor factorization methods.

e CP-WOPT [1] - robust method for regular tensors: CP-
WOPT is a robust method for regular tensors which uses a
weighted optimization method for CP tensor completion and
factorization with incomplete data. To make it work with
irregular tensors, we first zero-pad the irregular tensors to
aligned ones and then apply CP-WOPT.

e IrmcR [28] + COPA - robust method for matrix com-
pletion: IrmcR [28] is a robust low-rank matrix completion
method. To make it work for irregular tensors, we apply
IrmcR to recover the frontal slices one by one and then apply
COPA for phenotype extraction.

4.1.3 Implementation details.

REPAIR* is implemented in Matlab R2019a and includes functional-
ities from the Tensor Toolbox®. We utilize the Parallel Computing
Toolbox of Matlab. For CMS dataset, 30 workers are used; and for
MIMIC-IIL, 4 workers are used. We report the hyper-parameters of
REPAIR in the experiment in Table 3. The code of COPA and SPAR-
Tan are publicly available at: https://github.com/aafshar/COPA;
https://github.com/kperros/SPARTan. For the COPA related meth-
ods, we use the same regularizations c1, ¢z, c3 with REPAIR, as given
in Defintion 3.

We evaluate recovery accuracy and robustness of the tensor fac-
torization against various conditions of missing and erroneous val-
ues. We empirical study the convergence behaviour of all compared
methods. In case studies, we evaluate the quality of the factorization
matrices (i.e. extracted phenotypes) for downstream analysis via:

*https://github.com/Emory- AIMS/Repair
Shttps://www.tensortoolbox.org/
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https://github.com/aafshar/COPA
https://github.com/kperros/SPARTan
https://github.com/Emory-AIMS/Repair
https://www.tensortoolbox.org/

Full Paper Track

CMS Pure outliers

CMS Mixed error & outliers

CIKM 20, October 19-23, 2020, Virtual Event, Ireland

MIMIC Pure outliers

MIMIC Mixed error & outliers
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Figure 4: Impact of varying rank estimation

Table 3: Parameters for CMS and MIMIC-III

Parameter CMS MIMIC-1IT
Po le-3 le-3
P1 le-3 le-3
P2 le-4 le-4
P3 le-4 le-4
c1 253 270
c3 0.0000085 0.0000085

1) identification of higher-risk patient sub-groups; 2) in-hospital
mortality prediction. Finally, we illustrate phenotypes extracted by
REPAIR.

4.2 Tensor Factorization Robustness

In order to test the robustness of REPAIR model against missing
and error entries, we randomly add missing values and error entries
into the two datasets. We design two types of errors. The first is
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referred as pure outliers, where we randomly pick tensor entries
and set their values to be 4, which largely deviates from normal
values (1 and 2 in these datasets). The second is mixed error, where
we randomly pick certain entries and set their values to be 3 or
4 (outliers) with half probability, and 1 or 2 (normal values but
flipped from the original value) with half probability. The original
uncorrupted tensor denoted as {Gy} serves as the ground truth.
We adopt the FIT € (—o0, 1] score [5] as the quality measure (the
higher the better):

SR IGk = UrSk VT2
Sr_ G2

In the following experiment, we run each setting for 5 different
random initialization and report the average FIT. When the com-
pared methods’ FIT drop below 0 (i.e. fail to recover), we report
the averaged highest FIT before the algorithm diverges.

FIT=1-

(19)

Robustness against Varying Ratio of Missing Entries. We first
evaluate the impact of varying missing ratios on the robustness of
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Table 4: Basis number for CMS and MIMIC-III

Rank R CMS MIMIC-TII
10 102 140
20 190 200
30 215 220
40 253 270
50 270 320
60 320 360

the methods with fixed 30% error ratios as Figure 2 shows. we use
R = 40 and the detailed parameters are shown in Table 3 and 4 in the
Appendix. If no error and missing entries are added into data sets,
REPAIR, COPA, SPARTAN and IrmcR + COPA methods can achieve
similar FIT scores around 0.42 (please note that it is a typical FIT
range for this task, e.g., [2]). However, the four baselines’ FIT scores
quickly drop as the missing ratio increases, in many cases below
0, which indicates baselines fail to recover the tensor even with
small missing ratios. Repair outperforms all methods significantly.
IrmcR+COPA performances slightly better than COPA thanks to its
completion of the slices. IrmcR + COPA and COPA perform better
than SPARTan thanks to its additional temporal constraints. CP-
WOPT performs the worst, since it does not address the irregularity
of the tensors, even when it explicitly deals with missing data,
which indicates the importance of addressing the irregularity. We
also observe that pure outlier’s performances are often better than
mixed error cases, as pure outliers is easier for REPAIR model to
separate the error entries.

Robustness against Varying Ratio of Erroneous Entries. We
set the missing ratio to be 30%, and change the error ratio from 5% to
50%. Figure 3 shows the FIT scores of different methods with respect
to varying error ratios for the two data sets under two error cases.
With increasing error ratios, four baselines’ recovery performance
drop dramatically, while REPAIR enjoys a robust performance with
an average FIT around 0.32.

Impact of Varying Initial Target Rank Estimation. We set
missing and error ratios both to 30% and vary the initial rank esti-
mation R. The detailed c¢; (basis function number used by M-spline
function for promoting temporal smoothness) for different data
sets and various ranks are shown in Table 4. With a higher rank R,
the FIT of REPAIR slightly increases while always outperforming
all other methods as Figure 4 shows. This is because the low-rank
regularization function is able to iteratively decrease the target
rank during the optimization (e.g. by soft-thresholding the singular
values) and make it approach the optimal one.

4.3 Convergence Comparison.

Figure 6 shows the convergence comparison of REPAIR, SPARTan,
COPA, IrmcR + COPA, CP-WOPT on CMS with missing ratio 10%
and mixed error ratio 20% (under this setting all algorithms can
recover the tensor without failure). By Figure 6, REPAIR flats around
9-10 iterations (with a higher FIT score than baselines), while it
takes baselines 14-15 iterations. This shows that REPAIR not only
enjoys more robust recovery, but also faster convergence.

1302

CIKM 20, October 19-23, 2020, Virtual Event, Ireland

Table 5: MIMIC-III Phenotypes discovered by REPAIR. The
red color corresponds to diagnosis and blue color corre-
sponds to procedures.

Heart failure

Congestive heart failure, unspecified

Atrial fibrillation

Coronary atherosclerosis of native coronary artery
Coronary arteriography using two catheters
Transfusion of packed cells

Left heart cardiac catheterization

Hypertension and hyperlipidemia

Unspecified essential hypertension

Diabetes mellitus without mention of complication
Coronary atherosclerosis of native coronary artery

Other and unspecified hyperlipidemia

Esophageal reflux

Pure hypercholesterolemia

Extracorporeal circulation auxiliary to open heart surgery
Coronary arteriography using two catheters

Single internal mammary-coronary artery bypass

Left heart cardiac catheterization

Kidney disease

Acute kidney failure, unspecified

Hypertensive chronic kidney disease, unspecified
Unspecified essential hypertension

Urinary tract infection, site not specified
Hemodialysis

Venous catheterization for renal dialysis
Transfusion of packed cells

Respiratory failure and sepsis

Acute respiratory failure

Severe sepsis

Atrial fibrillation

Septic shock

Urinary tract infection, site not specified
Insertion of endotracheal tube

Enteral infusion of concentrated nutritional substances
Continuous invasive mechanical ventilation
Closed [endoscopic] biopsy of bronchus
Arterial catheterization

Percutaneous abdominal drainage
Transfusion of packed cells

4.4 Quality of the Extracted Phenotypes: Two
Case Studies

The previous experiments show the robustness of REPAIR in terms
of how well the factorization matrices (i.e. the extracted pheno-
types) recover the ground truth tensor under the FIT metric. In this
subsection, our goal is to evaluate how meaningful and useful the
extracted phenotypes are. Table 5 illustrates the first set of pheno-
types extracted by REPAIR when R = 4 given corrupted MIMIC-III
data, which shows the correlations between diagnosis and proce-
dures related to coronary disease. We next show quantitatively how
the phenotypes can be used for various downstream analysis. We
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Figure 5: tSNE visualization of patient representations learned by REPAIR, SPARTan, COPA, CP-WOPT, and lrmcR+COPA.
Each point represents a patient, the color corresponding to the weight of the “oncological conditions” phenotype (lighter

means higher weight).

Method REPAIR SPARTan COPA CP-WOPT IrmcR + COPA
Higher-risk Cluster Average Mortality Rate | 68.79% 59.86%  60.03% 59.60% 60.55%
Lower-risk Cluster Average Mortality Rate | 49.91% 59.13%  58.92% 59.43% 58.45%
Difference 18.88% 0.83% 1.11% 0.5% 2.1%

Table 6: Summary of Average Mortality Risk of the higher-risk cluster, lower-risk cluster, and their difference. The two clusters
are obtained by k-means clustering (k = 2). REPAIR can achieve 18.88% difference, which has the best discriminative capability
among all compared methods, under the setting of adding 30% erroneous and 30% missing entries.

£ REPAIR
== IrmcR + COPA

COPA
CP-WOPT

~©) SPARTan

oS EERTOOT8S

o s
T2 3 45678 910111213 141516 17 18 19 20
Iteration

Figure 6: Convergence comparison of REPAIR, SPARTan,
COPA, IrmcR + COPA, CP-WOPT

use MIMIC-IIT for this set of experiments and set both missing and
error ratios to 30%.

Identification of Higher-risk Patient Subgroups. The low-
dimensional patient representations of PARAFAC?2 are effective in
distinguishing between higher and lower mortality risk patients
[31]. We attempt to test if REPAIR can identify higher-risk patient
subgroups if the data contains erroneous and missing entries. The
k-th row of patient-by-phenotypes matrix W € R¥*R contains
the diagonal of Sy, which indicates importance membership of pa-
tient k in each of the phenotypes. We select the largest-variance
column among Sy, which is called the “oncological conditions” phe-
notype. We set R = 4, and use the tSNE [36] software to reduce
4-dimensional vectors to 2-dimensional space, and color each point
corresponding to the weight of the “oncological conditions” phe-
notype (lighter means higher weight). As Figure 5 shows, REPAIR
can successfully split the patients into two sub-groups while the
baselines fail to distinguish the patients.
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Figure 7: In-hospital mortality prediction in AUC. REPAIR
outperforms 17% in terms of prediction performance com-
paring to the best baseline method IrmcR + COPA

We perform clustering using K-means (with k = 2) on the tSNE
result. For the clusters learned by REPAIR, higher risk cluster (corre-
sponding to the left light sub group in Figure 5a) and the lower-risk
cluster (corresponding to the right dark sub group in Figure 5a) are
68.79%, 49.91% respectively. We summarize the average mortality
risk of the higher-risk cluster, lower-risk cluster, and their differ-
ence in Table 6. REPAIR can achieve 18.88% difference, which has
the best discriminative capability among all compared methods. In
addition, our 18.88%-difference is comparable to the 21%-difference
reported in [31], which is the journal extension of the SPARTan
algorithm [32], and has a clinical expert’s endorsement. Because of
the extra error and missing entries, our setting is more challenging
than [31]. In sum, it shows our method is robust enough to achieve
clinical meaningful result comparable to [31].

In-hospital Mortality Prediction. We also measure REPAIR’s

phenotype extraction quality under missing and error entries by the
predictive power of the discovered phenotypes. A logistic regression
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model is trained using the patients’ membership indicator Si as
features, which is then utilized for predicting in-hospital mortality.
We use five 70-30 train-test splits and evaluate the model using
the area under the receiver operating characteristic curve (AUC).
As Figure 7 shows, the average score of IrmcR + COPA is 0.605,
which performs best among four baselines. REPAIR’s average score
is 0.703, and offers a 17% prediction performance improvement
when compared to IrmcR + COPA, which verifies the robustness
and usefulness of the extracted phenotypes.

5 CONCLUSION

We have proposed the REPAIR method for robust irregular tensor
factorization and completion with potential missing and erroneous
values. It is built on two major contributions: an effective low-
rank regularization function specific to PARAFAC2 structure and a
two-phase joint optimization for iterative factorization and clean
tensor recovery. Extensive experiments have demonstrated that
REPAIR can robustly extract meaningful phenotypes from missing
and erroneous inputs. In the future, we plan to investigate different
loss functions to further enhance the recovery performance and also
different types of missing data (in addition to Missing Completely
at Random (MCAR) in this paper).
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