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This paper studies scale-free protocol design for H∞ almost state synchronization of homogeneous
networks of non-introspective agents in the presence of external disturbances. A linear dynamic
protocol is developed based on localized information exchange over the same communication network,
which does not need any knowledge of the directed network topology and the spectrum of the
associated Laplacian matrix. Moreover, the proposed protocol is scalable and achieves H∞ almost
synchronization with a given arbitrary degree of accuracy for any arbitrary number of agents.
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1. Introduction

In recent decades, the synchronization problem for multi-
gent systems (MAS) has attracted substantial attention due to
he wide potential for applications in several areas such as au-
omotive vehicle control, satellites/robots formation, and sensor
etworks. See for instance the books (Ren & Cao, 2011) and Wu

(2007) or the survey paper (Olfati-Saber, Fax, & Murray, 2007).
State synchronization inherently requires homogeneous net-

works (i.e. agents which have identical models). Therefore, in this
paper we focus on homogeneous networks. State synchronization
based on diffusive full-state coupling has been studied where
the agent dynamics progress from single- and double-integrator
dynamics e.g. Olfati-Saber and Murray (2004), Ren (2008), Ren
and Beard (2005) to more general dynamics, e.g. Scardovi and
Sepulchre (2009), Shen, Wang, Wang, and Li (2020a, 2020b), Tuna
(2008), Wieland, Kim, and Allgöwer (2011). State synchronization
based on diffusive partial-state coupling has also been considered,

✩ This work is supported by the Nature Science Foundation of Liaoning
Province, PR China under Grant 2019-MS-116, the Fundamental Research Funds
for the Central Universities of China under Grant N2004014, and the United
States National Science Foundation under Grant 1635184. The material in this
paper was not presented at any conference. This paper was recommended
for publication in revised form by Associate Editor Florian Dorfler under the
direction of Editor Christos G. Cassandras.
∗ Corresponding author at: College of Information Science and Engineering,
ortheastern University, Shenyang, PR China.

E-mail addresses: liuzhenwei@ise.neu.edu.cn (Z. Liu), saberi@eecs.wsu.edu
A. Saberi), A.A.Stoorvogel@utwente.nl (A.A. Stoorvogel),
onya.nojavanzadeh@wsu.edu (D. Nojavanzadeh).
 s

ttps://doi.org/10.1016/j.automatica.2020.109276
005-1098/© 2020 Elsevier Ltd. All rights reserved.
ncluding static design (Liu, Saberi, Stoorvogel, & Zhang, 2018;
iu, Zhang, Saberi, & Stoorvogel, 2018b, 2018a), dynamic design
Kim, Shim, Back, & Seo, 2013; Li, Duan, Chen, & Huang, 2010;
eo, Back, Kim, & Shim, 2012; Seo, Shim, & Back, 2009; Stoor-
ogel, Saberi, & Zhang, 2017; Su & Huang, 2012; Tuna, 2009).
ecently, scale-free collaborative protocol designs are developed
or homogeneous and heterogeneous MAS (Chowdhury & Khalil,
018; Nojavanzadeh, Liu, Saberi, & Stoorvogel, 2020) and for
AS subject to actuator saturation (Liu, Saberi, Stoorvogel, &
ojavanzadeh, 2019). Also, there are efforts for the case that
gents are introspective (i.e. the agents have absolute measure-
ents of their own dynamics in addition to relative information

rom the network. Otherwise, they are called as non-introspective
gents.) (Kim, Shim, & Seo, 2011; Scardovi & Sepulchre, 2009;
ang, Saberi, Stoorvogel, & Grip, 2014).
For MAS subject to external disturbances, there are some

orks in the literature (Li, Soh, & Xie, 2017; Li, Soh, Xie, &
ewis, 2019; Li et al., 2010; Li, Duan, & Chen, 2011; Saboori &
horasani, 2014; Wang, Wen, Yu, Yu, & Lv, 2019; Yang, Zhang,
eng, Yan, & Wang, 2019; Zhao, Duan, Wen, & Chen, 2015). On
he other hand, Peymani, Grip, and Saberi (2015) introduced
he notion of H∞ almost synchronization1 for homogeneous net-
orks, where the goal is to reduce the impact of external dis-
urbances to any arbitrary desired level, which is described by
n H∞ norm from disturbance to the synchronization error. This

1 The term ‘‘almost synchronization’’ has been selected in connection with the
oncept of almost disturbance decoupling (see e.g. Ozcetin, Saberi, and Sannuti
1992)) where the problem is to find a family of controllers to reduce the noise
ensitivity to any arbitrary degree.
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ork is also extended to some other studies (Peymani, Grip,
aberi, Wang, & Fossen, 2014; Zhang, Saberi, Grip, & Stoorvogel,

2015; Zhang, Saberi, Stoorvogel, & Sannuti, 2015) for almost
output synchronization. In Zhang, Stoorvogel, and Saberi (2015),
H2 almost synchronization of heterogeneous non-introspective
agents under time-varying communication networks has been
studied. The H∞ and H2 almost state synchronization are studied
later in Stoorvogel, Saberi, Zhang, and Acciani (2017), Stoorvogel,
Saberi, Zhang, and Liu (2019). Solvability condition for H∞ and H2
almost state synchronization of homogeneous MAS is provided
in Stoorvogel et al. (2019). Recently, H∞ and H2 almost syn-
chronization via static protocols are studied in Stoorvogel, Saberi,
Liu, and Nojavanzadeh (2019), Stoorvogel, Nojavanzadeh, Liu, and
Saberi (2018) for MAS with passive and passifiable agents. In
all the above mentioned papers on almost synchronization, the
protocol design needs to know at least some information about
the communication network and the number of agents.

In this paper, we develop scale-free design for H∞ almost
state synchronization for a MAS in the presence of external dis-
turbances. The necessary and sufficient synchronization results
are obtained by using a class of linear collaborative parameter-
ized dynamic protocols with localized information exchange for
both networks with full- and partial-state coupling. The linear
dynamic protocol can work for any number of agents with any
communication network which contains a spanning tree. The
main contribution of this work is that the protocol design does
not require any information of the communication network such
as a lower bound of non-zero eigenvalue of associated Laplacian
matrix. Moreover, the linear protocol is scalable and achieves
almost state synchronization with a given arbitrary degree of
accuracy for MAS with any number of agents.

Notations and definitions

Given a matrix A ∈ Rm×n and AT denotes transpose of A
while ∥A∥ denotes the induced 2-norm, and im A denotes the
image of A. For a signal v, we denote the L2 norm by ∥v∥2.
Finally, for a transfer function matrix T (s) we denote the H∞ norm
by ∥T∥∞. A square matrix A is said to be Hurwitz stable if all
its eigenvalues are in the open left half complex plane. A ⊗ B
depicts the Kronecker product between A and B. In denotes the
n-dimensional identity matrix and 0n denotes n× n zero matrix;
sometimes we drop the subscript if the dimension is clear from
the context. A weighted graph G is defined by a triple (V, E,A)
where V = {1, . . . ,N} is a node set, E is a set of pairs of nodes
indicating connections among nodes, and A = [aij] ∈ RN×N is the
weighting matrix. Each pair in E is called an edge, where aij > 0
denotes an edge (j, i) ∈ E from node j to node i with weight
aij. Moreover, aij = 0 if there is no edge from node j to node i.
We assume there are no self-loops, i.e. we have aii = 0. A path
from node i1 to ik is a sequence of nodes {i1, . . . , ik} such that
(ij, ij+1) ∈ E for j = 1, . . . , k − 1. A directed tree with root r is
a subgraph of the graph G in which there exists a unique path
from node r to each node in this subgraph. A directed spanning
tree is a directed tree containing all the nodes of the graph. For a
weighted graph G, the matrix L = [ℓij] with

ℓij =

{ ∑N
k=1 aik, i = j,
−aij, i ̸= j,

is called the Laplacian matrix associated with the graph G. The
Laplacian matrix L has all its eigenvalues in the closed right half
plane and at least one eigenvalue at zero associated with right
eigenvector 1, i.e. a vector with all entries equal to 1. When
graph contains a spanning tree, then it follows from Ren and
Beard (2005, Lemma 3.3) that the Laplacian matrix L has a simple
eigenvalue at the origin, with the corresponding right eigenvector
1, and all the other eigenvalues are in the open right-half complex

plane.

2

2. Problem formulation

Consider a MAS composed of N identical linear time-invariant
agents of the form

ẋi = Axi + Bui + Eωi,

yi = Cxi,
(i = 1, . . . ,N) (1)

where xi ∈ Rn, ui ∈ Rm, yi ∈ Rp are respectively the state,
input, and output vectors of agent i, and ωi ∈ Rw are the external
disturbances.

The communication network provides each agent with a linear
combination of its own outputs relative to that of other neighbor-
ing agents. In particular, each agent i ∈ {1, . . . ,N} has access to
the quantity,

ζi =

N∑
j=1

aij(yi − yj) =
N∑
j=1

ℓijyj, (2)

where aij ≥ 0 and aii = 0 indicate the communication among
agents while ℓij denote the coefficients of the associated Laplacian
matrix L. This communication topology of the network can be
described by a weighted and directed graph G with nodes cor-
responding to the agents in the network and the weight of edges
given by the coefficient aij.

The MAS (1) and (2) is referred to as MAS with full-state
coupling when C = I , otherwise it is called MAS with partial-state
coupling.

Let N be any positive number and define x̄i = xi − xN , while

x̄ =

⎛⎜⎝ x̄1
...

x̄N−1

⎞⎟⎠ and ω =

⎛⎜⎝ω1
...

ωN

⎞⎟⎠.

We denote by Tωx̄ the transfer function from ω to x̄.
In this paper, we introduce a localized exchange of information

among protocols. In particular, each agent i = 1, . . . ,N has access
to localized information, denoted by ζ̂i, of the form

ζ̂i =

N∑
j=1

aij(ξi − ξj) (3)

where ξj ∈ Rn is a variable produced internally by agent j which
will be appropriately chosen in the coming sections.

First, we introduce H∞ almost state synchronization problem
with localized information exchange as following.

Definition 1. Consider a MAS described by (1) and (2) with
associated communication graph G. The H∞ almost state synchro-
nization problem of a MAS with localized information exchange
(H∞-ASSWLIE) is to find, if possible, for any given γ > 0 a
distributed collaborative linear time-invariant dynamic protocol
of the form{

ẋi,c = Acxi,c + Bcζi + Cc ζ̂i,

ui = Fcxi,c
(4)

where ζ̂i is defined by (3), with ξi = Gcxi,c with xi,c ∈ Rnc such
that in the absence of disturbance ω, state synchronization

lim
t→∞

(xi − xj) = 0 for all i, j ∈ 1, . . . ,N. (5)

is achieved for all initial conditions while in the presence of
disturbance ω, the H∞ norm from ω to xi − xj is less than γ , for
all i, j ∈ {1, . . . ,N}.

The objective of this paper includes (i) state synchronization
(5) is accomplished in the absence of disturbances, (ii) the impact

of disturbances on the state synchronization error dynamics is
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ttenuated to any arbitrarily small value in the sense of the H∞

norm of the transfer function.
Now we formulate the following problem.

Problem 1. The scale-free H∞ almost state synchronization
problem with localized information exchange (scale-free H∞-
ASSWLIE) for MAS (1) and (2) is to find, if possible, a fixed
ollaborative linear protocol parameterized in terms of a scalar
arameter ρ of the form:{

χ̇i = Ac(ρ)χi + Bc(ρ)ζi + Cc(ρ)ζ̂i
ui = Fc(ρ)χi

(6)

here ζ̂i is defined by (3), with ξi = Hcχi with χi ∈ Rnc such that
or any number of agents N , and any communication graph G we
ave:

• in the absence of the disturbance ω, for all initial conditions
state synchronization (5) is achieved for any ρ ≥ 1.

• in the presence of the disturbance ω, for any γ > 0, one
can render the H∞ norm from ω to xi − xj less than γ for all
i, j ∈ {1, . . . ,N} by choosing ρ sufficiently large.

emark 1. We would like to emphasize that in our formu-
ation of Problem 1, the protocol (6), i.e. Ac(ρ), Bc(ρ), Cc(ρ),
Fc(ρ) to be solely designed based on agent model (A, B, C, E) and
independent of communication graph and the number of agents.

Remark 2. Note that in H∞ almost synchronization, one can
consider the worst case disturbance with the only constraint that
the power is bounded, i.e.

lim
T→∞

1
2T

∫ T

−T
ωi

Tωidt < ∞.

. H∞ almost state synchronization

In this section, we will consider scale-free H∞-ASSWLIE prob-
em of a MAS for both cases of full- and partial-state coupling.

.1. Full-state coupling — solvability conditions and protocol design

For case of full-state coupling, we have the following protocol.

Protocol 1: Full-state coupling
We design collaborative protocols for agent i ∈ {1, . . . ,N}
as{

χ̇i = Aχi + Bui + ρζi − ρζ̂i,

ui = −ρBTPχi
(7)

where ρ is a parameter satisfying ρ ≥ 1 while P is the
unique solution of algebraic Riccati equation

ATP + PA− PBBTP + I = 0 (8)

and ζi is defined by (2). The agents communicate ξi = χi,
therefore each agent has access to local information

ζ̂i =

N∑
j=1

aij(χi − χj). (9)

Our formal result is stated in the following theorem.

heorem 1. Consider a MAS described by (1) and (2), where C = I .

(i) The scale-free H∞-ASSWLIE problem as stated in Problem 1 is
solvable if and only if
3

(a) (A, B) is stabilizable.
(b) All eigenvalues of A are in the closed left half plane.
(c) The graph G, describing the communication topology of

the network, contains a directed spanning tree.
(d) im E ⊆ im B.

(ii) The collaborative linear dynamic Protocol 1 solves scale-free
H∞-ASSWLIE. In other words, for any number of agents N
and any graph G in the absence of the disturbance ω, for any
ρ ≥ 1, the state synchronization (5) is achieved for any initial
conditions and in the presence of the disturbance ω, for any
γ > 0, the H∞ norm from ω to xi − xj is less that γ for all
i, j ∈ {1, . . . ,N} by choosing ρ sufficiently large.

In order to prove this theorem, we need the following lemma.

Lemma 1. Let a Laplacian matrix L ∈ RN×N be given associated
with a graph that contains a directed spanning tree. We define L̄ ∈

(N−1)×(N−1) as the matrix L̄ = [ℓ̄ij] with ℓ̄ij = ℓij − ℓNj. Then the
igenvalues of L̄ are equal to the nonzero eigenvalues of L.

roof. We have

¯ =
(
I −1

)
L
(
I
0

)
ssume that λ is a nonzero eigenvalue of L with eigenvector x,

then

x̄ =
(
I −1

)
x

atisfies

I −1
)
Lx =

(
I −1

)
λx = λx̄

for Lx = λx and since L1 = 0 we have L
(
I
0

)
(I − 1) = L, then

e find that

¯x̄ =
(
I −1

)
L
(
I
0

) (
I −1

)
x =

(
I −1

)
Lx = λx̄.

his shows that x̄ is an eigenvector of L̄ if λ ̸= 0. It is easily seen
that x̄ = 0 if and only if λ = 0. Conversely if x̄ is an eigenvector

f L̄ with eigenvalue λ then it is easily verified that x =
(
I
0

)
x̄ is

an eigenvector of L with eigenvalue λ. ■

roof of Theorem 1. Firstly, let x̄i = xi − xN and χ̄i = χi − χN .
We find:
˙̄xi = Ax̄i + B(ui − uN )+ E(ωi − ωN ),
˙̄χi = Aχ̄i + B(ui − uN )+ ρ

∑N−1
j=1 ℓ̄ij(x̄j − χ̄j),

ui − uN = −ρBTPχ̄i.

ext, we define

¯ =

⎛⎜⎝ x̄1
...

x̄N−1

⎞⎟⎠ , χ̄ =

⎛⎜⎝ χ̄1
...

χ̄N−1

⎞⎟⎠ , and ω =

⎛⎜⎝ω1
...

ωN

⎞⎟⎠
and we obtain the following closed-loop system{

˙̄x = (I ⊗ A)x̄− ρ(I ⊗ BBTP)χ̄ + (Π ⊗ E)ω
˙̄χ = (I ⊗ A)χ̄ − ρ(I ⊗ BBTP)χ̄ + ρ(L̄⊗ I)(x̄− χ̄ )

where L̄ as defined in Lemma 1 and Π =
(
I −1

)
. Let e = x̄− χ̄ ,

we can obtain

˙̄x = [I ⊗ (A− ρBBTP)]x̄+ ρ(I ⊗ BBTP)e+ (Π ⊗ E)ω (10)

ė = (I ⊗ A− ρL̄⊗ I)e+ (Π ⊗ E)ω (11)
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ccording to Lemma 1, we have that the real part of the eigen-
alues of L̄ are positive. Therefore, there exists a non-singular
ransformation matrix T such that

T ⊗ I)(I ⊗ A− ρL̄⊗ I)(T−1
⊗ I) = I ⊗ A− ρ J̄ ⊗ I, (12)

here

¯ =

⎛⎜⎜⎜⎜⎝
λ2 0 · · · 0

J21
. . .

. . .
...

...
. . .

. . . 0
JN,1 · · · JN,N−1 λN

⎞⎟⎟⎟⎟⎠
ith Re(λi) > 0 (i = 2, . . . ,N), where λi are the nonzero
igenvalues of L.
Then, for the stability of (12), we just need to prove the stabil-

ty of A−ρλiI for i = 1, . . . ,N−1. Since the eigenvalues of A are
n the closed left half plane and ρ ≥ 1, A− ρλiI is asymptotically
table, i.e. the real part of its eigenvalues is all negative. Since (12)
s asymptotically stable, we find that I⊗A−ρL̄⊗I is asymptotically
table. It is verified that there exists a constant M > 0 such that

ωe(s) = (sI − I ⊗ A+ ρL̄⊗ I)−1(Π ⊗ E)

satisfies

∥Tωe∥∞ ≤
M
ρ

for all ρ ≥ 1. On the other hand, from the condition im E ⊆ im B,
e know there exists a matrix X such that E = BX .
Then, we choose the following Lyapunov function for (10),

= x̄T(I ⊗ P)x̄

ith P satisfying (8). We obtain:

˙ = − x̄T
(
I ⊗ [I + (2ρ − 1)PBBTP]

)
x̄

+ 2ρx̄T(I ⊗ PBBTP)e+ 2x̄T(Π ⊗ PBX)ω

=− x̄T
(
I ⊗ [I + (2ρ − 1)PBBTP]

)
x̄

+ 2ρx̄T(I ⊗ PB)(I ⊗ BTP)e+ 2x̄T(I ⊗ PB)(Π ⊗ X)ω

≤− x̄T
(
I ⊗ [I + (2ρ − 1)PBBTP]

)
x̄+ ρx̄T(I ⊗ PBBTP)x̄

+ 2ρeT(I ⊗ PBBTP)e+ 2ρ−1ωT(Π TΠ ⊗ X TX)ω

≤− αV −
1
2
∥x̄∥22 +

2
ρ
(M2

∥PB∥2 + ∥X∥2∥Π∥
2)∥ω∥2

ith α =
1
2∥P∥

−1 and ρ ≥ 1, which implies (10) is asymptotically
table and H∞ norm from ω to x̄ is less than M̄

√
ρ

with M̄ =√
M2∥PB∥2 + ∥X∥2∥Π∥2. We find for zero initial conditions that

∥Tω(xi−xj)∥∞ = sup
ω ̸=0

∥xi − xj∥2
∥ω∥2

≤
M̄
√

ρ

for ρ ≥ 1. Also note that the above analysis implies that in the
absence of the disturbance ω, we have limt→∞ x̄i → 0 i.e. lim

t→∞
xi−

xj → 0 for arbitrary initial conditions.
Now, we will prove the necessity. Assume we have a protocol

of the form (6) that achieves synchronization for any possible
graph in the absence of disturbances. It is easily seen that this
requires that condition (a) is satisfied. On the other hand, we have
that{

˙̄x = (I ⊗ A)x̄+ (L̄⊗ BFc(ρ))χ̄
˙̄χ = (I ⊗ Ac(ρ))χ̄ + (L̄⊗ Bc(ρ)C)x̄+ (L̄⊗ Cc(ρ)Hc)χ̄

must be asymptotically stable for all possible Laplacian matrices.
By letting L̄ → 0 we see that in the limit the system must
4

have all eigenvalues in the closed left half plane which yields
that condition (b) must be satisfied. It is well-known that state
synchronization is impossible to achieve if the network does not
have a directed spanning tree. Finally, from the result on H∞ al-
most disturbance decoupling in Saberi, Lin, and Stoorvogel (1996,
Theorem 2.5), we find that (d) is also a necessary condition. ■

3.2. Partial-state coupling — solvability conditions and protocol
design

For case of partial-state coupling, we have the following pro-
tocol.

Protocol 2: Partial-state coupling
We design collaborative protocols for agent i ∈ {1, . . . ,N}
as⎧⎨⎩

˙̂xi = Ax̂i − ρBBTP ζ̂i + δ−2QρCT(ζi − Cx̂i)
χ̇i = Aχi + Bui + ρx̂i − ρζ̂i
ui = −ρBTPχi,

(13)

where P > 0 is the unique solution of (8). Since (A, E, C, 0)
is minimum-phase and left invertible, then for any ρ ≥ 1,
there exists δ > 0 small enough such that Qρ > 0 is the
unique solution of

QρAT
+ AQρ + EET

− δ−2QρCTCQρ + ρ2Q 2
ρ = 0. (14)

In this protocol, agents communicate ξi = χi, i.e. each
agent has access to localized information (9), while ζi is
defined by (2).

Then, we have the following theorem.

Theorem 2. Consider a MAS described by (1) and (2).

(i) The scale-free H∞-ASSWLIE problem stated in Problem 1 is
solvable if and only if

(a) (A, B) is stabilizable and (C, A) is detectable.
(b) All eigenvalues of A are in the closed left half plane.
(c) (A, E, C, 0) is minimum phase and left invertible.
(d) The graph G, describing the communication topology of

the network, contains a directed spanning tree.
(e) im E ⊆ im B.

(ii) The collaborative linear dynamic Protocol 2 solves scale-free
H∞-ASSWLIE, for any number of agents N and any graph G
such that in the absence of disturbance ω, for any ρ ≥ 1, the
state synchronization (5) is achieved for any initial conditions
and in the presence of disturbance ω, for any γ > 0, the H∞

norm from ω to xi − xj is less than γ for all i, j ∈ {1, . . . ,N}
by choosing ρ sufficiently large.

Proof of Theorem 2. Similar to Theorem 1 and by defining
x̃i = x̂i − x̂N , we have⎧⎨⎩

˙̄xi = Ax̄i + B(ui − uN )+ E(ωi − ωN )
˙̃xi = Ax̃i − ρBBTP

∑N−1
j=1 ℓ̄ijχ̄j + δ−2QρCTC

∑N−1
j=1 ℓ̄ij(x̄j − x̃i)

˙̄χi = Aχ̄i + B(ui − uN )+ ρx̃i − ρ
∑N−1

j=1 ℓ̄ijχ̄j

We define

x̄ =

⎛⎜⎝ x̄1
...

⎞⎟⎠ , x̃ =

⎛⎜⎝ x̃1
...

⎞⎟⎠ , χ̄ =

⎛⎜⎝ χ̄1
...

⎞⎟⎠ , and ω =

⎛⎜⎝ω1
...

⎞⎟⎠

x̄N−1 x̃N−1 χ̄N−1 ωN
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hen we have the following closed-loop system

˙̄x = (I ⊗ A)x̄− ρ[I ⊗ BBTP]χ̄ + (Π ⊗ E)ω
˙̃x = [I ⊗ (A−

1
δ2
QρCTC)]x̃− ρ(L̄⊗ BBTP)χ̄ +

1
δ2
(L̄⊗ QρCTC)x̄

˙̄χ = (I ⊗ A− ρL̄⊗ I)χ̄ − ρ(I ⊗ BBTP)χ̄ + ρx̃

y defining e = x̄− χ̄ and ē = (L̄⊗ I)x̄− x̃, we can obtain

˙̄x = [I ⊗ (A− ρBBTP)]x̄+ ρ(I ⊗ BBTP)e+ (Π ⊗ E)ω
˙̄e = [I ⊗ (A− δ−2QρCTC)]ē+ (L̄Π ⊗ E)ω
ė = (I ⊗ A− ρL̄⊗ I)e+ ρē+ (Π ⊗ E)ω

hus, we can obtain the following transfer function

ωe =
(
0 I

) ( T1 0
−ρI T2

)−1 (
L̄Π ⊗ E
Π ⊗ E

)
=T−1

2

[
Π ⊗ E + ρT−1

1 (L̄Π ⊗ E)
]

here T1 = sI− I⊗ (A− δ−2QρCTC) and T2 = sI− (I⊗A−ρL̄⊗ I).
Meanwhile, we have

∥Π ⊗ E + ρT−1
1 (L̄Π ⊗ E)∥∞ =∥Π ⊗ E + ρTωē∥∞

≤∥Π ⊗ E∥ + ρ∥Tωē∥∞

We choose the following Lyapunov function for ē

V0 = ēT(I ⊗ Q−1
ρ )ē

with Qρ satisfying (14). Then we have

V̇0 =ēT[I ⊗ (Q−1
ρ A+ ATQ−1

ρ − 2δ−2CTC)]ē+ 2ē(L̄Π ⊗ Q−1
ρ E)ω

≤− ēT[I ⊗ (ρ2I + Q−1
ρ EETQ−1

ρ )]ē

+ ēT(I ⊗ Q−1
ρ EETQ−1

ρ )ē+ ωT(Π TL̄TL̄Π ⊗ I)ω

≤− ρ2
∥ē∥2 + ∥L̄∥2∥Π∥

2
∥ω∥2

with ρ ≥ 1. By integrating the above inequality, we have∫
∞

0
−ρ2

∥ē(t)∥2 + ∥L̄∥2∥Π∥
2
∥ω(t)∥2dt ≥ 0

for zero initial conditions and hence

ρ2
∥ē∥22 ≤ ∥L̄∥2∥Π∥

2
∥ω∥22

i.e.

∥Tωē∥∞ =
∥ē∥
∥ω∥

≤
∥L̄∥∥Π∥

ρ

or ρ ≥ 1. Thus we have

Π ⊗ E − ρT−1
1 (L̄Π ⊗ E)∥∞ ≤ ∥Π ⊗ E∥ + ρ∥Tωē∥∞ ≤ W1

for W1 = ∥Π ⊗ E∥ + ∥L̄∥∥Π∥. Meanwhile, since L̄ is invertible,
there exists a constant W2 > 0 such that ∥T−1

2 ∥∞ ≤
W2
ρ

for ρ ≥ 1.
t means that we have

Tωe∥∞ ≤
W1W2

ρ
.

et X such that E = BX . Similar to Theorem 1, we choose the
ollowing Lyapunov function,

= x̄T(I ⊗ P)x̄

ith P satisfying (8) Thus, we have

˙ ≤ −αV −
1
2
∥x̄∥2 +

2
ρ
(W 2

1W
2
2 ∥PB∥

2
+ ∥X∥2∥Π∥

2)∥ω∥2

ith α =
1
2∥P∥

−1 for ρ ≥ 1. We obtain:

Tω(xi−xj)∥ = sup
∥xi − xj∥2

≤
W̄
√ (15)
ω ̸=0 ∥ω∥2 ρ

5

Fig. 1. State synchronization in the absence of disturbance and with the choice
of ρ = 4 for the MAS with N = 3.

with W̄ = 2
√
W 2

1W
2
2 ∥PB∥2 + ∥X∥2∥Π∥2 for ρ ≥ 1. Moreover,

the above analysis in the absence of disturbances yields: Thus we
have

lim
t→∞

x̄i → 0

.e. lim
t→∞

xi − xj → 0 for arbitrary initial conditions.
As the next step, we will prove the necessity. Similar to the

proof of Theorem 1, we have that (a), (b) and (d) are necessary
conditions. From the result on H∞ almost disturbance decoupling
in Saberi et al. (1996, Theorem 2.5), we find that (c) and (e) are
also necessary conditions in case of partial-state coupling. ■

4. Numerical example

In this section we will illustrate the effectiveness of our proto-
col design with numerical examples for H∞ state synchronization
of MAS with partial-state coupling.

Consider agent models (1) with

A =

(0 1 0
0 0 1
0 0 0

)
, B =

(0
0
1

)
, C =

(
1 0 0

)
, E = B.

For this agent model, we obtain Protocol 2, by solving algebraic
Riccati equations (8) and (14) for two values of ρ = 4 and ρ = 10
(The Riccati equation (14) is solved with δ = 0.0004). We create
two homogeneous MAS with different number of agents and
different communication topologies to show that the designed
protocol is scale-free, i.e. it is independent of communication
network and the number of agents N .

• Case I: In this case, we consider MAS with 3 agents and
communication topology with A1, with a21 = a32 = 1. The
result of state synchronization in the absence of disturbance
is shown in Fig. 1. The H∞ almost state synchronization
results for this MAS are shown in Fig. 2 (ρ = 4) and Fig. 3
(ρ = 10) with disturbances ω1 = 0, ω2 = ω3 = cos(t). The
results show that by increasing ρ to 10, one can decrease
the impact of disturbances on disagreement dynamics.

• Case II: Next, we consider a MAS with 20 agents and asso-
ciated adjacency matrix A2, with a16 = a21 = a32 = a43 =

a54 = a65 = a76 = a87 = a98 = a10,9 = a11,10 = a12,11 =

a13,12 = a13,20 = a14,13 = a15,14 = a15,6 = a16,15 = a17,16 =

a18,17 = a19,18 = a20,18 = 1. Fig. 4 shows the result for state
synchronization in the absence of disturbance with ρ = 4.
The H∞ almost state synchronization results are shown in
Fig. 5 (ρ = 4) and Fig. 6 (ρ = 10) with the disturbances
ω1 = ω7 = ω11 = ω17 = 0, ω2 = ω12 = ω8 = ω18 =

cos(t), ω3 = ω13 = 0.5, ω4 = ω10 = ω14 = ω20 =

sin(2t), ω5 = ω15 = cos(3t), ω6 = ω16 = sin(t), ω13 = 1,
and ω = 1.5.
19



Z. Liu, A. Saberi, A.A. Stoorvogel et al. Automatica 122 (2020) 109276

a
a

5

L

L

L

L

N

O

O

Fig. 2. H∞ almost state synchronization with the choice of ρ = 4 for the MAS
with N = 3.

Fig. 3. H∞ almost state synchronization with the choice of ρ = 10 for the MAS
with N = 3.

Fig. 4. State synchronization in the absence of disturbance with the choice of
ρ = 4 for the MAS with N = 20.

Fig. 5. H∞ almost state synchronization with the choice of ρ = 4 for the MAS
with N = 20.

The simulation results show that the protocol design is inde-
pendent of the communication graph and is scale free so that
we can achieve H∞ almost state synchronization with one-shot
protocol design, for any graph with any number of agents. The
simulation results also show that by increasing the value of ρ,
lmost state synchronization is achieved with higher degree of
ccuracy.

. Conclusion

In this paper, we proposed scale-free design for H∞

almost state synchronization of homogeneous networks of non-
introspective agents. A parameterized scalable linear collabora-
tive dynamic protocol, parameterized in scalar ρ, was developed
6

Fig. 6. H∞ almost state synchronization with the choice of ρ = 10 for the MAS
with N = 20.

using localized information exchange among neighbors over the
same communication network. We achieved almost synchro-
nization for a given arbitrary degree of accuracy by choosing ρ

sufficiently large. It should be emphasized that the proposed pro-
tocols were designed solely based on agent models, i.e., despite
all the existing results, our design methodology was scale-free so
that we did not need any information about the communication
network such as bounds on the associated Laplacian matrix and
the number of agents. As our future work, we aim to extend the
scale-free designs proposed in this paper to the broader classes
of agent models.
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