
0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3056365, IEEE
Transactions on Automatic Control

1

Robust Coordinated Hybrid Source Seeking with
Obstacle Avoidance in Multi-Vehicle

Autonomous Systems
Jorge I. Poveda, Mouhacine Benosman, Andrew R. Teel, Ricardo. G. Sanfelice

Abstract— In multi-vehicle autonomous systems that op-
erate under unknown or adversarial environments, it is a
challenging task to simultaneously achieve source seeking
and obstacle avoidance. Indeed, even for single-vehicle
systems, smooth time-invariant feedback controllers based
on navigation or barrier functions have been shown to be
highly susceptible to arbitrarily small jamming signals that
can induce instability in the closed-loop system, or that
are able to stabilize spurious equilibria in the operational
space. When the location of the source is further un-
known, adaptive smooth source seeking dynamics based
on averaging theory may suffer from similar limitations.
In this paper, we address this problem by introducing a
class of novel distributed hybrid model-free controllers,
that achieve robust source seeking and obstacle avoid-
ance in multi-vehicle autonomous systems, with vehicles
characterized by nonlinear continuous-time dynamics sta-
bilizable by hybrid feedback. The hybrid source seeking
law switches between a family of cooperative gradient-
free controllers, derived from potential fields that satisfy
mild invexity assumptions. The stability and robustness
properties of the closed-loop system are analyzed using
Lyapunov tools and singular perturbation theory for set-
valued hybrid dynamical systems. The theoretical results
are validated via numerical and experimental tests.

I. INTRODUCTION

IN several applications, such as surveillance, target local-
ization, or sensor deployment, it is of interest to have

fully autonomous vehicles and mobile robots equipped with
sensing and actuation capabilities, operating in hazardous
environments that could be too dangerous for humans. Many
of these navigation and exploration problems can be cast as
source seeking problems [1]–[3], where the vehicles aim to
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localize a point in the space where a particular measurable
signal attains its maximum or minimum value. This signal
may correspond to the chemical concentration of a hazardous
substance, radiation coming from nuclear leaks, acoustic fields,
etc. In all these scenarios, the precise mathematical model of
the signal and/or its gradient is unknown, which precludes the
implementation of standard gradient-based methods.

Several source seeking algorithms have been developed
during the last 20 years. For example, in obstacle-free envi-
ronments, source seeking controllers based on multi-function
evaluations have been studied in [1], [4] and [3]. Continuous-
time approaches based on extremum seeking dynamics [5]
were pioneered in [6], and further studied in [7]–[10]. Hybrid
controllers for obstacle-free source seeking problems in three-
dimensional environments were studied in [11], and smooth
source dynamics for unicycles were presented in [12]. Sim-
ilarly, adaptive and cooperative navigation laws for multi-
vehicle systems (MVS) operating in obstacle-free environ-
ments have also been considered in [3], [13]–[15] and [16].

The existing results in the literature have provided signifi-
cant insight into the design of algorithms for source seeking
and obstacle avoidance problems. However, in this setting, one
of the main challenges is the design of feedback laws that are
able to simultaneously achieve obstacle avoidance and global
(or semi-global) stabilization of the source of the signal, under
the presence of arbitrarily small, and therefore undetectable,
additive adversarial jamming signals. As discussed in [17,
Corollary 2.2], [18, Thm 6.5], and [19], this problem is not
trivial mainly because of the topological obstructions induced
by the obstacle, which preclude the global (or semi-global)
robust stabilization of any given target point (e.g., the source)
by using smooth feedback control laws, even if there is only
one obstacle in the space. This impossibility result stems
from the fact that the domain of attraction of an equilibrium
point in asymptotically stable time-invariant vector fields must
be diffeomorphic to the Euclidean space, see [19, pp. 558].
Naturally, in some cases this limitation extends to time-varying
feedback controllers whose stability properties are completely
inherited from a smooth time-invariant system, as it is the
case in many approaches based on averaging theory [20].
To circumvent these limitations, most of the results in the
literature have focused on achieving only local or almost
global convergence results, where the set of initial conditions
from which source seeking is not achieved corresponds to a
set of measure zero; see [9], [21], [22]. However, as shown
in [18, Thm 6.5] and [19], when the system is subject to
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arbitrarily small additive adversarial disturbances, the set of
initial conditions from which convergence is not achieved
is not a set of measure zero anymore. Moreover, with the
notable exception of [9], previous results in the literature of
obstacle avoidance require direct access to the gradient (or
a perturbed version of the gradient) of the potential field,
and have considered simplified point-mass vehicle dynamics.
Other model-based approaches have focused on achieving safe
navigation, as opposed to source seeking, by using triangular
partitions [23] and barrier functions for safety [24]. However,
to the knowledge of the authors, how to design model-free
feedback controllers that simultaneously achieve robust source
seeking and obstacle avoidance in MVS with general nonlinear
dynamics remains an open problem.

In this paper, we address this challenge by considering a
novel class of model-free source seeking dynamics for obstacle
avoidance based on cooperative synergistic Lyapunov func-
tions and averaging theory for hybrid systems. In particular,
the following are the main contributions of the paper:

(a) We show in Proposition 1 and Example 1, that a common
smooth and model-free averaging-based controller can fail to
achieve obstacle avoidance and source seeking under a class of
additive and arbitrarily small adversarial jamming signals able
to stabilize spurious equilibria of the average dynamics. To
address this issue, we develop a novel robust hybrid feedback
navigation law that switches between a family of model-free
controllers using a hysteresis rule, aiming to robustly steer
a vehicle away from the obstacle and towards the source of
the signal using only measurements of the intensity of the
potential field. The convergence result is presented in Theorem
1. As opposed to stochastic approaches, such as those studied
in [25] and [2], our setting is deterministic, which allows us
to establish sure robust (as opposed to almost sure) source
seeking and obstacle avoidance.

(b) We show that the hybrid model-free controllers can
be extended to MVS with a leader-follower structure, where
only a subset of the vehicles is able to sense the intensity
signal, and we provide sufficient conditions on the potential
fields to guarantee obstacle avoidance and convergence to a
particular pre-defined formation around the source. The result
is presented in Theorem 2, and exploits a class of cooperative
synergistic Lyapunov functions. Unlike the results presented
in the conference paper [26], the results of this paper also
guarantee global obstacle avoidance for the followers.

(c) To extend the results of items (a) and (b) to vehicles with
general nonlinear dynamics, we further study a novel multi-
time scale hybrid approach suitable for vehicles with dynamics
satisfying a mild hybrid stabilizability assumption. To illustrate
that non-holonomic vehicle systems satisfy this assumption,
and inspired by the results of [27], we construct a hybrid
feedback controller that achieves robust global stabilization of
position and orientation in unicycles. By interconnecting this
hybrid controller with the hybrid source seeking dynamics, we
establish in Theorem 3 a convergence result for the closed-
loop system using tools from singular perturbation theory for
hybrid dynamical systems [28].

(d) Finally, as a proof of concept, we validate in Section VII
the practical feasibility of our theoretical results via numerical

and experimental tests in a TurtleBot platform.
To the best of our knowledge, the results of this paper corre-

spond to the first adaptive averaging-based hybrid controllers
able to achieve robust model-free (semi) global practical
source seeking and obstacle avoidance in MVS having general
nonlinear dynamics that are stabilizable by using hybrid feed-
back. Earlier, partial results were presented in the conference
paper [26], which studied a hybrid source seeking controller
designed for a single-vehicle velocity-actuated system.

II. NOTATION AND PRELIMINARIES

Given a compact set A ⊂ Rn and a vector z ∈ Rn, we
use |z|A := mins∈A ‖z−s‖2 to denote the minimum distance
of z to A. A set-valued mapping M : Rp ⇒ Rn is said
to be outer semicontinuous (OSC) at z if for each sequence
{zi, si} → (z, s) ∈ Rp × Rn satisfying si ∈ M(zi) for all
i ∈ Z≥0, we have s ∈M(z). A mapping M is locally bounded
(LB) at z if there exists an open neighborhood Nz ⊂ Rp of
z such that M(Nz) is bounded. The mapping M is OSC and
LB relative to a set K ⊂ Rp if M is OSC for all z ∈ K and
M(K) := ∪z∈KM(x) is bounded. A function f : Rp → R
is said to be radially unbounded if f(z) → ∞ as |z| → ∞.
Given a set K ⊂ Rp, we use K to denote its closure, Rn\K to
denote its complement, coK to denote its closed convex hull,
and KN := K×. . .×K to denote its N -cartesian product. We
use S1 := {z ∈ R2 : z2

1 + z2
2 = 1} to denote the unit circle in

R2, and rB to denote a closed ball in the Euclidean space, of
radius r > 0, and centered at the origin. We use In to denote
the identity matrix of dimension n×n, ei to denote the unitary
vector with ith entry equal to 1, and cN ∈ RN to denote the
vector with all entries equal to c ∈ R. Also, for each vector
α ∈ RN we use I(α) to denote the diagonal matrix whose
diagonal elements correspond to the entries of α. For any pair
of vectors x = [x1, x2]> and y = [y1, y2]>, we define xc :=
[x1,−x2]> and the operation x	 y := [x1y1 − x2y2, x2y1 +
x1y2]>. An undirected unweighted graph is represented by
G = {V, E}, where V ⊂ {1, 2, . . . , N} is the set of nodes, and
E ⊂ V ×V is the set of edges. A function α : R≥0 → R≥0 is
of class K∞ if it is zero at zero, continuous, strictly increasing,
and unbounded. A function β : R≥0×R≥0 → R≥0 is of class
KL if it is nondecreasing in its first argument, nonincreasing in
its second argument, limr→0+ β(r, s) = 0 for each s ∈ R≥0,
and lims→∞ β(r, s) = 0 for each r ∈ R≥0. For a compact set
A contained in an open set U , a continuous function ω̃ : U →
R≥0 is a proper indicator of A on U if ω̃(z) = 0 if and only
if z ∈ A, and ω̃(zi) → ∞ when i → ∞ if either |zi| → ∞,
or the sequence {zi}∞i=1 approaches the boundary of U .

In this paper, we will consider dynamical systems with
continuous-time and discrete-time dynamics, called hybrid
dynamical systems (HDS) [29]. A HDS with state z ∈ Rn is
characterized by its data H := (C,F,D,G), and the dynamics

z ∈ C, ż = F (z), (1a)
z ∈ D, z+ ∈ G(z), (1b)

where the mappings F : Rn → Rn and G : Rn ⇒ Rn, called
the flow map and the jump map, respectively, describe the
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evolution of the state z when it belongs to the flow set C, and
the jump set D, respectively. We will always consider HDS
that satisfy the following Hybrid Basic Conditions:

(C1) The sets C and D are closed.
(C2) F is continuous on C.
(C3) G is OSC and LB relative to D, and for every z ∈ D

the set G(z) is nonempty.
Solutions to system (1) are parametrized by a continuous-
time index t ∈ R≥0 that increases continuously whenever
the system flows according to (1a), and a discrete-time index
j ∈ Z≥0 that increases by one whenever the system jumps
according (1b). Thus, solutions to (1) are defined on hybrid
time domains. Solutions with an unbounded time domain are
said to be complete. Further details on hybrid time domains
and solutions to HDS can be found in [29, Ch. 2].

The following two stability definitions, which also apply to
continuous-time systems (i.e., D = ∅), discrete-time systems
(i.e., C = ∅), and HDS will be used throughout this paper.

Definition 1: A compact setA ⊂ Rn is said to be uniformly
globally asymptotically stable (UGAS) for the HDS H if there
exists a β ∈ KL such that all solutions z toH satisfy the bound
|z(t, j)|A ≤ β(|z(0, 0)|A, t+ j), for all (t, j) ∈ dom(z). �

Definition 2: For a HDS parametrized by a constant ε ∈
R>0, and denoted as Hε := {Cε, Fε, Dε, Gε}, a compact set
A ⊂ Rn is said to be semi-globally practically asymptotically
stable (SGPAS) as ε→ 0+ if there exists a function β ∈ KL
such that the following holds: for each ∆ > 0 and ν > 0 there
exists ε∗ > 0 such that for each ε ∈ (0, ε∗) every solution z of
Hε with |z(0, 0)|A ≤ ∆ also satisfies the bound |z(t, j)|A ≤
β(|z(0, 0)|A, t+ j) + ν, for all (t, j) ∈ dom(z). �

When the sets Cε and Dε are compact, SGPAS is equivalent
to global practical asymptotic stability (GPAS). The following
lemma corresponds to [29, Thm. 7.21].

Lemma 1: Let H be a HDS of the form (1) satisfying the
Basic Conditions, and rendering a nonempty compact set A ⊂
Rn UGAS. Then, for the inflated HDS Hε with data given by

Fε(x) : = co F ((x+ εB) ∩ C) + εB
Gε(x) : = {v ∈ Rn : v ∈ g + εB, g ∈ G((x+ εB) ∩D)}

Cε : = {x ∈ Rn : (x+ εB) ∩ C 6= ∅}
Dε : = {x ∈ Rn : (x+ εB) ∩D 6= ∅},

the set A is SGPAS as ε 7→ 0+. ♦

III. PROBLEM STATEMENT AND MOTIVATIONAL EXAMPLE

Consider a group of N vehicles in R2, each vehicle modeled
by the dynamics

ṗi = ui, ∀ i ∈ V := {1, . . . , N}, (2)

where pi ∈ R2 represents the position, and ui ∈ R2 represents
the velocity input. Point mass models of the form (2) have been
extensively studied in the literature of source seeking; see [6],
[10]. We are interested in designing a robust and model-free
feedback law ui that steers the vehicles, in a coordinated way,
towards a neighborhood of the maximizer of an unknown but
measurable potential field J , generating vehicle trajectories
that simultaneously avoid a given obstacle N . For the purpose

of analysis, we consider potential functions that satisfy the
following assumption.

Assumption 1: The potential function J : R2 → R is
continuously differentiable, −J is radially unbounded, and the
set of global maximizers of J , given by

AJ :=
{
p∗ ∈ R2 : J(p∗) ≥ J(p), ∀ p ∈ R2

}
, (3)

is not empty, and also coincides with the set of critical points
Z∇J := {p∗ ∈ R2 : ∇J(p∗) = 0}, i.e., −J is an invex
function [30]. �

Assumption 1 is weaker than previous assumptions in the
literature of source seeking that considered quadratic functions
[6], [8]–[10], [31] or strongly concave potential fields [4]. In
particular, convexity of −J is not assumed. Similar potential
fields have been studied in [11].

To motivate our results, we first study a common smooth
averaging-based navigation law for the case when there is only
one vehicle, i.e., V := {1}, and we drop the subindex i in (2).

A. Smooth Source Seeking Dynamics: The
Obstacle-Free Case

In an obstacle-free space, we can consider the following
model-free source seeking control law:

u := aωRµ+ kξ, R :=

[
0 1
−1 0

]
, (4)

where k := σω̄, and [σ, ω̄, a, ω]> ∈ R4
>0 is a vector of tunable

parameters. The auxiliary states ξ ∈ R2 and µ ∈ R2 are
generated by the dynamics[

ξ̇
µ̇

]
=

[
−ω̄

(
ξ − 2

aJ(p)µ
)

ωRµ

]
, (ξ, µ) ∈ R2 × S1. (5)

This feedback law is similar to those considered in [10] and
[6, Ch. 2], with the subtle difference that we generate the
excitation signal µ using a time-invariant oscillator, whose
solutions can be explicitly computed as

µ(t) = exp(ωRt)µ(0) =

[
cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

] [
µ1(0)
µ2(0)

]
.

(6)
Since d(µ>µ)

dt = 0, it follows that S1 is forward invariant
for any ω > 0. The low-pass filter of (5) is solely used to
improve the transient performance of the algorithm, and it
can be safely removed without altering the stability properties
of the controller. However, we retain the filter in this section
to show that, in general, it does not improve the robustness
properties of the controller under a class of arbitrarily small
jamming signals.

The control law (4) can be analyzed following the ideas
of [6, Ch. 2]. In particular, consider the change of variables
p̃ := p− aµ, and the new time scale ρ̃ = ω̄t. With these new
variables, the closed-loop system in the ρ̃-time scale has the
form

˙̃p = σξ, ξ̇ = −ξ +
2

a
J(p̃+ aµ)µ, νµ̇ = Rµ, (7)

where ν := ω̄
ω . When ν is sufficiently small, system (7)

can be analyzed using averaging theory [20]. The average
system is obtained by averaging the ξ-dynamics along the
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solutions µ. To obtain the average system, and following
standard arguments (see [6]), for small values of a we can
perform a Taylor series expansion of J(·) around p̃, given by

J(p̃+ aµ) = J(p̃) + a µ>∇J(p̃) + eJ , (8)

where the term eJ is of order O(a2). The following lemma
is instrumental to find the average dynamics of system (7).
The proof follows directly by integration and application of
trigonometric identities.

Lemma 2: Every solution of µ̇ = Rµ satisfies
∫ 2π

0
µ(t)dt =

02 and 1
2π

∫ 2π

0
µ(t)µ(t)>dt = 1

2I2. ♦
Substituting (8) in (7), and taking the average of the ξ-

dynamics over one period of µ, we obtain the average system
in the ρ̃-time scale with states ξA ∈ R2 and p̃A ∈ R2:

˙̃pA = σξA, ξ̇A = −ξA +∇J(p̃A) + ẽJ , (9)

where ẽJ is a term of order O(a). By further introducing a
new time scale α := σρ̃, system (9) is in singular perturbation
form (see [20]) whenever σ > 0 is sufficiently small. The
“boundary layer” dynamics are obtained by setting σ = 0 in
(9). With p̃A constant, the equilibrium point ξA∗ = ∇J(p̃A)+
ẽJ is exponentially stable for the ξA-dynamics. The “reduced
dynamics” are obtained after substituting ξA by its steady-state
value ξA∗ in the p̃-dynamics, leading to

˙̃z = ∇J(z̃) + ẽz, (10)

where the new variable z̃ ∈ R2 corresponds to the position of
the vehicle, and ẽz is of order O(a). This computation reveals
that, under an appropriate tuning of the constants (σ, ν, a), the
feedback law (4) applied to the vehicle (2) approximates, on
average and in the slowest time scale, a gradient flow with
respect to the potential field J . For the average system (10)
the following lemma can be readily established.

Lemma 3: Suppose that J satisfies Assumption 1. Then, if
ẽz = 0, system (10) renders the set AJ UGAS. If ẽz is of order
O(a), system (10) renders the set AJ SGPAS as a→ 0+. ♦

Proof: Let J∗ := J(AJ). If ẽz = 0, UGAS follows by
considering the Lyapunov function V (z̃) = −(J(z̃) − J∗),
which is radially unbounded and positive definite with respect
to AJ , and satisfies V̇ = −|∇J(z̃)|2 < 0 for all z̃ /∈ AJ .
If ẽz is of order O(a), SGPAS follows by Lemma 1 and the
observation that solutions of (10) on compact sets and for
a > 0 sufficiently small are also solutions of the differential
inclusion ˙̃z ∈ co ∇J(z̃ + εB) + εB, with ε > 0.

Once a UGAS or SGPAS property has been established for
the slow average system (10), standard results for averaging
and singular perturbation theory (e.g., [20, Thm. 1] or [32,
Thm. 1]) can be invoked to establish SGPAS for the original
model-free source seeking dynamics (7). Since the closed-
loop system is modeled by a time-invariant continuous vector
field, for each suitable tuning of the control parameters the
existence of robustness margins with respect to small bounded
additive disturbances on the states and dynamics can be readily
established via Lemma 1.

M1

M2

M
N

K

K

SOURCE

OBSTACLE

K

K

Fig. 1: A group of vehicles seeking the source of a signal,
under the presence of the obstacle N . For a smooth control
law, the setM represents the points where small perturbations
can prevent the agents from converging to the source.

B. Smooth Source Seeking Under Obstacles and Small
Adversarial Signals: An Impossibility Result

Whereas the feedback law (4) successfully solves the nomi-
nal source seeking problem when there are no obstacles in the
space, the same algorithm can generate closed-loop systems
with zero margins of robustness with respect to arbitrarily
small jamming signals designed to stabilize spurious equilibria
of the average dynamics (10). To illustrate this idea, consider
Figure 1, where N ⊂ R2 represents the obstacle, and the
green triangles represent follower agents tracking the position
of the leader, represented by a black triangle and the state
z̃ ∈ R2. Suppose that a feedback controller has been designed
to globally steer the leader towards the source. Without loss
of generality, the closed-loop dynamics can be written as

˙̃z = f(z̃), z̃ ∈ R2\N , z̃(0) = z̃0, (11)

where the function f is assumed to be locally bounded
(possibly discontinuous), and where the existence of at least
one complete (Carathéodory) solution [33, pp. 4] for all z̃(0) ∈
R2\N is assumed. Note that, since there is an obstacle in the
space, there must exist a set M ⊂ R2 such that, for initial
conditions on each side ofM, i.e., inM1 orM2 (see Figure
1), the trajectories of the vehicle approach the set K either
from above the obstacle or from below it. For the obstacle
avoidance problem this behavior is captured by the following
assumption.

Assumption 2: There exists T > 0 such that for each ρ > 0
and each z̃0 ∈M, where M :=M1 ∩M2, there exist points
z̃1(0), z̃2(0) ∈ {z̃0} + ρB, for which there exist solutions z̃1

and z̃2 of (11), respectively, satisfying z̃1(t) ∈ M1\M and
z̃2(t) ∈M2\M for all t ∈ [0, T ]. �

A consequence of the behavior described by Assumption
2 is the existence of arbitrarily small adversarial jamming
signals e that can force the solutions of the perturbed system

˙̃z = f(z̃ + e(t)), z̃(0) = z̃0 + e(0) ∈ R2\N , (12)

to remain in a neighborhood of the set M. This can be
established by the following proposition, which follows as a
special case of [18, Thm. 6.5].

Proposition 1: Suppose that Assumption 2 holds. Then for
each ε,ρ′,ρ′′ > 0, and every z̃0 ∈M+εB such that z̃0+ρ′B ⊂
R2\N and z̃0 + ρ′′B ⊂ (M1 ∪M2) there exist a piecewise
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Fig. 2: Four trajectories of the dynamics (4) under the adver-
sarial jamming signal e(t) of Example 1. The parameters of the
simulation are selected as ω = 150, ω̄ = 0.01, k = 1× 10−3,
a = 0.01, ρ = 0.035, µ(0) = [1, 0]>, ε = 1× 10−2.

constant function e : dom(e) → εB and a (Carathéodory)
solution z̃ : dom(z̃)→ R2\N to (12) such that

z̃(t) ∈ (M+ εB) ∩ (M1 ∪M2) ∩ (z̃0 + ρ′B) ,

for all t ∈ [0, T ′) for some T ′ ∈ (T ∗,∞], where dom z̃ =
dom ẽ, T ∗ = min{ρ′, ρ′′}m−1, and m = sup{1 + |f(η)| :
η ∈ z0 + max{ρ′, ρ′′}B}. If T ′ is finite, then limt→T ′ z̃(t) /∈
(M1 ∪M2) ∪ (z̃(0) + ρ′B). ♦

Given that the reduced average system (10) is of the form
(11), a consequence of Proposition 1 is that the existence of
obstacles in the operational space of the vehicle implies the
existence of arbitrarily small (and therefore undetectable in
practice) adversarial jamming signals e that could significantly
deteriorate the stability properties of the system. In fact,
the adversarial signal e can be designed to locally stabilize
spurious equilibria that may emerge in gradient flows due to
the combination of attractive fields and repulsive fields. This
observation suggests that the signal e could also be designed
to disrupt the stability properties of the model-free dynamics
(4) by (locally) stabilizing spurious equilibria of (10). This is
illustrated by the following example.

Example 1: Consider the dynamics (4), a potential field
J(x) = −(x − 3)2 − y2, and an obstacle located at the
point (1, 0). To “push” the vehicle away from the obstacle,
we design an artificial “repulsive” function B(d(p)) as in
[34], defined as B(z) := (z − 1)2 log

(
1
z

)
if z ∈ [0, 1],

and B(z) := 0 if z > 1, where d : R2 → R≥0 is the
distance function given by d(p) = ((x1 − 1)2 + y2)0.5 − ρ
if (x1 − 1)2 + y2 > ρ2, and d(p) = 0 otherwise. This con-
struction generates a continuously differentiable potential field
J̃(p) = J(p)−B(d(p)), which serves as input to the dynamics
(5). Now, consider the uniformly bounded small adversarial
jamming signal e(t) := [−εδ1(x(t) − 0.6),−εδ2(y(t))]>,
where ε > 0, δi(z) := z if |z| ≤ δi, and δi(z) := 0 otherwise,
with δ1 = 0.15 and δ2 = 0.05. When this signal is added to
the right hand side of (4), solutions starting sufficiently close
to the point (0.6, 0) are not able to reach the source. In fact,
the adversarial signal e keeps the trajectory of the vehicle in
a neighborhood of (0.6, 0), which is a saddle point of J̃(p)
and therefore a critical point of ∇J̃(p) (c.f. equation (10)).
On the other hand, perturbed solutions starting sufficiently far
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Fig. 3: Trajectories generated by (4) under the adversarial
signal e(t), and initial condition close to (0.6, 0). The inset
shows the evolution in time of the adversarial signals.

away from the saddle point achieve obstacle avoidance. This
behavior is illustrated in Figure 2. The evolution in time of the
adversarial signals and the position of the vehicle are shown
in Figure 3. �

Example 1 aims to illustrate a vulnerability that emerges
in any smooth averaging-based source seeking algorithm that
completely inherits its stability and convergence properties
from standard gradient flows operating under obstacles in
the space, and subject to adversarial environments. Indeed,
it is well-known that similar vulnerabilities emerge in other
stabilization problems under topological obstructions; see for
instance [19], and [35]. Nevertheless, this limitation can be
overcome if the smooth adaptive source seeking controller is
substituted by a robust adaptive hybrid controller.

IV. ROBUST HYBRID SOURCE SEEKING WITH OBSTACLE
AVOIDANCE FOR A SINGLE-VEHICLE SYSTEM

In this section, we present a model-free hybrid feedback law
designed to achieve (semi) global (practical) source seeking
and robust obstacle avoidance in vehicle systems with dynam-
ics of the form (2). To simplify our presentation, we consider
single-vehicle systems, and we defer to the next section the
analysis of MVS.

A. Geometric Covering of the State Space
The main idea behind the hybrid source seeking algorithm

is to cover the operational space of the vehicle by using
multiple virtual sets, and to implement a different smooth
model-free robust source seeking controller in each set, using
an appropriate switching law. To do this, we first characterize
the class of admissible obstacles N that we consider in this
paper, which are those that can be contained in spheres and
are located “sufficiently” away from the set AJ defined in
Assumption 1.

Assumption 3: There exists ρ ∈ R>0 and ε ∈ R>0 such
that the obstacle N ⊂ R2 satisfies N ⊂ p0 + ρB and (p0 +
2ρ
√

2B) ∩ (AJ + εB) = ∅, where p0 = [x0, y0]> ∈ R2. �
To achieve global obstacle avoidance, a covering of the

operational space can be constructed as follows: For each
p0 ∈ R2 and ρ > 0, define the set

Bp0,ρ :=
{
p ∈ R2 : ‖p− p0‖1 ≤ 2ρ

√
2
}
, (13)
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Fig. 4: Space Oq with q = 1. The blue arrows indicate the
flow set (18a), and the red arrows indicate the jump set (18b).
The box contains Bp0,ρ.

and note that {p0}+ ρB ⊂ Bp0,ρ ⊂ {p0}+ 2ρ
√

2B. Consider
the sets

L1a :=
{

[x, y]> ∈ R2 : y < −x+ y0 + x0 − 2ρ
√

2
}
,

L1b :=
{

[x, y]> ∈ R2 : y < x+ y0 + x0 + 2ρ
√

2
}
,

L2a :=
{

[x, y]> ∈ R2 : y > x+ y0 + x0 − 2ρ
√

2
}
,

L2b :=
{

[x, y]> ∈ R2 : y > −x+ y0 + x0 + 2ρ
√

2
}
,

and define the virtual sets

O1 := L1a ∪ L1b, O2 := L2a ∪ L2b, O := O1 ∪O2. (14)

Note that O = R2\Bpo,ρ, and by construction N ∩ O = ∅,
i.e., the obstacle N does not intersect any of the sets Oi, and
the source set AJ belongs to O1 ∩ O2. This construction is
always possible under minimal information of the position of
the source. As an illustration, the sets O1 and O2 are shown in
Figures 4 and 5 for the case when p0 = [1, 0]> and ρ = 0.1.

Using this construction, a model-free source seeking con-
troller will be designed to avoid the set Bp0,ρ that contains the
obstacle N , from every initial condition not in Bp0,ρ.

B. Hybrid Localization Function

In order to find the source of the potential field J , we endow
the control system of the vehicle with a logic state q ∈ {1, 2},
that indicates which virtual set Oq is currently being used by
the controller. For each q ∈ {1, 2}, we consider localization
functions defined as follows:

Vq(p) :=

{
Jq(p)− Ĵ(p), ∀ p ∈ Oq,

∞, ∀ p /∈ Oq,
(15)

where Ĵ is the vehicle’s measurement of the intensity of the
potential field J , and where Jq is a virtual barrier signal de-
fined only on each set Oq . We consider localization functions
Vq that satisfy the following assumption:

Assumption 4: Let Wq := Vq +J∗. The hybrid localization
functions {Vq}q∈{1,2} satisfy:
(a) For each q ∈ {1, 2} there exist functions α1,q, α2,q ∈ K∞,

and proper indicators ω̃q of AJ on Oq , such that

α1,q(ω̃q(p)) ≤Wq(p) ≤ α2,q(ω̃q(p)), ∀ p ∈ Oq.

Fig. 5: Space Oq with q = 2. The blue arrows indicate the
flow set (18a) and the red arrows indicate the jump set (18b).
The box contains Bp0,ρ.

(b) For each q ∈ {1, 2}, we have

Z∇Wq
= {p∗ ∈ Oq : ∇Wq(p

∗) = 0} = AJ ,

where AJ is given by Assumption 1.
(c) For each q ∈ {1, 2}, the function Vq(·) is continuously

differentiable in Oq . �
Note that for each q ∈ {1, 2}, we have ∇Wq = ∇Vq ,

and by item (b) in Assumption 4 the set of minima of the
localization function (15) is consistent with the source set AJ ,
even though the signal Ĵ may be different from the original
potential field. In general, the condition Z∇Wq = AJ also
implies that Wq is not a global navigation function [17], since
any critical point of ∇Wq must be a global minima. However,
unlike standard approaches based on navigation functions [9],
[21], the conditions in Assumption 4 need to be checked only
on the set Oq . For the case when Ĵ = J , under Assumption 1
the construction of the barrier function Jq can be easily carried
out for some classes of potential fields [24], [36]. A typical
case corresponds to quadratic potentials, which are ubiquitous
in source-seeking problems; see [6], [8]–[10], [31].

Example 2 (Example 1 continued): For a quadratic poten-
tial field such as the one in Example 1, we can construct Jq
as Jq(p) := B(d̃q(p)), where d̃q(p) := |p|2R2\Oq

, and

B(s) :=

{
(s− ρ)2 log

(
1
s

)
, if s ∈ [0, ρ]

0, if s > ρ,
(16)

with ρ ∈ (0, 1] being a tunable parameter selected sufficiently
small. Under Assumption 1, for each fixed q the resulting
localization function Vq is continuously differentiable in Oq .
Also, Vq → ∞ as p → R2\Oq or |p| → ∞. Moreover, item
(b) of Assumption 4 is also satisfied as shown in Figures 4
and 5, which show the level sets of the resulting localization
functions V1 and V2 constructed as in (15). �

C. Hybrid Source Seeking Dynamics

Once the operational space of the vehicle has been covered
by the set O1 ∪ O2, and a family of localization functions
has been defined, we consider the following adaptive hybrid
source seeking dynamics

u := −Fq(p)µ, Fq(p) := −aωR+ 2ka−1Vq(p)I2×2, (17)
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where [k, a, ω]> ∈ R3
>0 are again tunable parameters, q ∈

{1, 2} is a switching logic state, and where µ is a dither signal
generated by the oscillator dynamics in (5). To characterize the
switching behavior of the controller, consider the sets

Cp,q : =
{

(p, q) ∈ O × {1, 2} : Vq(p) ≤ χV3−q(p)
}
, (18a)

Dp,q : =
{

(p, q) ∈ O × {1, 2} : Vq(p) ≥ (χ− λ)V3−q(p)
}
,

(18b)

where χ ∈ (1,∞) and λ ∈ (0, χ− 1) are tunable parameters.
Note that the term (χ − λ) in (18b) guarantees that the
intersection of the sets Cp,q and Dp,q is not empty. The set
Cp,q characterizes the points in the space O × {1, 2} where
the vehicle implements the adaptive navigation law (17) with
constant state q, i.e., with q̇ = 0. On the other hand, the set
Dp,q characterizes the points in the space O × {1, 2} where
the vehicle toggles its logic state q as q+ = 3 − q. Since
by construction χ > 1 and χ − λ > 1, the vehicle toggles
the potential field Vq whenever its current value exceeds a
threshold compared to the other potential field V3−q . After
switching the controller, the vehicle will flow again using the
new potential field V3−q , until a new jump (if at all) is trig-
gered by approaching points in the space where the potential
again exceeds a threshold involving Vq . This switching rule
effectively imposes a hysteresis property in the controller.

Based on the previous construction, the closed-loop system
is a HDS, with state z = [p>, q, µ>, ]> ∈ R5, flows given by

ż = Fz(z) :=

 −Fq(p)µ0
ωRµ

 , z ∈ Cz := Cp,q × S1, (19)

and jumps given by

z+ = Gz(z) :=
[
p>, 3− q, µ>

]>
, z ∈ Dz := Dp,q × S1.

(20)
By construction, this system satisfies the Basic Conditions
(C1)-(C3).

Remark 1: In the obstacle-free case, existing smooth
model-free dynamics can achieve source seeking without mea-
surements of the position of the vehicle, e.g., [6], [31]. How-
ever, when there are obstacles, GPS-denied source seeking
controllers based on navigation functions can achieve source
seeking only from almost all initial conditions [9]. On the other
hand, the hybrid adaptive dynamics (19)-(20) use continuous
measurements of the intensity of the virtual functions Jq ,
which depend on the relative position of the vehicle with
respect to the set Oq . As shown in the next section, this
extra level of information will be enough to guarantee suitable
(semi) global (practical) stability and robustness properties for
the closed-loop system. �

D. Analysis

The HDS (19)-(20) can be analyzed by a nested application
of singular perturbation theory [37], [38]:

1) Change of Variable and Nominal HDS: Consider the
change of variable p̃ := p − aµ and the Taylor expansion
(8) applied to the hybrid localization function Vq , which

transforms system (19)-(20) into a HDS with flows given by

˙̃p = −2kµ

(
Vq(p̃)

a
+ µ>∇Vq(p̃)

)
+ eV , q̇ = 0, µ̇ = ωRµ,

(21)
which are allowed whenever (p̃ + ep, q, µ) ∈ Cz . The jumps
of the HDS are given by

p̃+ = p̃, q+ = 3− q, µ+ = µ, (p̃+ ep, q, µ) ∈ Dz. (22)

Here, the signals eV and ep are of order O(a).
2) Averaging Theory for Hybrid System: For values of ω−1

sufficiently small, the HDS (21)-(22) is a singularly perturbed
HDS [39]. Consider the change of variable τ := ωt, which
generates the same jumps (22), and the new flows in the τ -
time scale, allowed when (p̃+ ep, q, µ) ∈ Cz , and given by

˙̃p = −2kω−1µ

[
Vq(p̃)

a
+ µ>∇Vq(p̃) + ev

]
, q̇ = 0, µ̇ = Rµ.

(23)
The boundary layer system [39, Eq. (6)] is now obtained by
taking ω−1 = 0 in (23), and by ignoring the jumps (22):

˙̃p = 0, q̇ = 0, µ̇ = Rµ, (p̃+ ep, q, µ) ∈ Cz. (24)

By Lemma 2, for each compact set K ⊂ R3 and each (p, q) ∈
Cp,q ∩K, the solutions µ of (24) satisfy the orthogonality and
zero-average properties. Substituting µ in (23) and taking the
average of the right-hand side, we obtain the average hybrid
system [39, Def. 5], which in the original time scale has flows:

˙̃pa = −k∇Vq(p̃a)+ ẽV , q̇
a = 0, (p̃a + ep, q

a) ∈ Cp,q, (25)

and jumps:

p̃a,+ = p̃a, qa,+ = 3− qa, (p̃a + ep, q
a) ∈ Dp,q, (26)

where ẽV and ep are of order O(a), and therefore can be
treated as small disturbances acting on a nominal HDS with
eV = ep = 0.

3) Asymptotic Stability of the Nominal Average Hybrid Sys-
tem: We now show that the average HDS (25)-(26) with
eV = ep = 0 renders the set AJ × {1, 2} uniformly globally
asymptotically stable with basin of attraction O. Defining
ω̃(p̃a) := minqa∈Q s.t. p̃a∈Oqa

ω̃qa(p̃a) for each p̃a ∈ O, we
obtain that ω̃ is a proper indicator of AJ on O. Also, taking
α1(s) := minqa∈Q α1,qa(s) and α2(s) := maxqa∈Q α2,qa(s),
and using Assumption 4-(a) we obtain that

α1(ω̃(p̃a)) ≤Wqa(p̃a) ≤ α2(ω̃(p̃a)), ∀ p̃a ∈ O. (27)

Moreover, during flows we have Ẇq(p̃
a) = V̇qa(p̃a) and

V̇qa(p̃a) = −k|∇Vqa(p̃a)|2 < 0,

for all (p̃a, qa) ∈ Cp,q∩(O\AJ)×{q}, which implies that, for
each qa ∈ {1, 2}, the localization function Vq(p̃

a) decreases
outside the set AJ . On the other hand, jumps are allowed only
when the localization function Vqa gets larger or equal than the
localization function V3−qa multiplied by the factor (χ − λ),
which, by construction, is greater than 1. Therefore, during
jumps we have that

Vqa,+(p̃a,+) ≤ 1

χ− λ
Vqa(p̃a), ∀ (p̃a, qa) ∈ Dp,q.
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Zeno solutions are avoided due to the hysteresis switching
mechanism induced by the construction of the flow and
jump set. Thus, the Lyapunov function W (p̃a, qa) uniformly
decreases along solutions guaranteeing uniform convergence
of p̃a to AJ . Uniform asymptotic stability of AJ×{1, 2} with
basin of attraction O × {1, 2} = R2\Bpo,ρ × {1, 2} follows
now directly by [29, Prop.7.5].

4) Stability of the HDS (21)-(22): Since the set AJ×{1, 2} is
uniformly asymptotically stable for the average nominal sys-
tem (25)-(26) with eV = ep = 0, by Lemma 1 the same set is
SGPAS as a→ 0+ for the O(a)-perturbed HDS (21)-(22). We
can now apply averaging theory for perturbed HDS [40, Thm.
7] to directly conclude that the original dynamics (21)-(22)
render the set AJ×{1, 2}×S SGPAS as (a, ω−1)→ 0+. Since
the HDS satisfies the Hybrid Basic Conditions, robustness
with respect to arbitrarily small adversarial jamming signal
e follows directly by Lemma 1. Finally, obstacle avoidance
follows by the forward invariance of the basin of attraction
O [29, Thm. 7.12], and the ε-closeness of solutions between
(25)-(26) [39, Thm. 1], and p̃ in (21)-(22).

We summarize with the following Theorem, which is the
first main result of this paper.

Theorem 1: Suppose that Assumptions 1-4 hold and con-
sider the HDS (19)-(20). For each compact set K0 ⊂ R2\Bpo,ρ
and each ε ∈ R>0, there exists a∗ ∈ R>0 such that for
each a ∈ (0, a∗) there exists ω∗ ∈ R>0 such that for each
ω > ω∗ there exists δ∗ ∈ R>0 such that for each measurable
perturbation e : dom(e)→ δB with δ ∈ [0, δ∗], each complete
solution of the perturbed HDS

ż = Fz(z + e), z + e ∈ Cz (28a)
z+ = Gz(z + e), z + e ∈ Dz, (28b)

with initial condition p(0, 0) ∈ K0 generates trajectories p
that: a) converge to AJ + (ε + a)B in finite time; b) satisfy
p(t, j) /∈ N for all (t, j) ∈ dom(z). ♦

Remark 2: The result of Theorem 1, which is similar in
spirit to other convergence results for averaging-based source
seeking algorithms (with no obstacles), states that by orderly
tuning the parameters of the controller, the trajectories of
the vehicle achieve semi-global practical convergence to the
source of the signal, while avoiding the obstacle, and subject
to small additive disturbances e on the states and dynamics of
the system. �

V. COORDINATED SOURCE SEEKING AND OBSTACLE
AVOIDANCE IN MULTI-VEHICLE SYSTEMS

In the previous section, we studied how to design robust
hybrid source seeking dynamics for single-vehicle systems
operating under obstacles and small disturbances e of arbitrary
frequency. In this section, we now study how to design robust
cooperative coordinated hybrid source seeking dynamics with
obstacle avoidance for MVS.

A. Formation Specification and Cooperative Localization
Functions

We consider MVS with communication networks charac-
terized by unweighted time-invariant graphs G = {V, E}
satisfying the following assumption.

Assumption 5: The graph G is undirected and connected. �
Remark 3: We consider time-invariant undirected graphs

mainly to simplify our presentation and to avoid auxiliary
states and notation needed to model time-varying directed
graphs. However, by following the ideas of [41, Sec. 6], our
results could also be extended to directed graphs that are
strongly connected “sufficiently often” in time. �

To design the cooperative hybrid dynamics, we assume that
the potential field J can only be sensed by a subset S ⊂ V
of the vehicles. In order to model this scenario, we assign a
pinning gain γi ∈ {0, 1} to each agent i ∈ V . These parameters
satisfy γi = 1 if and only if i ∈ S. The localization function
of each agent is then defined as

Vqi(pi) :=

{
Jqi(pi)− γiĴi(pi), ∀ pi ∈ Oqi ,

∞, ∀ pi ∈ R2\Oqi ,
(29)

where again qi ∈ {1, 2} and the sets O1 and O2 are defined
as in (14). In order to have coordinated source seeking in the
multi-vehicle system, a particular formation is defined a priori.
This formation is specified by the vector

pf := [x>f , y
>
f ]> ∈ R2N , (30)

where xf := [xf,1, xf,2, . . . , xf,N ]> ∈ RN and yf :=
[yf,1, yf,2, . . . , yf,N ]> ∈ RN , which contains the formation
coordinates of each vehicle i, given by pf,i = [xf,i, yf,i]

> ∈
R2. We will work with consistent formations that are trans-
lationally invariant, which are standard in formation control
problems; see [42, Sec. 6.1].

Definition 3: The multi-vehicle system with individual dy-
namics (2) is said to satisfy a consistent formation pf ∈ R2N

if pf,i = 02 for all i ∈ S, and there exists ζ = [ζx, ζy]> ∈ R2

such that pi = pf,i + ζ, for all i ∈ V . �
After introducing a particular consistent formation for the

multi-vehicle system, we are now interested in steering the
vehicles towards the compact set

Acoord :=
{
p ∈ R2N : p = (I2 ⊗ 1N ) · p∗ + pf , p

∗ ∈ AJ
}
,

(31)
where the set AJ is defined as in Assumption 1. In order
to obtain obstacle avoidance and robust convergence to (31),
we characterize a family of feasible localization functions.
Let x := [x1, . . . , xN ]>, y := [y1, . . . , yN ], p := [x>, y>]>,
q := [q1, . . . , qN ]>, and consider the cooperative localization
function

Wcoop(p, q) =
∑
i∈V

Vqi(pi)+
1

2
(p−pf )>(I2⊗L)(p−pf ), (32)

where L is the Laplacian matrix of the graph G. The individ-
ual functions Vqi are now designed to satisfy the following
assumption.

Assumption 6: For the multi-vehicle system with coopera-
tive localization function (32), the following holds:
(a) For each q ∈ {1, 2}N there exists functions α1,q, α2,q ∈
K∞, and proper indicators ω̃q of Acoord on Õq := Oq1 ×
Oq2 × . . .×OqN , such that

α1,q(ω̃q(p)) ≤Wcoop(p, q) ≤ α2,q(ω̃q(p)), ∀ p ∈ Õq.
(33)
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(b) For each q ∈ {1, 2}N , we have

Z∇Wcoop =
{
p̂ ∈ Õq : ∇Wcoop(p̂, q) = 0

}
= Acoord.

(c) For each i ∈ V , the function Vqi(·) is continuously
differentiable in Oqi . �

Remark 4: Given that our goal is to guarantee robust source
seeking and obstacle avoidance in MVS from every possible
compact set of initial conditions in the operational space of the
vehicle, Assumption 6 leads to the verification of 2N different
conditions. If, on the other hand, the vehicles are initialized
sufficiently close to each other such that they implement the
same logic state qi for all time, items (a) and (b) can be
relaxed, and only N conditions (with a common qi) need to
be verified. �

As in Assumption 4, the conditions of Assumption 6 can
be satisfied in each set Oq by consistent formations and
suitable combinations of barrier functions and typical choices
of potential fields, including, but not limited to, quadratic
functions.

Example 3: (Examples 1 and 2 Continued) As in Examples
1 and 2, suppose that the seeking vehicles have access to
individual measurements of a quadratic potential field of the
form Ĵi(xi, yi) = −wx,i

2 (xi − x∗)2 − wy,i

2 (yi − y∗)2, where
[wx,i, wx,i] ∈ R2

>0. Using the change of variable p̃ = p−(I2⊗
1N )·p∗−pf and the facts that L1N = 0 and 1>NL = 0 induced
by Assumption 5, the cooperative localization function can
be written as Wcoop =

∑
i∈V Jqi(p̃i + p∗ + pf,i) + 1

2 p̃
>T p̃,

where T = [(I2 ⊗ L) + (I2 ⊗ I(γ))I(w)]. Since L = L> is
positive semidefinite, kernel(L) = span{1N}, and I(γ)I(w)
is diagonal with at least one positive entry, we have that
λmin(T ) > 0. Finally, using the family of barrier functions
defined in (16), we obtain that each Jqi is zero for all
points pi away from Oqi by at least ρi, and grows to ∞ as
pi → bd(Oqi) ∪ {∞}. In particular, Assumption 6 holds if
|p∗ + pfi |bd(Oqi

) > ρi for all i ∈ V . �

B. Model-Free Hybrid Dynamics of the Multi-Vehicle
System

As in the single-vehicle case, we now endow each vehicle
with an individual excitation signal µi with frequency ωi =
ω̄κi, tunable parameters [ω̄, κi, ai]

> ∈ R3
>0, and a logic state

qi ∈ {1, 2}, and for each vehicle we use the same geometric
covering of the operational space as in Section IV-A. Using
this covering, the feedback law for the multi-vehicle system
is given by the cooperative adaptive hybrid controller

ucoop := −Fq(p)(12 ⊗ µ)− (I2 ⊗ I(k)L) p̂, (34)

where p̂ = p − pf , µ = [µ>1 , µ
>
2 , . . . , µ

>
N ]>, with mapping

Fq(p) :=
[
Fq,x(p)>,Fq,y(p)>

]>
, where

Fq,x(p) :=


Fq,x,1(p1)
Fq,x,2(p2)

...
Fq,x,N (pN )

 , Fq,y(p) :=


Fq,y,1(p1)
Fq,y,2(p2)

...
Fq,y,N (pN )

 ,
and [

Fq,x,i
Fq,y,i

]
:= −aiωiR+ 2kia

−1
i Vqi(pi)I2×2.

The continuous-time dynamics of the individual logic states
and excitation signals of the vehicles are still given by q̇i = 0
and µ̇i = ωiRµi, with µi ∈ S1 and qi ∈ {1, 2}. The discrete-
time dynamics are given by p+

i = pi, q+
i = 3− qi, and µ+

i =
µi. For each (χi, λi) ∈ (1,∞) × (0, χi − 1) the individual
sets that characterize the switching rule of the logic state qi
of each vehicle are given by

Cip,q : =
{

(pi, qi) ∈ O × {1, 2} : Vqi(pi) ≤ χiV3−qi(pi)
}
,

(35a)

Di
p,q : =

{
(pi, qi) ∈ O × {1, 2} :

Vqi(pi) ≥ (χi − λi)V3−qi(pi)
}
. (35b)

As in the single-vehicle case, the feedback law (34) and the
evaluation of the sets (35) are model-free.

Remark 5: In the control law (34), we allow each vehi-
cle to use exploratory signals irrespective of their roles as
leaders or followers. This allows the followers to use real-
time measurements of the localization functions Vqi instead
of pre-computed gradients of barrier functions. However, if
such virtual gradients are available, the followers can dispense
with the exploratory signals by setting ai = 1 and ωi = 0, and
using ∇Jqi instead of Vqi . �

C. Hybrid Systems Modeling
The analysis of the coordinated hybrid source seeking con-

troller is more complicated due to the fact that several jumps
can simultaneously occur in the system. Indeed, the overall
dynamics correspond to a HDS with state z = [p>, q>, µ>]>,
and continuous-time dynamics

ż = Fcoop(z) :=

 −Fq(p) (12 ⊗ µ)− (I2 ⊗ I(k)L) p̂
0N

(I(ω)⊗R)µ

 ,
(36)

with k := [k1, . . . , kN ]>, a := [a1, . . . , aN ]>, and ω :=
[ω1, . . . , ωN ]>. These flows capture the dynamics of the multi-
vehicle system whenever the state z is in the flow set

Ccoop :=
{
z ∈ ON × {1, 2}N × SN : (p, q) ∈ C̃Np,q

}
, (37)

where C̃Np,q := C1
p,q×C2

p,q× . . .×CNp,q . To model the discrete-
time dynamics of the closed-loop system, consider the set

Do : =
{
z ∈ ON × {1, 2}N × SN :

(pi, qi) ∈ Di
p,q for one and only one i ∈ V

}
. (38)

The jumps of the system are then captured by the outer
semicontinuous hull Gcoop of a mapping Gcoop : R2N ×
{1, 2}N ×SN ⇒ R2N ×{1, 2}N ×SN that is non-empty only
at points z ∈ Do. For each z ∈ D0 such that (pi, qi) ∈ Di

p,q ,
the values of Gcoop are generated as

Gcoop(z) := [p>, Q(q)>, µ>]>,

where Q(q) = q − I(ei)(3− 2q). The complete jumps of the
hybrid system are then given by

z+ ∈ Gcoop(z), z ∈ Dcoop. (39)
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where

Dcoop :=
{
z ∈ ON × {1, 2}N × SN :

(pi, qi) ∈ Di
p,q, for at least one i ∈ V

}
. (40)

By construction, the HDS with flow map (36), flow set
(37), jump map (39), and jump set (40), satisfies the Basic
Conditions (C1)-(C3). Note that this system can generate non
unique solutions whenever multiple vehicles i simultaneously
satisfy (pi, qi) ∈ Di

p,q . However, in this case at most N
consecutive jumps can occur in the system.

D. Stability Analysis

To analyze the stability properties of the closed-loop system,
consider the change of variable p̃ = p − I2 ⊗ I(a)µ̃, where
µ̃ = [µ>1 , µ

>
2 ], µ1 = [µ1,1, µ2,1, . . . , µN,1]>, and µ2 =

[µ1,2, µ2,2, . . . , µN,2]>. Using the Taylor expansion (8) for
each localization function Vqi , we obtain the continuous-time
dynamics q̇ = 0N , and

˙̃p = −
[
Λ+(I2⊗I(k)L) (p̃− pf + ep)

]
, µ̇ = ω̄ (I(κ)⊗R)µ,

(41)
with Λ := 2

(
I2 ⊗ [V̂ (p̃+ I2 ⊗ I(a)µ̃, q)]

)
µ, where V̂ (p̃ +

I2 ⊗ I(a)µ̃, q) is a vector with entries given by

V̂i(p̃i + aiµi, qi) =
ki
ai
Vqi(p̃i) + kiµ

>
i ∇Vqi(p̃i) + eVq

, (42)

where the terms ep and eVq
are of order O(a). Since p+ = p

and µ+ = µ during jumps, the jump map is still given by

(p̃, q, µ)+ ∈ Gcoord(p̃, q, µ), (43)

and the flow and jump sets are

C̃ : =
{

(p̃+ ep, q, µ) ∈ ON × {1, 2}N × SN :

(p̃+ ep, q) ∈ C̃N
}
, (44a)

D̃ : =
{

(p̃+ ep, q, µ) ∈ ON × {1, 2}N × SN :

(p̃i + ep,i, qi) ∈ Di
p,q, for at least one i ∈ V

}
.

(44b)

As in the previous section, we will analyze this system using
averaging theory for hybrid dynamical systems.

1) Analysis via Averaging Theory: For values of 1
ω̄ suffi-

ciently small, the hybrid system (41), (43), (44) is in singular
perturbation form. Considering the new time scale given by
τ = ωt, we obtain the flows q̇ = 0N , µ̇ = (I(κ)⊗R)µ, and

˙̃p = − 1

ω̄
(Λ + (I2 ⊗ I(k)L) (p̃− pf )) .

By setting 1
ω̄ = 0, the boundary layer system, which ignores

the jumps, is again given by ˙̃p = 0 and µ̇ = (I(κ)⊗R)µ,
with flow set (44a). Since the dynamics of the states µi are
decoupled, this system generates N signals µi : R≥0 → S1

satisfying the orthogonality and zero-average conditions of
Lemma 2. By averaging the dynamics of p̃ along the solutions
of µ, the first term of (42) vanishes and we obtain the average

hybrid system with state (p̃a, qa) and flows in the original time
scale, given by q̇a = 0N and

˙̃pa = − (I2 ⊗ I(k)) (∇V (p̃a, qa) + (I2 ⊗ L) (p̃a − pf )) + ev,
(45)

where ev is of order O(a), ∇V (p̃a, qa) := [∇Vqa,x̃,∇Vqa,ỹ]>,
∇Vq,x̃ := [

∂Vq1

∂x̃a
1
, . . . ,

∂VqN

∂x̃a
N

], and ∇Vq,ỹ := [
∂Vq1

∂ỹa1
, . . . ,

∂VqN

∂ỹaN
].

The jumps of the average system are

(p̃a, qa)+ ∈
{

(v1, v2) : (v1, v2, v3) ∈ Gcoop(p̃a, qa, µ), µ ∈ SN
}
,

(46)
and the flow and jump sets of the average system are

Ca : =
{

(p̃a + ep, q
a) ∈ ON × {1, 2}N : (p̃a, qa) ∈ C̃N

}
,

(47a)

Da : =
{

(p̃a + ep, q
a) ∈ ON × {1, 2}N :

(p̃ai , q
a
i ) ∈ Di

p,q, for at least one i ∈ V
}
. (47b)

2) Lyapunov-based Analysis for the Average-Slow System:
We now analyze the stability properties of the nominal
average-slow HDS (45), (46), (47) with ev = ep = 0. In
order to do this, we consider the Lyapunov-like function
Wcoop(p̃

a, qa) given by (32). For each q ∈ {1, 2}N , the
derivative of Wcoop along the solutions of (45) is given by
Ẇ = −∇W (p̃a, qa)> [I2 ⊗ I(k)]∇W (p̃a, qa), which, under
Assumption 6 is negative definite with respect to the set Acoord.

On the other hand, whenever an agent triggers a jump, we
necessarily have again that Vq+i (p̃a,+i ) ≤ 1

χi−λi
Vqi(p̃i), and

since the jump rule (46) does not change the position p̃i of
agent i, the second term of Wcoop remains constant. Thus,
during jumps we also have that W (p̃a, qa) decreases. By the
bounds (33), we obtain uniform convergence of (p̃a, qa) to the
set Acoord × {1, 2}N . Positive invariance of Acoord × {1, 2}N
follows directly by construction. Thus, for the average hybrid
system we obtain uniform asymptotic stability of the set
Acoord × {1, 2}N with basin of attraction ON × {1, 2}N .
Again, since ON = R2N\BNp0,ρ, the compact set of initial
conditions in ON that does not include the obstacle can
be taken arbitrarily large. Finally, since by construction of
the flow and jump sets we have that (p̃ai , q

a
i ) ∈ Cip,q\Di

p,q

holds after the ith vehicle jumps, there can be at most N
consecutive jumps in the closed-loop system before the system
starts to flow again, ruling out discrete-time solutions and Zeno
behavior.

3) Stability of the Original System: Having established
asymptotic stability of the set Acoord×{1, 2}N for the nomimal
average system (45)-(47), we can follow now the exact same
argument as in Section IV-D using first Lemma 1, and then
averaging theory for perturbed hybrid systems [40, Thm. 7].
We summarize with the following Theorem, which is the
second main result of this paper.

Theorem 2: Suppose that Assumptions 1-6 hold. For each
compact set K0 ⊂ R2N\BNpo,ρ and each ε ∈ R>0, there exists
a∗ ∈ R>0 such that for each a ∈ RN with ai ∈ (0, a∗)
there exists ω̄∗ ∈ R>0 such that for each ω̄ > ω̄∗ there exists
a δ∗ ∈ R>0 such that for each measurable perturbation e :
dom(e)→ δB with δ ∈ [0, δ∗], each complete solution of the
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perturbed system

ż = Fcoop(z + e), z + e ∈ Ccoop (48a)
z+ = Gcoop(z + e), z + e ∈ Dcoop, (48b)

with p(0, 0) ∈ K0 generate trajectories p that: a) converge to
Acoord + (ε + a)B in finite time; b) satisfy pi(t, j) /∈ N , for
all i ∈ V and for all (t, j) ∈ dom(z). ♦

As shown in the previous analysis, the model-free hybrid
cooperative source seeking dynamics actually render the set
Acoord SGPAS as (a, ω−1) → 0+, while achieving obstacle
avoidance. One can interpret the family of cooperative local-
ization functions {Wp,q} as a class of synergistic cooperative
Lyapunov functions that incorporate the sparsity properties of
the graph G. By using the hysteresis-based switching rule
and the covering of the operational space of the vehicles, the
distributed hybrid controllers are able to robustly and simulta-
neously achieve (semi) global (practical) obstacle avoidance,
model-free source seeking, and formation control.

VI. NONHOLONOMIC MODELS AND OTHER KINEMATIC
DYNAMICS

In this section, we extend our previous results to mobile
robots evolving on the plane under more complicated kine-
matic models. To simplify our presentation, we focus on
single-vehicle systems. In particular, we consider vehicles with
continuous-time models with state γ = [p>, η>]> ∈ R2+κ and
dynamics of the form

γ̇ ∈ fγ(γ, r), γ ∈ R2 ×Θ, (49)

where Θ ⊂ Rκ is a compact set, fγ : R2+κ × R2 ⇒ R2+κ is
an outer semicontinuous, locally bounded and convex-valued
set-valued mapping, and r is the input or control action.
The state η can be used to model auxiliary variables such
as velocities, accelerations, angles, etc. Several models of
vehicles can be captured by this setting, including smooth
single-valued models such as the velocity-actuated point mass
model (2), force-actuated point mass model [6], unicycles, and
other nonholonomic systems; see [31]. Discontinuous models
can also be written as (49) by considering their Krasovskii
regularization; see [29, Ch. 4].

In order to achieve source seeking and obstacle avoidance
in systems of the form (49), we will follow a multi-time
scale approach, where a low level controller will robustly and
globally stabilize (49) with respect to a particular external
reference u, which, in turn, will be slowly controlled by the
hybrid source seeking law studied in the previous section.
While this multi-time scale approach has been studied before
in the context of smooth extremum seeking [5], the novelty
of our approach lies on the incorporation of hybrid seeking
dynamics with hybrid internal fast controllers that allows us
to robustly stabilize systems that may not be stabilizable by
smooth feedback laws.

A. Mobile Robots Stabilizable by Hybrid Feedback
For nonlinear systems under geometric constraints, e.g.,

nonholonomic systems, it may be impossible to find a continu-
ous or discontinuous time-invariant feedback law that achieves

robust global stabilization [19]. Therefore, in this section
we consider mobile robots (49) that satisfy the following
assumption.

Assumption 7: There exists a hybrid controller Hh :=
{Ψh

C , Fh,Ψ
h
D, Gh} with internal state h ∈ R`, output r :

R2+κ × R` → R2, and input u ∈ R2, such that for each
ρ > 0 the system u̇

γ̇

ḣ

 ∈
 0
fγ(γ, r(γ, h))
Fh(h, u)

 , (u, (γ, h)) ∈ R2 ×Ψh
C(u),

(50a) u+

γ+

h+

 ∈
 u

γ
Gh(h, u)

 , (u, (γ, h)) ∈ R2 ×Ψh
D(u),

(50b)

satisfies the Basic Conditions (C1), (C2), and (C3), and there
exist a compact set T ⊂ R` such that system (50) with
restricted input u ∈ ρB renders UGAS the set

Mρ =
{

(u, γ, h) : u ∈ ρB, p = u, η ∈ Θ, h ∈ T
}
, (51)

and no complete solution of (50) is purely discrete. �
A particular class of systems that satisfy Assumption 7,

and which are relevant in the source seeking literature, are
unicycles.

B. Hybrid Stabilization of the Unicycle

The classic unicycle has dynamics ẋ = cos(θ)v, ẏ =
sin(θ)v, θ̇ = w, where θ is the angle, v is the linear velocity,
and w is the angular velocity. This system can also be written
as follows; see [43]:

ṗ = ηv, η̇ = −wRη, (52)

where p = [x, y]> denotes the position in the plane, η ∈ S1

denotes the orientation of the vehicle, and R was defined
in (4). While different existing controllers can stabilize the
position of a unicycle; e.g., [12], [44], it is well-known that
there is no smooth time-invariant continuous-time feedback
controller that can achieve robust global stabilization of a
reference point in position and orientation γ∗ = [p∗, η∗]> ∈
R2×S1; see [45]. On the other hand, we can construct a hybrid
feedback controller that achieves this task [27]. To do this,
for each fixed reference p∗, we define the error coordinates
p̃ = p− p∗, which satisfy ˙̃p = ṗ = ηv. We consider the linear
velocity feedback law

v := −ρv(p̃>η), (53)

where the function ρv(·) is continuous and defined such that
sρv(s) > 0 for all s 6= 0 and ρv(0) = 0. Using the energy
function Vv = 0.5p̃2 we have that V̇v = −p̃>η · ρv(p̃>η) < 0,
for all (p̃, η) such that p̃>η 6= 0. This specifies a linear
velocity controller that guarantees a decrease of p̃ during
flows, except when p̃>η = 0. On the other hand, the angular
velocity w will be controlled by a hybrid supervisor control
system that switches between two controllers H1 and H2

designed to robustly track the reference signals η∗1 := − p̃
|p̃|
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and η∗2 :=

[
cos(σ(p̃)ζ2) − sin(σ(p̃)ζ2)
sin(σ(p̃)ζ2) cos(σ(p̃)ζ2)

]
η∗, respectively,

where σ(·) is a C2 function that is positive definite, and
where the auxiliary state ζ2 is generated by the oscillator
ζ̇2 = −αRζ2, ζ2 ∈ S1. The controllers H1 and H2 for
global robust tracking in S1 need to be hybrid since it is
impossible to robustly and globally stabilize a point in S1

using a time-invariant continuous (or discontinuous) feedback
law. By combining the ideas of [43, pp. 4688] and [46, Ex.
35], these hybrid tracking controllers can be constructed as
follows:
Step 1. Coordinate Transformation: Note that x 	 e1 = x =
e1 	 x for any vector x ∈ R2. Similarly, if x ∈ S1, then
x 	 xc = e1 = xc 	 x. We proceed to parameterize each
tracking controller by a logic state s ∈ Ω := {1, 2}, where
s = 1 corresponds to global tracking of η∗1 using H1, and
s = 2 corresponds to global tracking of η∗2 using H2. We use
η∗s,j to denote the jth component of η∗s , with j ∈ {1, 2}. Based
on this, we consider the coordinate transformation η = η̃s	η∗s
where η̃s ∈ R2. This transformation implies that η 	 η∗cs =
η̃s 	 η∗s 	 η∗cs = η̃s ∈ S1. Moreover, note that if η̃ = e1, then
η = η∗s . Similarly, if η = η∗i then η̃ = e1. This implies that
η = η∗ if and only if η̃s = e1. Thus, global stabilization of
η∗s in the η coordinates is equivalent to globally stabilization
of the point e1 in the η̃s coordinates.
Step 2. Error Dynamics: The dynamics of η̃s are given by

˙̃ηs = η̇ 	 η∗cs + η 	 η̇∗cs = η̃s 	 η∗s 	 (α(w)− η∗cs 	 η̇∗s )	 η∗cs ,

where α(w) := [0, w]
>. We can now select the feedback law

α(w) := η∗cs 	 η̇∗s + α(wr) to obtain the error dynamics

˙̃ηs = η̃s 	 α(wr) = −ωrRη̃s, η̃s ∈ S1, s ∈ Ω, (54)

where we used the facts that η∗s ∈ S1, and η∗cs ∈ S1. Thus,
robust global tracking of the signals η∗s is equivalent to the
robust global stabilization of the point e1 in S1 for the error
system (54).
Step 3. Robust Global Stabilization in S1: To globally stabilize
e1 ∈ S1, each hybrid controller Hs is endowed with a logic
state m ∈ M := {0, 1} and feedback law wr = e>m+1η̃s.
Consider the sets

C̃1 := {η̃s ∈ S1 : η̃s ≤ −1/3}, C̃0 : = {η̃s ∈ S1 : η̃s ≥ −2/3},

and define D̃1 := S1\C̃1 and D̃0 := S1\C̃0. The flow set
of the closed-loop system is given by

Cc :=
(
C̃1 × {1}

)
∪
(
C̃0 × {0}

)
⊂ S1 ×M.

The jump set is given by

Dc :=
(
D̃1 × {1}

)
∪
(
D̃0 × {0}

)
⊂ S1 ×M.

The jump map is given by η̃+
s = η̃s and m+ = 1−m, which

toggles the value of m between 0 and 1. The flow map is given
by ˙̃ηs = −e>m+1η̃sRη̃s and ṁ = 0. Note that when m = 1 the
dynamics of η̃s satisfy ˙̃ηs,1 = η̃s,1η̃s,2 and ˙̃ηs,2 = η̃2

s,1. Using
the energy function V1 = 1 + η̃s,2, we have that V̇1 = −(1−
η̃2
s,2) ≤ 0, which shows that the state η̃s converges to the point
Re1 provided η̃s,1(0) 6= 0. Similarly, when m = 0 we have
that ˙̃ηs,1 = η̃2

s,2 and ˙̃ηs,2 = −η̃s,1η̃s,2. Using V0 = 1 − η̃s,1

we get V̇0 = −(1 − η̃2
s,1) ≤ 0 which shows that the state

η̃s converges to the point e1 provided η̃s,2(0) 6= 0. Thus, by
the construction of the flow and jump sets, the hybrid closed-
loop system guarantees global convergence of η̃s to the point
e1 ∈ S1, and indeed, UGAS of {e1} ×M .

Having defined a controller for the linear velocity (53),
and hybrid controllers Hs for global reference tracking of the
signals η∗1 and η∗2 , we proceed to construct a Hybrid Supervisor
Control System that coordinates the switching of the state
s ∈ Ω in order to achieve UGAS of a point γ∗ = [p∗, η∗]>.
Let ε2 > ε1 > 0. For s = 1 and p∗ ∈ R2, consider the flow
and jump sets

C1(p∗) :=
(
R2 × Cc

)
∩
(

(R2\p∗ + ε1B)× S1 ×M
)
,

D1(p∗) :=
(
R2 ×Dc

)
∩
(

(R2\p∗ + ε1B)× S1 ×M
)
,

which allow flows and jumps outside of an ε1-neighborhood
of the point p∗, and which drives the state η to η∗1 . For s = 2,
consider the flow and jump sets

C2(p∗) :=
(
R2 × Cc

)
∩
(

(p∗ + ε2B)× S1 ×M
)
,

D2(p∗) :=
(
R2 ×Dc

)
∩
(

(p∗ + ε2B)× S1 ×M
)
,

which allow flows and jumps inside of an ε2-neighborhood of
the point p∗, and which drives the state η to η∗2 . With these
constructions at hand, we can now define the sets

H1(p∗) : = (p∗ + ε1B)× S1 ×M,

H2(p∗) : = (R2\p∗ + ε2B)× S1 ×M.

The toggle rule for the state s ∈ Ω is given by Js = 3−s. This
construction guarantees that the controller s = 1 steers the
position of the vehicle towards a ε1-neighborhood of u, and the
angle of the vehicle towards η∗1 = (z−p∗)/(z−p∗). Whenever
z approaches p∗ the controller switches to s = 2 which steers
the angle towards η∗2 . By the results of [46, Ex. 35], the second
controller drives the orientation to a cone around η∗ whose
aperture converges to zero.

Finally, the closed-loop system can be written as (50) using
u = p∗, h = [m, s]>, Θ = S1, T := {0, 1} × {1, 2}, the
mappings Fh := 02 and

fγ : =

[
ηv

−r(γ, h)Rηs

]
, r := `(e>m+1(η 	 η∗cs )) (55a)

Gh : =

[
1−m
s

]⋃[
m

3− s

]
, (55b)

and the sets

Ψh
C(u) : =

⋃
s∈Ω

(Cs(u)× {s}) , (56a)

Ψh
D(u) : =

⋃
s∈Ω

(
(Ds(u) ∪Hs)× {s}

)
. (56b)

Since the Hybrid Supervisor Control System satisfies all the
Basic Assumptions (C1), (C2) and (C3), the resulting closed-
loop system is well-posed. Moreover, since the trajectories of
the vehicle eventually enter and stay in the ball u+ ε1B and
the orientation η converges to a small neighborhood of η∗, the
number of jumps is finite. Finally, by [46, Corollary 33], the
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compact set {γ∗} × {0, 1} × {1, 2} is UGAS. We summarize
with the following Proposition.

Proposition 2: For the constrained dynamics (52) the
closed-loop system (55)-(56) satisfies Assumption 7. ♦

C. Multi-Time Scale Hybrid Source Seeking

Having designed a hybrid controller that guarantees robust
global stabilization of a set point p∗ = u for the vehicle dy-
namics (49), we proceed to study the controller that regulates
the set point u towards the maximizer of the potential field
while avoiding the obstacle. We consider the hybrid source
seeking dynamics of Section IV with state z = [u>, q, µ>]> ∈
R5 and parameter ε > 0, given by

ż = εFz(z, p) :=

 −εFq(p)µ0
εωRµ

 , z ∈ Cz := Cp,q × S1,

(57a)

z+ = Gz(z) :=
[
u>, 3− q, µ>

]>
, z ∈ Dz := Dp,q × S1,

(57b)

where ε is a small tunable parameter that forces the flows
of the hybrid controller to operate in a slower time scale
compared to the dynamics (55). The following Theorem,
which is the third main result of this paper, establishes obstacle
avoidance and convergence of the mobile robot (49) towards
a neighborhood of the source of the signal.

Theorem 3: Suppose that Assumption 1-4 and 7 hold, and
consider the dynamics (49) interconnected with the hybrid
controller Hh. For each compact set K0 ⊂ R2\Bp0,ρ and
ν > 0 there exists a∗ > 0 such that for each a ∈ (0, a∗)
there exists ω∗ > 0 such that for each ω > ω∗ there exists
%∗ > 0 such that for each % ∈ (0, %∗) there exists ε∗ > 0
such that for each ε ∈ (0, ε∗) each solution of the closed-
loop system with p(0, 0) ∈ K0 and |u(0, 0) − p(0, 0)| ≤ %
generates trajectories p that: a) converge in finite time to the
set AJ + (ν + a)B; b) satisfy p(t, j) /∈ N for all (t, j) in the
domain of the solution. �

Proof: Let κ := [γ>, h>]>. The closed-loop system in
the εt = τ time scale is given by the following hybrid system

ż = Fz(z, κ)

κ̇ ∈ 1
ε

[
fγ(γ, r(κ))
{02}

]  , (z, κ) ∈ Cz ×Ψh
C(u), (58a)

z+ = z

κ+ ∈
[
{γ}
Gh(h)

]  , (z, κ) ∈ Cz ×Ψh
D(u), (58b)

z+ = Gz(z, κ)
κ+ = κ

}
, (z, κ) ∈ Dz ×Ψh(u), (58c)

where Ψh(u) := Ψh
C(u)∪Ψh

D(u). System (58) is a singularly
perturbed hybrid system with hybrid boundary layer dynamics
and hybrid reduced dynamics [28]. To analyze this system, we
first use C ′z = (Cu,q + δB)× S1 and D′z := (Du,q + δB)× S1

instead of Cz and Dz , with δ > 0 sufficiently small. For this
hybrid system the hybrid boundary layer dynamics [28, Sec.

III] in the t-time scale are given by ż = 05 and

κ̇ ∈
[
fγ(γ, r(κ))
{02}

] }
, (z, κ) ∈ C ′z ×Ψh

C(u), (59a)

z+ = z

κ+ ∈
[
{γ}
Gh(h)

]  , (z, κ) ∈ C ′z ×Ψh
D(u), (59b)

which, by Assumption 7, generates a well-defined slow av-
erage system, corresponding to the dynamics (57) with p
replaced by u, and δ-inflated sets Cu,q and Du,q , which
are precisely the hybrid dynamics (28) (with e = 0) whose
stabilizing properties were already established in Section IV.
By the proof of Theorem 1, the slow-average system renders
the set A := AJ ×{1, 2}×S1 SGPAS as (a, ω)→ 0+. Then,
by [28, Thm. 2] there exist β̃ ∈ KL such that for each compact
set K ⊂ O there exists ε∗ > 0 such that for each ε ∈ (0, ε∗}
the following bound holds:

|ẑ(%, k)|A ≤ β̃(|ẑ(0, 0)|A, %+ k) +
ν

4
, (60)

for all (%, k) ∈ dom(ẑ) with u(0, 0) ∈ K,
where ẑ is a mapping satisfying graph(ẑ) =⋃

(t,j)∈domz{%(t, j), k(t, j), z(t, j)} where z is the component
solution of system (58) with sets C ′z and D′z , and where %
increases according to %̇ = 1 with the flows of the system, and
k increases according to k+ = k + 1 only with the jumps of
(58c). Since the values of ẑ and z match by construction, and
since the HDS does not generate purely discrete solutions,
the bound (60) and the structure of the set A implies the
existence of a T > 0 such that

u(t, j) ∈ AJ +
ν

2
B, (61)

for all (t, j) in the domain of the solution satisfying t+j ≥ T .
Indeed, since each initial condition satisfying u(0, 0) ∈ K0 is
complete, every solution from K0× S1×Ψh(u) converges to
AJ + ν

2B.
To establish obstacle avoidance and source seeking for the

position p of the vehicle, we use closeness of the trajectories
u and p whenever they are initialized sufficiently close to
each other. By [29, Cor. 7.7], the infinite horizon reachable
set from initial conditions p(0, 0), u(0, 0) ∈ K0 is bounded
and contained in some set K1B, with K1 > 0. Let ν′ satisfy
ν′ ∈ (0, ν/2). By Assumption 7, when ε = 0 we have that
ż = 0 (and therefore u̇ = 0) and there exists β ∈ KL such
that the bound |p(t, j)−u(t, j)| ≤ β(|p(0, 0)−u(0, 0)|, t+ j)
holds during the flows (58a) and jumps (58b) with u restricted
to the compact set K1. Since the state κ evolves on a compact
set there exists ` > 0 such that |Fz(z, κ)| ≤ ` for all
z ∈ K0. Thus, there exists ε∗∗ ∈ (0, ε∗) such that for all
ε ∈ (0, ε∗∗) the flow map (57a) satisfies ż ∈ εB and the
following bound holds during flows (58a) and jumps (58b):
|p(t, j)− u(t, j)| ≤ β(|p(0, 0)− u(0, 0)|, t+ j) + ν′/2. Since
β ∈ KL, there exists a % > 0 sufficiently small such that
β(%, 0) ≤ ν′/2. Therefore, if |p(0, 0)−u(0, 0)| ≤ %, we obtain
that

|p(t, j)− u(t, j)| ≤ ν′ < ν

2
, (62)

for all (t, j) along flows (58a) and jumps (58b). Since the
jumps (58c) do not change the values of (u, p), the bound
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Fig. 6: Trajectories of the vehicles using a hybrid feedback
navigation law. Each logic state eventually converges to 2.

(62) holds for the singularly perturbed hybrid system (58).
Combining (62) and (61) we obtain convergence of p to a
ν-neighorhood of AJ . Since u remains in int(O), obstacle
avoidance follows by ν-closeness between p and u.

To the knowledge of the authors, Theorem 3 is the first result
in the literature of averaging-based source seeking that imple-
ments hybrid controllers in both the reduced dynamics of the
system and the boundary layer dynamics. This methodology
can also be applied to other mechanical and electrical systems
that are not stabilizable by smooth feedback, including more
complicated non-holonomic systems; see [47]. As in Theorems
1 and 2, well-posedness of the hybrid controller guarantees
suitable robustness properties for the close-loop system. The
multi-time scale approach can naturally be extended to MVS,
where each vehicle is first stabilized using a hybrid controller
whose reference is controlled using the cooperative hybrid
controller studied in Section V. Finally, while the results of this
paper have focused on the single obstacle case, extensions to
the setting of multiple obstacles might be possible following
the preliminary results of [48]. Future research will explore
this approach.

VII. NUMERICAL AND EXPERIMENTAL RESULTS

In this section, we present some numerical and experimental
results that illustrate the application of the hybrid adaptive
controllers studied in the paper.

A. Source Seeking with Hybrid Leader and Followers
Consider a group of 6 vehicles with dynamics (2) aiming to

achieve formation around the source of a signal J , which can
be sensed only by the agent S = {4}, i.e., γ = [0 0 0 1 0 0].
For the purpose of simulation, we assume that the potential
field has a quadratic form J = 1

2 (x1 − 7)2 + 1
2y

2
1 , with

maximum at the point p∗ = [7, 0]>. There is an obstacle
located at the point p0 = [1, 0]>, modeled by a circle with
radius r = 0.1. To test the performance of the algorithm, we
initialize some of the followers at the left hand side of the
obstacle and some at the right hand side. The communication
links are characterized by an undirected graph G described
by a ring, and the desired formation is characterized by
the vectors xf := 0.25[0, 0,

√
3

2 , 2,
−
√

3
2 ,

√
3

2 ]> and yf :=
0.25[0,−1,−0.5,−0.5, 0.5,−1.5]>. The parameters of the

Fig. 7: Trajectories vehicles using a hybrid feedback naviga-
tion law. Each logic state eventually converges to 1.

0 20 40 60 0 20 40 60 0 20 40 60

0 20 40 60 0 20 40 60 0 20 40 60

Fig. 8: Evolution in time of the logic states qi associated to
the trajectories of Fig. 6.

0 20 40 60 0 20 40 60 0 20 40 60

0 20 40 60 0 50 0 20 40 60

Fig. 9: Evolution in time of the logic states qi associated to
the trajectories of Fig. 7.

controllers are selected as ρi = 0.4, λi = 0.09, µi = 1.1,
ai = 0.01, ω̄i = 1, ki = 1, ωi = 150, and σ = 1.
Figures 6 and 7 show two different trajectories of the multi-
vehicle system generated from two different initial conditions,
and corresponding to solutions of the hybrid source seeking
controllers (34). The dotted lines show the communication
graph between the agents, and the inset shows the desired
formation achieved in a neighborhood of the position of the
source AJ . Since γ4 = 1, only agent 4 is sensing the potential
J by means of the the first term in (34). However, all the
vehicles implement hybrid dynamics to avoid the obstacle.
Note that the two different initializations of Figures 6 and 7
generate switching behaviors fundamentally different. Namely,
trajectories associated to Figure 6 generate states qi that
eventually switch to qi = 2 for all i ∈ V , while the trajectories
associated to Figure 7 generate states qi that eventually switch
to qi = 1 for all i ∈ V . This behavior is shown in Figure 9.
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Fig. 10: Experimental results with Turtlebot platform. The
trajectory of the leader (agent 1) is shown with dashed lines.
The inset shows the squared formation error for the MVS.

B. Experimental Results
In order to test the practical viability of the theoretical

results presented in this paper, the hybrid model-free controller
was implemented on a fleet of three nonholonomic TurtleBots,
one of which is shown in the inset of Figure 10. Each of
the robots has an RGBD camera sensor to localize itself in
the environment and to detect potential obstacles, a NUC
computer running on Robot Operating System (ROS), and
a Lithium-Ion battery of 14.8 V, which allows an average
operating time of 5 hours. The robots run a dedicated particle
filter algorithm on the RGBD sensor’s data to localize itself in
a pre-uploaded map of the environment where the position of
the source of the signal is unknown. In this special case, the
followers only focus on maintaining a formation defined as
a line. The coefficients of the controllers implemented in the
hardware are the same as in the previous Subsection, with the
difference that the gains ki of the followers are selected much
larger than the gain of the leader. As in Figure 1, the positions
of the three vehicles are initialized sufficiently close to each
other. The source is located at the point p∗ = [0.5, 5.5]>.
The trajectory of the leader vehicle is illustrated in Figure 10,
which also illustrates the virtual covering induced by the sets
O1 and O2 of equation (14). The inset of Figure 10 also shows
the squared formation error for the MVS. It can be observed
that robots converge to the maximizer of the potential field
following a trajectory that avoids the obstacle.

VIII. CONCLUSIONS AND OUTLOOK

We presented a novel model-free hybrid controller designed
to coordinate a group of multiple autonomous vehicles towards
the source of a signal whose position is unknown, but whose
intensity can be sensed by a subset of the vehicles, while
simultaneously avoiding an obstacle. The hybrid law induces
a switching behavior in the control system of each of the
vehicles, guaranteeing robust obstacle avoidance under a class
of arbitrarily small adversarial jamming signals. By using
tools from singularly perturbed hybrid dynamical systems,
we showed that these dynamics can be applied to vehicles
with general nonlinear dynamics that are stabilizable by
hybrid feedback. Numerical and experimental results were
also presented. Future directions will focus on multi-obstacle

avoidance problems with unknown obstacle locations, and
hybrid adaptive controllers with temporal logic specifications.
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