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Vectorized Painting with Temporal
Diffusion Curves

Yingjia Li*, Xiao Zhai*, Fei Hou

, Yawen Liu, Aimin Hao, and Hong Qin, Senior Member, IEEE

Abstract—This paper presents a vector painting system for digital artworks. We first propose Temporal Diffusion Curve (TDC), a new
form of vector graphics, and a novel random-access solver for modeling the evolution of strokes. With the help of a procedural stroke
processing function, the TDC strokes can achieve various shapes and effects for multiple art styles. Based on these, we build a painting
system of great potential. Thanks to the random-access solver, our method has real-time performance regardless of the rendering
resolution, provides straightforward editing possibilities on strokes both at runtime and afterward, and is effective and straightforward
for art production. Compared with the previous Diffusion Curve, our method uses strokes as the basic graphics primitives, which are
able to intersect each other and much more consistent with the intuition and painting habits of human. We finally demonstrate that
professional artists can create multiple genres of artworks with our painting system.

Index Terms—Vector graphics, heat equation, procedural model, real-time application

1 INTRODUCTION

AS the craving for digital art grows with the rapid devel-
opment of computer graphics, digital painting systems
have been widely developed and used for decades. To date,
these systems are capable of successfully mimicking various
painting styles, and many existing methods focus on improv-
ing immersive and real-life like experience using physics-
based simulations of fluid behaviors. To name a few, Curtis
et al. [1] adopted a multi-layer paper model and the shallow
water equations for creating watercolor effects. Chu et al. [2]
did some impressive ink simulations using Lattice-
Boltzmann method, and they also implemented a real-time
watercolor painting system Expresii [3] that incorporates
impacts from gravity. Huang et al. [4] reproduced Chinese
calligraphy by replicating the diffusion of ink on “xuan”
papers. Chen et al. [5] achieved real-time 3D oil painting in
the Wetbrush system using a hybrid of Eulerian and Lagrang-
ian approaches in simulating oil pigment.

Although these digital painting systems can produce
good results, they all have common problems. On one hand,
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these systems use discretized basis in computation and final
results, making it nontrivial to change resolution once the
painting session begins. On the other hand, the discrete
representation makes editing each individual stroke on the
fly impractical without re-simulation. Vector graphics and
vector painting systems are developed to overcome the
above drawbacks. As the underlying representation, vector
graphics have many advantages over the discretized basis,
including the nature of being resolution independent, the
ability for stroke editing and the computational efficiency.
Traditional vector graphics are generated from rasterized
images using meshes [6], but they lack the fundamental abil-
ity for editing. Later, Orzan et al. [7] proposed Diffusion
Curve (DC) which solves the Laplace’s equation using
curves as the boundary conditions for color spreading.
Although this technique excels in producing high-quality
results, the DC images are composed of boundary curves
rather than strokes, which inevitably contradicts the human
intuition and painting habits, see Fig. 10. Moreover, the inter-
section of DCs results in artifacts, which restrains the flexibil-
ity of DC. Recently, DiVerdi et al. [8] put forward a vector
watercolor painting engine using procedural stroke configu-
rations, bringing great realism in the creation of the digital
artworks.

This paper presents a more generic digital painting mea-
sure through a novel vector model for strokes. We first pro-
pose a new model of vector graphics, Temporal Diffusion
Curve (TDC), which represents not only the graphics but also
their evolution over time using continuous functions. This
new model is piece-wisely parameterized and inherently
supports random-access solving in real-time. The TDCs rep-
resent strokes similar to human habits of painting and they
are able to intersect and overlap each other as usual strokes.
Therefore, it is very suitable for modeling strokes. Mean-
while, we devise a procedural model for processing TDC
strokes to realize richer visual effects, including smooth paint
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diffusion, irregular paint scattering, inter-stroke color mixing,
etc. Based on these, we build a painting system of great poten-
tial. Specifically, our method has real-time performance
regardless of the rendering resolution, provides straightfor-
ward editing possibilities on strokes both at runtime and
afterward, and delivers various stroke effects for art produc-
tion of multiple genres. In contrast to the former DC which
solves the static Laplace’s equation for color spreading, our
method integrates the temporal heat equation instead with
TDCs being the diffusion source. More concretely, we find
the closed-form solution of the heat equation by using Fourier
transform and only compute the numerical density right
before the procedural stroke processing. In this way, the
painting can use evolving strokes as the basic primitives as
opposed to the counterintuitive motionless boundary curves
in DC images, see Fig. 10 for details. We finally demonstrate
that professional artists can create satisfying artworks of vari-
ous kinds with our painting system.
In short, the main contributions of this work include:

e A new form of vector graphics, Temporal Diffusion
Curve, which models the evolution of strokes;

e A random-access solver of the heat equation, which
is efficient and suitable for vector graphics;

e A procedural TDC stroke processing function to pro-
vide richer visual effects, and;

e A real-time vector painting system which is efficient,
easy to use, capable of editing on the fly, and can be
used to create artworks of multiple styles.

2 RELATED WORKS

The vector graphics and digital painting systems are the
most related topics of this paper. We briefly review the
existing works of these categories in this section.

2.1 Vector Graphics
Vector graphics have many advantages over rasterized
images, such as resolution-independence, sparse representa-
tion, compact storage and geometric editability. Traditional
vector graphics are generated based on meshes [6], [9] and
can be represented by vector primitives with colors, such as
points, curves, and polygons. Lately, Favreau et al. [10] pro-
posed a line drawing vectorization method that explicitly
balances the fidelity to the input and result simplicity which
is measured by the number of curves and their degrees.
Another important research direction of vector graphics is
based on the idea of Diffusion Curve (DC) images which cre-
ate vector images of smooth color gradients, as proposed by
Orzan et al. [7]. The aim of DC is to solve a 2D Laplace’s
equation with known boundaries to obtain the desired vector
image. For instance, Bowers et al. [11] presented a stochastic
ray tracing strategy in which the curves define source radi-
ance whose visible contribution will be integrated at a shad-
ing pixel to produce color. Sun et al. [12] used boundary
element method where the Green’s function is taken to trans-
form the Laplace’s equation into a boundary integral along
DCs. Recent researches focus on controlling the color
changes away from the determined boundaries by solving
the bi-Laplace equation using thin-plate splines [13] or
BEM [14]. Jeschke et al. [15] proposed a method of mixing
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multiple DCs, achieving higher degrees of freedom and simi-
lar results as solving the bi-Laplace equation, but with higher
efficiency and better numerical stability. Most recently, Hou
et al. [16] proposed a new DC extension, Poisson Vector
Graphics (PVG), which provides more control over the
resulting images through multiple sub-regions. PVG can eas-
ily produce photorealistic effects such as specular highlights,
core shadows, translucency and halos. However, the DCs
depict region boundaries contradicting human habits of
painting and they cannot intersect each other restraining the
production of artists.

2.2 Digital Painting Systems

Digital painting systems have been thoroughly studied in
recent years. Most of the existing works focus on reproduc-
ing the painting experience in reality. To model pigments,
these painting systems use various physics-based fluid sim-
ulation methods, including the diffusion equation [4], [17],
the shallow water equation [1], [18] or the Navier-Stokes
equation [5].

Curtis et al. [1] presented a very effective system for
painting western watercolors. They used the shallow-water
equation and a multi-layer paint model to simulate the pig-
ment behaviors. Although it was not a strict simulation of
physics, their system achieved very good visual results with
the Kubelka-Munk diffuse reflection model [19] for render-
ing. Van Laerhoven et al. [20] used a similar multi-layer pig-
ment model and the faster stable fluid method [21] to solve
the Navier-Stokes equation, realizing a real-time watercolor
painting system. In order to reproduce more realistic draw-
ing experience, Chu et al. [2] proposed a real-time ink dis-
persion simulation on GPU by using the lattice Boltzmann
method to process the percolation of ink on paper. Later,
researchers are able to produce more complicated phenom-
enon during painting. For example, Blakovi [22] achieved
wetting, drying and re-wetting already dried colors, while
urikovi et al. [23] considered the vortex of watercolor pig-
ments and used a combination of 2D grids and particles [24]
to simulate the diffusion of ink. Different from these grid-
based methods, DiVerdi et al. [8] present a procedural algo-
rithm for generating watercolor-like dynamic paint behaviors
using a particle-based model. Their stroke representation
is also vectorized, which allows rendering at arbitrary
resolutions.

Besides watercolor, the oil painting is also a very popular
direction. However, digital oil painting systems are usually
more difficult to implement due to the high viscosity. Baxter
et al. [25] implemented the DAB system, which used a phys-
ics-based spline brush model and a triangular grid canvas
model for paint transfer. Later, Baxter et al. [26] proposed the
improved IMPaSTo system using a 2.5D fluid model to simu-
late pigment propagation. In addition, Chen et al. [5] imple-
mented a real-time 3D oil painting system Wetbrush which
used a new Eulerian-Lagrangian approach for simulating
detailed liquid effects. In order to achieve real-time perfor-
mance on portable hardware, Stuyck et al. [18] adopted Shal-
low Water Equation and a multi-layered structure to model
the oil pigments.

There are also other art genres which draw the researchers’
attention. For instance, to simulate Chinese calligraphy,
Huang et al. [4] presented a GPU-based real-time system that
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Fig. 1. (1)-(4) The painting session of a still-life artwork and (5)-(6) the zoom-in views of the final result. Our system recreates a very similar workflow
to the real-life painting with brushes and papers and remains sharp when zoomed in significantly due to the nature of vector graphics.

includes physically-based brush deformation and seamless
integration with ink diffusion rendering on “Xuan” paper
structure. DiVerdi [27] conducted a very detailed analysis of
the existing digital painting system. They decomposed the
digital painting system into five components, including input
control, tip shape, pigment transfer, canvas propagation, and
pigment rendering. Furthermore, the results of digital paint-
ings such as calligraphy, oil painting, watercolor, airbrush,
pencil, and crayon have been categorized. Please refer to their
survey for a more detailed summary on this topic.

3 METHOD OVERVIEW

As illustrated in Fig. 2, the drawing of strokes with our
method comprises three major steps in cascade: the curve
setup, the TDC solving and the procedural stroke process-
ing. At the very beginning, a sequence of points sampled
with a fixed time interval are taken as the input of our sys-
tem. The curve setup step builds a curve based on these
points and treats all the quantities along the stroke, includ-
ing position, color, transparency and density, as continuous
functions by using the cubic-spline fitting.

With the source curve determined, the second step is to
solve the diffusive evolution process using the TDC formula-
tion. Conventionally, this phenomenon is usually handled
with finite-difference discretization and approximated with
iterative solvers. However, this obviously contradicts the

Curve Setup

Input Points Temporal Diffusion Curves

TDC Solving

goal to keep our method vectorized. Instead, we develop a
new method based on Fourier transform to reproduce the
diffusion process, which does not require discretization dur-
ing calculation. Therefore, the result of our solver can be
exported at any resolution without losing details. Having the
diffusion solved, an extra procedural model is applied to the
result to render different effects on strokes, such as feather-
ing, edge darkening, non-uniform scattering, etc. The TDC
solving and procedural stroke modeling will be explained in
depth in the following sections. We list the symbols used in
our method in Table 1.

4 TeEMPORAL DIFFUSION CURVE

Temporal Diffusion Curve, which can be considered as an
extension of the DC [7], is proposed in this section for strokes
modeling. There are mainly two differences between TDC
and its predecessor. For one thing, DC handles the Laplace’s
equation for the static result, while TDC integrates the heat
equation which represents the temporal evolution of color
spreading. For another, DC uses color defined on boundary
curves, which is fairly counterintuitive. In contrast, our TDC
models the strokes directly, offering a user-friendly tool for
painting purpose. In this section, to be suitable for vector
graphics, we propose a random-access solver for the heat
equation in 2D infinite domains with Fourier transform
method, followed by the details of our TDC diffusion solver.

Procedural Stroke
Processing

Diffusion Result Rendered Strokes

Fig. 2. The drawing of strokes comprises three major steps in cascade: The curve setup, the TDC solving and the procedural stroke processing.
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4.1 Continuous Diffusion in 2D

The heat equation models the spatial distribution and tem-
poral changes of the density variable ¢(x,y, t) in 2D infinite
domains, where the density is used to handle color opacity
in this paper. Given the initial condition ¢°(z, ), the density
can be seen as the following initial-value problem

{%—D(ﬁ%) =0
d)(xv Y, 0) - (f)()(I, y)

where ¢ is short for ¢(x,y,t) and D is the diffusion
coefficient.

It is well known that the Fourier transform method can
be used to solve the heat equation. We review the derivation
here for ease of understanding. Applying 2D Fourier trans-
form on both sides of the partial differential equation leads
to an ordinary differential equation

1)

— + DK + k3)® =0, 2

where ki, k; are spatial frequencies and ®(k, k»,t) is the
Fourier transform of ¢(j1, ja, t)
—i(k1j1+k2j2)

+00
k17k27 / 4)]17]27 ( ) djldj27 (3)

where ji, j» are integral variables standing for spatial coor-
dinates. The initial condition is determined by
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Therefore, we have
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Applying the inverse Fourier transform on @ gives
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According to the integral formula
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TABLE 1
Definition of Notations
Notation Description Defined in Type
¢’ Segment density TDC segment  Scalar
¢ Density Canvas Scalar
[} Fourier transform of ¢ Canvas Scalar
c* Segment color TDC segment 4D vector
C Stroke color Canvas 4D vector
® Granulation opacity TDC segment  Scalar
2] Granulation opacity Canvas Scalar
D Diffusion coefficient TDC segment  Scalar
tmar Maximum diffusion time =~ TDC segment  Scalar
n Canvas texture Canvas Scalar
we have
+00 v—j1) 2
P(z,y,1) / ¢"(j1, 2 [\/—e D
Wl i i

—e

D J1aj2

1 +o0 0 @—i)®  (y—i»)*

e i1, J0)€ WD e @D dirdg
4me//,OO ¢ (J1,J2) j1dje,
®

which is the continuous solution of the diffusion problem in
Equation (1).

4.2 Diffusion with Temporal Diffusion Curves

We use TDCs as the diffusion source in our solver. A TDC is
made up of several cubic splines, and each spline L can be rep-
resented by a pair of parametric equations of the parameter p

{ T
Y
where [p™™" p™*] denotes the domain of p. Initially, the den-

sity is 0 everywhere else but on the curve. ¢"(x,y) should
hence be written using the 2D Dirac delta function as

¢"(z,y) = ¢’ (p)8(x — f(p))3(y — 9(p)).

According to the properties of the § function [28], Equation (8)
can be rewritten as the line integral over L

= f(p)

_op)  PE [, p™], ©)

(10

=) _(—9)®
W) = [ F e T
T
pmaT xr— J 2 Y— D 2
~mip ) [¢o<p>ef*<- s S
T pmin

fp)’+d (p)ﬂ dp.

With Equation (11), the diffusion result of any given value
(z,y,t) reduces to a single-variable integral and are indepen-
dent of other values. Thus, with the random-access solver,
the output resolution can be infinitely magnified as long as
the memory allows since each point can be calculated sepa-
rately. Additionally, considering the display resolution is
fixed, zooming-in only requires the pixel coordinates to be
updated with no extra boundary processing, which ensures
real-time performance for our system.
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Fig. 3. A pipeline of the procedural stroke processing. The color rendering of a single stroke is divided into three steps. First, we calculate the TDC
diffusion based on the parameters of TDC segments and rasterize the results according to the display resolution. The diffusion results are then
modified towards stylization. Later, the stroke color is determined. Having the individual strokes updated, we use a multi-layer model to handle the

color mixing among strokes and the existing canvas.

5 PROCEDURAL STROKE PROCESSING

To extend the usability of our painting tool, we implement a
procedural processing on TDC strokes to render various
effects. In this section, we introduce the color rendering of a
single TDC and the subsequent color mixing between the
active curves and the existing canvas. As listed in Algorithm 1,
the TDC color rendering comprises 3 steps, namely TDC
integration, density modification, and stroke colorization.
First, we calculate the TDC diffusion following the aforemen-
tioned model and rasterize the resulting function using the
display resolution. The density modification is then applied
to achieve a target stroke style. Later, the stroke color is deter-
mined based on the TDC density and the color parameters.
Having the individual strokes updated, we use a multi-layer
color mixing to finally complete the color update of one itera-
tion, see Algorithm 2. A pipeline of this section can be found
in Fig. 3.

Algorithm 1. The Framework of Single TDC Color
Rendering

Input: The parametric equation and parameters of the jth
TDC.
Output: The stroke color C; of the display resolution.
/* TDC Integration */
: for the kth TDC segment in jth TDC do
Compute TDC segment density ¢,;, using Equation (13).
3: Compute TDC density ¢; using Equation (14).
/* Density Modification */
4: Incorporate the canvas texture using Equation (16).
5: Perform density modification using Equations (17), (18) or (19).
/* TDC Colorization */
: Compute averaged color C‘j using Equation (20)
7: Compute stroke color C; using Equation (21)

N =

o)

5.1 TDC Integration

A TDC is made up of several spline segments, and the param-
eters are hence defined on each TDC segment, including the
diffusion coefficient Dj;, the initial density ¢§fk, the maximum
diffusion time ¢7;"”, the 4-channel color (3, and the granula-
tion opacity wj, € [0, 1], where subscript jk indicates the kth
segment on the jth TDC. The diffusion coefficient Dy, affects

the width and blurring of the diffusion. The larger the diffu-
sion coefficient, the larger the diffusion width and the more
blurred the edge and vice-versa, as shown in Fig. 5. The initial
density ¢, is the value of ¢’(p) in Equation (11) on the TDC
segment k. %" controls the life span of a TDC segment,
beyond which the TDC segment freezes and is no longer
taken into consideration in the diffusion. In all demonstrated
results of this paper, ¢7;* is set to 1 second.

To calculate the diffusion, we write the parametric equa-
tion for each TDC segment k as

{ z = fi(p)
Y

= gi(p)’
By substituting the parametric equation and the parameters
including Dj;, ¢;, and the segment age ¢, into Equation (11),
we get the diffusion result ¢, (x, y,t) of the TDC segment k
through

max

p € [pi" Pt (12)

max

i . =)’
e

1
a(z, ,t/' — 4t 1. D j.
Ol i) = B /p o
o (13)

Fap)® + g}k(p)g] dp.

(v—9x»)*
1. Dji

(&

The TDC density ¢, is defined as the sum of the TDC seg-
ment density of all the segments contained in the TDC

o = Z ik
%

(14)

5.2 Density Modification

To incorporate the canvas texture in strokes, we implement
the granulation effect as follows. ¢, and ¢; are first calcu-
lated and rasterized according to the display resolution. We
use the segment density ¢, as the weights to calculate the
granulation opacity @; of the jth TDC through

_ 2ok Pipwin
W, = ————.

= 15
j ry (15)

And then we use the ®; and an underlying canvas texture
n(z,y) to modulate the density through
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Fig. 4. Density modification functions.

¢, = [(1 - @)n(z,y) + @)l¢;, (16)
where (bl is the resulting density. As shown in Fig. 5, the
amount of granulation can be adjusted on individual seg-
ments. If @; =1, ¢ equals ¢; and the texture plays no part
in the density; if ®; = 0, ¢ equals 7(z,y)¢; and the influence
from texture reaches maximum. In this paper, we use a
gray-scale photo of a piece of paper as the canvas texture
n(z,y) which can be seen in Fig. 3.

In order to achieve different styles of strokes, we design
three density modification functions shown in Fig. 4 for
nonlinear brightness mapping. Hereinafter, we use ¢§”"d to
indicate the density of TDC j after modification. The first
density modification is the sigmoid function for uniform
coloring, where the density remains almost constant near
the stroke and drops sharply on edges

1
¢>}*§u1 ’
1+ e o

17

mod __
gt =

é.f%

i
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where &,; affects the stroke width and &, affects the rate of
density drop on edges. The next one is the power function
for the feathering effect, where the color of the curve fades
gradually from near to far

1 &
&y (18)
&n

where ;; affects the stroke width and &, affects the chang-
ing speed of color. The last one is a Lennard-Jones potential
function for the edge darkening effect, where the density
rises abruptly at the edges of the curve

mod __
gt =

En’  En
-7 — (7)) +1),
Eas( ¢j) ((f)j) )

where &;; and & affects the width of dark edge and &3
affects the shade of the stroke color.

¢;nod _ ( 1 9)

5.3 Stroke Colorization

Now we introduce the colorization of strokes based on TDC
density and colors. Given that each TDC segment has its
own color Cj, we use the segment density ¢ as the
weights to calculate the averaged color C; through

e - 2 $iCir
9

After density modification, ¢”‘"d is clipped to [0, 1] and is
subsequently used to modify the opacity of C’S In this paper,

(20)

7

Fig. 5. The demonstration of strokes with different effects. (A) compares strokes using different diffusion coefficient (0.001, 0.003 and 0.005, respectively).
(B) displays strokes with varied granulation opacity (0, 0.25 and 0.5, respectively). (C) exhibits different stroke styles (including uniform coloring, feathering
and edge darkening, respectively). (D)(E) show the gradual change on different parameters along the stroke. (F)(G) present the areal edge darkening
effect. (1) exhibits strokes of different widths. (H)(K)(L) display the result of transparency color mixing and (J)(M)(N) display the approximate color mixing of

real pigments.
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we use the RYB color model [29] of 4 channels, namely red,
yellow, blue, and opacity. The stroke color C; of TDC jis

o = ()™,
Jw (mjoz’ S\ W (21)
Gy = ¢ (C5)",

where the superscript ryb represents the red, yellow and

blue channels and w the opacity channel.

5.4 Multi-Layer Color Mixing

We use a multi-layer model to handle the color mixing
among strokes and the existing canvas, see Fig. 3. We first
define a TDC as an expired TDC if all its segments’ ages ¢,
exceed t%‘””; otherwise, the TDC is active. Each active TDC
corresponds to an active layer in the multi-layer model, and
all expired TDCs are mixed into the expired layer before
they are excluded from the update. During the update, the
layers are sorted according to the drawing order with the
expired layer in front. Thus, we only consider the mixing
between two color layers, with the foreground color being
an active layer and the background color being the interme-
diate mixing result of all the previous layers.

In this paper, we use two different color mixing formulas
from which artists can choose according to their needs, as
proposed by Sugita et al. [29]. The first one is the transpar-
ency mix commonly used in computer graphics

Oot = Olfr)reCfore + (1 - afore)cbn,cka (22)

where C, is the result color, Cy,. and Cy, are the fore-
ground and background color respectively, and oy € [0,1]
is the transparency. The second one is an approximate mix-
ing of real pigments

Cﬂ = Cfare + lgjbrecback'7 (23)

where Cp is the mixing result and By, € [0,1] is the mixing
parameter. Mixing using this method makes the resulting
color darker than both the foreground color and back-
ground color.

When an active TDC expires, we delete the corresponding
active layer and mix its color into the expired layer. The
algorithm for one color-mixing iteration is listed in Algorithm 2.

Algorithm 2. The Framework of One Color-Mixing
Iteration

Input: The active layers, the expired layer and the drawing
order.
Output: The background color.
1 Sort the color layers according to the drawing order with the
expired layer in front.
2 Set the background color as the first color layer.
3 for the ith pixel (z,y) in parallel do
4  for the jth active layer do
5 if the jth TDC is expired then
6 Mix the jth active layer into the expired layer using
Equations (22) or (23).
7 Delete the corresponding active layer.
for the jth active layer do
Perform color mixing between this layer and back-
ground using Equations (22) or (23).

O

6 IMPLEMENTATION AND RESULTS

In this section, we present the implementation details and
some artworks created with our vector painting system. We
further offer comparisons against the finite-difference solver
and the DC method which proves that our method is not
only effective and efficient but also intuitive and straightfor-
ward to use.

6.1 Implementation

We implemented our system using C++ and CUDA, with
the real-time rendering using OpenGL and the user inter-
face using Dear ImGui. We invoke a CUDA thread for each
screen pixel so all pixels can be updated in parallel. To sim-
plify the computation, a TDC segment only affects its
nearby pixels within distance dj. = 0.5(;, + 0.1W, where [,
is the length of segment jk, W is the canvas width, and dj. is
the distance between a pixel and the midpoint of segment
Jjk. Our system runs at a stable 60 FPS under 1024 x 768 res-
olution on a PC with an Nvidia Geforce GTX 1070 GPU and
Intel Core i7-7700K CPU. Meanwhile, we test the perfor-
mance of our system under 3940 x 2160 resolution and
show the runtime framerate changes in Fig. 6. The system
runs above 30 FPS as long as the number of active TDC seg-
ments does not exceed 180, which is more than enough for
painting purpose. Our system also provides powerful edit-
ing functions by which we can insert or delete TDC seg-
ments arbitrarily and modify all the parameters on each
TDC segment individually. When zooming in or out, the
display resolution remains unchanged and the performance
of our system is therefore unaffected.

The states of our system, including the positions of all
TDC segments and the relevant parameters, take very small
space for storage and can be easily saved to a file. When
reloading, we restore the painting session by redo all the
calculations, which is pretty fast thanks to the random-
access feature of our solver. For example, the painting
Fig. 11 F, which contains 778 TDCs and 17917 TDC seg-
ments, only requires 426.3 KB to store in binary format and
0.138 seconds to reload to a 1024 x 768 canvas. The comput-
ing time for recreating the entire paintings in this paper
from their TDC inputs is listed in Table 2.

6.2 Results and Comparisons

As demonstrated in Fig. 5, our painting tool can easily
achieve multiple stroke styles, such as blurred edges, granu-
lation, overlaid colors, etc. Using these effects, TDC can be
exploited for a variety of painting styles, including but not
limited to watercolor (Fig. 1), flat style (Figs. 7 and 10), sketch
(Fig. 11 B) and ink wash painting (Fig. 11 E). Fig. 1 shows the
painting session of a still-life artwork. In this example, the
workflow is fairly similar to the real-life painting with
brushes and papers where the artwork is drawn layer by
layer onto the canvas with abundant color mixing and stroke
combination. Fig. 7 illustrates a flat-style result created with
our system, where the diffusion process can be clearly
noticed during the drawing of each stroke. Continuous tem-
poral feedback is usually a desireable feature for painting
systems since it can be very helpful for artists to adjust their
drawing shape on the fly, and the temporal expressiveness
of TDC enables satisfying visual feedback once a stroke
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Fig. 6. A TDC painting under 4 K rendering resolution along with the framerate plot of the system during painting.

starts. Please refer to the supplementary video, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TVCG.2019.2929808,

TABLE 2
Performance of TDC
Result #TDCs #TDC segments Total Time
Fig. 1 752 17065 0.142s
Fig.7 197 5523 0.051s
Fig. 8 590 5228 0.044s
Fig.9 206 1696 0.015s
Fig. 10 83 3780 0.036s
Fig. 11 A 479 13560 0.115s
Fig. 11 B 645 6938 0.066
Fig.11C 177 6033 0.061
Fig. 11D 183 13617 0.091
Fig. 11 E 597 7769 0.067
Fig. 11 F 778 17917 0.138s
Fig. 11 G 431 14987 0.129s
Fig. 11 H 128 3723 0.035s

This table lists the number of TDCs, the number of TDC
segments and the total computing time of the paintings rendered
toa 1024 x 768 canvas.

to see more details on the temporal evolution of the strokes.
Fig. 8 displays a TDC painting using a combination of vari-
ous stroke effects. In Fig. 11 we show more painting results
of our system.

Compared with the finite-difference method for solving
the heat equation, our method is free of numerical dissipa-
tion, offers continuous solutions in both spatial and tempo-
ral dimensions, can have random-access evaluations at any
given time and position, and keeps the computational bur-
den constant when zoom-in applied. Fig. 9 demonstrates a
visual comparison between our method and the finite-
difference method, where both methods achieve similar
results at 1024 x 768 resolution but our method remains
sharp and displays more details when amplified 5 times. In
this example, the finite-difference diffusion requires 10 time
steps and totally 2.248 seconds to compute, while our
method completes in 0.015 seconds.

As an extension of the DC method, our TDC solves the
heat equation, while DC solves the Laplace’s equation
which is essentially equivalent to the steady-state heat equa-
tion where time approaches infinity. In other words, TDC is
capable of modeling the temporal diffusion of strokes,
which is one of the biggest advantages of our method. In

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 01,2021 at 18:23:46 UTC from IEEE Xplore. Restrictions apply.


http://doi.ieeecomputersociety.org/10.1109/TVCG.2019.2929808
http://doi.ieeecomputersociety.org/10.1109/TVCG.2019.2929808

236 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 1, JANUARY 2021

Fig. 7. Flat-style painting created by temporal-evolving TDCs. The four images on the right show the zoomed-in evolution of a single stroke, with the
white curve being the TDC being drawn. In our system, the temporal expressiveness of TDC provides satisfying feedback once a stroke start which
allows artists to adjust their drawing shape on the fly. Please refer to the supplementary video, available online, to see the complete drawing

progress.

contrast, when using DCs, the colors diffuse to infinity until
they are prevented by other DCs, which makes them unsuit-
able for controlling stroke width. On the one hand, our TDC
method overcomes the inconvenience in drawing by using
strokes as the primitive to generate vector graphics. As
shown in Fig. 10, when using DCs, artists need to mark all
the boundaries where colors are discontinuous. This behav-
ior contradicts the intuition and drawing habits of human,
resulting in a steep learning curve. In contrast, artists can
directly draw strokes with TDCs, which is consistent with

the real-life painting experience. On the other hand, inter-
sections of DCs usually result in undesired results. To deal
with this issue, artists need to break the curves and change
colors, which complicates the drawing procedure signifi-
cantly. TDC strokes, however, are able to intersect and over-
lap arbitrarily accordant with artist’s intention. In addition,
while zooming in, the DC using multi-grid solver is neces-
sary to confine the current viewport boundary values. With
our random-access solver, the diffusion result is only deter-
mined by the pixel coordinates and the parameters of the

Fig. 8. A TDC painting using a combination of various stroke effects, including uniform coloring (A), feathering (B), edge darkening (C), granulation
(D), transparency color mixing (E) and approximate color mixing of real pigments (F).
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Fig. 9. Comparison between the finite-difference method (A) and TDC (B). Using the same diffusion setup, TDC and the conventional finite-difference
method yield similar results. However, the TDC result is resolution independent and remains sharp after zooming in significantly.

TDCs. There is no need to provide values on the viewport
boundary.

6.3 User Feedback

To evaluate the usability of our TDC painting system, we
invited professional artists to try our system and compare it
with the PVG software [16], the latest extension of the DC
method. After a 5-minute introduction to the basic func-
tions, artists were able to use our TDC painting tool to draw
Figs. 7,11 A, 11 B, 11 F, and 11 G in half an hour and Fig. 1
in 50 minutes. On the contrary, we had to spend more than
20 minutes introducing the basic theory and the painting
process of PVG in case the artists had not been exposed to
DC methods before, and the artists still needed 30 minutes

to familiarize themselves with the complicated software
operations before painting.

Artists gave a high rating to our TDC painting system.
According to the feedbacks, the system is very easy to use
and stroke effects are more than enough for various styles
of artworks. Compared with the commonly used drawing
software Adobe Photoshop, our painting tool is much
more intuitive and convenient as we recreate the real-life
painting experience by modeling strokes directly while in
Photoshop user has to manage the layers manually. Mean-
while, our system supports rendering at arbitrary resolu-
tion, thus the artwork can be infinitely magnified during
the painting session without compromising sharpness or
details.

(A)

(B) ©

Fig. 10. Comparison of inputs and results among Diffusion Curve (PVG) [16] (A), our TDC method (B) and our TDC result with extra details (C). The
DC method uses region boundaries and auxiliary curves to determine the color and its variation. In contrast, TDC models the strokes directly, which
is much more consistent with the real-life painting experience using brushes and papers. Moreover, it is perfectly feasible to recreate the DC results
with TDC. Nevertheless, some results of our method, including the canvas texture, crossing strokes, color layers, and the temporal evolution, are not

trivial to implement with DCs.
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Fig. 11. A gallery of artworks using our painting system.

7 CONCLUSION AND FUTURE WORKS

To meet the growing demand for digital artwork creation,
this paper presents a powerful, efficient and editable vector-
ized painting system which is capable of producing con-
vincing paintings of various genres. At the core lies the
Temporal Diffusion Curve, our novel stroke-based model
for modeling evolving vector graphics. By further integrat-
ing a procedural stroke processing function into the system,
we achieve a digital art creation tool that has quite a few
merits over the existing solutions. Being one of the vector
solvers, our method is able to render at arbitrary resolu-
tions, holds real-time performance regardless of the scale of
the art piece, and provides straightforward editing possibil-
ities on strokes both at runtime and afterward. Meanwhile,
our method also has advantages over the existing vector
painting tools. Compared with the Diffusion Curve tech-
nique, our method not only supports reproducing the evo-
lution of strokes but also is more intuitive to use.
Additionally, our system is suitable for multiple styles of

artworks as opposed to DiVerdi et al. [8], which only offers
watercolor in their vector painting engine.

Our work still has much room for improvement. Although
this paper mainly focuses on reproducing the painting session
on flat surfaces, many art forms, including the oil painting, are
famous for their intriguing 3D texture. We would like to
design a more advanced 3D procedural model for this pur-
pose in the future. Additionally, the TDC diffusion has to be
isotropic in this paper since the Fourier-Transform-based dif-
fusion solver cannot handle anisotropic diffusion coefficients.
Therefore, another future topic could be seeking the funda-
mental solution of a less constrained TDC formulation. Cur-
rently our work is mainly about modeling of strokes, we
would like to cover the automated vectorization of images, a
hot application of current DC researches, in the future.
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