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Data assignment phase: Each dataset Dk where k ∈ [K]
is assigned to a subset of N workers in an uncoded manner.
Define Zn ⊆ [K] as the set of datasets assigned to worker
n ∈ [N]. The assignment constraint is that

|Zn| ≤ M :=
K

N
(N− Nr +m) , ∀n ∈ [N],

where M represents the computation cost, and m represents
the computation cost factor.5

The assignment function of worker n is denoted by ϕn,
where

Zn = ϕn(F), ϕn : [Fq]
KcK →

(
[K]

≤ M

)
,

and
(
[K]
≤M

)
represents the set of all subsets of [K] of size not

larger than M. In addition, for each dataset Dk where k ∈ [K],
we define Hk as the set of workers to whom dataset Dk is
assigned. For each set of datasets K where K ⊆ [K], we define
HK := ∪k∈[K]Hk as the set of workers to whom there exists
some dataset in K assigned.

Computing phase: Each worker n ∈ [N] first computes
the message Wk = fk(Dk) for each k ∈ Zn. Worker n then
computes

Xn = ψn({Wk : k ∈ Zn},F)
where the encoding function ψn is

ψn : [Fq]
|Zn|L × [Fq]

KcK → [Fq]
Tn ,

and Tn represents the length of Xn. Finally, worker n sends
Xn to the master.

Decoding phase: The master only waits for the Nr fastest
workers’ answers to compute g(W1, . . . ,WK). In other words,
the computation scheme can tolerate N−Nr stragglers. Since
the master does not know a priori which workers are stragglers,
the computation scheme should be designed so that from
the answers of any Nr workers, the master should recover
g(W1, . . . ,WK). More precisely, for any subset of workers
A ⊆ [N] where |A| = Nr, with the definition

XA := {Xn : n ∈ A},
there exists a decoding function φA such that ĝA =
φA

(
XA,F

)
, where the decoding function is

φA : [Fq]
∑

n∈A Tn × [Fq]
KcK → [Fq]

KcL.

The worst-case probability of error is defined as

ε := max
A⊆[N]:|A|=Nr

Pr{ĝA �= g(W1, . . . ,WK)}.

In addition, we denote the communication cost by,

R := max
A⊆[N]:|A|=Nr

∑
n∈A Tn

L
,

representing the maximum normalized number of symbols
downloaded by the master from any Nr responding workers.
The communication cost R is achievable if there exists a

5It was proved in [5] that in order to tolerate N−Nr stragglers, the minimum
computation cost is K

N
(N− Nr + 1).

computation scheme with assignment, encoding, and decoding
functions such that

lim
q→∞ lim

L→∞
ε = 0.

Since the probability of each demand matrix is identical,
the above constraint implies that any achievable computing
scheme should work for most demand matrices with dimension
Kc × K.

The objective is to characterize the optimal tradeoff between
the computation and communication costs (m,R�), i.e., for
each m ∈ [Nr], we aim to find the minimum communication
cost R�.

As shown in [5, Section II], since the elements of the
demand matrix F are uniformly i.i.d. over a large enough
field Fq, the desired task contains Kc linearly independent
combinations of messages with high probability, where each
message contains L uniformly i.i.d. symbols on Fq; thus a
simple cut-set bound argument yields

R� ≥ Kc. (1)

The cyclic assignment was widely used in the existing works
on the distributed computing problems [5], [17]–[21]. For each
dataset Dk where k ∈ [K], we assign Dk to the workers in
Hk where (recall that in this paper we let a mod b = b if b
divides a)

Hk =
{
k mod N, (k − 1) mod N, . . . ,

(k − N+ Nr −m+ 1) mod N
}
. (2)

Thus the set of datasets assigned to worker n ∈ [N] is

Zn = ∪
p∈[0: KN−1]

{
(n mod N) + pN, ((n+ 1) mod N) + pN, . . . ,

((n+ N− Nr +m− 1) mod N) + pN
}

(3)

with cardinality K
N (N−Nr +m). For example, if K = N = 4,

Nr = 3 and m = 2, by the cyclic assignment with p = 0
in (3), we have

H1 = {1, 3, 4}, H2 = {1, 2, 4}, H3 = {1, 2, 3}, H4 = {2, 3, 4};
Z1 = {1, 2, 3}, Z2 = {2, 3, 4}, Z3 = {3, 4, 1}, Z4 = {4, 1, 2}.
For each m ∈ [Nr], the minimum communication cost under
the cyclic assignment in (3) is denoted by R�

cyc. Clearly, we
have R�

cyc ≥ R�.

Remark 1. It will be clear that the assumption that the desired
function’s coefficients (i.e., the elements in demand matrix F)
are uniformly i.i.d. over a large enough field, is needed for
the information theoretic converse bounds, and to prove the
decodability of the proposed computing scheme with vanishing
probability of error by the Schwartz-Zippel lemma [25]–[27].6

As shown in [5, Remark 3], for some specific demand matrices,
the optimal communication costs can be strictly higher than
R�. It is one of our on-going works to study the arbitrary
demand matrices.

6 The Schwartz-Zippel lemma [25]–[27] shows that the realization of a
multivariate polynomial is not equal to zero with high probability if the
coefficients of this polynomial are not all zero and each variable in the
polynomial is uniformly i.i.d. over a large enough field.
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In contrast, the assumption that the symbols in each mes-
sage are uniformly i.i.d., is only needed for the information
theoretic converse bounds, while the proposed computing
scheme in this paper works for any arbitrary component
functions fk(Dk) where k ∈ [K]. �

Special cases: The sub-case of the considered problem
for Kc = 1 and any m was studied in [20], [21] and the sub-
case for m = 1 and any Kc was studied in [5].

• Kc = 1. It was proved in [20], [21] that when Kc = 1,
the communication cost Nr

m is optimal under the constraint
of linear coding in the computing phase and symmetric
transmission (i.e., the number of symbols transmitted by
each worker is the same).

• m = 1. The communication cost by the computing
scheme in [5] is NrKc when Kr ≤ K

N ; is KNr

N when
K
N ≤ Kc ≤ K

NNr; is Kc when Kc ≥ K
NNr. The com-

munication cost is exactly optimal when K = N, or

when Kc ∈
[⌈

K

( N
N−Nr+1)

⌉]
, or when Kc ∈ [

K
NNr : K

]
. In

addition, it is optimal under the constraint of the cyclic
assignment when N divides K.

III. MAIN RESULTS

A. Novel Converse and Achievable Bounds

We first provide a converse bound under the constraint of
the cyclic assignment, which will be proved in Section IV.

Theorem 1. For the (K,N,Nr,Kc,m) distributed linearly
separable computation problem,

• when Kc ∈ [
K
N (Nr −m+ 1)

]
, by defining u :=

⌈
KcN
K

⌉
,

we have

R�
cyc ≥

NrKc

m+ u− 1
. (4a)

• when Kc ∈
[
K
N (Nr −m+ 1) : K

]
, we have

R�
cyc ≥ R� ≥ Kc. (4b)

�

We then introduce the computation-communication costs
tradeoff by the novel computing scheme in the following
theorem.

Theorem 2. For the (K,N,Nr,Kc,m) distributed linearly
separable computation problem where

40 ≥ N ≥ m+ u− 1

u
+ u(Nr −m− u+ 1), (5)

the computation-communication costs tradeoff (m,Rach) is
achievable, where

• when Kc ∈
[
K
N

]
,

Rach =
KcNr

m
(6a)

• when Kc ∈
[
K
N : K

N (Nr −m+ 1)
]
,

Rach =
NrKu

N(m+ u− 1)
; (6b)

• when Kc ∈
[
K
N (Nr −m+ 1) : K

]
,

Rach = Kc. (6c)

�

Notice that the RHS of the constraint (5)

N ≥ m+ u− 1

u
+ u(Nr −m− u+ 1), (7)

will be explained in Remark 3 from a viewpoint of linear space
dimension. It can be seen that in the first case of the proposed
computing scheme (i.e., Kc ∈ [

K
N

]
), we have u = 1 and thus

the constraint (7) always holds. In the third case of the pro-
posed computing scheme (i.e., Kc ∈ [

K
N (Nr −m+ 1) : K

]
),

we have u ≥ Nr−m+1 and thus the constraint in (7) always
holds.

While proving the decodability of the proposed com-
puting scheme in Theorem 2, we use the Schwartz-Zippel
lemma [25]–[27] in Appendix A. For the non-zero polynomial
condition for the Schwartz-Zippel lemma, we numerically
verify all cases that 40 ≥ N ≥ m+u−1

u + u(Nr −m − u + 1),
and conjecture in the rest of the paper that the condition holds
for any case where N ≥ m+u−1

u + u(Nr −m− u+ 1), i.e., in
Theorem 2 we replace the constraint (5) by (7).

In Section V, due to the space limitation, we will only
provide the computing scheme for the second case (6b) (i.e.,
Kc ∈ [

K
N : K

N (Nr −m+ 1)
]
). By the exactly same method

as described in [5, Sections IV-B and IV-C], the computing
schemes for the first and third cases can be obtained by the
direct extensions of the computing scheme for the second case.
More precisely,

• Kc ∈
[
K
N

]
. When Kc = 1, it can be easily shown (see [5,

Section IV-B]) that the (K,N,Nr, 1,m) distributed lin-
early separable computation problem is equivalent to
the (N,N,Nr, 1,m) distributed linearly separable com-
putation problem, which needs the communication cost
Nr

m from (6b). For Kc ∈ [
2 : K

N

]
, we can treat the

(K,N,Nr,Kc,m) distributed linearly separable compu-
tation problem as Kc independent (K,N,Nr, 1,m) dis-
tributed linearly separable computation problems; thus
the communication cost is KcNr

m , coinciding with (6a).
• Kc ∈ [

K
N (Nr −m+ 1) : K

]
. When Kc = K

N (Nr −
m + 1), from (6b) it can be seen that the com-
munication cost is NrKu

N(m+u−1) = Ku
N = Kc, coin-

ciding with (6c). When Kc > K
N (Nr − m + 1), as

in [5, Section IV-C], we can divide each demanded
linear combination into

( Kc−1
K
N (Nr−m+1)−1

)
equal-length sub-

combinations, each of which has L

( Kc−1
K
N
(Nr−m+1)−1

)
sym-

bols. We then treat the (K,N,Nr,Kc,m) distributed lin-
early separable computation problem as

( Kc
K
N (Nr−m+1)

)
independent

(
K,N,Nr,

K
N (Nr − m + 1),m

)
distributed

linearly separable computation sub-problems, where in
each sub-problem we let the master recover K

N (Nr −
m + 1) sub-combinations, with the communication cost

K
N (Nr−m+1)

( Kc−1
K
N
(Nr−m+1)−1

)
; thus the total communication cost is
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( Kc
K
N (Nr−m+1)

) K
N (Nr−m+1)

( Kc−1
K
N
(Nr−m+1)−1

)
= Kc, coinciding with (6c).

By comparing the proposed converse bound in Theorem 1
and the proposed scheme in Theorem 2, we can directly obtain
the following (order) optimality results.

Theorem 3. For the (K,N,Nr,Kc,m) distributed linearly
separable computation problem where N ≥ m+u−1

u + u(Nr −
m− u+ 1),

• when K = N, we have

R�
cyc = Rach =

{
NrKc

m+u−1 , if Kc ∈ [Nr −m+ 1];

Kc, if Kc ∈ [Nr −m+ 1 : K];

• when Kc ∈
[
K
N

]
, we have

R�
cyc = Rach =

NrKc

m
;

• when Kc ∈
[
K
N + 1 : K

N (Nr −m+ 1)− 1
]
, we have

R�
cyc ≥

Kc

K
Nu

Rach ≥ Rach

2
;

• when Kc ∈
[
K
N (Nr −m+ 1) : K

]
, we have

R� = R�
cyc = Rach = Kc.

�

In words, for the considered problem satisfying the con-
straint in (7), when Kc ∈ [Nr − m + 1 : K], the proposed
computing scheme is exactly optimal; when K = N or
Kc ∈ [

K
N

]
, the proposed computing scheme is optimal under

the constraint of the cyclic assignment; when N divides K and
Kc ∈ [

K
N + 1 : K

N (Nr −m+ 1)− 1
]
, the proposed scheme is

order optimal within a factor of
K
N u

Kc
≤ 2 under the constraint

of the cyclic assignment. Note that when Kc = 1, the proposed
computing scheme achieves the same communication load
as in [20], [21], which was proved to be optimal under
the constraint of linear coding in the computing phase and
symmetric transmission. Instead, we prove that it is optimal
only under the constraint of the cyclic assignment.

Remark 2. When the elements in F and [W1; . . . ;WK] are on
the field of real numbers, the proposed computing scheme in
Theorem 2 can work with high probability if each element
in F is uniformly i.i.d. over a large enough finite set of
real numbers. For example, real numbers in finite arithmetic
(either fixed points or floating points) can be in a discrete
and large finite set. Note that, the decodability proof of the
proposed computing scheme is based on the Schwartz-Zippel
lemma [25]–[27], while this lemma is valid for any field
if each variable in the multivariate polynomial (i.e., some
element in F or some dummy variable) is uniformly i.i.d.
over a large enough finite set. Furthermore, by a simple
extension, the proposed computing scheme can also work with
high probability if each element in F is uniformly i.i.d. over
an interval of real numbers. This is because for a non-zero
multivariate polynomial with finite degree where the range of
the variables is an interval of real number, the set of roots of
this polynomial has measure 0. �

B. Numerical Evaluations
We end this section by providing some numerical evalu-

ations on the proposed converse and achievable bounds. In
Fig. 1, we provide some numerical evaluations on the proposed
converse and achievable bounds. For the sake of comparison,
we introduce a baseline scheme. For the case where Kc = 1,
the computing scheme in [20], [21] needs the communication
cost Nr

m for each m ∈ [N]. Hence, a simple baseline scheme
can be obtained by treating the considered problem as Kc

independent sub-problems, where in each sub-problem the
master recover one of its desired linear combination. Thus
the communication cost for the baseline scheme is

Rbase = KcNr/m, ∀m ∈ [Nr]. (8)

In Fig. 1a, we consider the distributed linearly separable
computation problem where K = 20, N = 10, Nr = 8,
and Kc = 8. In this example, the constraint in (7) always
holds. It can be seen from Fig. 1a that the proposed computing
scheme outperforms the baseline scheme and coincides with
the proposed converse bound.

In Fig. 1b, we consider the distributed linearly separable
computation problem where K = 20, N = 10, Nr = 7, m = 2.
For each Kc ∈ [20], we plot the communication costs. In this
example, the constraint in (7) also always holds. It can be seen
from Fig. 1b that the proposed computing scheme outperforms
the baseline scheme. The propose scheme coincides with the
proposed converse bound when Kc ≤ K

N = 2, or when Kc

divides K
N , or when Kc ≥ K

N (Nr −m+ 1) = 12.
The focus of the paper is on some large enough finite field,

where the proposed computing scheme in Theorem 2 works
with high probability. However, in practice the field size is lim-
ited. In Table I, we illustrate the probabilities that the proposed
scheme works on the different finite fields by the Monte Carlo
simulation. For each considered system, we randomly generate
104 demand matrices and count the number of demand matri-
ces for which the proposed computing can work. In Table Ia
we consider that (K,N,Nr,Kc,m) = (6, 6, 5, 2, 2), and in
Table Ib we consider that (K,N,Nr,Kc,m) = (11, 11, 7, 2, 2).
Both tables show that the success probability of the proposed
computing scheme increases as q grows. In addition, it in-
creases faster in the smaller computing system than in the
larger system.

IV. PROOF OF THEOREM 1
When Kc ∈ [

K
N (Nr −m+ 1) : K

]
, the converse bound in

Theorem 1 is the cut-set converse bound in (1). Hence, in the
following we focus on the case Kc ∈

[
K
N (Nr −m+ 1)

]
.

We will use an example to illustrate the main idea.

Example 1. In this example, we have N = K = 5, Nr = 4,
m = 2, and Kc = u = 2.

The number of datasets assigned to each worker is M =
K
N (N − Nr +m) = 3. Each dataset is assigned to 3 workers.
With the cyclic assignment, we assign

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5
D1 D2 D3 D4 D5

D2 D3 D4 D5 D1

D3 D4 D5 D1 D2
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q = 2 q = 7 q = 11 q = 13 q = 19 q = 29
0 0.0637 0.2846 0.3674 0.5134 0.6566

q = 71 q = 113 q = 173 q = 229 q = 541 q = 3571
0.8398 0.8961 0.9328 0.9504 0.978 0.9968

(a) (K,N,Nr,Kc,m) = (6, 6, 5, 2, 2).

q = 2 q = 29 q = 71 q = 83 q = 101 q = 113
0 0 0.0903 0.1913 0.3679 0.4771

q = 131 q = 149 q = 173 q = 229 q = 541 q = 3571
0.6324 0.7529 0.8292 0.9048 0.9606 0.9943

(b) (K,N,Nr,Kc,m) = (11, 11, 7, 2, 2).

TABLE I: The probabilities that the proposed scheme works on different finite fields, for the (K,N,Nr,Kc,m) distributed linearly
separable computation problem.

1 2 3 4 5 6 7 8

m
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Baseline scheme in (8)

Proposed computing scheme in Theorem 2

Proposed converse bound under the

cylic assignment in Theorem 1

(a) The computation-communication costs tradeoff for the case
K = 20, N = 10, Nr = 8, Kc = 8.
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Baseline scheme in (8)

Proposed computing scheme in Theorem 2

Proposed converse bound under the

cyclic assignement in Theorem 1

(b) The communication costs for the case K = 20, N = 10, Nr = 7,
m = 2.

Fig. 1: Numerical evaluations for the considered distributed
linearly separable computation problem.

We consider the demand matrix F whose dimension is 2 × 5
with elements uniformly i.i.d. over large field Fq. Hence, the
sub-matrix including each Kc = 2 columns is full rank with
high probability.

Notice that in this example the number of stragglers is N−
Nr = 1. We first consider that worker 5 is the straggler; thus
the master should recover F[W1; . . . ;W5] from the answers
of workers in A = [4]. In addition, each dataset is assigned
to N − Nr + m = 3 workers. Hence, there must exist one
dataset assigned to all the straggler(s) which is also assigned
to m responding workers. In this example, all of D1, D2, and
D5 belong to such datasets. Now we select one of them, e.g.,
D2. Note that D2 is assigned to workers H2 = {1, 2, 5}. We
then consider the next dataset D(2+1) mod K = D3. The set
of workers storing dataset D3 (denoted by H3) is obtained by
right-shifting H2 by one position, i.e., H3 = {1, 2, 3}. Hence,
there is exactly one new worker in H3 who is not in H2 ∩A,
which is worker 3. So we have

|(H2 ∪H3) ∩ A| = m+ (2− 1) = 3 = m+ u− 1;

in other words, in the set of responding workers A, the number
of workers who can compute W2 or W3 is equal to 3. In
addition, the sub-matrix of F including the columns in {2, 3}
is full rank (with rank Kc = 2). Recall that each message has
L uniformly i.i.d. symbols. Hence, the number of transmitted
symbols by workers in (H2 ∪H3)∩A should be no less than
2L; thus ∑

n∈
(
(H2∪H3)∩A

)Tn = T1 + T2 + T3 (9a)

≥ H
(
F[W1; . . . ;W5]|W1,W4,W5

) ≥ KcL = 2L. (9b)

Similarly, considering that worker 4 is the straggler, we
have

T5 + T1 + T2 ≥ KcL = 2L. (10)

Considering that worker 3 is the straggler, we have

T4 + T5 + T1 ≥ KcL = 2L. (11)
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Considering that worker 2 is the straggler, we have

T3 + T4 + T5 ≥ KcL = 2L. (12)

Considering that worker 1 is the straggler, we have

T2 + T3 + T4 ≥ KcL = 2L. (13)

By summing (9b)-(13), we have

T1 + T2 + T3 + T4 + T5 ≥ 10

3
L,

which leads that

R�
cyc ≥ max

A⊆[5]:|A|=Nr=4

∑
j∈A Tj

L
≥ 8

3
,

as the converse bound in (4a). �

We are now ready to generalize the proposed converse
bound under the constraint of the cyclic assignment in Ex-
ample 1. Recall that we consider the case where Kc ∈[
K
N (Nr −m+ 1)

]
and that u =

⌈
KcN
K

⌉
. The demand matrix F

has the dimension Kc×K with elements uniformly i.i.d. over a
large enough finite field. Hence, the sub-matrix including each
Kc columns is full rank with high probability. By the cyclic
assignment, as shown in (2), each dataset Dk is assigned to
workers Hk =

{
k mod N, (k− 1) mod N, . . . , (k−N+Nr −

m+ 1) mod N
}
.

We consider the set of stragglers who are adjacent. Thus
each time we choose one integer n ∈ [N], let Sn :=
{n mod N, (n−1) mod N, . . . , (n−N+Nr+1) mod N} where
|Sn| = N−Nr, be the set of stragglers. The master should re-
cover F[W1; . . . ;WK] from the answers of workers in [N]\Sn.
From the cyclic assignment, there are exactly K

N datasets, de-
noted by U0 =

{
((n+m) mod N) + pN : p ∈ [

0 : K
N − 1

]}
,

which are exclusively assigned to the workers in

HU0
= Sn ∪ {(n+ 1) mod N, (n+ 2) mod N,

. . . , (n+m) mod N}
= {(n− N+ Nr + 1) mod N, (n− N+ Nr + 2) mod N,

. . . , (n+m) mod N}.
Then for each i ∈ [u − 1], the datasets in Ui ={
((n+m+ i) mod N) + pN : p ∈ [

0 : K
N − 1

]}
, are exclu-

sively assigned to the workers in

HUi = {(n− N+ Nr + i+ 1) mod N, (n− N+ Nr + i+ 2)

mod N, . . . , (n+m+ i) mod N}.
It can be seen that there are totally K

Nu datasets in ∪i∈[0:u−1]Ui,
which are exclusively assigned to the workers in

∪i∈[0:u−1] HUi
= {(n− N+ Nr + 1) mod N,

(n− N+ Nr + 2)mod N, . . . , (n+m+ u− 1) mod N}
= Sn ∪ {(n+ 1) mod N, . . . , (n+m+ u− 1) mod N}.

Note that since u ≤ Nr − m + 1, we have Sn ∩ {(n +
1) mod N, . . . , (n+m+ u− 1) mod N} = ∅. In other words,
the number of responding workers in ∪i∈[0:u−1]HUi is∣∣(∪i∈[0:u−1]HUi

) ∩ ([N] \ Sn)
∣∣

= |{(n+ 1) mod N, . . . , (n+m+ u− 1) mod N}|

= m+ u− 1.

Since K
Nu ≥ Kc, the sub-matrix of the demand matrix including

the columns in ∪i∈[0:u−1]Ui has a rank equal to Kc with
high probability. Hence, the number of transmitted symbols
by workers in {(n+1) mod N, . . . , (n+m+ u− 1) mod N}
should be no less than KcL; thus∑

j∈{(n+1) mod N,...,(n+m+u−1) mod N}
Tj ≥ KcL. (14)

By considering all n ∈ [N] and summing all the inequalities
as in (14), we have∑

j∈[N]

Tj ≥ NKc

m+ u− 1
L,

which leads that

R�
cyc ≥

maxA⊆[N]:|A|=Nr

∑
j∈A Tj

L
≥ NrKc

m+ u− 1
,

as the converse bound in (4a).

V. PROOF OF (6b)
We focus on the case where Kc ∈ [

K
N : K

N (Nr −m+ 1)
]
.

We first illustrate the main idea in the following example.

Example 2. In this example, we have N = K = 6, Nr = 5,
m = 2, and Kc = 2. Since N = K in this example, we have
u = Kc = 2. For the sake of simplicity, while illustrating
the proposed scheme through this example, we assume that
the field is a large enough prime field. It will be proved that
in general this assumption is not necessary in our proposed
scheme. We assume that the demand matrix is

F =

[
f1,1 f1,2 f1,3 f1,4 f1,5 f1,6
f2,1 f2,2 f2,3 f2,4 f2,5 f2,6

]
=

[
1 1 1 1 1 1
0 1 2 3 4 5

]
.

Data assignment phase: The number of datasets assigned
to each worker is M = K

N (N−Nr+m) = 3. We use the cyclic
assignment, to assign

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5 Worker 6
D1 D2 D3 D4 D5 D6

D2 D3 D4 D5 D6 D1

D3 D4 D5 D6 D1 D2

Computing phase: Since the communication cost is no
less than Nr

Kc

m+u−1 = 10
3 from the converse bound (4a), we

divide each message Wk where k ∈ [6] into m+u−1 = 3 non-
overlapping and equal-length sub-messages, Wk = {Wk,j :
j ∈ [3]}. Hence, the task function becomes (m+u−1)Kc = 6
linear combinations of sub-messages. Each worker should
send Kc = 2 linear combinations of sub-messages. From
the answers of Nr = 5 workers, the master totally receives
NrKc = 10 linear combinations of sub-messages. Hence, we
generate v = 10− 6 = 4 virtually demanded linear combina-
tions of sub-messages; thus the effective demand matrix (i.e.,
containing original and virtual demands) is

F′[W1,1; . . . ;W6,1;W1,2; . . . ;W6,3]

where F′ has the dimension NrKc ×K(m+ u− 1) = 10× 18,
with the form in (15).
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F′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

001 · · · 001 000 · · · 000 000 · · · 000

000 · · · 005 000 · · · 000 000 · · · 000

000 · · · 000 001 · · · 001 000 · · · 000

000 · · · 000 000 · · · 005 000 · · · 000

000 · · · 000 000 · · · 000 001 · · · 001

000 · · · 000 000 · · · 000 000 · · · 005

a1,1 · · · a1,6 a1,7 · · · a1,12 a1,13 · · · a1,18

a2,1 · · · a2,6 a2,7 · · · a2,12 a2,13 · · · a2,18

a3,1 · · · a3,6 a3,7 · · · a3,12 a3,13 · · · a3,18

a4,1 · · · a4,6 a4,7 · · · a4,12 a4,13 · · · a4,18

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

F′
1 F′

2 F′
3

The transmissions of the 6 workers can be expressed as

S F′ [W1,1; . . . ;W6,1;W1,2; . . . ;W6,3] =

[s1,1; s1,2; s2,1; . . . ; s6,2]F′[W1,1; . . . ;W6,1;W1,2; . . . ;W6,3],

where the row vector sn,j represents the jth

transmission vector of worker n; in other words,
sn,jF′[W1,1; . . . ;W6,1;W1,2; . . . ;W6,3] represents the
jth transmitted linear combination by worker n. We can
further expand S as in (16).

Now the jth transmitted linear combination by worker n can
be expressed as

sn,jd1W1,1 + sn,jd2W2,1 + · · ·+
sn,jd6W6,1 + sn,jd7W1,2 + · · ·+ sn,jd18W6,3, (17)

where di represents the ith column of F′. Recall that Zn ⊆
[K] represents the set of messages which are not assigned to
worker n. Hence, to guarantee that the linear combination
in (17) can be transmitted by worker n, we should have

sn,jdk+(t−1)K = 0, ∀n ∈ [6], j ∈ [2], t ∈ [3], k ∈ Zn. (18)

In addition, for each set A ⊆ [6] where |A| = 5, by receiving
the linear combinations transmitted by the workers in A, the
master should recover the desired linear combinations. Hence,
we should have (recalling that A(i) represents the ith smallest
element of A)

[sA(1),1; sA(1),2; sA(2),1; . . . ; sA(5),2] is full rank, (19)

∀A ⊆ [6] where |A| = 5. Our objective is to determine the
elements in S and in F′ such that the constraints in (18)
and (19) are satisfied.

We divide matrix F′ into 3 sub-matrices, F′
1,F

′
2,F

′
3 each

of which has the dimension 10× 6, as illustrated in (15). We
also divide matrix S into 4 sub-matrices, S1,S2,S3 each of
which has the dimension 12×2 and S4 with dimension 12×4,
as illustrated in (16). In other words, S1,S2,S3 correspond
to the (m+ u− 1)Kc = 6 real demanded linear combinations
of sub-messages, while S4 corresponds to the v = 4 virtual
demanded linear combinations of sub-messages.

The proposed computing scheme in the computing phase

contains three main steps:7

• Step 1: We first choose the values for the elements in S4.
• Step 2: After determining S4, the constraints in (18)

become linear in terms of the remaining variables (i.e.,
the elements in F′

1,F
′
2,F

′
3,S1,S2,S3). Hence, we can

obtain the values for these remaining variables by solving
the systems of linear equations.

• Step 3: After determining all the variables, we check
the constraints in (19) such that the proposed scheme
is decodable.

Step 1: We choose the values for S4 with the following
form,

S4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1,11 b1,12 b1,13 b1,14

b1,21 b1,22 b1,23 b1,24

b2,11 b2,12 b2,13 b2,14

b2,21 b2,22 b2,23 b2,24

b3,11 b3,12 b3,13 b3,14

b3,21 b3,22 b3,23 b3,24

b4,11 b4,12 b4,13 b4,14

b4,21 b4,22 b4,23 b4,24

b5,11 b5,12 b5,13 b5,14

b5,21 b5,22 b5,23 b5,24

b6,11 b6,12 b6,13 b6,14

b6,21 b6,22 b6,23 b6,24

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ 0 0
0 0 ∗ ∗
∗ ∗ 0 0
0 0 ∗ ∗
∗ ∗ 0 0
0 0 ∗ ∗
∗ ∗ 0 0
0 0 ∗ ∗
∗ ∗ 0 0
0 0 ∗ ∗
∗ ∗ 0 0
0 0 ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 0 0
0 0 2 0
2 2 0 0
0 0 0 2
1 2 0 0
0 0 2 1
0 1 0 0
0 0 1 0
1 0 0 0
0 0 2 1
2 2 0 0
0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(20)

7 Notice that the computing schemes in [20], [21] for the case Kc = 1
and in [5] for the case where m = 1 cannot be used in this example to
achieved the converse bound. The idea of the computing schemes in [20],
[21] is first to randomly determine the elements in S, and then to determine
the coefficients of the virtually demanded linear combinations in F′ in order
to satisfy the constraints in (18). One can check that if we randomly choose all
the elements in S, there does not exist any solution on F′ which satisfies the
constraints in (18), because there will be more linearly independent constraints
than the variables. The idea of the computing scheme in [5] is first to randomly
determine the coefficients of the virtually demanded linear combinations
in F′, and then to determine the elements in S in order to satisfy the
constraints in (18). However, if we randomly determine the coefficients of the
virtually demanded linear combinations in F′, the sub-matrix of F′ including
the columns corresponding to the sub-messages which each worker cannot
compute has the dimension v× (m+ u− 1)(Nr −m) = 10× 9. Hence, the
left-hand side null-space of this sub-matrix only has one linearly independent
vector; thus each worker can only transmit one linearly independent linear
combination of sub-messages, where the coefficients of the unknown sub-
messages are 0.
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S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1,1

s1,2

s2,1

s2,2

...
s6,2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

s1,11 s1,12 s1,13 s1,14 s1,15 s1,16 b1,11 b1,12 b1,13 b1,14

s1,21 s1,22 s1,23 s1,24 s1,25 s1,26 b1,21 b1,22 b1,23 b1,24

s2,11 s2,12 s2,13 s2,14 s2,15 s2,16 b2,11 b2,12 b2,13 b2,14

...
...

...
...

...
...

...
...

...
...

s6,21 s6,22 s6,23 s6,24 s6,25 s6,26 b6,21 b6,22 b6,23 b6,24

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

S1 S2 S3 S4

where each ‘∗’ represents a uniform i.i.d. symbol on Fq. More
precisely, for the first linear combination transmitted by each
worker n ∈ [6], we choose bn,11 and bn,12 uniformly i.i.d.
over Fq, while letting bn,13 and bn,14 be zero. For the second
linear combination transmitted by each worker n, we choose
bn,23 and bn,24 uniformly i.i.d. over Fq, while letting bn,21 and
bn,22 be zero. The above choice on S4 will guarantee that the
constraints in (18) become linearly independent in terms of
the remaining variables to be decided in the next step.8

Step 2: Let us focus on the constraints in (18) for t = 1,
which corresponds to the elements in S1 and F′

1.
When (t, j) = (1, 1), the constraints in (18) become

sn,11 f1,k + sn,12 f2,k + bn,11 a1,k + bn,12 a2,k

+ bn,13 a3,k + bn,14 a4,k = 0, ∀n ∈ [6], k ∈ Zn,

where f1,k represents the kth element in the first demand
vector, f2,k represents the kth element in the second demand
vector, and the values of bn,1i where i ∈ [4] have been chosen
in (20). For example, if n = 1, we have the set of datasets
which are not assigned to worker 1 is Z1 = {4, 5, 6}. Hence,
we have the following three constraints

s1,11 f1,4 + s1,12 f2,4 + b1,11 a1,4 + b1,12 a2,4 + b1,13 a3,4 + b1,14 a4,4

= 1s1,11 + 3s1,12 + 0a1,4 + 2a2,4 = 0,

s1,11 f1,5 + s1,12 f2,5 + b1,11 a1,5 + b1,12 a2,5 + b1,13 a3,5 + b1,14 a4,5

= 1s1,11 + 4s1,12 + 0a1,5 + 2a2,5 = 0,

s1,11 f1,6 + s1,12 f2,6 + b1,11 a1,6 + b1,12 a2,6 + b1,13 a3,6 + b1,14 a4,6

= 1s1,11 + 5s1,12 + 0a1,6 + 2a2,6 = 0.

Similarly, if n = 2, with Z2 = {1, 5, 6} we have the following
three constraints

s2,11 f1,1 + s2,12 f2,1 + b2,11 a1,1 + b2,12 a2,1 + b2,13 a3,1 + b2,14 a4,1

= 1s2,11 + 0s2,12 + 2a1,1 + 2a2,1 = 0,

s2,11 f1,5 + s2,12 f2,5 + b2,11 a1,5 + b2,12 a2,5 + b2,13 a3,5 + b2,14 a4,5

= 1s2,11 + 4s2,12 + 2a1,5 + 2a2,5 = 0,

s2,11 f1,6 + s2,12 f2,6 + b2,11 a1,6 + b2,12 a2,6 + b2,13 a3,6 + b2,14 a4,6

= 1s2,11 + 5s2,12 + 2a1,6 + 2a2,6 = 0.

If n = 3, with Z3 = {1, 2, 6} we have the following three

8 Note that we can also choose each element in S4 uniformly i.i.d. over
Fq to find a realization of S4 which leads to these linearly independences.
However, by the Schwartz-Zippel lemma [25]–[27], the probability to obtain
a ‘good’ choice of S4 decreases, since the total degree of the corresponding
polynomial in the Schwartz-Zippel lemma increases.

constraints

s3,11 f1,1 + s3,12 f2,1 + b3,11 a1,1 + b3,12 a2,1 + b3,13 a3,1 + b3,14 a4,1

= 1s3,11 + 0s3,12 + 1a1,1 + 2a2,1 = 0,

s3,11 f1,2 + s3,12 f2,2 + b3,11 a1,2 + b3,12 a2,2 + b3,13 a3,2 + b3,14 a4,2

= 1s3,11 + 1s3,12 + 1a1,2 + 2a2,2 = 0,

s3,11 f1,6 + s3,12 f2,6 + b3,11 a1,6 + b3,12 a2,6 + b3,13 a3,6 + b3,14 a4,6

= 1s3,11 + 5s3,12 + 1a1,6 + 2a2,6 = 0.

If n = 4, with Z4 = {1, 2, 3} we have the following three
constraints

s4,11 f1,1 + s4,12 f2,1 + b4,11 a1,1 + b4,12 a2,1 + b4,13 a3,1 + b4,14 a4,1

= 1s4,11 + 0s4,12 + 0a1,1 + 1a2,1 = 0,

s4,11 f1,2 + s4,12 f2,2 + b4,11 a1,2 + b4,12 a2,2 + b4,13 a3,2 + b4,14 a4,2

= 1s4,11 + 1s4,12 + 0a1,2 + 1a2,2 = 0,

s4,11 f1,3 + s4,12 f2,3 + b4,11 a1,3 + b4,12 a2,3 + b4,13 a3,3 + b4,14 a4,3

= 1s4,11 + 2s4,12 + 0a1,3 + 1a2,3 = 0.

If n = 5, with Z5 = {2, 3, 4} we have the following three
constraints

s5,11 f1,2 + s5,12 f2,2 + b5,11 a1,2 + b5,12 a2,2 + b5,13 a3,2 + b5,14 a4,2

= 1s5,11 + 1s5,12 + 1a1,2 + 0a2,2 = 0,

s5,11 f1,3 + s5,12 f2,3 + b5,11 a1,3 + b5,12 a2,3 + b5,13 a3,3 + b5,14 a4,3

= 1s5,11 + 2s5,12 + 1a1,3 + 0a2,3 = 0,

s5,11 f1,4 + s5,12 f2,4 + b5,11 a1,4 + b5,12 a2,4 + b5,13 a3,4 + b5,14 a4,4

= 1s5,11 + 3s5,12 + 1a1,4 + 0a2,4 = 0.

If n = 6, with Z6 = {3, 4, 5} we have the following three
constraints

s6,11 f1,3 + s6,12 f2,3 + b6,11 a1,3 + b6,12 a2,3 + b6,13 a3,3 + b6,14 a4,3

= 1s6,11 + 2s6,12 + 2a1,3 + 2a2,3 = 0,

s6,11 f1,4 + s6,12 f2,4 + b6,11 a1,4 + b6,12 a2,4 + b6,13 a3,4 + b6,14 a4,4

= 1s6,11 + 3s6,12 + 2a1,4 + 2a2,4 = 0,

s6,11 f1,5 + s6,12 f2,5 + b6,11 a1,5 + b6,12 a2,5 + b6,13 a3,5 + b6,14 a4,5

= 1s6,11 + 4s6,12 + 2a1,5 + 2a2,5 = 0.

Hence, there are totally 6×3 = 18 constraints on 24 variables,
which are

a1,1, . . . , a1,6, a2,1, . . . , a2,6, s
1,1
1 , s1,12 , s2,11 , s2,12 , . . . , s6,12 .

(21)
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Since the number of variables is more than the number of
constraints, we fix 24− 18 = 6 variables. More precisely, we
give a value uniformly i.i.d. over Fq to each of the following 6
variables (the positions of these 6 variables are found through
programming),

s1,11 = 0, s2,12 = 1, s3,11 = 1, s4,12 = 1, s5,11 = 0, s6,12 = 1.
(22)

After determining the 6 variables in (22), the above 18
constraints are linearly independent on the remaining 18
variables, such that by solving a system of linear equations
we have

a1,1 = 1/4, a1,2 = 5/8, a1,3 = 5/4, a1,4 = 15/8, a1,5 = 21/8,

a1,6 = 27/8, a2,1 = −5/8, a2,2 = −13/8, a2,3 = −21/8,

a2,4 = −15/4, a2,5 = −5, a2,6 = −25/4, s1,12 = 5/2,

s2,11 = 3/4, s3,12 = 13/8, s4,11 = 5/8, s5,12 = −5/8, s6,11 = 3/4.

Note that for any element a on Fq, 1/a represents the
multiplicative inverse of a on Fq.

Similarly, by considering all pairs (t, j) where t ∈ [3] and
j ∈ [2], we can determine (23).

Step 3: For each subset of workers A ⊆ [6] where
|A| = 5, it can be seen that the constraints in (19) holds. For
example, if A = [5], the sub-matrix S([10])r including the first
10 rows of S is full rank. Hence, we let each worker n ∈ [N]
compute and send two linear combinations of sub-messages,
sn,1F′[W1,1; . . . ;W6,3] and sn,2F′[W1,1; . . . ;W6,3].

Decoding phase: Assume that the set of responding
workers is A where A ⊆ [6] and |A| = 5. The master receives

XA =
[
sA(1),1; sA(1),2; sA(2),1; . . . ; sA(5),2

]
F′ [W1,1; . . . ;W6,1;W1,2; . . . ;W6,3].

Since
[
sA(1),1; sA(1),2; sA(2),1; . . . ; sA(5),2

]
is full rank, the

master then computes[
sA(1),1; sA(1),2; sA(2),1; . . . ; sA(5),2

]−1

XA

to obtain F′ [W1,1; . . . ;W6,1;W1,2; . . . ;W6,3], which contains
its demanded linear combinations.

Performance: Since each worker sends 2L
3 symbols, the

communication cost is 10L
3L = 10

3 , coinciding with the converse
bound in (4b). �

We are ready to generalize the proposed distributed comput-
ing scheme in Example 2. First we focus on Kc =

K
Nu, where

u ∈ [Nr−m+1] and N ≥ m+u−1
u +u(Nr−m−u+1). During

the data assignment phase, we use the cyclic assignment.

Computing phase: Since the communication cost is no
less than Nr

Kc

m+u−1 , from the converse bound (4b), we divide
each message Wk where k ∈ [K] into m + u − 1 non-
overlapping and equal-length sub-messages, Wk = {Wk,j :
j ∈ [m + u − 1]}. Hence, the task function becomes (m +
u − 1)Kc linear combinations of sub-messages. Each worker
should send Kc linear combinations of sub-messages. From
the answers of Nr workers, the master totally receives NrKc

linear combinations of sub-messages. Hence, we generate

v = NrKc − (m+ u− 1)Kc = Kc(Nr −m− u+ 1)

virtually requested linear combinations of sub-messages; thus
the effective demand matrix F′ has the dimension NrKc ×
K(m+ u− 1), with the form in (24).

The transmissions of the K workers can be expressed as

S F′ [W1,1; . . . ;WK,1;W1,2; . . . ;WK,m+u−1] = [s1,1; . . . ; s1,Kc ;

s2,1; . . . ; sN,Kc ] F′ [W1,1; . . . ;WK,1;W1,2; . . . ;WK,m+u−1],

where sn,jF′[W1,1; . . . ;WK,1;W1,2; . . . ;WK,m+u−1] repre-
sents the jth transmitted linear combination by worker n. We
can further expand S as in (25),

By defining di as the ith column of F′, the jth transmitted
linear combination by worker n can be expressed as

sn,jd1W1,1 + · · ·+ sn,jdKWK,1 + sn,jdK+1W1,2

+ · · ·+ sn,jd(m+u−1)KWK,m+u−1. (26)

To guarantee that the linear combination in (26) can be
transmitted by worker n, the coefficients of the sub-messages
which worker n cannot compute should be 0; that is

sn,jdk+(t−1)K = 0, ∀n ∈ [N], j ∈ [Kc], t ∈ [m+ u− 1], k ∈ Zn.
(27)

In addition, for each set A ⊆ [N] where |A| = Nr, by receiving
the linear combinations transmitted by the workers in A, the
master should recover the desired linear combinations. Hence,
we should have

[sA(1),1; . . . ; sA(1),Kc ; sA(2),1; . . . ; sA(Nr),Kc ] is full rank,
(28)

∀A ⊆ [N] where |A| = Nr. Our objective is to determine
the elements in S (i.e., sn,ji where n ∈ [N], j ∈ [Kc], i ∈
[(m+ u− 1)Kc]; b

n,j
i where n ∈ [N], j ∈ [Kc], i ∈ [v]) and in

F′ (i.e., ai,k where i ∈ [v] and k ∈ [(m+ u− 1)K]) such that
the constraints in (27) and (28) are satisfied.

We divide matrix F′ into m + u − 1 sub-matrices,
F′

1, . . . ,F
′
m+u−1 each of which has the dimension NrKc×K,

as illustrated in (24). We also divide matrix S into m+u sub-
matrices, S1, . . . ,Sm+u−1 each of which has the dimension
NKc × Kc and Sm+u with dimension NKc × v, as illustrated
in (25). As in Example 2, the proposed computing scheme
contains three main steps:

• Step 1: We first choose the values for the elements in
Sm+u.

• Step 2: After determining the elements in Sm+u, the
constraints in (27) become linear in terms of the remain-
ing variables, which are then determined by solving the
systems of linear equations.

• Step 3: After determining all the variables, we check
the constraints in (28) such that the proposed scheme is
decodable.

Step 1: We choose the values for Sm+u with the form
in (29b) (as S4 in Example 2), where each ‘∗’ represents
a uniformly i.i.d. symbol on Fq. More precisely, for the jth

linear combination transmitted by worker n where j ∈ [Kc]
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S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 5/2 0 0 0 −11/4 0 2 0 0
1 −14 1 27 0 0 0 0 2 0
3/4 1 0 0 41/8 1 2 2 0 0
40 0 −82 1 0 0 0 0 0 2
1 13/8 0 0 1 −9/16 1 2 0 0
1 −10 0 39/2 0 0 0 0 2 1

5/8 1 0 0 −25/16 0 0 1 0 0
−19/2 0 41/2 1 0 0 0 0 1 0

0 −5/8 0 0 1 41/16 1 0 0 0
1 −10 1 37/2 0 0 0 0 2 1

3/4 1 0 0 73/8 0 2 2 0 0
−23/2 1 31/2 0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; (23a)

[a1,1, . . . , a1,18] =

[
1

4
,
5

8
,
5

4
,
15

8
,
21

8
,
27

8
, 0, 0, 0, 0, 0, 0,

−33

8
,
−57

16
,
−49

8
,
139

16
,
161

16
,
−191

16

]
; (23b)

[a2,1, . . . , a2,18] =

[−5

8
,
−13

8
,
−21

8
,
−15

4
,−5,

−25

4
, 0, 0, 0, 0, 0, 0,

25

16
,
25

16
,
25

16
,
33

8
,
11

2
,
55

8

]
; (23c)

[a3,1, . . . , a3,18] =

[
19

2
,
19

2
,
19

2
,
41

2
,
55

2
,
69

2
,
−41

2
,
−43

2
,
−45

2
,−41,

−109

2
,−68, 0, 0, 0, 0, 0, 0

]
; (23d)

[a4,1, . . . , a4,18] =

[
−20,−10, 0,−12,−20,−20, 41,

47

2
, 7,

51

2
, 39,

77

2
, 0, 0, 0, 0, 0, 0

]
. (23e)

F′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0f1,1 · · · 0f1,K 0000 · · · 0000 · · · 00000000000 · · · 00000000000
...

. . .
...

...
. . .

...
. . .

...
. . .

...
fKc,1 · · · fKc,K 000 · · · 000 · · · 00000000000 · · · 00000000000

000 · · · 000 f1,1 · · · f1,K · · · 00000000000 · · · 00000000000
...

. . .
...

...
. . .

...
. . .

...
. . .

...
000 · · · 000 fKc,1 · · · fKc,K · · · 00000000000 · · · 00000000000

...
. . .

...
...

. . .
...

. . .
...

. . .
...

000 · · · 000 000 · · · 000 · · · f1,1 · · · f1,K
...

. . .
...

...
. . .

...
. . .

...
. . .

...
000 · · · 000 000 · · · 000 · · · fKc,1 · · · fKc,K

a1,1 · · · a1,K a1,K+1 · · · a1,2K · · · a1,(m+u−2)K+1 · · · a1,(m+u−1)K

...
. . .

...
...

. . .
...

. . .
...

. . .
...

av,1 · · · av,K av,K+1 · · · av,2K · · · av,(m+u−2)K+1 · · · av,(m+u−1)K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (24)

F′
1 F′

2 F′
m+u−1

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1,1

...
s1,Kc

s2,1

...
sN,Kc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0s1,11 · · · s1,1Kc
· · · s1,1(m+u−2)Kc+1 · · · s1,1(m+u−1)Kc

0b1,11 · · · b1,1v

...
. . .

...
. . .

...
. . .

...
...

. . .
...

s1,Kc

1 · · · s1,Kc

Kc
· · · s1,Kc

(m+u−2)Kc+1 · · · s1,Kc

(m+u−1)Kc
b1,Kc

1 · · · b1,Kc
v

s2,11 · · · s2,1Kc
· · · s2,1(m+u−2)Kc+1 · · · s2,1(m+u−1)Kc

b2,11 · · · b2,1v

...
. . .

...
. . .

...
. . .

...
...

. . .
...

sN,Kc

1 · · · sN,Kc

Kc
· · · sN,Kc

(m+u−2)Kc+1 · · · sN,Kc

(m+u−1)Kc
bN,Kc

1 · · · bN,Kc
v

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (25)

S1 Sm+u−1 Sm+u
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Sm+u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1,11 · · · b1,1v
Kc

b1,1v
Kc

+1 · · · b1,12v
Kc

b1,12v
Kc

+1
· · · b1,1(Kc−1)v

Kc

b1,1(Kc−1)v
Kc

+1
· · · b1,1v

b1,21 · · · b1,2v
Kc

b1,2v
Kc

+1 · · · b1,22v
Kc

b1,22v
Kc

+1
· · · b1,2(Kc−1)v

Kc

b1,2(Kc−1)v
Kc

+1
· · · b1,2v

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

b1,Kc

1 · · · b1,Kc
v
Kc

b1,Kc
v
Kc

+1 · · · b1,Kc
2v
Kc

b1,Kc
2v
Kc

+1
· · · b1,Kc

(Kc−1)v
Kc

b1,Kc
(Kc−1)v

Kc
+1

· · · b1,Kc
v

b2,11 · · · b2,1v
Kc

b2,1v
Kc

+1 · · · b2,12v
Kc

b2,12v
Kc

+1
· · · b2,1(Kc−1)v

Kc

b2,1(Kc−1)v
Kc

+1
· · · b2,1v

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

bN,Kc

1 · · · bN,Kc
v
Kc

bN,Kc
v
Kc

+1 · · · bN,Kc
2v
Kc

bN,Kc
2v
Kc

+1
· · · bN,Kc

(Kc−1)v
Kc

bN,Kc
(Kc−1)v

Kc
+1

· · · bN,Kc
v

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29a)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ · · · ∗ 0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 ∗ · · · ∗ 0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0 0 · · · 0 ∗ · · · ∗
∗ · · · ∗ 0 · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0 0 · · · 0 ∗ · · · ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (29b)

and n ∈ [N], we choose each of bn,j(j−1)v
Kc

+1
, . . . , bn,jjv

Kc

uniformly

i.i.d. over Fq, while setting the other variables in this linear
combination be 0. The above choice on Sm+u will guarantee
that the constraints in (27) become linearly independent in
terms of the remaining variables to be determined in the next
step.

Step 2: We then fix one t ∈ [m+u−1] and one j ∈ [Kc];
thus the constraints in (27) become

0 = sn,jdk+(t−1)K (30a)

=
∑

i1∈[Kc]

fi1,k sn,j(t−1)Kc+i1
+

∑
i2∈[v]

bn,ji2
ai2,(t−1)K+k (30b)

=
∑

i1∈[Kc]

fi1,k sn,j(t−1)Kc+i1

+
∑

i3∈[ (j−1)v
Kc

+1: jv
Kc
]

bn,ji3
ai3,(t−1)K+k, ∀n ∈ [N], k ∈ Zn.

(30c)

Notice that in (30c) the coefficients fi1,k are the elements in
the demand matrix F and bn,ji3

have been already determined
in Step 1. Hence, the constraints (30c) are linear in terms of
the variables

sn,j(t−1)Kc+i1
and ai3,k1

, ∀n ∈ [N], i1 ∈ [Kc],

i3 ∈
[
(j − 1)v

Kc
+ 1 :

jv

Kc

]
, k1 ∈ [(t− 1)K+ 1 : tK]. (31)

Next, we determine the values of the variables in (31) by
solving the system of linear equations. In (31), there are totally

NKc +
v

Kc
K = N

K

N
u+ (Nr −m− u+ 1)K = K(Nr −m+ 1)

variables while in (30c) there are totally

N
K

N
(Nr −m) = K(Nr −m)

constraints. Hence, in order to determine all the variables
in (31) while satisfying the constraints in (30c), we first fix
K(Nr − m + 1) − K(Nr − m) = K variables. More precisely,
for each n ∈ [N] and each i ∈ [K/N], we first choose each of

sn,j
(t−1)Kc+(i−1)u+(n mod u)

, (32)

uniformly i.i.d. over Fq. Note that sn,j
(t−1)Kc+(i−1)u+(n mod u)

is in the
(
(n−1)Kc+j

)th
row and the

(
(t−1)Kc+(i−1)u+

(n mod u)
)th

column of S. Hence, among all the K(Nr−m+1)
variables in (31), we have determined NK

N = K variables. Thus
there are K(Nr−m) variables to be solved by K(Nr−m) linear
equations in (30c). It will be proved by the Schwartz-Zippel
Lemma [25]–[27] in Appendix A that with high probability,
these K(Nr − m) linear equations are linearly independent
over these remaining K(Nr − m) variables.9 As a result, by
solving the system of linear equations we can determine all
the remaining variables in (31).

By considering all the pairs (t, j) where t ∈ [m + u − 1]
and j ∈ [Kc], we can determine all the elements in S and F′.

Step 3: It will be proved by the Schwartz-Zippel
Lemma [25]–[27] in Appendix A that the constraints
in (28) hold with high probability. Hence, we let each
worker n compute and send Kc linear combinations, i.e.,
sn,jF′[W1,1; . . . ;WK,1;W1,2; . . . ;WK,m+t−1] where j ∈ [Kc].

Decoding phase: Assume that the set of responding
workers is A where A ⊆ [K] where |A| = Nr. The master
receives

XA =[sA(1),1; . . . ; sA(1),Kc ; sA(2),1; . . . ; sA(Nr),Kc ]

F′ [W1,1; . . . ;WK,1;W1,2; . . . ;WK,m+u−1].

9 Note that in Example 2, we focus on a specific demand and thus the
Schwartz-Zippel Lemma is not needed.
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Since [sA(1),1; . . . ; sA(1),Kc ; sA(2),1; . . . ; sA(Nr),Kc ] is full
rank, the master then computes

[sA(1),1; . . . ; sA(1),Kc ; sA(2),1; . . . ; sA(Nr),Kc ]−1XA

to obtain F′[W1,1; . . . ;WK,1;W1,2; . . . ;WK,m+u−1], which
contains its demanded linear combinations.

Performance: Since each worker sends KcL
m+u−1 symbols,

the communication cost is NrKcL
(m+u−1)L = NrKc

m+u−1 , coinciding
with (6a).

Remark 3. The proposed scheme works for the case where

N ≥ m+ u− 1

u
+ u(Nr −m− u+ 1), (33)

which can be explained intuitively in the following way. It
will be proved in Appendix A that if the proposed scheme
works for the

(
N,N,Nr, u,m

)
distributed linearly separable

computation problem (i.e., the number of messages is equal to
N) with high probability, then with high probability the pro-
posed scheme also works for the

(
K,N,Nr,

K
Nu,m

)
distributed

linearly separable computation problem where N divides K.
Hence, let us then analyse the case K = N. In this case, note
that Kc = u.

We fix one t ∈ [m+u−1] in the constraints (27). In Step 2 of
the computing phase, we should solve the following problem:

Problem t: Determine the values of the variables

sn,j(t−1)u+i1
and ai3,k, ∀n ∈ [N], j ∈ [u], i1 ∈ [u],

i3 ∈ [v] , k ∈ [(t− 1)K : tK],

satisfying the constraints∑
i1∈[u]

fi1,k sn,j(t−1)u+i1
+

∑
i3∈[ (j−1)v

u +1: jvu ]

bn,ji3
ai3,(t−1)K+k = 0,

∀j ∈ [u], n ∈ [N], k ∈ Zn.
Notice that by solving Problem t, for each i ∈ [v], we can

determine

[s1,1(t−1)u+i; . . . ; s
1,u
(t−1)u+i; s

2,1
(t−1)u+i; . . . ; s

N,u
(t−1)u+i],

which is the ((t− 1)u+ i)
th column of S. Another important

observation is that, Problem t1 is totally equivalent to Problem
t2 for any t1 �= t2. Thus, we can introduce the following unified
problem.

Unified Problem: Determine the values of the variables

pn,ji1
and qi3,k, ∀n ∈ [N], j ∈ [u], i1 ∈ [u], i3 ∈ [v] , k ∈ [K],

satisfying the constraints∑
i1∈[u]

fi1,k pn,ji1
+

∑
i3∈[ (j−1)v

u +1: jvu ]

bn,ji3
qi3,k = 0, (34)

∀j ∈ [u], n ∈ [N], k ∈ Zn.
In the unified problem, there are

Nuu+ vK = Nu(u+ Nr −m− u+ 1) = Nu(Nr −m+ 1)

variables and Nu(Nr − m) constraints. Hence, the number
of linearly independent solutions of the unified problem is no
less than Nu(Nr − m + 1) − Nu(Nr − m) = Nu, where the
equality holds when the constraints in the unified problem is

linearly independent. To guarantee that all the columns in S
are linearly independent, we should assign m+ u− 1 linearly
independent solutions to Problems 1, 2, . . . ,m+ u− 1.

In addition, among all the linearly independent solutions of
the unified problem, there are uv trivial solutions which we
cannot pick. More precisely, for each i ∈ [v] and d ∈ [u],
one possible solution is to set (recall that fd represents the dth

demand vector)

(qi,1, qi,2, . . . , qi,K) = fd,

while setting qi3,k = 0 if i3 �= i. In addition, we set

pn,ji = −bn,ji , ∀n ∈ [N], j ∈ [u],

while setting pn,ji1
= 0 if i1 �= i. It can be easily checked

that by the above choice of variables, the constraints in (34)
hold. Hence, the above choice is one possible solution of
the unified problem. There are totally uv such possible solu-
tions. However, any combination of such uv solutions cannot
be chosen as a solution of Problem t. This is because in
each of the above solutions, there is a column of S (i.e.,
[p1,1i ; . . . ; p1,ui ; p1,2i ; . . . ; pN,u

i ]), which can be expressed by a
fixed column of S (i.e., [b1,1i ; . . . ; b1,ui ; b1,2i ; . . . ; bN,u

i ]). Hence,
the full rank constraints in (28) cannot hold.

As a result, if we have

Nu ≥ m+ u− 1 + uv = m+ u− 1 + u2(Nr −m− u+ 1)

which is equivalent to (33), it can be guaranteed that we can
assign one linearly independent non-trivial solution to each
Problem t. �

For each K
N (u − 1) < Kc < K

Nu where u ∈ [Nr − m + 1],
we first generate K

Nu−Kc demand vectors whose elements are
uniformly i.i.d. over Fq, and add these vectors into the demand
matrix F. Next, we use the above distributed computing
scheme with K′

c = K
Nu. Hence, the communication cost is

NrK
′
c

m+u−1 = NrKu
N(m+u−1) , coinciding with (6a).

Remark 4. For the proposed computing scheme for the case[
K
N : K

N (Nr −m+ 1)
]
, the decoding complexity (i.e., the num-

ber of multiplications) of the master is O (
Kc

K
NuNrL

)
. Simi-

larly, when Kc ∈
[
K
N

]
, the decoding complexity is O (KcNrL).

When Kc ∈
[
K
N (Nr −m+ 1) : K

]
, the decoding complexity is

O
(
Kc

K
NN

2
rL+ Kc

( Kc−1
K
NNr−1

)
L
)

. �

VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this paper, we studied the computation-communication
costs tradeoff for the distributed linearly separable computa-
tion problem. A converse bound under the constraint of the
cyclic assignment was proposed, and we also proposed a novel
distributed computing scheme under some parameter regimes.
Some exact optimality results were derived with or without the
constraint of the cyclic assignment. The proposed computing
scheme was also proved to be generally order optimal within a
factor of 2 under the constraint of the cyclic assignment. The
simplest open which the proposed scheme cannot work is the
case where K = N = Nr = 5, Kc = 2, and m = 2. Further
works include the design of the distributed computing scheme
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for the open cases and the derivation of the converse bound
for any dataset assignment.

Ongoing works include the generalization of the proposed
scheme under any system parameters and the extension to the
systems with partial stragglers as in [17], [28] or/and with
partial computation recovery as in [29], [30].

APPENDIX A
FEASIBILITY PROOF OF THE PROPOSED COMPUTING

SCHEME IN SECTION V

In the following, we first show that for the
(K,N,Nr,Kc,m) =

(
N,N,Nr, u,m

)
distributed

linearly separable computation problem, where
N ≥ m+u−1

u + u(Nr − m − u + 1), the proposed computing
scheme works with high probability. Next we show that if the
proposed scheme works for the

(
N,N,Nr, u,m

)
distributed

linearly separable computation problem with high probability,
then with high probability the proposed scheme also works
for the

(
K,N,Nr,

K
Nu,m

)
distributed linearly separable

computation problem, where K
N is a positive integer.

A. K = N

The feasibility of the proposed computing scheme is proved
by the Schwartz-Zippel Lemma [25]–[27] as we used in [5,
Appendix C] for the computing scheme where m = 1. For the
sake of simplicity, in the following we provide the sketch of
the feasibility proof.

Recall that in Step 2 of the proposed computing scheme, for
each pair (t, j) where t ∈ [m+ u− 1] and j ∈ [u], we need to
determine the values of the variables in (31) while satisfying
the linear constraints in (30c). In addition, among all the
variables in (31), we choose the values of the variables in (32)
uniformly i.i.d. over Fq. Then there are remaining K(Nr −m)
variables (the vector of these K(Nr −m) variables is assumed
to be b) and K(Nr −m) linear equations over these variables,
and thus we can express these linear equations as (recall that
(M)m×n indicates that the dimension of matrix M is m×n)
(A)K(Nr−m)×K(Nr−m) (b)K(Nr−m)×1 = (c)K(Nr−m)×1, where
the coefficients in A and c are composed of the elements in
F, Sm+u and (32) which are all generated uniformly i.i.d.
over Fq. Hence, the determinant of A can be seen as a
multivariate polynomial whose variables are the elements in
F, Sm+u and (32). Since the variables of the polynomial are
uniformly i.i.d. over Fq where q → ∞, by the Schwartz-Zippel
Lemma [25]–[27], if we can further show that this polynomial
is a non-zero multivariate polynomial (i.e., a multivariate
polynomial whose coefficients are not all 0), the probability
that the polynomial is equal to 0 over all possible realization
of the elements in F, Sm+u and (32), goes to 0. In other words,
the determinant of A is non-zero with high probability. So the
next step is to show this polynomial is non-zero. This means
that we need to find one realization of the elements in F,
Sm+u and (32), such that this polynomial is not equal to zero.
By random generation of the elements in F, Sm+u and (32),
we have tested all cases where N = K ≤ 40 satisfying the
constraint N ≥ m+u−1

u +u(Nr−m−u+1). Hence, for each pair
(t, j), the probability that Step 2 of the proposed computing

scheme is feasible goes to 1. By the probability union bound,
the probability that Step 2 of the proposed computing scheme
is feasible for all pairs of (t, j), also goes to 1.

Moreover, by using the Cramer’s rule, each element in b
can be seen as a ratio of two polynomials whose variables are
the elements in F, Sm+u and (32), where the polynomial in
the denominator is non-zero with high probability. As a result,
each element in S can be seen as ratio of two polynomials of
the elements in F, Sm+u and (32) for all pairs (t, j). So in
Step 3 for each A ⊆ [N] where |A| = Nr, the determinant of
the matrix [sA(1),1; . . . ; sA(1),Kc ; sA(2),1; . . . ; sA(Nr),Kc ] can be
expressed as YA =

∑
i∈[(Nru)!]

Pi

Qi
, where Pi and Qi are poly-

nomial whose variables are the elements in F, Sm+u and (32)
for all pairs (t, j). We want to prove that YA

∏
i∈[(Nru)!]

Qi

is a non-zero polynomial such that we can use the Schwartz-
Zippel Lemma [25]–[27] to show that the determinant YA is
not equal to zero with high probability. Again, by random
generation of the elements in F, Sm+u and (32) for all pairs
(t, j), we have tested all cases where N = K ≤ 40 satisfying
the constraint N ≥ m+u−1

u +u(Nr−m−u+1). In these cases,
with the random choices, both

∏
i∈[(Nru)!]

Qi and YA are not
equal to zero, and thus YA

∏
i∈[(Nru)!]

Qi is not equal to 0.
In conclusion, we prove the feasibility of the proposed

computing scheme in Steps 2 and 3 with high probability, for
the case where m+u−1

u + u(Nr −m− u+ 1) ≤ K = N ≤ 40.

B. N divides K

We then consider the (K,N,Nr,Kc,m) =
(
K,N,Nr,

K
Nu,m

)
distributed linearly separable computation problem, where
N ≥ m+u−1

u + u(Nr −m− u+ 1) and K
N is a positive integer.

Similar to the proof for the case where K = N, we also aim to
find a specific realization of the elements in F, Sm+u and (32)
for all pairs (t, j), such that Steps 2 and 3 of the proposed
scheme are feasible (i.e., the determinant polynomials are non-
zero).

We construct the demand matrix (i.e., F with dimension
K
Nu× K) as follows,

F =

⎡
⎢⎢⎢⎣

(F1)u×N 0u×N · · · 0u×N

0u×N (F2)u×N · · · 0u×N

...
...

...
...

0u×N 0u×N · · · (FK/N)u×N

⎤
⎥⎥⎥⎦ ,

where each element in Fi, i ∈
[
K
N

]
is generated uniformly i.i.d.

over Fq. In the above construction, the
(
K,N,Nr,

K
Nu,m

)
dis-

tributed linearly separable computation problem is divided into
K
N independent/disjoint

(
N,N,Nr, u,m

)
distributed linearly

separable computation sub-problems. Since the determinant
polynomials are non-zero with high probability for each sub-
problem as we proved in Appendix A-A, it can be seen that the
determinant polynomials for the

(
K,N,Nr,

K
Nu,m

)
distributed

linearly separable computation problem are also non-zero with
high probability.
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