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Abstract
Directly benefiting from the rapid advancement of deep learning methods, person re-identification (Re-ID) applications have
been widespread with remarkable successes in recent years. Nevertheless, cross-scene Re-ID is still hindered by large view
variation, since it is challenging to effectively exploit and leverage the temporal clues due to heavy computational burden and
the difficulty in flexibly incorporating discriminative features. To alleviate, we articulate a long-short temporal–spatial clues
excited network (LSTS-NET) for robust person Re-ID across different scenes. In essence, our LSTS-NET comprises a motion
appearancemodel and amotion-refinement aggregating scheme. Ofwhich, the former abstracts temporal clues based onmulti-
range low-rank analysis both in consecutive frames and in cross-camera videos, which can augment the person-related features
with details while suppressing the clutter background across different scenes. In addition, to aggregate the temporal clues
with spatial features, the latter is proposed to automatically activate the person-specific features by incorporating personalized
motion-refinement layers and several motion-excitation CNN blocks into deep networks, which expedites the extraction
and learning of discriminative features from different temporal clues. As a result, our LSTS-NET can robustly distinguish
persons across different scenes. To verify the improvement of our LSTS-NET, we conduct extensive experiments and make
comprehensive evaluations on 8 widely-recognized public benchmarks. All the experiments confirm that, our LSTS-NET can
significantly boost the Re-ID performance of existing deep learning methods, and outperforms the state-of-the-art methods
in terms of robustness and accuracy.

Keywords Person re-identification · Temporal–spatial clues · Long-short appearance model · Motion-refinement · Low-rank
analysis
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1 Introduction

Person Re-ID is of fundamental significance to many intel-
ligent surveillance applications pertinent to computational
vision. The key is to robustly track persons from one
camera view (probe) to another camera view (gallery) sub-
ject to stochastically-varying conditions. However, to real-
ize this ambitious goal, there are still several challenges
yet to be overcome, including intrinsic temporal–spatial
clues/features representation and extraction from cross-
camera videos, transferable reuse of the pre-trained model
in unknown scenes, etc. Recent technical advances mainly
stem from the rapid development of deep learning based
models (Chen et al. 2018; Li et al. 2018), though they are crit-
ically dependent on a large number of well-labeled datasets
(Karanam et al. 2018).

Specially, we should focus more on the unsupervised
cross-scenario ReID task, which would require to conduct

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-020-01349-4&domain=pdf
http://orcid.org/0000-0002-5101-1071
https://doi.org/10.1007/s11263-020-01349-4


International Journal of Computer Vision (2020) 128:2936–2961 2937

unsupervised deep transfer learning to make the model
(pre-trained on the source dataset) well accommodate cer-
tain cross-scenario target dataset. In particular, unsupervised
cross-scenario ReID mainly faces with two critical chal-
lenges. The first challenge is to extract robust features from
long-term cross-camera sequences. To overcome the percep-
tion field limitation of the convolution operation, we should
decompose and compress the person-related information in
advance frommultiple ranges of sequences. The second chal-
lenge is to preserve the discriminative personalized features
at the frame level, which requires to extract the intrinsic
appearance features of the pedestrian (e.g., body shapes,
pose, motion patterns, etc.). However, these features are hard
to be determined in an single frame. Hence, the temporal
motion clues should be explored to guide the spatial feature
extraction, so that we can flexibly and thoroughly bridge the
gap between the temporal and spatial clues. Therefore, the
key issue for us to tackle is how to decompose the features
in the temporal dimension to obtain a generalized one.

In principle, the person’s appearance features in dif-
ferent scenes can be decomposed into two components:
‘Background’ component and ‘Person’ component. The
‘Background’ component is relatively stable in similar scenes
but appears diverse across different scenes as shown in Fig. 1
(e.g., being different with clutter background, camera views,
poses, accessories, and partial occlusions). As documented
in previous works (Zeng et al. 2012; Ye et al. 2017; Liu
et al. 2017), the ‘Person’ component (e.g., person’s appear-
ance features) provides temporal clues to preserve/complete
person’s identity features. However, the cross-scene robust-
ness of these features still needs to be further explored. The
shared person features in different scenes are induced from
the stable information atmultiple temporal ranges. The short-
term temporal sequences tend to provide the detailed person
appearance features, while the long-term temporal sequences
tend to avoid over-fitting with irrelevant distinct clues. In
principle, the person covers themoving regions in the videos,
therefore, we uniformly name the ‘Person-related compo-
nent’ as ‘Motion’ in the following texts.

Essentially, the ‘Background’ component would have
influences on the feature integrity of the persons, and perturb
the person’s discriminative features. One feasible way is to
eliminate the influences of the background (Tian et al. 2018;
Kalayeh et al. 2018). Thus, it should focus on the extraction
of the person’s distinct clues by suppressing the background.
For example, some research works (Li et al. 2017) resort to
learning the intrinsic dictionaries for feature representation in
non-overlapping camera views. Other pose-sensitive meth-
ods (Sarfraz et al. 2018; Liu et al. 2018; Huang et al. 2018)
try to utilize local/global person descriptions by incorporat-
ing the body pose/part information, which could significantly
improve the personRe-IDperformance. Besides, somemeth-
ods couple primary spatial–temporal clues to combine the

Occlusions

Accessories

Poses

Backgrounds and Camera Views

Fig. 1 Illustration of the different backgrounds, accessories and poses,
of which, the intrinsic features can only be captured by considering
long-term sequence dependencies

sequential and spatial CNN features by aggregating them in
RNN (Zhou et al. 2017) or conducting pooling operation on
the sequences (Xu et al. 2017). These methods (McLaughlin
et al. 2016; Zhou et al. 2017; Xu et al. 2017) tend to directly
extract the temporal and spatial features in an alternative way
or simply exploit the spatial information without consider-
ing temporal priors. Consequently, they fall short in learning
local-to-global coherency frommulti-range video sequences,
and they may also be overwhelmed by clutter background,
which would further weaken the discriminative ability of the
person’s intrinsic features.

To alleviate, our key insight includes two aspects: (1)
The long-short temporal sequences can provide exhaustive
person-related clues to complete the occluded regions and
distinct regions, and we shall employ the temporal feature to
promote the Re-ID improvement; (2) In realistic scenes, it is
hard to guarantee the scalability across scenes, we should
employ an unsupervised multi-range low-rank decompo-
sition (most of the’multi-range’ expressions relate to the
temporal clues underlying multiple lengths of sequences)
to conduct transferrable motion extraction from temporal
sequences. Since the sequences provide temporal coherency
prior for certain frame, we can retain more discriminative
person-related features while eliminating the influences from
the environmental factors. Therefore, our motion feature is
built upon the temporal clues with corresponding feature
response in CNNs, which is more robust to the interference
of irrelevant objects and drastically-changing poses. More-
over, different from attention based methods (Kalayeh et al.
2018; Tian et al. 2018; Peng et al. 2016), we seek to represent
the person in certain frame by aggregating all the relevant
frames’ information, which can better preserve the tempo-
ral context information, while being less sensitive to noise
and occlusions. On the other hand, human beings are more
sensitive to moving objects than stationary ones (Burr and
Santoro 2001). To emulate, we propose to extract temporal
features to excite the highly-relevant spatial features, which
have been rarely studied in the previous exploration works
on spatial–temporal clues.
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Specifically, our new method can extract features in both
temporal and spatial domains, which are characterized in
threemodules (all serving as enablers): temporal motion clue
capture, robust spatial feature representation, and the aggre-
gationmechanism. The salient contributions of this paper can
be summarized as follows.

– We propose an unsupervised long short-term motion
decomposition scheme to decouple the underlying intrin-
sic motion information via low-rank analysis over mul-
tiple ranges of cross-camera video sequences, which can
adaptively capture and highlight the temporally-invariant
person motion priors.

– We propose an interactive motion-refinement scheme to
select the intrinsic cross-scenario motion clues via a self-
attention mechanism (enhanced by message-passing),
which can automatically activate themotion regions, aug-
ment the coherence clues, and reduce the redundancy of
different temporal motions.

– We design an end-to-end network [equipped with a
motion excitation block (MEB)] to exploit the distinct
cross-scenario person features, which can flexibly aggre-
gate and refine the critical temporal clues to excite
person’s discriminative features for robust cross-scenario
person ReID.

2 RelatedWorks

Deep learning based methods (Zhao et al. 2017a; Liu et al.
2018) have been dominating the person Re-ID research com-
munity. These methods can be roughly classified into two
categories. The first category mainly focuses on extract-
ing invariant features (Zhong et al. 2017a) from images to
improve the discriminative power. The second one extends
the feature exploration from images to video sequences
by integrating the temporal clues into the spatial features
(McLaughlin et al. 2016; Zhou et al. 2017; Xu et al. 2017).

2.1 Image based Person Re-IDMethods

Image based methods usually emphasize to make the feature
representation and measurement be insensitive to illumi-
nation, pose, and camera views. Many works (Zhao et al.
2017, a; Zheng et al. 2017; Li et al. 2017) have analyzed the
pose-invariant features used to align the pedestrians, which
gives rise to better improvement w.r.t the methods without
considering the pose alignment. To suppress the irrelevant
information (Song et al. 2018; Xu et al. 2018; Si et al. 2018)
tried to remove the background and paid more attention on
the pedestrian-relevant regions. Zhao et al. (2017b) resorted
to evaluating the saliency of the pedestrian regions. These
works achieved remarkable improvements compared to con-

ventional whole image based methods. Some other works
(Yu et al. 2017; Zhong et al. 2017a) respectively proposed
new feature distance metrics to better measure the similarity
relationships of different samples. It is obviously that, single
image basedmethods cannot avoid ignoring the intrinsic rela-
tions, as a result, these methods lack generalization ability
when they are applied to un-known scenarios.

To handle the large varieties caused by different views,
existingworksmostly try to align the pedestrians via intrinsic
feature learning. For example, Wang et al. (2018) devel-
oped to explicitly designing a feature embedding space for
supervised re-id task. Li et al. (2017) proposed cross-view
dictionary learning method to improve the representation
ability. Yu et al. (2017) proposed a cross-view asymmet-
ric metric learning for unsupervised person Re-ID. Li et al.
(2019) proposed to incrementally discover and exploit the
underlying discriminative information from automatically-
generated person tracklet data in end-to-end way. Peng
et al. (2018) proposed to decompose the image into seman-
tic, latent discriminative and latent background attributes,
respectively. Among the previous works, unsupervised trans-
fer learning (Peng et al. 2016;Lv et al. 2018;Wanget al. 2018;
Lin et al. 2017) shown advantages over others in the cross-
scenario Re-ID task. On this basis, we observe that, different
components can be shared more or less in different degrees.
For example, the pedestrians’ intrinsic attributes, like hair,
coat, walking action and body shape, are stable across differ-
ent natural scenarios, while the views, pose and illumination
conditions are easily changed. The separated transfer learn-
ing should be more efficient for the pedestrian identification.
Therefore, we would decompose the feature into scenario-
specific component and scenario-intrinsic component, and
only the latter one will be focused on when conducting fea-
ture transfer.

2.2 Video based Person Re-IDMethods

For video based re-identification task, a person is rarely
fully-visible in all frames. However, different frames often
contain temporal clues, thus, the temporal context aggre-
gation facilitates to accommodating extreme variation in
person appearance. Recently, an increasing number of works
have been proposed for video-based person Re-ID by com-
bining spatial–temporal features (McLaughlin et al. 2016;
Simonyan and Zisserman 2014). These works could be
roughly classified into two categories: the first one uses the
local temporal features to augment the spatial features, and
the second one exploits temporal context towards the global
consistency in videos. Existing works (Simonyan and Zis-
serman 2014; Li et al. 2018; Liu et al. 2017; Simonyan and
Zisserman 2014; Xu et al. 2017) tried to extract temporal
features from consecutive frames using optical flow or other
registration mechanism. For example, Wang et al. (2016)
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and Zhou et al. (2017) selected the most discriminative
video fragments from video sequences, so that more reli-
able spatial–temporal features could be extracted. However,
the short-term sequence based learningmethods are still hard
to represent the across-scenario long-term coherency, though
the long-term coherency is important to distinguish the stable
background and the dynamic foreground. To this end, Li et al.
(2019) proposed to learn the discriminative Global-Local
Temporal Representations (GLTR) from a video sequence
by embedding both short and long-term temporal cues. In
fact, GLTR is an innovative and powerful framework, which
solves the critical challenges: aggregating the features in tem-
poral dimension to obtain a discriminative representation,
This works is relevant to our research works. At the macro-
level, the overall pipeline of our method is in spirit similar
to that of GLTR. Yet, our LSTS-NET mainly focuses on the
unsupervised cross-scenario ReID task, which would require
to conduct unsupervised deep transfer learning to make the
model (pre-trained on the source dataset) well accommodate
certain cross-scenario target dataset. Towards this specific
objective, we concentrate our research efforts much more
on the generic and robust person-related feature extraction
across different scenarios.

Recently, to meet the requirement of unsupervised trans-
fer ReID tasks, some global video sequence based learning
methods were proposed. For example, Wu et al. (2018) pro-
posed to exploit unlabeled tracklets by gradually improving
the discriminative capability of the CNN feature representa-
tion via step-wise learning. Liu et al. (2017) accumulated the
motion context clues to exploit the long-termmotion context
to identify the same person under challenging conditions.
Although global video sequence based learning methods are
able to extract the stable coherent features in temporal space,
itmight failwhen interferences or corruptions occur. Besides,
these methods tend to extract more sharing features, which
would overwhelm the discriminative features for different
identities. Specially, neither local nor global sequences based
method alone is able to fully leverage intrinsic appearance
cues for motion prediction. We find that, the local temporal
context sequences can provide details to recover the neigh-
boring frames contaminated by the occlusions, while the
global sequences can provide common features across long-
term changes. Thus, we will fuse the multi-range temporal
contexts with spatial features seamlessly.

2.3 Spatial–Temporal Clues BasedWorks

Some recent works proposed to leverage spatial–temporal
models and attention models. For example, Li et al. (2020)
proposed a compact 3D convolution layer to capture the
temporal cues. Subramaniam et al. (2019) proposed a co-
segmentation mechanism to combine the temporal and
spatial clues. Fu et al. (2019) exploited the persons’ dis-

criminative parts in both spatial and temporal dimensions
via the attention model with an inter-frame regularizer. In
summary, most of these works improve the discriminative
ability in supervised video-person ReID tasks, and they
demonstrate that, the temporal and spatial clues could work
collaboratively to achieve better performance. Inspired by
the aforementioned research works, our LSTS-NET aims to
extend the temporal clues for unsupervised cross-scenario
person ReID.

2.4 AttentionModeling for Person Re-ID

Attention modeling usually involves temporal and spatial
clues, which aims to augment the cross-scenario common
features. For example, Tian et al. (2018), Chen et al. (2018),
Li et al. (2019b), and Kalayeh et al. (2018) respectively
proposed human parsing maps to learn more discrimina-
tive person part features to solve the background-biasing
problem. These works only model the common features in
a limited ranges of sequences, and lack an effective mech-
anism to fuse temporal–spatial clues in CNNs, thus, they
are hard to handle the cases with large differences. Alterna-
tively,Chen et al. (2018) divided long sequences intomultiple
short video snippets, and aggregated the top-ranked snippet
similarities estimated by a temporal co-attention. Given dif-
ferent parts of the pedestrians, Li et al. (2018) demonstrated
that, the diversity of temporal–spatial attention could bene-
fit the video based Re-ID. Si et al. (2018) proposed a dual
attention matching network to align the temporal context-
aware features among sequences. Li et al. (2019a) extended
the scalability to large scale re-id deployment scenarios by
attention selection. Inspired by these works, we will leverage
hierarchical temporal attention mechanism to excite the spa-
tial features maps by incorporating low-rank analysis (Zhou
and Tao 2011; Candès et al. 2011) over multi-range video
sequences, which would capture the motion in local range
and extract the stable background-related features in global
range.

Recently, more sophisticated attention-mechanism have
been proposed to precisely model the local and global rela-
tionships for the ReID task. For example, Tay et al. (2019)
integrated person attribute attentionmaps into a classification
framework for ReID task. Xia et al. (2019) proposed an atten-
tion mechanism to directly model long-range relationships
via second-order feature statistics. Meanwhile, Chen et al.
(2019) proposed the High-Order Attention (HOA) module
to utilize the complex and high-order statistics information.
Zhou et al. (2019) proposed a consistent attention regularizer
and an improved triplet loss to learn foreground attentive fea-
tures for person ReID. Similar to our work in spirit, these
works attempt to learn the foreground regions. However,
most of the existing works are designed to learn the spatial
clues, which are hard to be applied in video datasets. Zhang

123



2940 International Journal of Computer Vision (2020) 128:2936–2961

et al. (2019) adopted video pairs and output their matching
scores via non-parametric attention mechanism. We further
exploit the temporal clues and embed them in the attention
mechanism.

3 Method Overview

The overall architecture of our LSTS-NET is shown in Fig. 2.
The main components of the network include a long-short
motion appearance model, motion-refinement module, and
a motion excitation network. All the cross-camera videos
are divided into snippets, which aims to partially extract the
long-term background from video sequences in rolling way.
The frame snippets serve as the inputs of our LSTS-NET.
Following the global low-rank decomposition over across-
camera frame snippets, we conduct local low-rank decom-
positions over the same-camera snippets to get multi-range
motion priors (denote the component related to pedestrian’s
moving pattern decoupled from multiple ranges of video
sequences), which benefits to preserve the person-related
features. Afterwards, we further refine the motion features
via motion-refinement module, which naturally intergrades
semantic distinct feature maps into the temporal motion fea-
tures. Subsequently, four newly-designed motion excitation
blocks (MEB) and an identity mapping of the parallel motion
flow are embedded in the CNN, which can provide cross-
frame spatial prior to complete the missing person-related
features. The above network structure is shared in both train-
ing and testing phases.

3.1 Long Short-Term Appearance Model

We propose to utilize the multi-range temporal contexts in
unsupervised way, and it is inherently superior over super-
visedmethods in transferring the knowledgeof source dataset
to the unknown datasets. More concretely, to model the
motion features closely related to the person Re-ID task, we
decompose the multi-range frame snippets into background
components and the person components. we uniformly name
the person-related component as ‘Motion’ in the following
texts. It is detailed in Sect. 4.

3.2 Motion-Refinement Module

Given the temporal features resulted from the long-short tem-
poral appearance model, since it tends to focus more on the
common person-related features across scenarios, it loses the
individual details. Therefore, we propose to further introduce
motion-refinement layers to promote the discriminative abil-
ity. It is detailed in Sect. 5.1.

3.3 Motion Excitation Network

The person component and the learned importance of each
pixels in this component jointly constitute the motion prior,
respectively corresponding to global temporal clues and local
discriminative features, which will be fed into motion exci-
tation blocks. The details is described in Sect. 5.

4 Cross-Scenario Long Short-Term
AppearanceModel

An unsupervised method tends to extract more generic fea-
tures for various scenarios. Hence, we propose to utilize
the multi-range video sequences in an unsupervised way,
which is robust and stable across scenarios. Meanwhile, the
supervised method will be limited by the training datasets.
Namely, it will outperform the supervisedmethods in extract-
ing the common knowledge underlying the labeled source
dataset and the un-labeled target dataset. Furthermore, to
extract the person-related motion features, we decompose
the multi-range frame snippets into background components
and the person’s motion components. The long sequence
involves the global background information and more cam-
era views, while the short sequence contains much specific
person-related features. We propose the cross-scenario long
short-term appearance model to sufficiently aggregate these
clues to provide both generic and critical details for cross-
scenarios ReID tasks. For clear description, we summarize
the involved symbols in Table 1.

4.1 Cross-Scenario Motion Clues Decoupling

To capture the specific motion cues, we decompose the video
snippets into moving and static components. Of which, the
cross-scenario moving persons have different visual appear-
ances, however, theirmotion patterns are relatively stable and
invariant. Such characteristics of themotion features are suit-
able to be transferred among different scenarios. Intuitively,
the temporal sequences provide underlying information to
discriminate the moving objects, even with severe occlu-
sion, clutter background and large view differences. The
videos are decomposed into two components: ‘motion’ and
‘background’, wherein, the ‘motion’ features are temporally
complementary among the discrete frames.

The key challenge of cross-scenario Re-ID is to distill
the person-intrinsic features in temporal space, which should
simultaneously be robust and distinct for each person. The
pre-fixed ranges commonly used for temporal clue extraction
are insufficient for crowded scenarios with various envi-
ronment distractions. Therefore, we propose a hierarchical
integration mechanism to capture the multi-range tempo-
ral clues from long-short video sequences. Specifically, we
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Fig. 2 Architecture overview of our LSTS-NET. To model the motion
prior, we divide the same-camera and across-camera video sequences
into snippets, which are then used for low-rank analysis in multi-
ple branches: long-term low-rank decomposition over across-camera
snippets, multiple ranges of short-term low-rank decomposition over
same-camera snippets. Of which, the short-term low-rank decompo-

sition results and the long-short snippets are separately fed into the
motion-refinement layers with motion-passing operations, of which
they are aggregated by self-attention mechanism. Meanwhile, we
employ the motion features to activate the relevant pedestrian’s fea-
tures via Motion Excitation Blocks (MEB)

Table 1 Notations list

Symbols Meanings

w Temporal window size for low-rank analysis

m, n Height and width of the input video frame

fr the r th frame

C Channels of the network structure

Y (), F() The feature maps output by MEB embedded CNN, baseline CNN

RA, RB Long-term sequences, short-term sequences

M, M(w) ‘Motion’ and its extraction function (sparse matrix) over the frame set with the temporal window w

D Video frames spanned matrix

B Background component (low-rank matrix) over the frame set

B(w) Background extraction over the frame set with the temporal window w

Br Background decomposed from the frame set: frame #1 to frame #r.

R Relation set w.r.t the current image

define the sliding windows as W = {w1, w2, . . . , wN } to
cover the temporal motion features within different ranges.
Supposing we have a video frame spanned matrix, denoted
as D = { f1, . . . , fr } ∈ R

m×n×r , it can be decomposed
into a low-rank matrix B (representing the background) and
a sparse matrix M (consisting of the foreground objects).
For convenience, we use M( fr | fr ∈ wr ) to represent
{Mr−w, . . . ,Mr , . . . ,Mr+w}. Then, the frame-wise decom-
position can be formulated as follows.

D(r) =
∑

wr

(B( fr |r ∈ wr ) + M( fr |r ∈ wr )

+ G( fr |r ∈ wr )),

s.t . rank(B(wr )) ≤ Tr , card(M(wr )) ≤ Tc,

(1)

where G is the noise component decomposed from D, fr is
the r th frame image, Tr is the rank of matrix B(wr ), Tc is
the cardinality range of M(wr ). In practice, we handle the
motion regions from the low-rank and sparse components in
separate cases. Specifically, the rank constraint of the matrix
indicates the number of unrelated entries, namely, the higher
rank of the matrix will preserve more orthometric entries.
Namely, the objects with different moving patterns will be
preserved. The cardinality controls the elements number of
the decomposed sparse matrix. The smaller the cardinality
is, the less meaningful information it will contain. Conse-
quently, the person-related informationwill be preserved and
the background component will be removed. However, the
environment is complex in person ReID tasks, as foreground
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Fig. 3 Illustrations about the low-rank decomposition results under dif-
ferent cardinalities (Tc = 100, 5000, 10,000). As ‘CARD’ increasing,
the decomposed sparse component (moving pedestrians) are preserved
with more details. Blue boxes mark the differences among various
sparse components

moving objects are located in clutter background with occlu-
sions and noise. Hence, we should simultaneously constrain
the rank of matrix to obtain the stable component, and simul-
taneously constrain the cardinality to preserve the parts most
relevant to the pedestrians.

In theory, the low-rank decomposition over video frames
should result in time-varying component (sparse component)
and stable component (low-rank component) across video
sequences.

1. From the holistic perspective (holistic frames): the
motion should relate to the sparse component, and the
background should relate to the low-rank component,
because the stable image content corresponds to the
background component in the frame-spanned matrix D,
while the varying content corresponds to the foreground
objects, such as pedestrians, cars, etc. We show some
examples in Fig. 3.

2. From the cropped perspective (cropped frames with
pedestrians): the motion should relate to the low-rank
component, while the background should relate to the
sparse component. In the cropped frame sequences, the
pedestrian locates in the center of each cropped image.
The stable content across frames corresponds to the body
regions of the pedestrians. The varying content corre-
sponds to the clutter background, the moving legs, hands
or the noisy occlusions. We show some examples in
Fig. 4.

Since we aim to decompose the image into two compo-
nents, based on our experiments, Tr is empirically set as
2, and Tc is set as 0.05 in soft GoDesc. Equation 1 can be
approximated by alternatively solving the following two sub-
problems until convergence,

⎧
⎪⎨

⎪⎩

Bt
r = argmin

rank(Br)≤Tr
‖ Dr − Br − Mt−1

r ‖2F ,
Mt

r = argmin
card(Mr)≤Tc

‖ Dr − Bt
r − Mr ‖2F .

(2)

es
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pS
s e

m a
rF
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R  
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L

Fig. 4 Illustrations about the low-rank decomposition results under
different rank constraints (Tr = 2, 20, 50). As ‘rank’ increasing, the
decomposed low-rank component (stable background) is preservedwith
more information, and the background is also influenced by the unre-
lated information. Yellow boxes mark the differences among various
low-rank components

Here,Dr = (D( f1),D( f2), . . . ,D( fr )), ||·||F represents the
Frobenius norm, t denotes the iteration times. Although Eq. 2
has non-convex constraints, their global solutionsBr andMr

can be well approximated using GoDec (Zhou and Tao 2011)
method. In fact, this problem can be solved by updatingMt−1

r
via singular value hard thresholding ofDr −Br and updating
Mt

r via entry-wise hard thresholdingofDr−Mt
r , respectively.

Themulti-range low-rank analysis provides adequate tempo-
ral motion clues for the current frame. Nonetheless, how to
flexibly select the most relevant surrounding sequences and
how to aggregate the multi-range motion features still need
to be solved.

4.2 Appearance Model Construction

We observe that the consecutive frames have a large overlap-
ping motion field, which is redundant. To efficiently aggre-
gate the hierarchical clues, we propose a long short-term
appearance model to extract temporally-coherent features.

Long-term batch DA involves a fixed length of inter-
camera video sequences Dd , which cover the diversities of
view and illumination, and a fixed length of intra-camera
sequencesDs , which focuses on the pedestrians’ discrimina-
tive features.We re-organize the two kinds of sequences (Rd ,
Rs) into fixed size of batches RA = Rd ∪ Rs . Short-term
batch DB involves a fixed length of intra-camera sequences,
which convey the consistent pedestrian’s appearance. We
denote the set of short-term batches as RB .

4.2.1 Long-Term Clues

The long-term appearance model aims to provide the com-
mon clues in global temporal ranges while caring less about
the person’s individual features. Rs is decomposed into the
‘background’ and ‘motion’ components appearing in the
same cameras.Rd is decomposed into camera-invariant fea-
tures and variant components. Specifically, we divide all
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the sequences into batches DA, which involve all the dif-
ferent cameras views. Meanwhile, we dynamically update
the batches to go through all the sequences. Based on Eq. 1,
the long-term ‘motion’ cluesMA and camera-invariant back-
ground BA are formulated as,

DA = BA( fr |r ∈ RA) + MA( fr |r ∈ RA)

+ G( fr |r ∈ RA),

rank(BA) ≤ Tr , card(MA) ≤ Tc.

(3)

Here DA is decomposed into motion clues and the scenario-
specific components, BA represents camera-invariant com-
ponents, as shown in Fig. 5. When the number ||RA|| of set
R is larger, the motionMA will tend to involve more global
clues, which are averaged over larger ranges of frames.

4.2.2 Short-Term Clues

Based on the long-term decomposition model, we get BA as
the prior clues, which should be considered from the short-
term sequences to get coarsemotion regions, andM(r ∈ RB)

is decomposed from DB based on Eq. 1. The short-term
model aims at exhaustively aggregating the individual details
to represent different persons. To this end, we introduce
a pyramid of short-term sequences to perceive video con-
tents in multiple-range neighboring frames. The pyramid,
which refers to mean-pooling video frame representations
over different temporal ranges, is gradually enlarged along
the temporal dimension to get continuously-increasing per-
ception scope. The pyramid aggregation model is formulated
as,

MB( fr ) = 1

||W || + 1
(M( fr |r ∈ w1) + M( fr |r ∈ w2)

+ M( fr |r ∈ w3) + . . . + M( fr |r ∈ wk)),

(4)

where k ∈ [0, N ], and 1 ∗ (2 ∗ k ∗ s + 1) means the size
of the sliding window along the temporal dimension, s is
set to 10, covering 10 frames. When k is larger, MB tends
to be the person-related mean motion clues in larger-range
sequences, MA provides the motion field coarsely in global
range, ||W || is the number of the elements in setW . Themain
advantage of the short-term low-rank decomposition is that,
it recovers the person region fromocclusions, and extracts the
intrinsic features of the same person among different frames.
It is observed that, the decomposed ‘motion’ MB( fr ) rang-
ing from 0 to 2 ∗ k ∗ s + 1 captures appearance features
from specific to general, which is non-trivial in distinguish-
ing different persons. The principle advantage of the pyramid
short-termmodel inW is that, it produces amulti-range com-
ponent aggregationmechanism to extract feature from global
to local, while creating a feature pyramid strongly related to
the person at all temporal ranges { fr−k, . . . , fr , . . . , fr+k}.
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Fig. 5 Visualization of LSTS-NET, including long-term motion clues,
two examples of short-term motion clues, the feature maps with
‘motion-refinement’ clues (simply denoted as ‘MR’), and aggregating
clues. The long-term model facilitates to recovering the critically-
occluded regions. The short-term model can preserve more details
relevant with person Re-ID. Themotion-refinement module extracts the
shallow feature maps in CNNs, while the aggregating scheme produces
high response to the discriminative regions

The long-term temporal sequences Dk in large wk provide
context clues for the obscured person regions, and capture
the walking pattern periodically. The short-term temporal
sequences Dk in small wk preserve the detailed common
appearance features robustly,with small variance for the indi-
vidual features. The intermediate level changes (e.g., pose)
are captured in the gradually-changing temporal scales. The
representative examples are shown in Fig. 5. Besides, the
long short-term appearance models motion feature maps are
also shown in Fig. 5. Specially, the model construction is
summarized in Algorithm 1.

Algorithm 1 Construction of Long Short-Term Appearance
Model.
Input: The set of gallery/query images D;
Output: Motion feature map M.
1: Divide long-term batches D( fr ∈ RA);
2: Decompose DA = MA + BA via GoDec;
3: Divide short-term batches into multi-ranges D( fr ∈ RB);
4: for <r ∈ RB> do
5: Decompose DB( fr ) = MB( fr ) + BB( fr );
6: Update Mr based on Eq. 4;
7: end for
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Fig. 6 Illustrations about motion refinement module: message pass-
ing and hierarchical attention mechanism. To capture the temporal
clues from short-term to long-term video sequences, we first feed the
sequences into the motion refinement module to encode temporal clues
via a sequential encoder structure: a two-layer convolution (2*conv) and
a Sigmoid function. We then employ the message passing operation to

enable the channels to communicate and exchange information, which
increases the diversities of the motion clues. Finally, we hierarchically
employ the attention layer from local short-term to middle-term, and
continue to long-term features. This module outputs the refined motion
maps to the next layer

5 Temporal–Spatial Motion Clues Excited
Deep Network

In this section, we introduce how to efficiently embed the
temporal–spatial motion prior into the CNN to excite the
person-related features.

5.1 Motion-Refinement Aggregation

We aim to endow the multi-range temporal features M( fr )
with person-related discriminative ability, and simultane-
ously avoid losing personally-distinct features during low-
rank decomposition. Hence, we propose to tackle person
Re-ID by refining the motion features, which can implicitly
learn the discriminative compact encoding of the person’s
appearances and motions via specially-designed CNN lay-
ers.

As shown in Fig. 6, this network structure consists of two
convolution layers with 3 × 3 kernel size, a sigmoid func-
tion to normalize motion values, and a network interaction
mechanism, which is the ‘motion shuffle’ operation. There
is a critical problem when we extract features via the long
short-term appearance model, only a small fraction of inter-
action information among multiple-range video sequences
can be derived. This phenomenon hinders the information
flow between different motion maps resulted from multiple-

range temporal clues and weakens the representation. To
alleviate, motion passing aims to break the barriers between
different motion feature channels. ‘Motion passing’ induces
a channel-wise interactive network structure. This opera-
tion is extended from Zhang et al. (2018), which is then
used to enable information communication between the two
branches. Different from Zhang et al. (2018), we shuffle
the motion features from the cross-scenario long short-term
appearance model, instead of the group channels. In this
manner, our motion clues could benefit from the multiple-
range temporal clues. We first separately encode the pyramid
motions, and then we use a sigmoid function for the feature
maps, afterwards, the channel-wise transformer recursively
moves the feature maps and shuffles the channels randomly,
which bridges the gap between different motions. As a result,
this operation increases the diversity of the motionmaps, and
make the temporal feature much richer.

To fuse all ranges of temporal clues, we carefully-design a
hierarchical attention mechanism. The attention starts from
the short-term feature map branch, afterwards, the feature
map activates the middle-term feature map via element-wise
product operation. The activated feature map is further com-
bined with the long-term feature map to obtain more global
clues from the cross-scenario frames. During the aggregat-
ing phase, we utilize the long-term temporal clues to activate
the middle level clues. After cooperating the two levels, we
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further utilize the two levels into the short-term clues. All
the activation operation is implemented by self-attention net-
work to adaptively learn from the critical regions. Finally,
we obtain an importance map, which describes the person-
relative degree in pixel-wise way.

In fact, the refine net incorporates the semantic features
intomotion features along twodirections (as shown inFig. 7):
bottom-up and top-down directions. Here, the ‘Semantic’
features represent the person-related features. First, from the
bottom-up direction, given the coarse motion regions, the
message-passing layers increase the diversity and semantic
representation ability of these regions, such that the refine net
could let these feature maps convey much richer semantic
clues. Furthermore, the self-attention mechanism activates
the distinct regions related to the persons, which tends to
refine the motion features in the discriminative semantic
regions. At the end of the refine net, the motion feature maps
are concatenated with the RGB channels, which are further
fed into the ‘Motion Excitation Blocks’ layers for feature
extraction. Second, from the top-down direction, these CNN
layers are constrained via the cross entropy Softmax loss,
which back propagates the semantic messages from the deep
layers to the shallow layers, specifically, the backpropagation
loss of the refinement layer comes from the ‘Motion Exci-
tation Blocks’. Under the constraint of the loss function, the
refinement module updates the self-attention layer, message
passing layer, and motion encoder layer towards semantic
features extraction.

5.2 Motion Excitation Block Design

We integrate the temporal motion feature map resulted from
motion-refinement layers into CNN structure. We transit the
motion feature mapM in two orthogonal directions: embed-
ding the motion feature map by making the network deeper
andwider,which can concurrently activate the person-related
regions in the CNN feature maps. Meanwhile, we employ
the skip-connection via identity map to avoid the gradient
vanishing problem. CNNs are ideal in hierarchically perceiv-
ing the spatial information. Therefore, we stack the temporal
motion feature maps with the CNNs. In detail, we encode
the global spatial information with a channel descriptor, so
that the temporal motion feature maps can be respectively
stacked as an additional channel, together with the original
RGB image. This is achieved by using globally average pool-
ing to generate channel-wise statistics. A featuremapMc can
be generated by shrinking x ∈ R

c = (R,G, B,Mc) over the
spatial featuremaps with c channels, which can be calculated
as

Mc = 1

c

N∑

c=1

Fc(x), (5)

where F denotes the feature map function (e.g., convolution,
pooling the filtered feature maps), and the transformation
outputMc can be interpreted as a collection of local descrip-
tors, whose statistics are expressive for the person-related
regions.

Themotion information is themost sensitive excitation for
the human vision system among many kinds of features. To
mimic the efficient mechanism, we model the ‘motion’ from
the sequences. We simplify this operation as motion excita-
tion, since it indicates how visual appearance and structure
relates to dynamic motions in person identification.

The excitation motion map is crucial for learning the
scene-independent, invariant, person-related features with
the ‘motion’ component. In order to make the temporal
motion activate the personmotion related regionswith equal-
size perception,we add the identitymap for every few stacked
layers. The feature map in channel c can be formulated as,

Y (x,Mc) = F(x ⊗ Mc) ⊕ x ⊕ Mc, (6)

where x is the input feature map from the stacking layers
x0, . . . , xl−1;⊗ is the element-wise product operation,which
is used to activate the feature map x with the motion-related
component Mc; and ⊕ is the channel-wise concatenation
operation. A fundamental built-in block is shown in Fig. 8.
The shortcut connections in Eq. 6 introduce neither extra
parameter nor computation complexity, as demonstrated in
He et al. (2016). The adaptive weights indicate the impor-
tance of motion-embedded frames at each spatial location
and temporal channels. To make use of the information inte-
grated in the temporal motion feature, we periodically embed
the excitation block, which aims to fully capture the temporal
relations in a skip-connection manner. More specifically, in
the motion excitation block, all layers are directly connected
to all subsequent layers. Namely, in order to make the tempo-
ral motion activate the regions related to the person motion,
we employ the dense connection to build the ‘motion exci-
tation blocks’ to pass the motion maps to all the subsequent
layers.We first add the extra motion channel at the beginning
of the network, then all the channels of each layer are passed
to all the succeeding layers with concatenation connection,
which strengthens the motion propagation ability. Each layer
receives the feature maps of all the preceding layers, includ-
ing the motion maps, such that the motion map could be
fully passed through all the layers. This densely-connected
networkmaximizes the influence of themotion clues, passing
information from temporal to spatial. Afterwards, we add an
extra skip connection on the motion maps between ‘motion
excitation blocks’. The skip connections employ the identity
map to fully pass the motion to the middle and higher lay-
ers. These blocks are connected with the transition layers: a
convolution layer, a max pooling layer, and a newly-added
motion channel concatenation. It may be noted that, the con-
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Fig. 7 Illustration about incorporating the semantic features into
motion features. (1) From the bottom-up direction, themessage-passing
layer increases the diversity of the semantic regions. Furthermore, the
self-attentionmechanism activates the distinct regions related to the per-
sons. Themotion featuremaps are concatenatedwith theRGBchannels,

which are further fed into the ‘Motion Excitation Network’. (2) From
the top-down direction, these CNN layers are constrained via the cross
entropy Softmax loss, which back propagates the semantic label mes-
sages from the loss function, where the back propagation loss of the
refinement layer comes from the succeeding layers
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Fig. 8 Illustrations of the densely-connected motion excitation net-
works (3 blocks) in our LSTS-NET. Specifically, in the motion
excitation block, all layers are directly connected to all subsequent lay-
ers, which strengthens the motion propagation ability. The green boxes
show the motion maps, while the blue boxes denotes the spatial feature

maps. The layers between the two adjacent blocks are concatenated
with the ‘motion’ layer. The skip connections employ the identity map
to fully pass the motion to middle and higher layers. These blocks are
connected with the transition layer: a newly-added motion channel con-
catenation, a convolution layer, and a max pooling layer

catenation operations are employed to combine the spatial
and temporal information flows based on the feature maps
and motion maps.

Figure 8 illustrates the connections between the lay-
ers. Consequently, the l-th layer could receive the motion
excited feature maps from all the preceding layers, and
{x0, . . . , xl−1}, {m0, . . . ,ml−1} respectively represent the
input sequential layers and the motion feature maps. It is
formulated as,

Yl = Y ([x0, . . . , xl−1], [m0, . . . ,ml−1]), (7)

where [,…,] refers to the concatenation result of the feature
maps produced in the layers 0, 1, . . . , l. In this densely-
connected manner, the motion feature maps can excite all the

inner block layers without losing pixels. Therefore, the inner
block layers can extract the person-related features under the
guidance of the ‘motion’. The loss function ofMEBnetworks
is defined as:

L = −
N∑

k=1

(pk ∗ log qk), (8)

where q is the ground-truth identity, q is the predicted label,
N denotes the number of the input images.

In order to exhaustively analyze the optimal network
structure for the fusion of ‘motion’ and spatial features,
we investigate four structures: dense connection by adding
auxiliary channels, short connection, couple connection by
additional branches with shared weights, and separate con-
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nection without shared weights, as shown in Fig. 9. Besides
the first one, the short connection is similar to the ‘bottle-
neck’ in residual network. The third one combines the two
pathes of the same network, one path trains the RGB image,
the other one trains the motion feature. Finally, before the
‘fc’ layer, they are concatenated into a long feature vector.
The fourth one has the similar structure with the third one,
the difference is that the two paths do not share weights.
MEB help recover the missing person-related features in two
aspects: recovering the integrity of the person, and exciting
the most critical regions with high attention values. There
are two critical problems when the persons miss appear-
ance features. (1) The integrity of the person will make the
network bias towards noise (e.g., the distinct accessories,
occlusions). Moreover, the network will be over-fitted to the
person-unrelated distractors. (2) The person’s motion prior
has complex relations with person ReID tasks, but it is hard
to determine the relevance in advance. Namely, the person-
related temporal clues will play different roles on the specific
background and person feature’s discriminative ability. Con-
fronting with the two main challenges, our MEB has two
main advantages. (1) Our MEB embeds the recovered body
regions (obtained from the motion appearance model) into
the disturbed featuremaps, which provides pedestrian’s torso
regions, including both generic and characteristic appearance
details (long short-term sequences). (2) Our MEB is to learn
the attention maps to describe the relevance to ReID tasks in
the context of specific background. The enhanced attention
mechanism could determine the importance of themotions at
the pixel level, corresponding to the specific person’s appear-
ance, which guides the network to focus on the critical parts
while ignoring the un-related regions.

Algorithm 2 The t − th iteration of LSTS-NET’s transfer
process.
Input: The set of the gallery/query images D;
Output: Person-related feature;
1: Extract feature map F(D) from the last ‘fc’ layer of the baseline

networks (resnet50);
2: Construct the sequences set RA, RB from D;
3: Decompose the sequenceD into ‘motion’ componentsMc and back-

ground components Bc based on RB , RA;
4: Compute the final ‘motion’ guided by the pre-extracted semantic

mask;
5: Output the final ‘motion’ to MEB network Y (x,Mc) for person-

related feature.

6 Experiments and Evaluations

We verify our LSTS-NET’s effectiveness on eight bench-
marks, and compare it with various state-of-the-art architec-
tures. In order to demonstrate the significant improvement

benefiting from our LSTS-NET, we firstly conduct compar-
isons with baselines. To better understand the mechanism
of our LSTS-NET, we then conduct comprehensive abla-
tion and parameter analysis, meanwhile, we compare it with
supervised state-of-the-art methods. Afterwards, we conduct
extensive experiments to demonstrate the scene-independent
ability of ourmethod, and compare itwith unsupervised state-
of-the-art methods. Finally, we test the convergence of our
LSTS-NET.

To be noted that, we also adapt our method to image-
based datasets and compare it with other state-of-the-art
methods. TheAlgorithm 2 describes the testing processwith-
out continuous video sequences as input. When only single
image is available, the temporal sequences resulted from the
images should be constructedwith a newly-designedmethod.
When we have camera information, we can simply cluster
the images from the same camera as a group. The sequences
with the same background will be easily decomposed by our
long-short low-rank analysis. Otherwise, if we do not have
camera ID and only single image is available, we should
firstly encode the images as the features with a pre-trained
resnet50 network, and predict the person’s feature in each
image. The similar oneswill be clustered into the samegroup,
and preserve their corresponding ranking list. When extract-
ing the motion based on low-rank decomposition, they will
be viewed as a continuous sequence.

6.1 Experiment Settings

6.1.1 Dataset Setting and Protocol

Our experiments are conducted on eight publicly available
datasets, including PRW (Person Re-identification in the
Wild) (Zheng et al. 2018),CUHK03-NP (Zhong et al. 2017a),
Market (Market1501) (Zheng et al. 2015), MARS (Zheng
et al. 2016), PRID (Hirzer et al. 2011), iLIDS Video re-
Identification (iLIDS-VID) (Li et al. 2018), Duke-Video
(Wang et al. 2014), and Duke (DukeMTMC-Re-ID) (Ris-
tani et al. 2016). Video-Based Datasets. For PRID (Hirzer
et al. 2011), we follow the evaluation protocol from Wang
et al. (2014). Datasets are randomly split into probe/gallery
identities. This procedure is repeated 10 times for computing
averaged accuracy. MARS dataset totally has 1,191,993 per-
son images, with a training/testing split of 509,914/681,089
images corresponding to 625 and 636 persons, respectively.
iLIDS-VID dataset consists of 300 different pedestrians,
of which, we use the training/testing split settings pro-
vided in the original paper. Duke-Video (Wang et al. 2014)
dataset contains 702 gallery identities and 408 distractors.
Image-Based Datasets. Market consists of 12,936 images
for training, and 19,732 images are used for testing. The PRW
dataset consists of 11,816 video frames, of which, 34,304
bounding boxes are assigned for 932 person IDs. The train-
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Fig. 9 Four kinds of connections for MEB.
⊕

denotes the concatenation of different channels. The layers between two adjacent blocks are
concatenated with the motion layer

Table 2 Dataset statistics

Properties PRID Market PRW MARS Duke (duke-video) CUHK03-NP iLIDS-VID

Camera per ID 2 6 6 6 8 2 3

Sequence length per ID Long Normal Normal Long Long Short Long

Background Simple Norm Normal Complex Complex Normal Complex

Occlusion Little Normal Normal Normal Normal Little Heavy

The datasets are divided into three levels based on sequence length per ID, background, occlusion, respectively

ing/testing datasets include 482/450 different persons. The
new protocol (Zhong et al. 2017a) splits the CUHK03-NP
dataset into training set and testing set, similar to Market,
which consists of 767 and 700 identities respectively. More
detailed properties are summarized in Table 2.

6.1.2 Evaluation

In all of our experiments, we employ two protocols for differ-
ent datasets. First, the Cumulative Matching Characteristics
(CMC)curve iswidely used inReID task,which is a precision
curve, documenting the detection or recognition precision for
each rank. The horizontal line is the recognition rank, and the
vertical line is the precision percentage. Here, the ReID task
is considered as a ranking problem. Usually there is only
one matched ground-truth result for a given query. We report
the Rank-1, Rank-5, and Rank-10 scores in the CMC curve.
The CMC metric is effective when each query corresponds
to only one ground-truth clip in the gallery.

Second, the mean Average Precision (mAP) is a com-
prehensive metric, which can measure both single-matching
andmultiple-matching results.We use the single querymode
and the general evaluation metrics (the same as previous
works Zhong et al. 2017b): rank (r) 1, 5, 10 and mAP. For
each query, its average precision (AP) is computed from its
precision-recall curve. The mAP is calculated as the mean
value of the average precisions across all queries. For ease of
comparison, we only report the cumulated re-identification
accuracy at selected ranks. In testing, we make sure that

each query identity is selected from two cameras, so that
the cross-camera search can be performed. In evaluation, the
truly-matched images from the camera containing the query
image are regarded as ‘junk’, which means that these images
have no influence on Re-ID accuracy (CMC/mAP).

6.1.3 Implementation Details

On the Market, MARS, PRW, CUHK03-NP, Duke-Video,
and Duke datasets, we first use the batch size of 300 for the
long-term sequences (Rs) from the same camera to decom-
pose the background and the ‘motion’ M, and use the batch
size of 180 to extract the ‘motion’ component in different
cameras’ sequences (Rd ), with batch size of 30 in each cam-
era. Based on the experiments, we observe that, the sequence
longer than 300 frames can extract more motion features
existing in more than one frames, and the sequence shorter
than 300 frames can not extract the background sufficiently.
We analyze the statistics, whichwill be detailed in ‘parameter
analysis’ section. We further extract the short-term motion
feature in the local pyramid with 1, 3, 5 continuous frames
in sequences. On the PRID, Duke-Video, and iLIDS-VID
dataset, the long-term sequences with 300 frames from the
same camera and 100 (50 in each camera) frames from dif-
ferent cameras are used to extract the background. When
adopting our LSTS-NET model, the batch size is 32.

All the networks are trained using stochastic gradi-
ent descent (SGD). On PRW, Market, PRID, iLIDS-VID,
MARS, CUHK03-NP, Duke-Video and Duke datasets, we

123



International Journal of Computer Vision (2020) 128:2936–2961 2949

B

A
B

A

A

B

B

A
B

sn
oit

ub
ir

ts
i

D s
sa

l
C l

l
A

se
sa

C 
dr

a
H  

o
wT

Fig. 10 Illustrations about the occluded persons’s distributions via ‘t-
distributed stochastic neighbor embedding’ (van derMaaten 2014). The
1st column:LSTS-NET(withMEB), the 2nd column:BaselineNetwork
(Densenet121 without MEB). ‘A’, ‘B’ respectively denotes two easily
mixed-up cases due to the missing person-related features. It is obvious
that, theMEB improves the discriminative ability of the occluded videos

use batch size of 32 for 40, 60, 40, 40, 60, 60, 60, and 60
epoches, respectively. Following Huang et al. (2017), the ini-
tial learning rate is set to be 0.1, and is respectively reduced
90% when the total training epochs reach to 50% and 75%,
a weight decay of 10−4 and a Nesterov momentum of 0.9
without dampening are utilized. The weight initialization is
set according to He et al. (2016). For all of the eight datasets,
we don’t use any data augmentation, we add a dropout layer
(Srivastava et al. 2014) after each convolutional layer (except
the first convolutional layer), and set the dropout rate to be
0.5. All the experiments are conducted on 4 P100 and 4 K80
Tesla GPUs.

6.2 Comparisons with Baselines

We have studied most of the recent works, of which, two
high-performance baselines (He et al. 2016; Huang et al.
2017) are used as our backbone networks, both of which
have achieved impressive results in classification tasks. We
compare our method with the two baseline networks based
on the experiments over all of the eight datasets. The
results are documented in Table 3 (including the results
on iLIDS-VID, MARS, and Duke-Video, while the results
on PRW, CUHK03-NP, PRID, and Duke are provided in
supplementary material), and it demonstrates that our LSTS-
NET outperforms all the baselines on the eight datasets.
The improvement of rank-1 accuracy ranges from 12.57
(96.81–84.24) to 21.62 (60.92–39.3)% over Duke-Video and
iLIDS-VID datasets, as shown in Table 3. Specifically, on
the MARS dataset, our LSTS-NET has an improvement of
8.32 (89.22–80.9) %. It is mainly because the motion is

better modeled on this video sequences, which has higher-
quality videos (1920×1080 resolution) andmore continuous
sequences than other datasets (average 200 frames). Besides,
our LSTS-NET respectively gains large improvement w.r.t
the baselines, because the two datasets both have more clut-
ter backgrounds, accessories and poses variance, it states that
these conditions can be well accommodated by our LSTS-
NET.

6.3 Ablation Studies and Parameter Analysis

6.3.1 Technical Elements Analysis

Wedesign ablation experiments to demonstrate the effective-
ness of our novel technical elements, including long short-
term appearance model, the motion-refinement (motion-
passing, aggregating), and the MEB (Motion Excitation
Block) network. We observe that the aforementioned techni-
cal elementswill have consistent effects on different datasets,
which is documented in Table 3. For example, on ILIDS-VID
dataset, the LSTS-NET performs best, the improvement of
the MEB (4) ranks the second, and the Low-rank component
ranks the third. While on the dataset ILIDS-VID, the MEB
gives rise to better performs than the other elements. With
the increasing number of the MEB, the performance will be
improved, however, after 4 times, the network will be too
large, which may have the risk of causing over-fitting prob-
lem. Further, both motion-passing and aggregating mecha-
nism plays critical roles in motion-refinement, because the
low-rank decompositionmay provide irrelevant clues for Re-
ID task.

To demonstrate the contribution of our MEB in complet-
ing the pedestrians’ missing features, we show the detailed
results of some highly-occluded videos of 9 persons (e.g.,
occluded by clutter background, other pedestrians, buildings,
etc.) in Fig. 10. The results show that our MEB could make
the occluded pedestrians more discriminative.

Besides, we analyze the hard cases in Densenet121, which
can be better accommodated by our LSTS-NET (images are
provided in supplementary material). The hard cases mostly
involve large view variances or different posesw.r.t the query,
however, benefiting from the motion region excitation, the
results are improved, because single image is insufficient to
distinguish different persons with volatile non-trivial factors.
The performance gap between the variants (Table 3) and our
method confirms that, the motion clues facilitate to capture
more stable features for identification.

According to the more results documented in Table 3, we
can draw two main conclusions about the person-related and
scenario-specific components. (1) ‘Motion’ can benefit the
spatial features. Only taking ‘motion’ with one block MEB
as input can gain a largemargin compared with the baselines,
showing that the motion region contains useful information
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Fig. 11 Ablation Studies about long short-term appearance model
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Fig. 12 Analysis about influences of different batch sizes in long short-term appearance model on eight datasets. When the long-term batch size is
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associated with the identity; (2) MEB improves the motion
performance. Adding motion-auxiliary MEBs can achieve
better accuracy than original baseline networks.

6.3.2 Long Short-Term Appearance Model Analysis

To further analyzehowour long short-termappearancemodel
works, we design another ablation study to evaluate the
contribution of the long-term appearance model, short-term
appearance model, and low-rank prior guided mechanism.
One of the results onMARSdataset is documented inTable 4.
Based on the performance of long short-term appearance
model, on most of the datasets, long-term model performs
the best, short-term model performs the second best. Based
on the performance, we can classified the datasets into two
categories. (1) Long-term clues preferred datasets, includ-
ing PRID, iLIDS-VID, and MARS. These datasets mostly
have long sequences, especially when the backgrounds are
highly variable among different scenarios, the improvement
gains are significantly great. (2)Motion-refinement preferred
datasets, including Duke-video, this dataset mostly involves
various camera views, especially when the backgrounds are
more complex, the improvement gains are significantly great.
For example, on the Duke dataset, the Motion-refinement
gives rise to an improvement of 5.42% in rank-1 accuracy in
Fig. 11. To clearly show the improvements, we document the
ablation study results in Fig. 11.

6.3.3 Parameter Analysis

We analyze the critical parameters that determine the perfor-
mance, wherein the batch size (in Eq. 4) is themost important
parameter in our long short-term appearance model. We ana-
lyze its affects by fixing other parameters in our LSTS-NET.
The long-termbatch size for the intra-camera sequences (Rs )
ranges from180 to 720with a step of 30.The changes of batch
size for the inter-camera sequences (Rd ) has few influences
on the decomposition results. The last-layer batch size of the
short-term sequence pyramid ranges from size 1–9, with a
step of 2. We observe that, when the long-term batch size is
set to 300 and the short-term batch size is set to 1, 3, 5 in a
pyramid structure, it gives rise to the best performance. As
the batch size increases, the performance keeps stable, how-
ever, the computation cost will increase. Therefore, we set
global batch size to 300 and set pyramid batch size to 1, 3,
5. Experimental results are shown in Fig. 12a, b. This setting
of temporal pyramid indicates the observations as follows.
When the range of the long-term model is too large, the spe-
cific clues describing the person’ feature are smoothed. Since
the moving region in person-walking video is periodic, the
clues in this period is too diverse to distinguish from other
persons. Specifically, if the range exceeds this period, the

low-rank component will preserve less unique information
of the frame.

6.3.4 Network Structures Analysis

In order to sufficiently pass the temporal motion feature into
the CNN for further spatial feature extraction, we compare
the performance of three network structures on five repre-
sentative datasets. The results are provided in Fig. 13, which
show the superiority of dense connections for our LSTS-NET
with MEB. The connection performs consistently on differ-
ent datasets. When adding auxiliary person related motion
feature, directly using the short connectionswill also increase
the high-level semantic cues in discriminating different per-
sons. While the two path connections lack the information
transmitting between the two networks, the accuracies are
lower than other two connections. The results demonstrate
that more connections and more information transmitting
from the temporal motion clues can increase the features’
discrimination ability. Although the ‘separate couple path
connection’ performs close to the dense connection induced
MEB, its corresponding time consuming and memory cost
are nearly 4 times higher than that of the dense connec-
tion induced MEB. Besides, it tends to cause over-fitting on
MARS dataset. In summary, to better trade off the cost and
the accuracy, we chose the dense connection induced MEB
for our LSTS-NET framework.

6.4 Comparisons with State-of-the-Art Supervised
Methods

We further compare our method with state-of-the-art super-
vised methods based on the experiments on the all of the
eight datasets, of which, 4 are video-based datasets, another
4 are image-based datasets. Sixteen state-of-the-art Re-ID
methods are utilized for comparison. They are classified
into three categories. (1) Feature representation and met-
rics based methods: MGCAM (Song et al. 2018), DuATM
(Si et al. 2018), AACN (Xu et al. 2018), Scalable (Bai
et al. 2017), NPSM (Liu et al. 2017), OIM (Xiao et al.
2017), SVDNet (Sun et al. 2017), ACS (Huang et al. 2018),
Pose Basel (D,Tri) (Liu et al. 2018), PSE (Sarfraz et al.
2018), TriNet+REDA (Zhong et al. 2017b); (2) Multi-range
temporal context aggregation methods: SpindleNet (Zhao
et al. 2017), Re-rank (Zhong et al. 2017a), ASTPN (Xu
et al. 2017), SFT (Zhou et al. 2017); (3) Attention models:
SPRe-IDcombined-ft* (Kalayeh et al. 2018), Consistent-
Aware (Lin et al. 2017). Note that SPRe-IDcombined-ft*
(Kalayeh et al. 2018) requires multiple datasets for training,
thus, they apply data augmentation to generate more training
samples on Market and Duke dataset, and it also uses multi-
shot setting. Besides, AACN uses additional poses. For fair
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Table 4 Component analysis for long short-term appearance model on MARS dataset

ID Long term Short term Motion-Refinement Motion-Passing Aggregating mAP r1 r5 r10

1 ✓ ✓ ✓ ✓ ✓ 59.23 69.28 75.81 76.21

2 ✓ ✗ ✗ ✗ ✗ 65.11 78.59 81.90 81.69

3 ✗ ✓ ✗ ✗ ✗ 62.45 72.34 82.84 85.93

4 ✗ ✗ ✗ ✓ ✗ 77.68 86.94 88.72 93.13

5 ✗ ✗ ✓ ✓ ✗ 74.75 86.32 87.43 91.88

6 ✗ ✗ ✗ ✗ ✓ 78.43 87.16 89.15 94.32

7 ✗ ✗ ✗ ✗ ✗ 83.12 89.22 96.81 97.96

Table 5 Performance
comparisons on MARS dataset

Methods Conf. r1 mAP

MGCAM (Song et al. 2018) CVPR18 77.17 71.17

MGCAM-Siamese (Song et al. 2018) CVPR18 76.01 70.13

MSCAN-bodySiamese (Li et al. 2017) CVPR17 68.23 51.82

SFT (Zhou et al. 2017) CVPR17 70.6 50.7

ASTPN (Xu et al. 2017) ICCV17 44 –

IDE+XQDA (Zhong et al. 2017a) CVPR17 70.51 55.12

MSCAN-Fusion (Li et al. 2017) CVPR17 71.77 56.05

IDE+XQDA+Rerank (Zhong et al. 2017a) CVPR17 73.94 68.45

DuATM (Si et al. 2018) CVPR18 78.74 62.26

DRSA (Li et al. 2018) CVPR18 82.3 –

PSE (Sarfraz et al. 2018) CVPR18 76.7 71.8

ADFD (Zhao et al. 2019) CVPR19 87 78.2

STCnet (Hou et al. 2019) CVPR19 88.5 82.3

Ours (LSTS-NET) – 89.22 83.12

Table 6 Performance
comparisons on PRID and
iLIDS-VID dataset (rank-1
accuracy %)

Method PRID ILIDS-VID

r1 r5 r10 r1 r5 r10

RFA (Yan et al. 2016) 58.2 85.5 93.4 49.3 76.8 85.3

RNN+OF (Wu et al. 2016) 70 90 95 58 84 91

RCN+KISSME (Zhang et al. 2018) 69 88.4 96.4 46.1 76.8 89.7

CNN+SRM+TAM (Zhou et al. 2017) 79.4 94.4 – 55.2 86.5 –

CAR (Zhang et al. 2017) 83.3 – 60.2 85.1 –

QAN (Liu et al. 2017) 90.3 98.2 99.32 68 86.8 95.4

ST2N+TRL (Dai et al. 2019) 87.8 97.4 – 57.7 81.7 –

Salience (Zhao et al. 2013) 25.8 43.6 52.6 10.2 24.8 35.5

LOMO (Liao et al. 2015) 40.6 66.7 79.4 9.2 20 27.9

STFV3D (Liu et al. 2015) 42.1 71.9 84.4 37 64.3 77

DTW (Ma et al. 2017) 41.7 67.1 79.4 31.5 62.1 72.8

UnKISS (Khan and Bremond 2016) 58.1 81.9 89.6 35.9 66.3 74.9

SMP (Liu et al. 2017) 80.9 95.6 98.8 41.7 66.3 74.1

DGM+MLAPG (Ye et al. 2017) 73.1 92.5 96.7 37.1 61.3 72.2

TKP (Gu et al. 2019) – – – 54.6 79.4 86.9

Ours 82.26 94.78 98.64 60.92 82.81 88.63
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Table 7 Performance
comparisons on Duke-Video
and Duke datasets

Method Conf. r1 r5 r10 mAP

Basel LSRO (Zheng et al. 2017) ICCV17 67.7 – – 47.1

Basel OIM (Xiao et al. 2017) CVPR17 68.1 – – –

SVDNet (Sun et al. 2017) ICCV17 76.7 86.4 89.9 56.8

DuATM (Si et al. 2018) CVPR18 81.16 92.47 – 67.73

AACN (Xu et al. 2018) CVPR18 76.84 – – 59.25

ACS (Huang et al. 2018) CVPR18 84.11 – – 78.19

Pose Basel (D,Tri) (Liu et al. 2018) CVPR18 77.03 – – 55.34

CAM (Yang et al. 2019) CVPR19 85.8 – – 72.9

HOM (Chen et al. 2019) ICCV19 87.5 – – 75.2

CAR (Zhou et al. 2019) ICCV19 86.3 – – 73.1

PGFA (Miao et al. 2019) ICCV19 82.6 – – 65.5

SSG (Fu et al. 2019) ICCV19 76 85.8 89.3 60.3

PSE (Sarfraz et al. 2018) CVPR18 85.2 – – 79.8

Ours (LSTS-NET) – 87.71 94.31 96.23 80.86

Ours (LSTS-NET) Video – 96.81 99.3 99.80 93.91

STCnet (Hou et al. 2019) video CVPR19 95 99.1 99.4 93.5

GLTR (Li et al. 2019) video ICCV19 96.29 99.3 99.71 93.74

SPRe-IDcombined-ft* (Kalayeh et al. 2018) video CVPR18 85.95 92.95 94.52 73.34

+re-ranking (Kalayeh et al. 2018) video CVPR18 88.96 93.27 94.75 84.99

comparison, we use the same training-testing splits for the
compared methods whenever possible.

6.4.1 Comparisons on Video Datasets

The results are shown in Table 5 (MARS), Table 6 (PRID and
iLIDS-VID), and Table 7 (Duke-Video). The results show
that, our LSTS-NET outperforms most of the state-of-the-art
methods, except for the ones that cannot be fairly compared
(extra training datasets or different protocols), and we list
them in a separate sub-table for reference. Specifically, when
comparing with the second best approach on each dataset,
our LSTS-NET achieves 0.72%, and 0.52% improvement
in rank-1 accuracy on MARS and Duke-video, respec-
tively. On the small-scale dataset PRID and iLIDS-VID with
relatively-simple backgrounds and camera views, our LSTS-
NET also achieves competitive performance compared with
other state-of-the-arts methods. The results indicate that, our
LSTS-NET canwell learn the temporal features to benefit the
person Re-ID task. Since some works utilized extra datasets,
such as DRSA (Li et al. 2018), and some works utilized mul-
tiple query, such as ST2N+TRL (Dai et al. 2019), thus, they
cannot be compared with our LSTS-NET directly.

6.4.2 Comparisons on Image Datasets

Our LSTS-NET also could be applied to image based
datasets, which is the salient advantages over other con-
ventional methods.We conduct experiments onMarket1501,

PRW, andCUHK03-NP datasets, and the results are shown in
Table 8 (PRW), Table 9 (Market), Table 7 (Duke-Video and
Duke), Table 10 (CUHK03-NP). Specifically, when com-
paring with the second best approach on each dataset, our
LSTS-NET gains 1.03%, 2.51%, and 2.8% improvement
in rank-1 accuracy on CUHK03-NP (Labeled), Duke, and
Market respectively. The results indicates that our LSTS-
NET could extract clues for Re-ID tasks in image-based
datasets. For example, on Market dataset, compared with
SpindleNet, which uses person landmarks to pool fea-
tures from person regions, our method is able to achieve
higher re-identification performance, because the motion
feature maps are able to provide more accurate human
layout than the rough human joints. More importantly,
SpindleNet and other existing methods do not consider how
to handle the background-biasing problem. Benefitting from
our LSTS-NET, though the rank-1 accuracy improvements
on CUHK03-NP (Detected) dataset are slight, the mAP
improvement is respectively 2.5%, which is still significant.

On PRW dataset, it is a retrieval problem, we focus on
the identification ability. To fairly compare with the other
state-of-the-art methods, we employ the widely-used faster
R-CNN(Renet al. 2015) as thedetectorwithmAPof80.14%,
ourLSTS-NETachieves significant improvements compared
with person search methods. Our method outperforms the
state-of-the-art Context-Graph (Yan et al. 2019) by 28.56%,
14.52% in terms of mAP, rank-1 accuracy. These results also
demonstrate the effectiveness of our method.
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Table 8 Performance
comparisons on PRW dataset

Rank Conf. mAP r1

CNNv + IDNetOIM (Chen et al. 2018) ECCV18 28.2 66.7

OIM (Xiao et al. 2017) CVPR17 21.3 49.9

NPSM (Liu et al. 2017) ICCV17 24.2 53.1

Context-Graph (Yan et al. 2019) CVPR19 33.4 73.6

Resnet50 – 41.92 75.82

Densenet121 – 53.78 80.75

Ours (LSTS-NET ) – 61.96 88.12

‘–’ means no implementation code or no reported result is available

Table 9 Performance
comparisons on market dataset

Method Conf. r1 r5 r10 mAP

MGCAM (Song et al. 2018) CVPR18 83.55 – – 74.25

MGCAM-Siamese (Song et al. 2018) CVPR18 83.79 – – 74.33

Scalable (Bai et al. 2017) CVPR17 82.21 – – 68.8

Consistent-Aware (Lin et al. 2017) CVPR17 73.84 – – 47.11

Spindle (Zhao et al. 2017) CVPR17 76.9 91.5 94.6 –

Re-ranking (Zhong et al. 2017a) CVPR17 77.11 – – 63.63

GAN (Zheng et al. 2017) ICCV17 78.06 – – 56.23

MSCAN (Li et al. 2017) CVPR17 80.31 – – 57.53

DLPAR (Zhao et al. 2017a) ICCV17 81 – – 63.4

DaF (Yu et al. 2017) BMVC17 82.3 – – 72.42

SVDNet (Sun et al. 2017) ICCV17 82.3 – – 62.1

Basel. LSRO (Zheng et al. 2017) ICCV17 84 – – 66.1

Background (Tian et al. 2018) CVPR18 81.2 94.6 97 –

DuATM (Si et al. 2018) CVPR18 91.42 – – 76.62

AACN (R.E) (Xu et al. 2018) CVPR18 88.69 – – 82.96

ACS (Huang et al. 2018) CVPR18 88.66 – 83.3

Pose Basel (D,Tri) (Liu et al. 2018) CVPR18 86.73 – – 67.78

PSE (Sarfraz et al. 2018) CVPR18 90.3 – – 84

VPM (Sun et al. 2019) CVPR19 93 97.8 98.8 80.8

Ours (LSTS-NET) – 95.8 97.9 98.85 93.0

SPRe-IDcombined (Kalayeh et al. 2018) CVPR18 94.63 96.82 97.65 90.96

UED (Bai et al. 2019) CVPR19 95.9 – – 92.75

Table 10 Performance
comparisons on CUKU03-NP
dataset

Method Conf. Labeled Detected

r1 mAP r1 mAP

MGCAM (Song et al. 2018) CVPR18 49.29 49.89 46.29 46.74

MGCAM-Siamese (Song et al. 2018) CVPR18 50.14 50.21 46.71 46.87

Re-rank (Zhong et al. 2017a) CVPR17 38.1 40.3 34.7 37.4

ACS (Huang et al. 2018) CVPR18 – – 56.09 54.56

TriNet+REDA (Zhong et al. 2017b) ArXiv17 58.1 53.8 55.5 50.7

SVDNet (Sun et al. 2017) ICCV17 40.93 37.83 41.5 37.3

Pose Basel (D,Tri) (Liu et al. 2018) CVPR18 45.1 42 41.6 37.26

IA (Hou et al. 2019) CVPR19 77.2 72.4 71.7 65.4

Ours (LSTS-NET) – 78.23 72.3 70.11 67.9
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Table 11 Comparisons about unsupervised transfer learning ability (video-based and image and video involved datasets)

ID Method Source Target r1 r5 r10 mAP

1 LSTS-NET Duke MARS 53.20 66.80 78.30 29.62

2 LSTS-NET CUHK03 (labeled) MARS 11.80 16.20 18.10 8.97

3 RACE (Ye et al. 2018) – MARS 41.00 55.60 61.90 22.30

4 SMP (Liu et al. 2017) – MARS 23.59 35.81 44.90 –

5 DGM (Ye et al. 2017) – MARS 36.80 54.00 61.60 21.30

6 LSTS-NET Duke CUHK03-NP (Labeled) 65.71 78.57 80.00 46.55

7 LSTS-NET Market CUHK03-NP (Labeled) 57.14 61.43 67.14 45.02

8 LSTS-NET MARS CUHK03-NP (Labeled) 11.80 16.20 18.10 8.97

9 LSTS-NET Market Duke 45.43 49.43 51.98 32.40

10 LSTS-NET CUHK03-NP (Labeled) Duke 32.37 41.95 45.23 27.69

11 LSTS-NET MARS Duke 68.25 75.22 81.98 46.80

12 TAUDL (Li et al. 2018) – Duke 61.7 – – 43.5

13 HHL (Zhong et al. 2018) Market Duke 46.90 – – 27.20

14 LSTS-NET Duke Market 58.51 64.71 66.74 32.57

15 LSTS-NET CUHK03-NP (Labeled) Market 36.70 45.50 50.90 20.97

16 Disentangled (Ma et al. 2018) – Market 30.70 – – 10.00

Table 11 continued

ID Method Source Target r1 r5 r10 mAP

17 PTG (Wei et al. 2018) CUHK03 Market 27.80 – 54.60 –

18 PTG (Wei et al. 2018) Transformed CUHK03 Market 31.50 – 60.20 –

19 HHL (Zhong et al. 2018)* CUHK03-NP (Labeled) Market 56.80 74.70 81.40 29.80

20 HHL (Zhong et al. 2018)* Duke Market 62.20 – – 31.40

21 kLFDA-N (Xiong et al. 2014) – PRID 9.10 – – –

22 SADA+kLFDA (Xiong et al. 2014) – PRID 8.70 – – –

23 AdaRSVM (Ma et al. 2015) – PRID 4.90 – – –

24 GL (Kodirov et al. 2016) – PRID 25.00 – – –

25 UDML (Peng et al. 2016) – PRID 24.20 – – –

26 SSDAL (Su et al. 2016) – PRID 20.10 – – –

27 TJ-AIDLDuke (Wang et al. 2018) Duke PRID 34.80 – – –

28 TJ-AIDLMarket (Wang et al. 2018) Market PRID 26.80 – – –

29 LSTS-NET MARS PRID 45.84 56.83 62.96 29.04

30 LSTS-NET Duke PRID 38.91 46.79 58.92 22.21

31 LSTS-NET CUHK03-NP (Labeled) PRID 19.24 28.94 35.65 9.38

All the models are trained only on source dataset, and then are used to conduct unsupervised feature extraction on the target dataset

6.5 Comparisons with State-of-the-Art
UnsupervisedMethods

We conduct three kinds of experiments on six representa-
tive datasets (1) video datasets (2) image datasets (3) video
and image mixed datasets, to demonstrate our LSTS-NET’s
unsupervised transfer learning ability. All the configurations
of LSTS-NET are trained only on the source dataset. All the
pre-trained models are then used to conduct unsupervised
feature extraction on the target dataset.

6.5.1 Comparisons on Video Datasets

We firstly compare our LSTS-NET with the unsupervised
baseline methods under the same dataset configuration. The
results are shown in Table 11. With the pre-trained model on
theMARS, PRID, ILIDS-VID andDuke-Video datasets sep-
arately, we directly use the second-to-last layer’s output of
our LSTS-NET to represent the feature of the target dataset.
In most of the transfer learning cases, our LSTS-NET out-
performs the baseline networks by a large margin. Specially,
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in the case when the target dataset is ‘MARS’ and the source
dataset is ‘Duke-Video’, as shown in the row (id = 11)
marked with bold in Table 11, the transferred LSTS-NET
network performs better than the supervised training net-
works, including the Resnet50 and the Densent121 networks
on the Duke-Video dataset, compared with the rows ‘Orig-
inal ResNet50’, ‘Original Densenet121’, ‘Motion + MEB
(4)’ in Table 3. It may be attributed to the long range of
video sequences in MARS dataset and Duke-Video dataset.
Besides, the distinct motion features in the ‘MARS’ dataset
are extracted from the original videos instead of the cropped
human regions, which could benefit the Re-ID. However,
most datasets only leave bounding box regions, which lose
some of the context background. The performance compar-
isons demonstrate that, ourmotion feature excitation network
can significantly improve the performance of cross-scenario
person Re-ID.

6.5.2 Comparisons on Image Datasets

We compare our LSTS-NET with the unsupervised con-
figuration on image-based datasets. The results are shown
in Table 12. With the pre-trained model on the CUHK03-
NP(Detected, Labeled), Duke, PRW, and Market datasets
separately, in most of the transfer learning cases, our LSTS-
NET outperforms the baseline networks by a large margin.
Specially, in the case when the target dataset is ‘Duke’ and
the source dataset is ‘CUHK03-NP(Labeled)’, as shown in
the row (id = 6)markedwith bold inTable 12, the transferred
LSTS-NET network performs better than the supervised
training networks. It may be attributed to the multiple cam-
eras dataset, from which it can extract more general motion
clues across scenarios.

6.5.3 Comparisons on Video and Image Involved Datasets

Our LSTS-NET can be flexibly applied on both video
and image involved datasets. We compare our LSTS-NET
on video and image involved datasets by pre-training on
image/video datasets and testing on other image/video
datasets. The results in Table 12 show that: (1) training on
video based datasets could improve the testing performance
on image-based datasets (id = 8, 11, 29) by a large margin,
since our person-related component are stable across scenar-
ios; (2) training on image based datasets (id = 1, 2, 30, 31)
could improve the testing performance (ranging from 4.11 to
12.2% in rank-1 accuracy) on video-based datasets, benefit-
ting from the prior of clutter background component obtained
from image datasets.

We further conduct another experiment to compare our
method with two categories of existing unsupervised Re-
ID methods: (1) Person-related feature extraction methods
without transfer learning, including DGM (Ye et al. 2017),

RACE (Ye et al. 2018), and graph learning based model
(GL) (Kodirov et al. 2016), those features are designed to be
view invariant; (2) Source identity and attribute knowledge
based transfer methods, including HHL (Zhong et al. 2018),
kLFDA-N (Xiong et al. 2014), SADA+kLFDA (Xiong et al.
2014), AdaRSVM (Ma et al. 2015), UDML (Peng et al.
2016), SSDAL (Su et al. 2016), TJ-AIDLDuke (Wang et al.
2018), and SMP (Liu et al. 2017), these methods tend to
encode the attributes as intrinsic pedestrian features.

From Table 11, we can draw the following conclusions.
(1) Our method outperforms all existing state-of-the-art
models, improving the rank-1 accuracy by 12.2 (53.2–
41.00)%, 6.93 (45.84–38.91)%, 21.81 (58.51–36.7)%, 6.55
(68.25–61.7)% w.r.t the previous best performance method
on MARS/PRID/Market/Duke datasets, respectively. On
CUHK03-NP (Labeled) dataset, we achieve rank-1 accu-
racy of 78.23%. On Market dataset, the performance our
LSTS-NET is close to the second best one in rank-1 accu-
racy. Besides, our method cannot be directly compared
with HHL (Zhong et al. 2018), since it assumes the tar-
get domain is known. This proves the overall advantages
of our LSTS-NET in capturing the condition-independent
pedestrian component for cross-domain unsupervisedRe-ID.
(2) When learning from the longer sequences, the perfor-
mance will be better. For example, when using MARS as
the source dataset, the target dataset outperforms the Duke
dataset. This indicates the importance of learning temporal
motion clues in cross-domain Re-ID tasks. It alsomeans that,
using more supervision in cross-domain transfer learning is
non-trivial, particularly when the target dataset has clutter
backgrounds, and the long sequences will introduce more
irrelevant components. It proves the advantages of our LSTS-
NET in exploiting the diverse knowledge fromdifferent types
of labeled data.

Finally, it is worth noted that, the performance gains of
our LSTS-NET are achieved with much less supervision
data, which lacks diversity (only from one source dataset:
16,522 images of 702 identities/classes on Duke, or 12,936
images of 751 identities on Market) w.r.t the competitors.
For example, the methods in the second category use 7 dif-
ferent person Re-ID datasets with high varieties, including
a total of 44,685 images and 3791 identities. The UDML
(Peng et al. 2016) leverages the datasets from three different
source domains. The SSDAL (Su et al. 2016) benefits from
10 diverse datasets, consisting of 19,000 images with 8705
person identities and another 20,000 images with 1221 per-
son tracklets. They all use much more supervised datasets,
however, the performance is worse than ours.

6.6 Efficiency and Convergence Analysis

The time cost of our LSTS-NET involves two main parts:
the long-short appearance modeling and the spatial feature
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Table 12 Comparisons about
unsupervised transfer learning
ability on image-based datasets

Method Source Target Performance

r1 r5 r10 mAP

Resnet50 PRW Market 52.70 65.56 70.96 35.93

Duke Market 42.46 53.47 58.58 21.55

Market PRW 89.22 94.63 96.86 85.12

Duke PRW 24.12 28.41 31.41 14.12

PRW Duke 22.13 34.29 38.56 18.42

Market Duke 30.21 40.75 46.72 20.72

Densenet121 PRW Market 85.54 91.33 93.44 79.66

Duke Market 45.23 55.56 60.96 25.93

Market PRW 92.64 96.14 97.15 89.06

Duke PRW 28.24 32.85 41.54 18.23

PRW Duke 29.35 38.91 44.57 20.46

Market Duke 42.21 45.25 50.29 26.83

LSTS-NET PRW Market 86.25 96.64 95.09 82.91

Duke Market 58.51 64.71 66.74 32.57

Market PRW 78.51 84.71 86.74 70.57

Duke PRW 41.45 52.41 53.12 28.25

PRW Duke 53.50 65.83 71.38 36.97

Market Duke 45.43 49.43 51.98 32.40

TJ-AIDJ (Wang et al. 2018) Duke Market 58.2 – – 26.5

Market Duke 44.3 – – 23

All the models are trained only on the source dataset, and then are used to conduct unsupervised feature
extraction on the target dataset

extraction. The temporal motion prior modeling includes
short-term and long-term frame-spanned matrix decompo-
sition. The spatial feature extraction part is processed offline
on K80 GPU. Low-rank decomposition and motion inte-
gration respectively cost 10 ± 4 ms, 1000 ± 360ms, and
200 ± 10 ms. The result shows that, our efficiency bottle-
neck is the semantic label prediction, therefore, there should
be a trade-off between the time cost and accuracy. The simpli-
fied LSTS-NET (onlywith the low-rank analysis component,
without semantic labels) has the fastest speed and can also
give rise to significant performance improvement compared
with the baseline networks (see Table 3). In the training stage,
the convergence speeds of our LSTS-NET and the base-
lines (including the ResNet50 and Densenet121) are shown
in Fig. 14. The result shows that, our LSTS-NET needs a
similar number of epoches as the baselines to reach con-
vergence, since the training process of our LSTS-NET does
not bring extra computation cost in average. (Please refer
to our supplementary materials for more experiment results
and evaluations.)

7 Discussion and Conclusion

7.1 Discussion and Limitation

For extremely complicated scenes, our LSTS-NET has
shown superiority in accommodating cross-scene datasets
with clutter backgrounds and large camera view variations.
For scenes with simple background and without any camera
variance, our LSTS-NET only exhibits slight improvement,
which mainly results from the temporal clue aggregation.
For example, on PRID dataset, the involved two cameras
have similar views, whose background is also relatively sim-
ple, but the difficulty stems from complex illumination, our
LSTS-NET gains slight improvement in rank-1 accuracy.
The temporal sequences can provide clues for both person
integrity and motion field, but can hardly handle other chal-
lenges (e.g., illumination, low resolution) so far. In terms
of ‘motion’ and background component decomposition, the
components corresponding to motion and background might
swap their roleswith each other on different kinds of datasets.
For example, consider an image in its entirety, the motion
should belong to the sparse component and the background
should belong to the low-rank component in a generic low-
rank analysis framework. However, in images with cropped
pedestrians, the motion should belong to the low-rank com-
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Fig. 14 Loss and validation accuracy comparisons.OnbothMarket andDuke-Video datasets, our LSTS-NETconverges faster than theDensenet121.
On MARS dataset, our LSTS-NET converges slightly slower than Densenet121

ponent while the background should belong to the sparse
component. In terms of single image/video sequence, our
LSTS-NET relies on the video sequences with similar back-
grounds to extract the person-relevant features. In the case
where only single image is available, our method will
become degenerated to a single-level pyramid based long-
short appearance model.

7.2 Conclusion and FutureWork

In this paper, we have detailed a novel LSTS-NET archi-
tecture for robust and high-performance scene-independent
person Re-ID. In particular, our LSTS-NET could trans-
fer both ‘motion’ and background information across dif-
ferent scenes by integrating the temporal–spatial motion
priors learned from unsupervised low-rank analysis. Further-
more, we proposed a motion excitation scheme to enhance
the person-related spatial feature extraction. Experiments
showed that, our LSTS-NET outperforms the state-of-the-
art person Re-ID methods on the scene-independent datasets
by a large margin. In the near future, we shall generalize
our LSTS-NET to handle other critical tasks with more flex-
ible and relaxed scene conditions, such as raining day and
night time. Since our method is efficient in the intrinsic rep-
resentation of cross-scene video contexts, our method can
also contribute to other video-related tasks that are sensi-
tive to cross-scene appearance features. In particular, when
the objective of certain video processing tasks become inde-
pendent of the subjects and varieties of different scenes,
our method has potential to gain significant improvement.
For example, both the action recognition and pose estima-
tion tasks’ performance could deteriorate when encountering
occlusions in short-term sequences, but our new LSTS-NET
could provide valuable long-short temporal clues to benefit
the intrinsic feature extraction in a more flexible temporal
range, which promises performance improvement. Besides,
in our future work, we should consider converting the low-
rank decomposition into a neural network based model and
training everything all together, so that the matrix decom-

position could be uniformly converted to the convolution
operations. However, neural net based decomposition will
become a pixel-level task, which may require higher compu-
tation cost. Hence, to sufficiently exploit the advantage of our
LSTS-NET, we should explore an efficient on-line decom-
position approach to easily adapt for more computer vision
tasks.
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