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Abstract—In this problem, Alice and Bob, are provided X7
and X7 that are IID px, x,. Alice and Bob can communicate
to Charles over (noiseless) links of rate R, and R, respectively.
Their goal is to enable Charles generate samples Y " such that the
triple (X1', X3',Y™) has a PMF that is close, in total variation,
to || px, x,v. In addition, the three parties may posses shared
common randomness at rate C. We address the problem of
characterizing the set of rate triples (R, Rz, C') for which the
above goal can be accomplished. We build on our recent findings
and propose a new coding scheme based on coset codes. We
analyze its information-theoretic performance and derive a new
inner bound. We identify examples for which the derived inner
bound is analytically proven to contain rate triples that are
not achievable via any known unstructured code based coding
techniques. Our findings build on a variant of soft-covering
which generalizes its applicability to the algebraic structured code
ensembles. This adds to the advancement of the use structured
codes in network information theory.

I. INTRODUCTION

We consider the scenario which was originally studied
by authors in [1], as depicted in Fig 1. Three distributed
parties, say Alice, Bob and Charles, have to generate samples
that are independent and identically distributed (IID) with a
target probability mass function (PMF) px, x,v. Alice and
Bob are provided with samples that are IID according to
px,x, - the marginal of the target PMF px, x,y. They have
access to unlimited private randomness and share noiseless
communication links of rates 2, %o with Charles. In addition,
the three parties share common randomness at rate C. The
authors in [1] provided a set of sufficient conditions, i.e.,
an achievable rate region for such a scenario. However, can
this rate-region be improved? This article answers the above
question in the affirmative.

It is well established that traditional coding techniques using
unstructured codes do not achieve optimality for the several
multi-terminal scenarios. For instance, the work by Korner-
Marton [2] demonstrated this sub-optimality for a classical
distributed lossless compression problem with symmetric bi-
nary sources using random linear codes. We harness analogous
gains for the problem of generating correlated randomness at
distributed parties. Specifically, we propose a coding scheme
based on coset codes, analyze its information-theoretic perfor-
mance and thereby derive a new inner bound (see Thm. ).
We identify an example for which the derived inner bound
is analytically proven to contain rate triples that are not
achievable in the earlier known results [1]. While the derived
inner bound does not subsume the one characterized in [1], one
can adopt the technique in [3, Sec. VII] - also demonstrated in
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Fig. 1. Source Coding for Synthesizing Correlated Randomness
a related context [4] - to derive an inner bound that subsumes
the inner bounds derived in [1] and Thm. 1.

The problem of generating correlated randomness can be
traced back to Wyner [5], whose work discovered the impor-
tant technical tool, called the soft covering. This tool has found
its application in diverse fields including cryptography and
quantum information theory. The work in [1] further refined
this tool by introducing a joint-typicality based application. As
we illustrate in the sequel, this work adds another dimension
to our current understanding of soft covering, what we term
as the change of measure soft covering.

A renewed interest in soft covering led Cuff [6], [7] to con-
sider a point-to-point (PTP) version of the scenario depicted
in Fig. 1, wherein Bob (or X5) is absent. A side-information
based scenario was subsequently studied in [8] and a converse
provided in [1]. In [1] we studied the above scenario using un-
structured coding techniques. A similar sequence of problems
were also studied in the quantum setting [9]-[11].

While all of the above works leverage the unstructured 11D
random codes, it has been proven that algebraic structured
codes provide gains in network communication involving
distributed encoders [4], [12]-[17]. Motivated by this, we
consider the distributed correlation synthesis problem depicted
in Fig. | and present a new achievable rate-region using struc-
tured coding techniques. We highlight two main challenges in
this endeavour. The first challenge is to be able to achieve
rates corresponding to non-uniform distributions. In particular,
codewords within a random linear code has uniform empirical
distributions. This requires us to enlarge our codes to be able
to identify codeword with the desired single-letter distribution.
We address this challenge by using a random shifts of cosets of
a linear code as our code, henceforth referred to as Unionized
Coset Codes (UCCs) [16]. The second challenge concerns
the statistical dependence among codewords of a coset code.
In contrast to IID codes, the codewords of a UCC are only
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pairwise independent [18]. This prevents us from using the
Chernoff concentration bound. We therefore develop novel
techniques for our information theoretic study.

II. PRELIMINARIES AND PROBLEM STATEMENT

We supplement standard information theory notation with
the following. For a PMF px, we let p% = H?:l px. For an
integer 7 = 1, [n] £ {1,---,n}. The total variation between
PMFs px and gx defined over X is denoted |[px — gx|1 =
13 ex Ipx(2) — ax (). Fy is used to denote a finite field
of size p with addition &.

Building on this, we address the network scenario (Fig. 1)
for which we state the problem below. In the following, we
let X = (X1, Xo),2" = (2], 27).

Definition 1. Given a PMF px, x,yv on A} x A5 x ), a rate
triple (R1, Re, C) is achievable, if Ve >0 and sufficiently large
n, there exists 2" randomized encoder pairs E(” ). X}
[©,] : 7 € [2],p € [27], and a correspondmg collectlon
of 2" randomized decoders D) : [©:] x [©] — V" for

€ [2"“] such that ‘piY —pxrvn| <6 e, L10g,©; < R; +
€:J € [2], where

pxrye(z®y™) = > 270 Y Pk
pe[2n€] (my,msz)e
[©1]x[©2]

(#)

le|X1n (my ‘mﬁpﬁz]xg (TT12]-”I-'3)P§£J¢3|Ml_Mz (yn|m1 ,1M2)
pf‘ﬁ;)l xnij€ [2], p;‘ﬁ‘ 1,01, e the PMFs induced by the two

randomized encoders and decoder respectively, corresponding
to common randomness message p. We let R4(pxy ) denote
the set of achievable rate triples.

Theorem | provides a new characterization of Rd(péy)
based on coset codes, for the above described problem state-
ment. This characterization provides a new inner bound to the
achievable rate-region. An essential aspect of our work is the
identification of a PMF px, x,y for which the coding scheme
described in [1], [19] is strictly sub-optimal.

III. DISTRIBUTED SOFT COVERING USING ALGEBRAIC
STRUCTURED RANDOM CODES

A. Change of Measure Soft Covering

Before presenting the main result of the paper, we develop
the necessary tools and provide a lemma which is crucial for
the upcoming results. This lemma extends the cloud mixing
result of [7] with a mismatched codebook generation process.
The lemma is as follows.

Lemma 1. Consider a PMF pxy on X x Y, and let R be
a finite non-negative integer. Additionally, assume that there
exists some set X containing the set X, with pxy (. y) =0
for all x € X\X. Suppose qx is any PMF on the set X such
that the PMF px is absolutely continuous with respect to the
qx. Let a random code C 2 {X™(m) : m € [2"%]} be defined
as a collection of codewords chosen pairwise independently

from the set X according to the PMF q%. Then we have for
R 2 Hy(X) — Hp(Y|X) = L,(X;Y) — Hp(X) + Hy(X),

lim E¢ l

n—o0

> |pr ™)
yueyn
an

Px(X"(m))

_ﬂlff Z_ mpY\X(J X" (m))|| =0

Proof. The proof is provided in Appendix of [20]. (|
B. Main Result

Our main result is the characterization of R (pxy ) which
is the inner bound to Ry (pxy ). In the following, we let X =
(X1, X2), W = (W1, W),z = (x1,22) and w = (wy, w2).
Theorem 1. Given a PMF px, x,y, let P(px, x,v ) denote the
collection of all PMFs pow,w,xy defined on Q@ x Wi x Wy x
X x Y such that (i) pxy (2. y) = Xy weoxw Pewxy (¢,
x,y) for all (z,y) € X x Y, (i) W1 — QX, — QX2 — Ws
and X — QW — Y are Markov chains, (iii) |W1| < |X1),
(Wa| < |As|. Further; let B(powxy) denote the set of rates
and common randomness triple (R, Ra, C') that satisfy

Ry 2 I(X; Wi |[Wa, Q) + I(W, @ Wa;
Ry = I(Xo; W |Wp, Q) + I(Wy @ Wo; W1|Q)
Ri+C 2 I(X; W |[Wa, Q)+ I(Y; W1 X, Q)
+I(W1 @ Wa; Wh|Q)
+I(Wy ® Wo; W1|Q)
Ri+Ro+C = I(X; W1 |Wo, Q) + T(X; Wa |1, Q)
+ I(W1 @ Wa; WR|Q) + I(W1 @ Wa; Wh|Q)
(1)
where the above information theoretic terms are evaluated
with respect to the PMF pow,w.xy. Let

Rs(pxy) A Closure U Browxy) (2)
PQwxyEP(px, x,v)
We have
Rs(pxv) € Ralpxy)-
In  other words, the rate triple (Ry,Ra,C) €

Upcgﬁye?’(pxlxzy) B(powxy)) is achievable.

Note that the rate-region obtained in Theorem 2 of [19]
contains the constraint R, + Re + C = I(X; XY W1 W3 Q).
Hence when 2H(W, @ Wa|Q) < H(W7, Ws|@Q), the above
theorem gives a lower sum rate constraint. As a result, the
rate-region above contains points that are not contained within
the rate-region provided in [19]. To illustrate this fact further,
consider the following example.

Example 1. Let X; and X5 be a pair of binary symmetric
correlated sources with P(Xy = 1|X; = 0) = p, for some
€ (0,0.5). Let Y = X; @ Xy @ Q, where P(Q =1) =g,
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for some g € (0,0.5). Consider ¢ = p = 0.1 for a numerical
evaluation. Let us first consider the inner bound Ru(pi_y)
to the rate region R(px y) given in [1], developed using
unstructured code ensemble. Due to symmetry in the example,
it turns out that the search over the auxiliary random variables
for minimization reduces to a single-parameter minimization
which can be computed through derivative techniques. The
computation details are not provided for the sake of brevity.
In particular, the minimum value of Ry + Rs + C can be
computed to be 1.3965. Next let us consider the new inner
bound R,(px,y) developed using structured code ensemble
(Theorem 1). The minimum value of Ry + Ro + C can be
computed to be 0.9596.

The results can also be verified for the special case of ¢ = 0
which we provide in the following. Using the arguments given
in proof of Proposition 1 of [2], one can show that

Rulpxy) = {(R1,R2,C) : Ry = hy(p), Ry =
R+ Ry = 1+h,x,(p) C= }

hy(p),

Next let us consider the new inner bound R, (px y) developed
using structured code ensemble (Theorem 1). By choosing
W, = X and Wy = X5, we see that the following triple
of rates is achievable:

{(R1,R2,C) : Ry = hs(p),

In fact, one can show that this is optimal using the side
information argument. If X5 is sent losslessly, then from the

converse argument in the side information case, we see that
Rl = H(XQ‘XI) = f.',b(p).

Ry = hb(p),c = 0}.

IV. PROOF OF DISTRIBUTED SOFT COVERING USING
ALGEBRAIC STRUCTURED RANDOM CODES

The coding strategy used here is based on Unionized Coset
Codes, defined in Definition (2). The structure in these codes
provides a method to exploit the structure present in the
stochastic processing applied by decoder, ie.. Pyw, +w,-
Using this technique, we aim to strictly reduce the rate
constraints compared to the ones obtained in Theorem 1 of
[1].

Let x4 € [2"¢] denote the common randomness shared
amidst all terminals. The first encoder uses a part of the
entire common randomness available to it, say ' bits out
of the C bits, which is denoted by p; € [2"1]. Similarly,
let 15 € [2"C2] denote the common randomness used by
the second encoder. Our goal is to prove the existence of
PMFs pg\{;il)X{’ (ma|z]) @ 2} € AP, my € [O1], 1 € [27¢1],
Phiyxp(mal2d) + af e X2 ,mg € [O2],ue € [27¢7],

Py, My (Y7 My, ma) 1y € Y7, (my,ma) € [O1] x [O,]
such that
A PX =
2E Z pXY Z Z 2710
.I:n n .'-"E[2”( ] miE[01],
ng[@g]

P en (e )p2 g (male ) o, (7 m)| < e,

log ©,

<R+ erge2l (3)

for sufficiently large n. Fix a block length n > (, a positive
integer N and a finite field F,. Further, let ¥, and W5
be random variables defined on the dlphdbetb W, and Wz,
respectively, where Wy = Wh = [F,, and let za Wi e Ws.
building the code, we use the Unionized Coset Codes (UCCS)
[16] defined as below. These codes involve two layers of codes
(i) a coarse code and (ii) a fine code. The coarse code is a
coset of the linear code and the fine code is the union of
several cosets of the linear code.

For a fixed k x n matrix G' € F&*™ with k <
vector B € [}, define the coset code as

n,and a1l xn

C(G,B) & {z" : 2" = "G + B, for some a* € F}.

In other words, C(G, B) is a shift of the row space of the
matrix (. The row space of  is a linear code. If the rank of
G is k, then there are p’f codewords in the coset code.

Definition 2. An (n,k,l,p) UCC is a pair (G, h) consisting
of a k x n matrix G € F5*", and a mapping h : F., — FZ.
In the context of UCC, define the composite code as C =
UieFi C(G, h(i))

For every 12 (u1, po), consider two UCCs (G, hg’“)) and
(G, hy (22) ), each with parameters (n, k, 1, p) and (n, k, (2, p),
respectwely. Note that, for every p € [IN], the generator matrix
G remains the same.

For each (ji1,p12), the generator matrix G along with the
function h{" and h4* generates p**!1 and p**'2 codewords,
respectively. Each of these codewords are characterized by a
triple (a;,m;, j1;), where a; € ]F;f and m; € ]Fi;’ corresponds
to the coarse code and the fine code indices, respectively.
for i € [2]. Let wi(ay,my,p1) and wo(ag, ma, iu2) denote
the codewords associated with Alice and Bob, generated
using the above procedure, respectively, where wi(ay, my,
1) & a1G + BV (3), and wa(az, ma, p2) 2 asG + h§ (5).

Consider the collections cl = (,,5‘“1): 1<y <276
where ¢\ = (wy(ly, 1) : 1 < Iy <2) and ¢ = (cg‘“j) ;
1< p1 < 27C1) where 2 = (wa(la, p2) 1 1 < Iy < 2702),
For this collection, we let

pu |x1(u’1|3: )

(p1) A
EL|1|X" (a1,ma|zy) = Z m fwi{ar,map)=wi}
Tg(“ﬁl‘l‘1)
(12) A o Piva (w2 |z%)
ELMIX“ as,malay) = Z 2,2%2—1_‘_”)11{”(@57,,_2:”2):1”5
?o(Wz\Jrg)
The definition of E}”& and Ei(,“ T;( can be thought of as en-

coding rules that do not exploit the additional rebate obtained
by using binning techniques, specifically in a distributed setup.
A. Binning of Random Encoders

We next proceed to binning the above constructed collection
of random encoders. Since, UCC is already a union of several
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cosets, we associate a bin to each coset, and place all the code-
words of a coset in the same bin. For each i € F. and j € F'2,
let BV (i) & C(G, " (i) and B (5) & C(G, Y™ (5))
denote the i*" and the j'* bins, respectively. Formally, we
define the following PMFs. p(“‘f e (10 |2T)

1{m;0 if s (am) > 1,
_ S gl gm) if m; = 0 and 5" (z7)€ [0,1],
ZEE‘”"X" (ai,mg|zl) if m; % 0 and S,EMJ(.T?)E [0,1],
a{EF’“

[l

U(z7) defined as st (z7)
(I4|x7) and 7 € [2].

With this definition note that, an] " pf{}i‘)xn(mdx"f)

1 for all py € [2"“] and z} € AP and similarly,
g

Zfrzgiﬂp(‘:;§|)(“ (mg|zd) = 1 forall uy € [272] and 2% € XZ.
Also, note that the effect of introducing binning (by defining

the above PMFs) is in reducing the communication rates from

(S1,92) to (Ry, R2), where R; = %logp,i e {1,2}. Now,

we move on to describing the decoder.

for all 27 € Ty(Xy), st
Zme]F; Z‘"HEFPI Fta)

al‘ml\X]"

Il

B. Decoder mapping

We create a decoder that takes as an input a pair of bin
numbers and produces a sequence W™ € F7). More precisely,
we define a mapping f for pu 2 (p11, y12). acting on
the messages (my,ms) as follows. On observing g and the
classical indices (mj,ms) € IFf,} 52 Fif communicated by
the encoder, the decoder comtructs D(‘; {a e Fy

aG + b 6) + a2 () e T "(Z)}, and f*) (my,mg)

: (p1.p2) _ g~
if Dl,j = {CL}

wy otherwise ,

= (C)]

& {aG - h(M)( ) + ke “2)(3)

where 0 = pé and wy is an additional sequence added to
F}. Further, F® (my, mg) = wy for ¢ = 0 or j = 0. The
decoder then performs a stochastic processing of the output
and chooses y" according to PMF p@lz(yﬂf(“)(-ml.mg)).

This implies the PMF pf:), .
(1)

Py ajar s, Clmas ma) = py 2" (my, ma)). (5)

(-]-) is given by

We now begin our analysis of the total variation term given
in (3).

C. Analysis of Total Variation

Our goal is to prove the existence of a collections ¢;, ca for
which (3) holds. We do this via random coding. Specifically,
we prove that E[K]| < e, where the expectation is over the
ensemble of codebooks. The PMF induced on the ensemble
of codebooks is as specified below. The codewords of the
random codebook Ci('u”"‘) = (W;(a;,m;, p;) s a; € F’;! m; € Ff;)
for each p; € [2"] are only pairwise independent [16] and
distributed with PMF P(W;(a;, m;, p;) = w?) = p—l,; for each
ie[2].

Step 1: Error caused by not covering
We begin by splitting K into two terms using the triangle
inequality as K < S + S, where

(k1) n
pX n)pM ‘Xn('ml‘xl)
S22 Prv@y) =), 2 .
T C C‘
zyn H1,M42 My >0, 2 r Bl
1112>U
pS{}EBX“ (rrtzlw’é")pgﬁgm(y" |lm2) |,
n (n
&5 A PEE") ()
S Z Z zn(01+02)pJU:IX{"(m'llm?)
" y" | B2 my =00 my=0
(p2) (ma|z? (y"|
pMzIX” 2|Tq \U y"|m)|.

Note that § captures the error induced by not covering p'y+-
For the term corresponding to .S, we prove the following result.

Proposition 1. There exist functions ez(d), and 65(8), such
that for all sufficiently small § and sufficiently large n, we
have E[ ] 66(6) i{fSl >I(X1 VVl) H(W1)+logp+6~
and So > I1(Xo; W) — H(Wy)+log p+dg, where €5,05 ™, 0
as & ™, 0.

Proof. The proof is provided in Appendix of [20] (|

Now we move on to removing from S the error that is
induced due to binning.
Step 2: Error caused by binning
Note that S can be simplified using the definitions of
(1) ), PE,’;Q])X" (-|), and p(#)lM(ynlm) 45

My |XD
Z Z Z omn ((“'1 +C'2

S2 ) Ipky(™y™)

oA A2 my >0, wq, w;ETF‘
mao >0
B o e B2 (w3 123)5% 2 (5" | 4 (mama)),

where EI(’{J ")| xp (wf[.r;) is defined as EI(/:/, [X,q (w”|:u )
Z ‘ ;” :(wf| f) fwi( Vy=wi} L {wreTs (W |z7)}
P 7 Wil @i,y fii )=w 1 w x71)i?
nS; (1 ,,7) F 1 1 B 1|Ey

aiEF"p“

for i € [2]. Further we bound S using triangle inequality as
S < 51+ 55, where

Py (z")
271(01 +Cs)

Si2 ) kv y") -

LD..”' 1 y‘n

PIEDINED)

H1stt2 my =0, w w"EF
g >0

Eyriixp @) B o (w230l o (5" 0 + w3),

B2 X ¥ N

™, y" p1,H42 my >0, w Jws nel
mo =0

P
gn(01+02)

W xp (wflf)
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uifi?xf,(w |5 PY\Z(&J”|'W?'PWS)—P??\Z(ynlf(“)(ml»m?))'

To bound the term corresponding to S2, we provide the
following proposition.

Proposition 2 (Mutual Packing). There exist €5,(68), such that
Jor all sufficiently small § and sufficiently large n, we have
E[Ss] < €5,(8), if S1 — Ry < logp— H(Z), or equivalently,
Sy — Ry <logp — H(Z), where €g, ™, 0 as 6 ™, 0.

Proof. The proof is provided in Appendix of [20]. ]

Now, we move on to analyzing the term corresponding to S;.
Step 3: Term concerning Alice’s encoding

In this step, we separately analyze the action of the two
encoders in approximating the product distribution p%-(-).
For that, we split 57 as S1 < Q + Q2, where o

A 3
Ql = Z p%Y(En’y 2716‘1 Z Z Z p {'TW
%,y B my=>0wit,w ”EIF'”
B p (W 1o0)Blp g (W 2B)p% 2 ("o + w)|,

@2 Y

",y

erC Z Z Z p);(w E('u}'n‘xn('ujl |x7)

. n
H1 mi1=>0 wit,wie er,

(pa,m (wle3) = Byp w5|m3))p’;z(u i)
mao=>0

With this partition, the terms within the trace norm of )y
differ only in the action of Alice’s encoder. And similarly, the
terms within the norm of ()2 differ only in the action of Bob’s
encoder. Showing that these two terms are small forms a major
portion of the achievability proof.

Analysis of ();: To prove (7, is small, we characterize the
rate constraints which ensure that an upper bound to ¢}; can
be made to vanish in an expected sense. In addition, this upper
bound becomes useful in obtaining a single-letter characteri-
zation for the rate needed to make the term corresponding to
(}o vanish. For this, we define .J as

Ja Z Pxw,y (" 71)_2,,(1 Z Z ZPX (z")

x? Wiy H1 mqp=0 wl

E&%E’)IX{‘ (w] |$?)T’TI}L’;|X§ (w3 |25)py 2 (" |0l + w3))|.

We now bound the term corresponding to .J using the follow-
ing proposition which is based on the change of measure soft
covering discussed in Lemma 1.

Proposition 3. There exist €;(8),8;(8) such that for all suf-
ficiently small & and sufficiently large n, we have E[J] < €;
ifS1+Cy 2 I(U;RZV ) gy +logp— H(U)s, + 07, where o3
is the auxiliary state defined in the theorem and €j,0;5 ™, 0
as d N, 0.

Proof. The proof is provided in Appendix of [20]. O

Since ()1 < .J, hence @J1, can be made arbitrarily small
for sufficiently large n, if S; + C; > I(W; X, XoYW5) —
H(W1) +logp+ ;. Now we move on to bounding Q.
Step 4: Analysis of Bob’s encoding
Step 3 ensured that the random variables X XY W, are
close to a product PMF in total variation. In this step, we
approximate the PMF of random variables X; XY using the
Bob’s encoding rule and bound the therm corresponding to
(2. We proceed with the following proposition.

Proposition 4. There exist functions eq,(0) and d¢,(0), such
that for all sufficiently small § and sufficiently large n, we have
E[Q:] < €Qn if S1+C 2 I(Wy; X XoYWs) — H(W) +

logp+dg, and Sa+Cy = I(Wa; X1 XoY)— H(Wy) +log p+
dq,, where eq,,d0g, 0 as 0 ™, 0.
Proof. The proof is provided in Appendix of [20]. O

Hence, in bounding the terms corresponding to 1 and )5,
we have obtained the following constraints:
S1+C1 = I(Wy; X1 XoYWa) — H(Wh) + logp,
So + Cy = I(Wa; X1 XoY) — H(W3) + log p. (6)
By doing an exact symmetric analysis, but by replacing the
first encoder by a product distribution instead of the second
encoder in S;, we obtain the following constraints:
S+ Cy = I(Wy; X1 X0Y) — H(W,) + logp,
So+ Cy = I(Wa; X1 XoYW,) — H(W2) + logp.  (7)
By time sharing between the above rates (6) and (7), (see [20]
for more details) one can obtain the following rate constraints:
Sl +Cl 2[(1}[/71, X1X2Y) — H(I'Vl) + logp,
So+Co=T(Wo; X1 XoY) — H(W,) + logp,
S1+5:+C+Ca = I(VVJ’VQ; XngY) *H(M’yl, I’VQ) +2 log p.
D. Rate Constraints
To sum-up, we showed that the (3) holds for sufficiently
large n and with probability sufficiently close to I, if the
following bounds holds while incorporating the time sharing
random variable () taking values over the finite set o'

S = (X ) = H(W1|Q) + logp,
Sy = I(Xg; Wy \Q H(W2|Q) + log p,
51+ Cy = (X1 XoY; W1 |Q)— H(W1|Q) +1og p,
S+ Ch = I(X XY, W |Q)— H(W,|Q) +log p,
S1+ 8+ 0+ Ce = I(WiWo; X1 XoY|Q)— H(W,, W2 Q)
+ 2logp,
S1 — Ry =S5 — Ry <logp— H(W, & W5|Q),

0<R <5, 0

S g '-.SQ,
th bzl =0

Lastly, we complete the proof of the theorem using the
Fourier-Motzkin elimination [21] (see [20] for details).

ISince (), the time sharing random variable, is employed in the standard
way we omit its discussion here.
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