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Data assignment phase: Each dataset Dy, where k € [K]
is assigned to a subset of N workers in an uncoded manner.
Define Z,, C [K] as the set of datasets assigned to worker
n € [N]. The assignment constraint is that

K
|Zn|§M::N(N—Nr—|—m), Vn € [N],

where M represents the computation cost, and m represents
the computation cost factor.’

The assignment function of worker n is denoted by ¢,,
where

K
Z, = SDn(F)v Pn : []Fq]KCK — (S[ |3/|>’
and (LK,\]A) represents the set of all subsets of [K] of size not
larger than M. In addition, for each dataset D, where k € [K],
we define H; as the set of workers to whom dataset Dy, is
assigned. For each set of datasets K where IC C [K], we define
Hi = Ure)H as the set of workers to whom there exists
some dataset in /C assigned.
Computing phase: Each worker n € [N] first computes

the message Wy, = fi.(Dy) for each k € Z,,. Worker n then
computes

Xpn =0, ({Wy : k€ 2,},F)
where the encoding function ,, is
(N [Fq]‘zn‘L X [Fq] " — [Fq] ™™,

and T,, represents the length of X,,. Finally, worker n sends
X, to the master.

Decoding phase: The master only waits for the N, fastest
workers” answers to compute g(W7,. .., Wg). In other words,
the computation scheme can tolerate N — N, stragglers. Since
the master does not know a priori which workers are stragglers,
the computation scheme should be designed so that from
the answers of any N, workers, the master should recover
g(W1,...,Wk). More precisely, for any subset of workers
A C [N] where |A| = N,, with the definition

Xa:={X,:ne A},

there exists a decoding function ¢4 such that g4 =
¢4 (X4, F), where the decoding function is

Pa - [Fq]Z"EA Tr X [Fg]KeX — [Fgliet.
The worst-case probability of error is defined as

€:= max  Pr{ga # g(Wh,...,Wk)}.

ACINJ:|A|=N,
In addition, we denote the communication cost by,
ZTLE.A Tn
L Y
representing the maximum normalized number of symbols

downloaded by the master from any N, responding workers.
The communication cost R is achievable if there exists a

R:= max
ACINJ:|A|=N,

STt was proved in [5] that in order to tolerate N—N, stragglers, the minimum
computation cost is % (N =N, +1).

computation scheme with assignment, encoding, and decoding
functions such that

lim lim e =0.

q—o0 L—oo
Since the probability of each demand matrix is identical,
the above constraint implies that any achievable computing
scheme should work for most demand matrices with dimension
K. x K.

The objective is to characterize the optimal tradeoff between
the computation and communication costs (m,R*), i.e., for
each m € [N,], we aim to find the minimum communication
cost R*.

As shown in [5, Section II], since the elements of the
demand matrix F are uniformly i.i.d. over a large enough
field Fy, the desired task contains K. linearly independent
combinations of messages with high probability, where each
message contains L uniformly ii.d. symbols on Fg; thus a
simple cut-set bound argument yields

R* > K.. (D

The cyclic assignment was widely used in the existing works
on the distributed computing problems [5], [17]-[21]. For each
dataset Dy, where k € [K], we assign Dy, to the workers in
‘Hi where (recall that in this paper we let a mod b = b if b
divides a)

Hi ={k mod N, (k—1) mod N, ...,

(k—=N-+N,—m+1) mod N}. (2)

Thus the set of datasets assigned to worker n € [N] is

Z,= U  {(nmodN)+pN,((n+1) mod N)+pN,...
pefo:K-1

((n+N—=N;+m—1) mod N) +pN} (3)

with cardinality (N — N, + m). For example, if K = N = 4,
N, = 3 and m = 2, by the cyclic assignment with p = 0
in (3), we have

Hi = {17374}7 Ho = {1»274}7 HS = {132a3}a Hy = {27374}7

Z,=11,2,3}, 25 =12,3,4}, Z5={3,4,1}, Z, ={4,1,2}.

For each m € [N,], the minimum communication cost under
the cyclic assignment in (3) is denoted by Rf . Clearly, we
have R* > R*.

cyc

Remark 1. It will be clear that the assumption that the desired
function’s coefficients (i.e., the elements in demand matrix F)
are uniformly i.i.d. over a large enough field, is needed for
the information theoretic converse bounds, and to prove the
decodability of the proposed computing scheme with vanishing
probability of error by the Schwartz-Zippel lemma [25]—[27].
As shown in [5, Remark 3], for some specific demand matrices,
the optimal communication costs can be strictly higher than
R*. It is one of our on-going works to study the arbitrary
demand matrices.

% The Schwartz-Zippel lemma [25]-[27] shows that the realization of a
multivariate polynomial is not equal to zero with high probability if the
coefficients of this polynomial are not all zero and each variable in the
polynomial is uniformly i.i.d. over a large enough field.
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In contrast, the assumption that the symbols in each mes-
sage are uniformly i.i.d., is only needed for the information
theoretic converse bounds, while the proposed computing
scheme in this paper works for any arbitrary component

Sfunctions fi,(Dy,) where k € [K]. O

Special cases: The sub-case of the considered problem
for K. = 1 and any m was studied in [20], [21] and the sub-
case for m = 1 and any K. was studied in [5].

o K. = 1. It was proved in [20], [21] that when K, = 1,
the communication cost N; is optimal under the constraint
of linear coding in the computing phase and symmetric
transmission (i.e., the number of symbols transmitted by
each worker is the same).

e m = 1. The communication cost by the computing
scheme in [5] is N.K. when K, < X: is K&'f when

% < K. < %Nr; is Kc when K. > §N;. The com-

munication cost is exactly optimal when K = N, or

when K, € { —K___ |, or when K. € [KNr : K]. In
(N—Nﬁl) N

addition, it is optimal under the constraint of the cyclic
assignment when N divides K.

III. MAIN RESULTS

A. Novel Converse and Achievable Bounds

We first provide a converse bound under the constraint of
the cyclic assignment, which will be proved in Section IV.

Theorem 1. For the (K,N,N;, K., m) distributed linearly
separable computation problem,

o when K. € [%(Nr - m+1)], by defining u := [KQNL

we have
N.K
x — 4
YT m4u-—1 (42)
o when K € [K(N, —m+1) : K], we have
Rie > R* > Ke. (4b)
O

We then introduce the computation-communication costs
tradeoff by the novel computing scheme in the following
theorem.

Theorem 2. For the (K,N,N,,K., m) distributed linearly
separable computation problem where

1
402N2%+U(Nr—m—u+1), (5)

the computation-communication costs tradeoff (m,Racn) is
achievable, where

o when K, € [%],

KN,
Rach = (63)
o when Ko € [K: K(N, —m+1)],
N, K
R u (6b)

= N+ u- 1)

4

o when K € [K(N; —m+1) : K],

Rach = Kc- (6¢)
O
Notice that the RHS of the constraint (5)
-1
N> TP N —m—u 1), )

will be explained in Remark 3 from a viewpoint of linear space
dimension. It can be seen that in the first case of the proposed
computing scheme (i.e., K. € [K]), we have u = 1 and thus
the constraint (7) always holds. In the third case of the pro-
posed computing scheme (i.e., K. € [%(N]r —m+1): K} ),
we have u > N, — m+ 1 and thus the constraint in (7) always
holds.

While proving the decodability of the proposed com-
puting scheme in Theorem 2, we use the Schwartz-Zippel
lemma [25]-[27] in Appendix A. For the non-zero polynomial
condition for the Schwartz-Zippel lemma, we numerically
verify all cases that 40 > N > =L 4 y(N, —m —u + 1),
and conjecture in the rest of the paper that the condition holds
for any case where N > %"_1 +u(N,—m—u-+1),ie.,in
Theorem 2 we replace the constraint (5) by (7).

In Section V, due to the space limitation, we will only
provide the computing scheme for the second case (6b) (i.e.,
Ke € [K:K(N; —m+1)]). By the exactly same method
as described in [5, Sections IV-B and IV-C], the computing
schemes for the first and third cases can be obtained by the
direct extensions of the computing scheme for the second case.
More precisely,

o K¢ € [§]. When K, = 1, it can be easily shown (see [5,
Section IV-B]) that the (K,N,N;,1,m) distributed lin-
early separable computation problem is equivalent to
the (N,N,N,, 1, m) distributed linearly separable com-
putation problem, which needs the communication cost
Yo from (6b). For K. € [2: K], we can treat the
(K,N, N, K., m) distributed linearly separable compu-
tation problem as K. independent (K,N,N,,1, m) dis-
tributed linearly separable computation problems; thus
the communication cost is % coinciding with (6a).

o Ko € [§(N,—=m+1):K|. When K. = K(N, —
m + 1), from (6b) it can be seen that the com-
munication cost is % = % = K., coin-

ciding with (6¢c). When K. > (N, — m + 1), as

in [5, Section IV-C], we can divide each demanded

linear combination into ( K(N 5“;_&1)_1) equal-length sub-
N r

combinations, each of which has Ro—T sym-
(K(Nr—m-u)—l)

bols. We then treat the (K, N, N,, K, an) distributKed lin-
early separable computation problem as (% Nem +1))
independent (K, N,N;, K(N; — m + 1), m) distributed
linearly separable computation sub-problems, where in
each sub-problem we let the master recover %(Nr —
m + 1) sub-combinations, with the communication cost

K(N,— 1 . . .
M' thus the total communication cost is

c—1 )9
KNp—m+1)—1
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= K., coinciding with (6c¢).

c K(Nr7 1)
(%(erim+1)) (Ninw

Ke—1
%(Nrfmi»l)—l)
By comparing the proposed converse bound in Theorem 1
and the proposed scheme in Theorem 2, we can directly obtain
the following (order) optimality results.

Theorem 3. For the (K,N,N,,K., m) distributed linearly
separable computation problem where N > %“*1 + u(N; —
m—u+1),

o when K =N, we have

N, K . .
R:\rc - Rach = mu—1” l.ch © [Nr - 1]7
; Ke, ifKe €[N, —m+1:K];
o when K. € [%] we have
N,.K
R:W = Rach = m C;
o when K, € [%+1:%(Nr—m+1)—1], we have
Kc Rach
R* > 7Rac Z ;
cyc — %LI h 2
o when K € [K(N, —m+1) : K], we have
R* = R* . = Raen = Ke.

cyc

O

In words, for the considered problem satisfying the con-
straint in (7), when K. € [N, — m + 1 : K], the proposed
computing scheme is exactly optimal; when K = N or
K. € [K]. the proposed computing scheme is optimal under
the constraint of the cyclic assignment; when N divides K and
Ko € [K+1:&(N, —m+1) —1], the proposed scheme is
order optimal within a factor of % < 2 under the constraint
of the cyclic assignment. Note that when K. = 1, the proposed
computing scheme achieves the same communication load
as in [20], [21], which was proved to be optimal under
the constraint of linear coding in the computing phase and
symmetric transmission. Instead, we prove that it is optimal
only under the constraint of the cyclic assignment.

Remark 2. When the elements in ¥ and [W1;...; W] are on
the field of real numbers, the proposed computing scheme in
Theorem 2 can work with high probability if each element
in ¥ is uniformly i.i.d. over a large enough finite set of
real numbers. For example, real numbers in finite arithmetic
(either fixed points or floating points) can be in a discrete
and large finite set. Note that, the decodability proof of the
proposed computing scheme is based on the Schwartz-Zippel
lemma [25]-[27], while this lemma is valid for any field
if each variable in the multivariate polynomial (i.e., some
element in ¥ or some dummy variable) is uniformly i.i.d.
over a large enough finite set. Furthermore, by a simple
extension, the proposed computing scheme can also work with
high probability if each element in ¥ is uniformly i.i.d. over
an interval of real numbers. This is because for a non-zero
multivariate polynomial with finite degree where the range of
the variables is an interval of real number; the set of roots of
this polynomial has measure 0. ]

5

B. Numerical Evaluations

We end this section by providing some numerical evalu-
ations on the proposed converse and achievable bounds. In
Fig. 1, we provide some numerical evaluations on the proposed
converse and achievable bounds. For the sake of comparison,
we introduce a baseline scheme. For the case where K. = 1,
the computing scheme in [20], [21] needs the communication
cost NF for each m € [N]. Hence, a simple baseline scheme
can be obtained by treating the considered problem as K.
independent sub-problems, where in each sub-problem the
master recover one of its desired linear combination. Thus
the communication cost for the baseline scheme is

Rbase = KcNp/m, Vm € [N,]. (8)
In Fig. la, we consider the distributed linearly separable
computation problem where K = 20, N = 10, N, = 8§,

and K. = 8. In this example, the constraint in (7) always
holds. It can be seen from Fig. 1a that the proposed computing
scheme outperforms the baseline scheme and coincides with
the proposed converse bound.

In Fig. 1b, we consider the distributed linearly separable
computation problem where K =20, N =10, N, =7, m = 2.
For each K. € [20], we plot the communication costs. In this
example, the constraint in (7) also always holds. It can be seen
from Fig. 1b that the proposed computing scheme outperforms
the baseline scheme. The propose scheme coincides with the
proposed converse bound when K, < % = 2, or when K,
divides %, or when K, > %(N]r —-m+1) =12

The focus of the paper is on some large enough finite field,
where the proposed computing scheme in Theorem 2 works
with high probability. However, in practice the field size is lim-
ited. In Table I, we illustrate the probabilities that the proposed
scheme works on the different finite fields by the Monte Carlo
simulation. For each considered system, we randomly generate
10* demand matrices and count the number of demand matri-
ces for which the proposed computing can work. In Table Ia
we consider that (K,N,N,,K.,m) = (6,6,5,2,2), and in
Table Ib we consider that (K, N, N,, K., m) = (11,11,7,2,2).
Both tables show that the success probability of the proposed
computing scheme increases as q grows. In addition, it in-
creases faster in the smaller computing system than in the
larger system.

IV. PROOF OF THEOREM 1

When K. € [K(N, —m+1): K], the converse bound in
Theorem 1 is the cut-set converse bound in (1). Hence, in the
following we focus on the case K. € [K(N; —m +1)].

We will use an example to illustrate the main idea.

Example 1. In this example, we have N = K = 5, N, = 4,
m =2, and Ko = u = 2.

The number of datasets assigned to each worker is M =
K(N =N, + m) = 3. Each dataset is assigned to 3 workers.
With the cyclic assignment, we assign

Worker 1 | Worker 2 | Worker 3 | Worker 4 | Worker 5
D, Dy D5 Dy Ds
Dy D5 Dy Ds Dy
D5 Dy Ds D, Dy
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q=2 q="7 qg=11 q=13 qg=19 q=29

0 0.0637 0.2846 0.3674 0.5134 0.6566
q=71|q=113 | q=173 | q=229 | q=541 | q = 3571
0.8398 | 0.8961 0.9328 0.9504 0.978 0.9968

(a) (K7 N7 Nl‘7 KC7 m) = (67 67 5, 27 2)

q=2 q=29 q="T1 q=83 | q=101 | q=113
0 0 0.0903 0.1913 0.3679 0.4771

q=131 | q=149 | q=173 | =229 | q=541 | q= 3571
0.6324 0.7529 0.8292 0.9048 0.9606 0.9943

(b) (K,N, Ny, Ke,m) = (11,11,7,2,2).

TABLE I: The probabilities that the proposed scheme works on different finite fields, for the (K, N, N, K., m) distributed linearly
separable computation problem.

We consider the demand matrix ¥ whose dimension is 2 X 5
with elements uniformly i.i.d. over large field Fq. Hence, the

70 . . .
s —%— Baseline scheme in (8) sub-matrix including each K. = 2 columns is full rank with
—+— Proposed computing scheme in Theorem 2 | hlgh prObClbility
60 _o-— Proposed converse bound under the .
cylic assignment in Theorem 1

Notice that in this example the number of stragglers is N —
N, = 1. We first consider that worker 5 is the straggler; thus

the master should recover F[Wy;...;Ws] from the answers
of workers in A = [4]. In addition, each dataset is assigned
to N — N, +m = 3 workers. Hence, there must exist one

dataset assigned to all the straggler(s) which is also assigned
to m responding workers. In this example, all of D1, Do, and
Ds belong to such datasets. Now we select one of them, e.g.,
Ds. Note that D is assigned to workers Ho = {1,2,5}. We
0 w w w w w w then consider the next dataset D(2+1) mod K = Ds. The set
of workers storing dataset D3 (denoted by Hs) is obtained by
ight-shifti b ition, i.e., H3 = {1,2,3}. Hence,

(a) The computation-communication costs tradeoff for the case 78 S ifting > by one posi lon. Le, Hs { . }. Hence
K=20.N=10, N, = 8, K. — 8. there is exactly one new worker in Hz who is not in Ho N A,

: : which is worker 3. So we have

70 : : : : : ;
—%— Baseline scheme in (8)
oo} [ ooty el eman ] (HaUH) N Al =m o+ (2= 1) =3 =m+u—1;
oyelic assignementin Theorem 1 in other words, in the set of responding workers A, the number
sor | of workers who can compute Wy or Ws is equal to 3. In
ol | addition, the sub-matrix of ¥ including the columns in {2,3}
. is full rank (with rank K. = 2). Recall that each message has
0l i L uniformly i.i.d. symbols. Hence, the number of transmitted
symbols by workers in (Ha UHz) N A should be no less than
20 - D 2L; thus
ol @ISR S , Y, TLh=Ti+T+T (%)
@ ’I’LE((’HQU’Hg)ﬁA)
% 2 4 6 8 10 12 14 16 18 2 > H(F[Wﬁ oo WE|W, Wy, W5) >Kcb=2L.  (9b)

(b) The communication costs for the case K =20, N =10, N, = 7,

m— 2 Similarly, considering that worker 4 is the straggler, we

have

Fig. 1: Numerical evaluations for the considered distributed
linearly separable computation problem. Ts +Th + Tz > KeL = 2L. (10)

Considering that worker 3 is the straggler, we have

Ty +Ts+Ti > KeL = 2L. (11)
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Considering that worker 2 is the straggler, we have

T3+ Ty +T5 > KL =2L. (12)
Considering that worker 1 is the straggler, we have
To+T5+ Ty > KL =2L. (13)
By summing (9b)-(13), we have
10
Th+To+T3+Ty+T5 > ?Lv
which leads that
deali 8
x> ZgeAts 5 2
0= ucirAleN=1 L~ 3
as the converse bound in (4a). O

We are now ready to generalize the proposed converse
bound under the constraint of the cyclic assignment in Ex-
ample 1. Recall that we consider the case where K. &
[K(N; —m +1)] and that u = [%N]. The demand matrix F
has the dimension K, x K with elements uniformly i.i.d. over a
large enough finite field. Hence, the sub-matrix including each
K. columns is full rank with high probability. By the cyclic
assignment, as shown in (2), each dataset Dy, is assigned to
workers Hj, = {k mod N, (k—1) mod N,..., (k—N+N, —
m + 1) mod N}.

We consider the set of stragglers who are adjacent. Thus
each time we choose one integer n € [N], let S, :=
{nmod N, (n—1) mod N, ..., (n—N+N,+1) mod N} where
|Sn| = N —N,, be the set of stragglers. The master should re-
cover F[Wy;...; Wx] from the answers of workers in [N]\S,,.
From the cyclic assignment, there are exactly % datasets, de-
noted by Uy = {((n+m) mod N) +pN:pe [0: & —1]},
which are exclusively assigned to the workers in

Huy = SnU{(n+1) mod N, (n +2) mod N,
..., (n+m) mod N}
={(n—=N+N;+1) mod N, (n — N+ N, +2) mod N,
...y(n+m) mod N}.
Then for each ¢ € [u — 1], the datasets in U; =
{((n+m+i)mod N)+pN:pe [0: & —1]}, are exclu-
sively assigned to the workers in
Huy, ={(n =N+ N;+i4+1) mod N,(n — N+ N, +i+2)
mod N, ..., (n+ m+14) mod N}.
It can be seen that there are totally %u datasets in U;co.a— 1)U,
which are exclusively assigned to the workers in
Uie[O:u—l] Hui = {(’I’L — N+ Nr + 1) mod N,
(n—=N+N;+2)mod N,...,(n+m+u—1) mod N}
=S, U{(n+1) mod N,...,(n+m+u—1) mod N}.
Note that since u < N, — m + 1, we have S, N {(n +

1)mod N,...,(n+m+u—1) mod N} = (. In other words,
the number of responding workers in U;e(o.u—1)Hyy; is

|(Uicporu—1He) N (INJ\ Sn)|
=H{(n+1) mod N,...,(n+m-+u—1) mod N}|

7

=m-+u-—1.

Since %u > K., the sub-matrix of the demand matrix including
the columns in Uje[o.u—1)Y; has a rank equal to K. with
high probability. Hence, the number of transmitted symbols
by workers in {(n+1) mod N,...,(n+m+u—1) mod N}
should be no less than K.L; thus

2.

je{(n+1) mod N,...,(n+m-+u—1) mod N}

T, > Kl (14)

By considering all n € [N] and summing all the inequalities
as in (14), we have

NK.
2 Tz oot
J€[N]

which leads that

o o Maxuciai=N, 2jea Ty e
RYye > > <,
L m+u-—1

as the converse bound in (4a).

V. PROOF OF (6b)
K

We focus on the case where K. € [K: K(N, —m+1)].
We first illustrate the main idea in the following example.

Example 2. In this example, we have N = K = 6, N, = 5,
m = 2, and K. = 2. Since N = K in this example, we have
u = K. = 2. For the sake of simplicity, while illustrating
the proposed scheme through this example, we assume that
the field is a large enough prime field. It will be proved that
in general this assumption is not necessary in our proposed
scheme. We assume that the demand matrix is

Fo |l fi2 fis fia fis fis) |1
for fo2 foz foa fos  fos
Data assignment phase: The number of datasets assigned
to each worker is M = K(N— N, +m) = 3. We use the cyclic
assignment, to assign

1 11

01 2 3 4 5|°

Worker 1 | Worker 2 | Worker 3 | Worker 4 | Worker 5 | Worker 6
D4 Do D3 Dy Dy
Dy D3 Dy Ds D¢
Ds Dy Dy Dg D,
Computing phase: Since the communication cost is no
less than Nrﬁ = % from the converse bound (4a), we

divide each message Wy, where k € [6] into m+u—1 = 3 non-
overlapping and equal-length sub-messages, Wi, = {Wy ; :
J € [3]}. Hence, the task function becomes (m+u—1)K. = 6
linear combinations of sub-messages. Each worker should
send K. = 2 linear combinations of sub-messages. From
the answers of N, = 5 workers, the master totally receives
N, K. = 10 linear combinations of sub-messages. Hence, we
generate v = 10 — 6 = 4 virtually demanded linear combina-
tions of sub-messages; thus the effective demand matrix (i.e.,
containing original and virtual demands) is

F' (Wi ;We1; Wios...; We 3]

where ¥ has the dimension N.K. x K(m+u—1) =10 x 18,
with the form in (15).
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[T L 0 -
0 51000
D0 01 1
0 G
b [fo e ot
L0 01 0
:111,1 111,65 Ea1,7
21 a6, 42,7
?3,1 a3,65 Ea3,7
[Paa 4,6, 04,7 _

The transmissions of the 6 workers can be expressed as

/
SF [W171; ey W671; WLQ; cuey W6,3} =
1,1, 41,2, .21, . <0.21 R . . . . .

[S 18IS L LGS ]F [Wl’l,...,W6,17W172,...,W6,3]7
where  the row vector s™J  represents the j"
transmission vector of worker mn; in other words,
sTIF Wi s We s Wios ..o Wes) represents  the

4™ transmitted linear combination by worker n. We can
further expand S as in (16).

Now the j™ transmitted linear combination by worker n can
be expressed as

s”’jdlI/Vl,l + Sn’deWZl + -+

Sn’jdGW&l + Sn’jd7W1’2 + -4 Sn’j(lllgm/v@"g7 (17

where d; represents the i" column of F'. Recall that Z, C
[K] represents the set of messages which are not assigned to
worker n. Hence, to guarantee that the linear combination
in (17) can be transmitted by worker n, we should have

s"Idyy -1k =0, Vn € [6],5 € [2],t € [3],k € Z,. (I8)

In addition, for each set A C [6] where |A| =5, by receiving
the linear combinations transmitted by the workers in A, the
master should recover the desired linear combinations. Hence,
we should have (recalling that A(i) represents the i smallest
element of A)

[sA(l)’l; sAM)2. gAR)L. SA(5)’2] is full rank, (19)

VA C [6] where |A| = 5. Our objective is to determine the
elements in S and in ¥’ such that the constraints in (18)
and (19) are satisfied.

We divide matrix ¥’ into 3 sub-matrices, F'1,F'5, F'5 each
of which has the dimension 10 x 6, as illustrated in (15). We
also divide matrix S into 4 sub-matrices, S1,S2,S3 each of
which has the dimension 12 x 2 and S4 with dimension 12 x 4,
as illustrated in (16). In other words, S1,Ss,Ss correspond
to the (m +u— 1)K, = 6 real demanded linear combinations
of sub-messages, while Sy corresponds to the v = 4 virtual
demanded linear combinations of sub-messages.

The proposed computing scheme in the computing phase

0090-6778 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.o
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contains three main steps:’

o Step 1: We first choose the values for the elements in S,.

o Step 2: After determining Sy, the constraints in (18)
become linear in terms of the remaining variables (i.e.,
the elements in F'1,F'5,F'3,S1,S2,S3). Hence, we can
obtain the values for these remaining variables by solving
the systems of linear equations.

o Step 3: After determining all the variables, we check
the constraints in (19) such that the proposed scheme
is decodable.

Step 1: We choose the values for S, with the following
form,

-51,1 31,1 41,1 ,1,1-
by” by by by [+ % 0 O] [0 2
1,2 ;1,2 41,2 1.2
by by bs by 0 0 x =% 0 0
ppl p2t p2t 2t « % 0 0 2 2
or? b b? bl o0 o« o« |00
[ G o x % 0 0 12
32 ;32 ;32 32
S, = b}“ bz211 b21 b31 _ |00 % x| |00
by~ by by by * x 0 0 0 1
bh? e ph? bR 0 0 % = 00
bi),l bg,l bg,l bi,l * % 0 0 1 0
p2 52 b2 2 0 0 x =x 0 0
1 2 3 4
pOol Bl 61 6,1 * x 0 0 2 2
: 22 o2 .6 0 0 * = 0 0
I L i -t
(20)

7 Notice that the computing schemes in [20], [21] for the case K. = 1
and in [5] for the case where m = 1 cannot be used in this example to
achieved the converse bound. The idea of the computing schemes in [20],
[21] is first to randomly determine the elements in S, and then to determine
the coefficients of the virtually demanded linear combinations in F” in order
to satisfy the constraints in (18). One can check that if we randomly choose all
the elements in S, there does not exist any solution on F/ which satisfies the
constraints in (18), because there will be more linearly independent constraints
than the variables. The idea of the computing scheme in [5] is first to randomly
determine the coefficients of the virtually demanded linear combinations
in F/, and then to determine the elements in S in order to satisfy the
constraints in (18). However, if we randomly determine the coefficients of the
virtually demanded linear combinations in F, the sub-matrix of F/ including
the columns corresponding to the sub-messages which each worker cannot
compute has the dimension v X (m +u —1)(N; —m) = 10 x 9. Hence, the
left-hand side null-space of this sub-matrix only has one linearly independent
vector; thus each worker can only transmit one linearly independent linear
combination of sub-messages, where the coefficients of the unknown sub-
messages are 0.
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9
PGl T
R T b ek Tk R b PRI S S S Sy S SR S
1,2 151 Sy 183 84 1S5 Se 101 2 3 4,
S igh2 (120, 12 120, 12 (120 512 g1 12 413
g2.1 i°1 S 1S3 Sa 1S5 Se 101 2 3 4
121 21,0 21 21,1 21 21,521 ;21 ;21 2,1
S = 22 | = |9 8371185 8y sy S .:b1 by bs by (16)
1 . :I . . 1 . :| . . . o1
, Do oy Doyl : : -
! D Do D : : -
16,2 (621162 62]1.62 621,62 ;62 62 462!
6.2 LS __S2 283 __Sa_iSs__Se_ 101 __D2__ 03 __ 04 ]
- - S1 So Ss3 Sy
where each ‘x’ represents a uniform i.i.d. symbol on Fq. More  constraints

precisely, for the first linear combination transmitted by each
worker n € [6], we choose by"' and by uniformly i.i.d.
over Fo, while letting by and b} be zero. For the second
linear combination transmitted by each worker n, we choose
b2 and by* uniformly iid. over Fy, while letting b}"* and
bg’z be zero. The above choice on Sy will guarantee that the
constraints in (18) become linearly independent in terms of
the remaining variables to be decided in the next step.’

Step 2: Let us focus on the constraints in (18) fort =1,
which corresponds to the elements in S1 and F'.

When (t,j) = (1,1), the constraints in (18) become

1 )1 1 1
57 fie sy for 0V ar + 05 az g
b ag g 4 by asy =0, Yn € 6],k € Z,,

where f1 ), represents the k™ element in the first demand
vector, fa ), represents the k™ element in the second demand
vector, and the values of b?’l where i € [4] have been chosen
in (20). For example, if n = 1, we have the set of datasets
which are not assigned to worker 1 is Z, = {4,5,6}. Hence,
we have the following three constraints

1,1 1,1 1,1 1,1 1,1 1,1

$77 frat 8y faat by ara+by ag s+ b3 az e+ by aga

1,1 1,1

= 1517 + 3827 + 0(1174 + 2@274 =0,

1,1 1,1 1,1 1,1 1,1 1,1

S1 f175 + S5 f275 + by a5+ by ag s + b3 ass + by a4.5

1,1 1,1

= 1s77" +4sy" +0a15 + 2a05 = 0,

1,1 11 1,1 1,1 1,1 1,1

S1 f176 + 55 f276 + b3 a6+ b az6 + b3 as.e + by Q4.6
= 15%71 + 58%71 + 0@1,6 + 2@276 =0.
Similarly, if n = 2, with Zo = {1,5,6} we have the following
three constraints

2,1 2,1 2,1 2,1 2,1 2,1

s fi1 sy for H07 ar + 05 azn + 03 az 1 + by asn

= 15?’1 + 053’1 +2a1,1 + 2a2,1 =0,

3,1 3,1 3,1 3,1 3,1 3,1
s7fia sy fa 07 a1 05 as gy + by as s + by asn
3,1 3,1
= ].81 + 082 + ].CL171 + 2&2,1 = 07
3,1 3,1 3,1 3,1 3,1 3,1
s77  fi2 + 85 fao + b7 ar g 05 as s + b5 az e + by as
3,1 3,1
= 1s7" + 155" 4+ lag o + 2a02 = 0,
3,1 3,1 3,1 3,1 3,1 3,1
S f176 + S5 f2,6 + bl a6+ b2 az,6 + b3 as.e + b4 Q4,6
3,1 3,1
= 151 + 585" + 1&176 + 2a276 =0.
If n = 4, with Z; = {1,2,3} we have the following three
constraints
4,1 41 4,1 4,1 4,1 4,1
57 fr,1 8y far by ar s by agy + by ag by ay
4,1 4,1
=157 +0sy" +0ay,1 + lag =0,
4,1 4.1 4,1 4,1 4,1 4,1
57 fr2+ 8y fao + by ar s+ by azs + by az s by age
4,1 4,1
= 181 + 182 + 00,1’2 + 1@272 = 0,
4,1 4.1 4,1 4,1 4,1 4,1
87" fi3+ 8y faz+by ars+by ags+by az s +by ass
4,1 4,1
= ].817 + 282' + 0(1173 + 1(12,3 =0.
If n = 5, with Z5 = {2,3,4} we have the following three
constraints
5,1 5,1 5,1 5,1 5,1 5,1
577 fi2+ 89 fao+ b a2+ by as s + b5 az e + by as
5,1 5,1
= 181 + 182 + 1&172 + Oa272 =0,
5,1 5,1 5,1 5,1 5,1 5,1
57 fi3+ 8y fag+ b7 arz+ by as g+ by azz + by a3
5,1 5,1
=1s7" + 25,7 + 1a173 + Oa2,3 =0,
5,1 5,1 5,1 5,1 5,1 5,1
57 fra+ sy fou+ b7 ar s+ by asy + by az s+ by agy
5,1 5,1
= 1817 + 3827 + 1(11’4 + 0&2’4 =0.

If n = 6, with Zg = {3,4,5} we have the following three
constraints

6,1 6,1 6,1 6,1 6,1 6,1
57 fig+ sy faz+ b a3 +by ass + by ass+by ass

6,1 6,1
2,1 2,1 2,1 2,1 2,1 2,1 =1s7" + 255 +2a13+2a23 =0
17 frs 453 fas + b1 a1+ 0y azs + by a5 + 0y s 6l s 61 po:L p6:1 , po:L p6:1
2,1 2,1 1 J1,4a+ Sy fea+ 07 a14+ 05 A24 + 037 a34+ 04 Qg4
= 181’ + 482’ + 2(11,5 + 204275 =0, 1 fé 1 2 6fl ! 1 ’ 2 ’ 3 0 4 ’
2,1 2,1 2,1 2,1 2,1 2,1 =1s77" +3sy +2a14+2a24=0
57 f1,6 + 85 fo,e + 07 are + by ase + by aze + by ase ! 2 ' ’
, ) , , , , 6,1 6,1 poL poL poL po-L
577 fi5 + 89 fas+ b a5 +by ass + by azs +by ass

= 157" 4+ 555" + 2a1 6 + 2a9,6 = 0.
If n = 3, with Z3 = {1,2,6} we have the following three

8 Note that we can also choose each element in S4 uniformly i.i.d. over

18?’1 + 483’1 + 2(1175 + 2&275 =0.

Hence, there are totally 6 X3 = 18 constraints on 24 variables,
which are

0 ranlipati : ade o Tnearlv . 1,1 1,1 21 21 6,1
Fq to find a realization of S4 which leads to these linearly 19@ependenc§s. A1 1y ey @16y A2 1, 26,81 58y 87 185 5eveySo .
However, by the Schwartz-Zippel lemma [25]-[27], the probability to obtain 21
a ‘good’ choice of Su decreases, since the total degree of the corresponding ey

polynomial in the Schwartz-Zippel lemma increases.
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Since the number of variables is more than the number of
constraints, we fix 24 — 18 = 6 variables. More precisely, we
give a value uniformly i.i.d. over Fq to each of the following 6
variables (the positions of these 6 variables are found through
programming),

11 _ 2,1 _ 31 _ 41 _ 51 _ 6,1 _
577 =0, 57 =1, 577" =1, s =1, 577 =0, sy =1
(22)

After determining the 6 variables in (22), the above 18
constraints are linearly independent on the remaining 18
variables, such that by solving a system of linear equations
we have

(],1_]1 = ]./4,(11_’2 = 5/8,(11,3 = 5/4,(11,4 = 15/8,&115 = 21/8,
CL176 = 27/8,(1271 = —5/8,&2,2 = —13/8,(12,3 = —21/8,
a4 = —15/4,&2,5 = _570'2,6 = —25/4,8;’1 = 5/2,
sl =3/4,s0" =13/8,s7" =5/8,s5" = —5/8,s5" = 3/4.
Note that for any element a on g, 1 /a represents the
multiplicative inverse of a on Fq.

Similarly, by considering all pairs (t,j) where t € [3] and
J € [2], we can determine (23).

Step 3: For each subset of workers A C [6] where
|A| =5, it can be seen that the constraints in (19) holds. For
example, if A = [5], the sub-matrix S('Dx including the first
10 rows of S is full rank. Hence, we let each worker n € [N]
compute and send two linear combinations of sub-messages,
Sn’lF/[WLl; ey W6,3] and Sn’zF/[WlJ; ceny W673].

Decoding phase: Assume that the set of responding
workers is A where A C [6] and |A| = 5. The master receives

X4 = [S.A(l),l; S.A(l),Z; SA(2)’1; o ;SA(5)’2:|
F' (Wi s W Wags ... We sl
Since [SA(l)*l; gA):2. gAR)L, . SA(5)’2] is full rank, the

master then computes

-1
[SA<1>,1; sAD2, GA@)L. ;SA(5),2} X4

to obtain ¥’ (Wi 15...;We1; Wie; ..
its demanded linear combinations.

.; We,3), which contains

Performance: Since each worker sends %L symbols, the
communication cost is % = 1—30, coinciding with the converse
bound in (4b). O

We are ready to generalize the proposed distributed comput-
ing scheme in Example 2. First we focus on K. = %u, where
u€ [N;—m+1]and N > =1 4 y(N, —m—u+1). During
the data assignment phase, we use the cyclic assignment.

Computing phase: Since the communication cost is no
less than Nrﬁ, from the converse bound (4b), we divide
each message W), where & € [K] into m 4+ u — 1 non-
overlapping and equal-length sub-messages, Wj, = {Wj; :
j € [m+ u—1]}. Hence, the task function becomes (m +
u — 1)K, linear combinations of sub-messages. Each worker
should send K, linear combinations of sub-messages. From

the answers of N, workers, the master totally receives N, K.

10

linear combinations of sub-messages. Hence, we generate
v=NK.—(m+u—1)K. =K.(N,—m—u+1)

virtually requested linear combinations of sub-messages; thus
the effective demand matrix F’ has the dimension N,K. x
K(m + u — 1), with the form in (24).

The transmissions of the K workers can be expressed as

/ 1,1 1,K
SF Wits...iWkis Wigsoo s Wkmgu—1] = [8775...5800;
21, G NK R W W s W oe TV
7558 C] F [ 1,1y--- K,1, 1,29+ K,m+u—1]a

A0l .. ) ..
where s™IF/[Wy 1;...; Wk1; Wio;...; Wk myu—1] repre-

sents the j® transmitted linear combination by worker n. We
can further expand S as in (25),

By defining d; as the i column of F’, the j transmitted
linear combination by worker n can be expressed as

s IA Wy g 4+ 8" dkWir + 8™ dig W o

+ o+ 8" d a1k Wkmeu1- (26)

To guarantee that the linear combination in (26) can be
transmitted by worker n, the coefficients of the sub-messages
which worker n cannot compute should be 0; that is

s"’jkor(t,l)K =0, VneN,je[K],te[m+u—1,keZ,.
(27)

In addition, for each set A C [N] where |.A| = N,, by receiving
the linear combinations transmitted by the workers in A, the
master should recover the desired linear combinations. Hence,
we should have

[S'A(l)’l; s A Ke gAR)L SA(N‘)’KC] is full rank,

(28)

VA C [N] where |A| = N,. Our objective is to determine
the elements in S (i.e., s/ where n € [N], j € [K], i €
[(m+4u—1)Kc]; b7 where n € [N], j € [K¢], 7 € [v]) and in
F’ (i.e., a; ) where i € [v] and k € [(m + u — 1)K]) such that
the constraints in (27) and (28) are satisfied.

We divide matrix F’ into m + u — 1 sub-matrices,
F'q, ..., F 1u_1 each of which has the dimension N, K. x K,
as illustrated in (24). We also divide matrix S into m 4 u sub-
matrices, Si1,...,Smtu—1 each of which has the dimension
NK. x K. and Sp,;+, with dimension NK. X v, as illustrated
in (25). As in Example 2, the proposed computing scheme
contains three main steps:

o Step 1: We first choose the values for the elements in
Sm+u-

e Step 2: After determining the elements in S;,4,, the
constraints in (27) become linear in terms of the remain-
ing variables, which are then determined by solving the
systems of linear equations.

e Step 3: After determining all the variables, we check
the constraints in (28) such that the proposed scheme is
decodable.

Step 1: We choose the values for Sy, with the form
in (29b) (as S, in Example 2), where each ‘x’ represents
a uniformly i.i.d. symbol on F,. More precisely, for the 4
linear combination transmitted by worker n where j € [K,]
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0 5/2 0 0 0 —-11/4 0 2 0 0
1 —14 1 27 0 0 0 0 2 0
3/4 1 0 0 41/8 1 2 2 0 0
40 0 —82 1 0 0 0 0 0 2
1 13/8 0 0 1 -9/16 1 2 0 0
. 1 —10 0 39/2 0 0 0 0 2 1}
S=1 5,8 1 0 0 -25/16 0 0 1 0 0Of° (23a)
—19/2 0 41/2 1 0 0 0 01 0
0 —5/8 0 0 1 41/16 1 0 0 0
1 —10 1 37/2 0 0 0 0 2 1
3/4 1 0 0 73/8 0 2 2 0 0
_—23/2 1 31/2 0 0 0 0 0 1 1]
(1 5 5 15 21 27 —-33 =57 —49 139 161 —191
R 7,777a7a070707030a0777777377777 ; 23b
o1 as] = |33 1 5 50 3 8 ' 16° 8 '16° 16 16 ] (23b)
[—5 —13 —21 —15 —25 25 25 25 33 11 55
= | — -5 000000 — —— —— —— __ __ . 2
[a2,17 7a2,18] I ] ) ] ) ] ) 4 ) 57 4 7030307070703 167 167 167 ] ) D) ) ] :| 3 ( 3C)
(19 19 19 41 55 69 —41 —43 —45 —109
= ==, —, —, —, 41, ——, — ; 23d
[a?),lv 7a3,18] I 2 ) 2 ) 2 ) ) ) 2 ’ 2 ) 2 9 ) ) 92 ) ) 2 ) 687070a0707070:| ) ( 3 )
[ 47 51 7
[a471, - ,a4718] = |—20,-10,0,—12, —20, —20, 41, ?,7, ?,39, 2,O,O,O,O,O,O] . (23e)
HEZEE fie 00D o0 e 0 ]
Srea Kewi 1+ 0 0 E : :
r 0 0 ' fia Jik | ! 0 0 !
0 0 e e b0 e
P! - RIS 3 Lo 4
;0 00 0 0 - 0. L fik
» 0 0, v 0 - 0, A frek
51111 CL1,KE ‘:11,K+1 a1,2K; :111,(m+u—2)|<+1 al,(m-{-u—l)l‘%
LOya_ i VLI N S U @y oK. O (nru=2)K L _ I S Ay (m+y—1)K1 |
Fll F/2 F/m+u—1
- - === ----- I1° rqq--=------=-=---- e B e 05 i N T
st P o1 SKe 1 'S (mu—2)Ke+1 S(mtu—1)Ker ! by 531:
! 1k, Tk bk e 1k, .
S — stke _|* T SKe Bmtu-2)Ke+l T F(mtu—DKe :bl by (25)
2.1 P21 2,11 12,1 2,1 b2t p2.1!
S 1 51 Ke : |S(m+u—2)KC+1 5(m+u—1)KC:| 1 Vo
NK. WK NK LK LoNKe Nk N
L S 4 _LSJ ________ S_Kc_ ! L'S_(ma-u=2)KLh+_l ______ ‘S_(mﬂ-u:]_)K@' lb_l ________ IZN_If_' |
Sl Sm+u—1 Sm+u
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S| L1 11 1,1
by b b b
! Ko Kotl 7
1,2 12 12 1,2
by b b b
1 Ko Ko Tl =
1,Ke LKe  31,Ke 1K
I A by
Smtu = 1 = ! 2
2.1 21 521 2.1
bi b b be
N,Ke N,Ke N,Ke N,Ke
b b b+ ba
[ = * 0 0 0 0
0 0 = * 0 0 0
= 0 0 0 0 =
* x 0 0 0 0 0
0 0 0 0 0 0 =
and n € [N], we choose each of b?ﬁl)vﬂ, ce b%J uniformly

iid. over Fgy, while setting the oth%r variables in this linear
combination be 0. The above choice on S;,;, will guarantee
that the constraints in (27) become linearly independent in
terms of the remaining variables to be determined in the next
step.

Step 2: We then fix one ¢t € [m+u—1] and one j € [K.];
thus the constraints in (27) become

0=s8"dps(-1)K (30a)
= > fuk 50 ks + O U s, g-nker (30D)

i1 €[Kc] i2€[V]
= > fuk S ket
i1€[Ke]

+ >oooou

el ]

ai3,(t_1)|,(+k, Vn € [N],k S Zn

(30c)

Notice that in (30c) the coefficients f;, , are the elements in
the demand matrix F and b;7 have been already determined
in Step 1. Hence, the constraints (30c) are linear in terms of
the variables

s?{il)Kc—Hl and a;, 1, Vn € [N],i; € [Kc],
(J—Dv Jv

K +1:—| ki e[(t—1K+1:tK].

13 € K. 3D

Next, we determine the values of the variables in (31) by
solving the system of linear equations. In (31), there are totally

K
NKe + =K =Nou+ (Ny—m—u+1)K=K(N, —m+1)

Ke N
variables while in (30c) there are totally
K
NN(Nr —m) =K(N; —m)

12
1,1 1,1 1,1 L1
b%+1 e b(KcK—l)v b(KciK—”Vﬂ by
< c c
1,2 1,2 1,2 1.2
b ba Y by’
%4’_1 (KCK—CI)V (KCKZI)VJ'_]‘ \
1,Ke 1,Ke 1,Ke 1,K
ba bl boeine, v B (29a)
c Kc Ke
b22’1 p2:1 2,1 p2:1
K*Z*’rl (KCKZI)V (KCKzl)V+1 \
N, K¢ N, K. N, K. N,K
bz"] bk,l bk,l R A
211 (Ke—1) (Kemv g v
0
0
« |, (29b)
0
*

constraints. Hence, in order to determine all the variables
in (31) while satisfying the constraints in (30c), we first fix
K(N, —m + 1) — K(N, — m) = K variables. More precisely,
for each n € [N] and each ¢ € [K/N], we first choose each of

(32)

s"’j
(t—=1)Ke+(i—1)u+(n mod u)’

(tyil)KC—&-(i—l)u-i-(n mod u)
is in the ((n—1)K.+5)" row and the ((t—1)Kc+ (i—1)u+
(n mod u))lh column of S. Hence, among all the K(N, —m+1)
variables in (31), we have determined N% = K variables. Thus
there are K(N, —m) variables to be solved by K(N, —m) linear
equations in (30c). It will be proved by the Schwartz-Zippel
Lemma [25]-[27] in Appendix A that with high probability,
these K(N, — m) linear equations are linearly independent
over these remaining K(N, — m) variables.® As a result, by
solving the system of linear equations we can determine all
the remaining variables in (31).

uniformly i.i.d. over Fy. Note that s

By considering all the pairs (¢,j) where t € [m + u — 1]
and j € [K.], we can determine all the elements in S and F’.

Step 3: It will be proved by the Schwartz-Zippel
Lemma [25]-[27] in Appendix A that the -constraints
in (28) hold with high probability. Hence, we let each
worker n compute and send K. linear combinations, i.e.,
Sn’jF/[WLl; .. .;WKJ;WLQ; .. -;WK,m+t—1] wherej € [KC]

Decoding phase: Assume that the set of responding
workers is A where A C [K] where |A| = N,. The master
receives

X.A :[SA(I)J; o SA(I),KC; SA(2)’1; . ;SA(N,.),KC]

F Wi Wk Wiz Wimau—1)-

9 Note that in Example 2, we focus on a specific demand and thus the
Schwartz-Zippel Lemma is not needed.
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Since  [sAM1; | gAMKe gAR)L L gAND K] i full
rank, the master then computes

A, gADKe GA@LL | gAND K =1,

)

to obtain F/[Wl,l; ey WK,l; WLQ; ey WK,m+u—1]a which
contains its demanded linear combinations.
Performance: Since each worker sends

the communication cost is 0 N KL
) m—+u—1)L
with (6a).

KL
NnkJerI symbols,
— rRe 1 1di
= oo coinciding

Remark 3. The proposed scheme works for the case where

m+u—1

N > +u(N, —m—u+1), (33)

which can be explained intuitively in the following way. It
will be proved in Appendix A that if the proposed scheme
works for the (N7 N, N, u, m) distributed linearly separable
computation problem (i.e., the number of messages is equal to
N) with high probability, then with high probability the pro-
posed scheme also works for the (K, N, N, %u, m) distributed
linearly separable computation problem where N divides K.
Hence, let us then analyse the case K = N. In this case, note
that K, = u.

We fix one t € [m+u—1] in the constraints (27). In Step 2 of
the computing phase, we should solve the following problem:

Problem t: Determine the values of the variables

Szlt’il)u+i1 and a;, , Yn € [N],j € [u], i1 € [u],
iz € [v], ke [(t—1)K:tK],

satisfying the constraints

) n,j
Z flhk S(t—l)u-i—il +

ile[u]

2.

ige[ U 412y

n,j _
bi” iy (t—1)kyk = 0,

Vj € [u],n € [N],k € Z,.
Notice that by solving Problem t, for each i € [v], we can
determine

2,1

[ 1,1 . Lu . .
1S (t—1)uti? St—1)utir

. N,u
S(—1yusii 1,

7S (t—1)uti
which is the ((t — 1)u+ )" column of S. Another important
observation is that, Problem t1 is totally equivalent to Problem
to for any t1 # to. Thus, we can introduce the following unified
problem.

Unified Problem: Determine the values of the variables

n,j

py) and q;, 1, Vn € [N],j € [u], 4y € [u],i3 € [v], k € [K],

satisfying the constraints

D fuw i+

ile[u]

D

ige[ LY 41 1Y)

b qiy e =0,  (34)

Vj € [u,n € [N],k € Z,.
In the unified problem, there are

Nuu+vK =Nu(u+N;, —m—u+1) =Nu(N, —m+1)

variables and Nu(N, — m) constraints. Hence, the number
of linearly independent solutions of the unified problem is no
less than Nu(N, — m + 1) — Nu(N, — m) = Nu, where the
equality holds when the constraints in the unified problem is
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linearly independent. To guarantee that all the columns in S
are linearly independent, we should assign m +u — 1 linearly
independent solutions to Problems 1,2,... , m+u— 1.

In addition, among all the linearly independent solutions of
the unified problem, there are uv trivial solutions which we
cannot pick. More precisely, for each i € |v] and d € [u],
one possible solution is to set (recall that £, represents the d™
demand vector)

(gin: @255 i) = fq,

while setting q;, . = 0 if i3 # 1. In addition, we set

= —b?’j, Vn € [N],j € [u],

-d

1
while setting p;”’ = 0 if iy # i. It can be easily checked
that by the above choice of variables, the constraints in (34)
hold. Hence, the above choice is one possible solution of
the unified problem. There are totally uv such possible solu-
tions. However, any combination of such uv solutions cannot
be chosen as a solution of Problem t. This is because in
each of the above solutions, there is a column of S (i.e.,
[p,}’l; ... ;p%’”;pia; .. ;p,'i\"”]), which can be expressed by a
fixed column of S (i.e., [b%’l; o bg’u; b}’z; Co b;\"u]). Hence,
the full rank constraints in (28) cannot hold.

As a result, if we have

Nuzm+u—1+uv:m+u—1+u2(Nr—m—u+1)

which is equivalent to (33), it can be guaranteed that we can
assign one linearly independent non-trivial solution to each
Problem t. ]

For each K(u—1) < K, < Ku where u € [N, — m + 1],
we first generate %u — K. demand vectors whose elements are
uniformly i.i.d. over Fg, and add these vectors into the demand
matrix F. Next, we use the above distributed computing

scheme with K. = %u. Hence, the communication cost is

N, K¢ N, Ku
m+u—1 = N(m+u—1)

, coinciding with (6a).

Remark 4. For the proposed computing scheme for the case
[% : %(Nr —m -+ 1)], the decoding complexity (i.e., the num-
ber of multiplications) of the master is O (KC%uNrL). Simi-
larly, when K, € [%], the decoding complexity is O (K:N,L).
When K. € [%(Nr —m+1): K], the decoding complexity is

o (chme + KC(%KNC:I)L). O

VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this paper, we studied the computation-communication
costs tradeoff for the distributed linearly separable computa-
tion problem. A converse bound under the constraint of the
cyclic assignment was proposed, and we also proposed a novel
distributed computing scheme under some parameter regimes.
Some exact optimality results were derived with or without the
constraint of the cyclic assignment. The proposed computing
scheme was also proved to be generally order optimal within a
factor of 2 under the constraint of the cyclic assignment. The
simplest open which the proposed scheme cannot work is the
case where K = N = N, = 5, K. = 2, and m = 2. Further
works include the design of the distributed computing scheme
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for the open cases and the derivation of the converse bound
for any dataset assignment.

Ongoing works include the generalization of the proposed
scheme under any system parameters and the extension to the
systems with partial stragglers as in [17], [28] or/and with
partial computation recovery as in [29], [30].

APPENDIX A
FEASIBILITY PROOF OF THE PROPOSED COMPUTING
SCHEME IN SECTION V

In the following, we first show that for the
(K,N,N,, K¢, m) = (N,N,N;,u,m)  distributed
linearly separable computation problem, where

N > mtu=l 4 (N, — m — u+ 1), the proposed computing
scheme works with high probability. Next we show that if the
proposed scheme works for the (N,N,N,,u, m) distributed
linearly separable computation problem with high probability,
then with high probability the proposed scheme also works
for the (K7 N, N, %u, m) distributed linearly separable

computation problem, where % is a positive integer.

A. K=N

The feasibility of the proposed computing scheme is proved
by the Schwartz-Zippel Lemma [25]-[27] as we used in [5,
Appendix C] for the computing scheme where m = 1. For the
sake of simplicity, in the following we provide the sketch of
the feasibility proof.

Recall that in Step 2 of the proposed computing scheme, for
each pair (¢, j) where t € [m+u—1] and j € [u], we need to
determine the values of the variables in (31) while satisfying
the linear constraints in (30c). In addition, among all the
variables in (31), we choose the values of the variables in (32)
uniformly i.i.d. over Fq. Then there are remaining K(N, —m)
variables (the vector of these K(N, —m) variables is assumed
to be b) and K(N, —m) linear equations over these variables,
and thus we can express these linear equations as (recall that
(M), xn indicates that the dimension of matrix M is m X n)
(AN, —m)xK(N,—m) (B)k(N,—m)x1 = (€)K(N,—m)x1, Where
the coefficients in A and c are composed of the elements in
F, Syyu and (32) which are all generated uniformly i.i.d.
over . Hence, the determinant of A can be seen as a
multivariate polynomial whose variables are the elements in
F, S, v and (32). Since the variables of the polynomial are
uniformly i.i.d. over F; where q — oo, by the Schwartz-Zippel
Lemma [25]-[27], if we can further show that this polynomial
is a non-zero multivariate polynomial (i.e., a multivariate
polynomial whose coefficients are not all 0), the probability
that the polynomial is equal to 0 over all possible realization
of the elements in F', S, 1, and (32), goes to 0. In other words,
the determinant of A is non-zero with high probability. So the
next step is to show this polynomial is non-zero. This means
that we need to find one realization of the elements in F,
Sm+u and (32), such that this polynomial is not equal to zero.
By random generation of the elements in F, S, and (32),
we have tested all cases where N = K < 40 satisfying the
constraint N > %“’H—u(Nr—m—u—H). Hence, for each pair
(t,7), the probability that Step 2 of the proposed computing
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scheme is feasible goes to 1. By the probability union bound,
the probability that Step 2 of the proposed computing scheme
is feasible for all pairs of (¢, ), also goes to 1.

Moreover, by using the Cramer’s rule, each element in b
can be seen as a ratio of two polynomials whose variables are
the elements in F, S, and (32), where the polynomial in
the denominator is non-zero with high probability. As a result,
each element in S can be seen as ratio of two polynomials of
the elements in F, S,,4, and (32) for all pairs (¢,7). So in
Step 3 for each A C [N] where |A| = N,, the determinant of
the matrix [sA()1; s gA()Ke, gAR)L, g AN Ke] can be
expressed as Y, = Zie[(Nru)!} %7 where P; and @); are poly-
nomial whose variables are the elements in F, S, and (32)
for all pairs (¢,;). We want to prove that Y4 [];c;n,y @i
is a non-zero polynomial such that we can use the Schwartz-
Zippel Lemma [25]-[27] to show that the determinant Y4 is
not equal to zero with high probability. Again, by random
generation of the elements in F, S;,,;, and (32) for all pairs
(t,7), we have tested all cases where N = K < 40 satisfying
the constraint N > %"_1 +u(N; —m—u+1). In these cases,
with the random choices, both []; ¢, @i and Y4 are not
equal to zero, and thus Y [[;c((n,u) @i is not equal to 0.

In conclusion, we prove the feasibility of the proposed
computing scheme in Steps 2 and 3 with high probability, for
the case where %"_1+U(Nr—m—u+l)§K:N§40.

B. N divides K

We then consider the (K, N, N;, K¢, m) = (K, N, N, fu,m)
distributed linearly separable computation problem, where
N > mtu=L 4 y(N, —m—u+1) and K is a positive integer.
Similar to the proof for the case where K = N, we also aim to
find a specific realization of the elements in F, S;,;, and (32)
for all pairs (¢,7), such that Steps 2 and 3 of the proposed
scheme are feasible (i.e., the determinant polynomials are non-
Z€ero).

We construct the demand matrix (i.e., F with dimension
Kux K) as follows,

, (,FJ):'X,N, L Ouxn_ ,\ o ,w _ Ouxn.
Ouxn 1 (FQ)UXN I I Ouxn
F=|"~""~""""""~""3°"-" """ "°~"7°7° ,
. | . | |
Ouxn | Ouxn ! " (Fk/N)uxN

where each element in F;, 7 € [m is generated uniformly i.i.d.
over [Fy. In the above construction, the ( K,N,N,, %u, m) dis-
tributed linearly separable computation problem is divided into
£ independent/disjoint (N, N, N,,u,m) distributed linearly
separable computation sub-problems. Since the determinant
polynomials are non-zero with high probability for each sub-
problem as we proved in Appendix A-A, it can be seen that the
determinant polynomials for the (K, N, N,, %u, m) distributed
linearly separable computation problem are also non-zero with

high probability.
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