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Abstract

We provide a polynomial time cutting plane algorithm based on split cuts to solve integer
programs in the plane. We also prove that the split closure of a polyhedron in the plane has
polynomial size.

1 Introduction

In this paper, we work in R? and we always implicitly assume that all polyhedra, cones, half-planes,
lines are rational. Given a polyhedron P C R? we let P; := conv(P N Z?), where conv(-) denotes
the convex hull operator.

Given m € Z*\ {0} and my € Z, let Hy and H; be the half-planes defined by o < 7 and
mx > 7y + 1, respectively. Given a polyhedron P C R?, we let Py := PN Hy, P, := PN H; and
P™™0 = conv(Py U P;). P™™ is a polyhedron that contains P N Z2. An inequality cx < d is a
split inequality (or split cut) for P if there exist 7 € Z? \ {0} and 7y € Z such that the inequality
cx < d is valid for P™™. The vector (m,m), or the set Hy U Hq, is a split disjunction, and we say
that cx < d is a split inequality for P with respect to (m, 7). The closed complement of a split
disjunction, i.e., the set defined by my < mx < mg + 1, is called a split set. If one of Py, P; is empty,
say P; = (), the split inequality 7z < mg is called a Chvdtal inequality.

A Chvatal inequality mx < my where 7 is a primitive vector (i.e., its coefficients are relatively
prime) has the following geometric interpretation: Let z := max,cp 7z and let H be the half-plane
defined by mx < z. Then P C H and my = |z], because my € Z and P; = (). Since 7 is a primitive
vector, Hy is defined by the inequality mx < mg. We will say that the inequality max < 7y defines
the Chuvdtal strengthening of the half-plane H. If z = m, then we say H is Chvdtal strengthened.

An inequality description of a polyhedron P C R? is a system Az < b such that P = {z € R? :
Az < b}, where A € Z™*? and b € Z™ for some positive integer m. The size of the description
of P, i.e., the number of bits needed to encode the linear system, is O(mlog ||A]|cc + mlog ||b]|so)-
(Notation || - ||« indicates the infinity-norm of a vector or a matrix, i.e., the maximum absolute
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value of its entries.) It follows from the above argument that when the coefficients in each row of
A are relatively prime integers, the inequalities defining P are Chvétal strengthened.

Given a polyhedron P, a cutting plane or cut is an inequality that defines a half-plane H such
that P ¢ H but P; C H. A cutting plane algorithm is a procedure that, given a polyhedron P C R?
and a vector ¢ € Z2, solves the integer program max{cz : * € P N Z?} by adding at each iteration
a cut that eliminates an optimal vertex of the current continuous relaxation until integrality is
achieved or infeasibility is proven.

Integer programming in the plane is the problem max{cx : Ax < b, x € Z?} where c € Z?, A €
Z™*2 and b € Z™. In Section 2 we provide a cutting plane algorithm for this problem that uses split
inequalities as cutting planes and such that the number of iterations (i.e., cutting planes computed)
is O(m(log ||Al|s0)?). (The derivation of every cutting plane can be carried out in polynomial time
but involves a constant number of ged computations.)

We note that integer programming in the plane is well-studied and understood. In particular,
given a polyhedron P C R?, Harvey [10] gave an efficient procedure to produce an inequality
description of Pj. Eisenbrand and Laue [9] gave an algorithm to solve the problem that makes
O(m + max{log || A/, log ||b]|cc, l0g ||¢|loc }) arithmetic operations.

As split cuts are widely used in integer programming solvers, the scope of the present research
is to prove that this class of integer programs can also be solved in polynomial time with a cutting
plane algorithm based on split cuts (albeit not as efficiently as in [9]).

The second part of this paper deals with the complexity of the split closure of a polyhedron in
the plane. Given a polyhedron P C R2, the split closure PSPt of P is defined as follows:

Psplit — ﬂ Pﬂ',ﬂ'o
meZ2\{0},moEZ

Cook, Kannan and Schrijver [6] proved that P*Plit is a polyhedron. Polyhedrality results for cutting
plane closures, such as the above split closure result, have a long history in discrete optimization
starting from the classical result that the Chvdtal closure of a rational polytope (the intersection
of all Chvétal inequalities) is polyhedral (see, e.g., Theorem 23.1 in [12]), with several more recent
results [2, 7, 8, 3, 13, 11], to sample a few. The complezity of cutting plane closures, i.e., the
number of facets and the bit complexity of the facets, is relatively less understood. One of the
most well-known results in this direction is due to Bockmayr and Eisenbrand [4], who showed that
the complexity of the Chvatal closure of a rational polytope is polynomial in the description size of
the polytope, if the dimension is a fixed constant (see Theorem 21 in Section 3 below). It has long
remained an open question whether the split closure is of polynomial complexity as well, even in
the case of two dimensions. We settle this question in the affirmative in this paper; see Theorem 20
in Section 3.

Finally, as again shown in [6], if one defines P° := P and recursively P’ := (Pi~1)sPlit| then
P! = Py for some t. The split rank of P is the smallest ¢ for which this occurs. It is a folklore result
that if P C R? is a polyhedron, its split rank is at most 2; we will observe in Remark 34 that this
also follows from the arguments used in this paper.

Some notation Let dim(Q) denote the dimension of any polyhedron @. A polyhedron in R?
which is the intersection of two non parallel half-planes is a full-dimensional translated pointed cone.



However, to simplify terminology we will often refer to such a polyhedron as a translated cone. Its
unique vertex is the apez of the cone. We will use the notation (Hy, Hy) := Hy N Hs to denote the
translated cone formed by the intersection of two half-planes Hi, Ho. Given a half-plane H, we let
H= denote its boundary.

2 Tilt cuts and the clockwise algorithm

To simplify the presentation, throughout the paper the notions of facet and facet defining inequality
of a polyhedron will be interchangeably used.

Definition 1. (Tilt of a facet about a pivot with respect to a translated cone) Let C' = (Hy, Hs) be
a translated cone with apex not in Z2, and assume that Hy is Chuvdtal strengthened.

Let H be the line in Hy parallel to H and closest to Hi such that HNZ2 #0. Letp e
HF NCNZ?and q € (HF \ C) NZ?* be the unique points such that the open line segment (p,q)
contains no integer point. Let T € HNCNZ? and Yy € (H \ C)NZ? be the unique points such that
the open line segment (x,y) contains no integer point (possibly x € H5 ).

Two parallel sides of the parallelogram P := conv(p, q,y,x) are contained in HT UH. The other
two sides of P define a split disjunction in the following way. Let Wy, W1 be the half-planes such
that W§~ is the line containing p and x, W is the line containing q¢ and y, and Wo N W1 = 0. As
P has integer vertices but contains no other integer point, P has area 1 and Wy, W1 define a split
disjunction (mw,mp).

Let Fy be the facet of C induced by Hi. We now define the tilt T of Fy with pivot p with respect
to C. If CNWy =0, then (mw,m) defines a Chvdtal cut for C (as in Fig. 1(i)), and we let T be
this Chvdtal cut. Otherwise let x' € Wi NCNZ? and y € (Wi \ C)NZ? be the unique points such
that the open line segment (2',y") contains no integer point and let ¢' be the point of intersection
of [2',y'] and Hy (possibly ¢ = 2'), see Fig. 1(ii). We define T as the split cut for C'" with respect
to (m,mg) such that T= contains p and y'. (Note that in this case T is not the “best” split cut for
C' with respect to (7, mg), as it does not define a facet of conv((C NWy) U (C NWY)).)

In the next two lemmas we refer to the notation introduced in Definition 1.
Lemma 2. Let ax < 8 and dx < § be inequality descriptions of Hy and Ho respectively, where the

coefficients of a are relatively prime. Then dq — 6 < |a1ds — agdy|.

Proof. Let p be as in Definition 1. As a1,as are relatively prime, either ¢ = p + (_GGQ) or
1

g=p+ < aj > Taking an inner product with d, we obtain that dq¢ —dp < —asdy + a1ds in the first
—a1
case and dg — dp < asdy — ay1ds in the second case. Since p € Hs, dp < §. The result follows. ]

Lemma 3. Let dx < § be an inequality description of H.

(i) T is always Chvdtal strengthened.

(i) T defines a facet of Ct if and only if T is a Chvdtal cut for C.
(iii)) When C N Wy # 0, we have 0 < dy' —§ < %.



Figure 1: Illustration of Definition 1.

Proof. (i) As p € T= NZ? and T is a rational half-plane, T is always Chvatal strengthened.

(ii) Recall that T is a Chvétal cut for C' if and only if C N W7 = (. When C N W; = () we have
r € T= N CNZ2 whereas when C N Wy # () we have ¢/ € (T~ \ C) N Z? and there is no integer
point in the open segment (p,y’). Since T is a facet of Cy if and only if 7= N C contains an integer
point different from p, this happens if and only if T is a Chvatal cut.

(iii) When C' N W; # 0, we have that q,y,9 € (W NZ*)\ C, 2/ € (Wi NZ?) N C, while
¢ € Wi NHy and (2/,y') has no integer points. Therefore the length of [¢/, ¢] is at most half the
length of [g,¢']. This implies that 0 < dy’ — § < %49, O

Remark 4. The algorithm below uses the following fact: If P C R? is not full-dimensional, the
integer program max{cx : x € PN Z?} can be solved by applying one Chvdtal cut. Specifically, if
dim(P) < 0, the problem is trivial, and if dim(P) = 1, with one cut we can certify infeasibility if
aff(P) N Z2 = () (where aff(P) denotes the affine hull of P). The cut certifying infeasibility has
boundary parallel to P in this case. Otherwise, if aff(P) NZ? # (), the problem is unbounded if and
only if max{cz : ¥ € P} = oo. Finally, if aff(P) NZ? # () and max{cx : x € P} is finite, the
integer program is either infeasible or admits a finite optimum: this can be determined by applying
one Chvdtal cut whose boundary is orthogonal to P. We note that, from standard results in integer
programming, the Chvdtal cuts considered above have polynomial encoding length.

Definition 5. (Late facet and early facet) Given an irredundant description Ax < b of a full-
dimensional pointed polyhedron P with m facets, we denote by F; the facet of P defined by the the
ith inequality a'z < b; of the system Ax < b. Given a vector ¢ € 7>\ {0} such that the linear
program max{cx : x € P} has finite optimum, and a specified optimal vertex v, we assume that
al,...,a™ are ordered clockwise so that v € F,, N Fy and c belongs to the cone generated by a™
and a'. We call F,, the late facet and Fy the early facet of P with respect to v. This ordered pair
defines the translated cone (F,,, F1) with apezx v.



Algorithm 1 The “clockwise” cutting plane algorithm
Input: A pointed polyhedron P C R? and a vector ¢ € Z? \ {0} such that max{cx : x € P} is
finite.
Output: An optimal solution of the integer program max{cx : * € P N Z?} or a certificate of
infeasibility.
1: Initialize @ := P.
2: If dim(Q) < 1, apply at most one Chvétal cut to output INFEASIBLE or an optimal solution.
3: Else solve the linear program max{cv : v € Q} and let v* be the optimal vertex. If v* € Z2,
STOP and output v*.
4: If v* ¢ 72, number the facets of Q in clockwise order Fi,...,F, o so that v* € (F,,q, F1). If

F, ¢ is not Chvatal strengthened, let T' be its Chvatal strengthening. Otherwise let T' be the
tilt of F,,,o with respect to (F,,q, F1). Update @Q := Q@ N T and go to Step 2.

In Algorithm 1, if @ is full-dimensional and has two vertices that maximize cx over @, then
arg maxgeq ¢ is a bounded facet of @ (“optimal” facet). We assume that:

Assumption 6. The optimal vertex v* is the first vertex encountered when traversing the optimal
facet in clockwise order.

Therefore if two vertices maximize cx, the optimal facet is F} in our numbering. With this
convention, inequality 7" computed in Step 4 at a given iteration will be tight for the vertex that is
optimal at the successive iteration. Note that if arg max,cq cx is an unbounded facet of () and the
unique vertex is the first point encountered on this facet when traversing it clockwise, this facet
is F1 in our numbering, and if the unique vertex is the last point encountered on this facet when
traversing it clockwise, this facet is F},, in our numbering. See Figure 2.

v . v* = c
E, 1 \\

(a) (b)

Figure 2: Illustration of Assumption 6

Remark 7. A cutting plane algorithm typically works with a vertex solution, so it is natural to
assume that P is pointed. (The integer program can be solved with at most one Chuvdtal cut when
P is a polyhedron in the plane which is not pointed and it is known from standard results that this
Chudtal cut has a polynomial size).

If P is a pointed polyhedron but max{cx : x € P} is unbounded, the integer program is either
infeasible or unbounded. There are ways to overcome this, however it seems difficult to efficiently
distinguish these two cases by only using cutting planes, even when dim(P) = 2.



We will need the following theorem about the integer hulls of translated cones in the plane.

Theorem 8 ([10]). Given a description Az < b of a translated cone C C R?, C; has O(log || Al|s)
facets. Furthermore, each facet of Cr has a description ax < 3 where ||allco < || Al|oo-

We also need the following lemma.

Lemma 9. Let P be a pointed polyhedron in R™ such that P; # (). Let u be the largest infinity
norm of a vertex of P or Pr. Let ax < 3 be an inequality which is valid for Py but is not valid for
P. Then |5] < nul|al|so-

Proof. As P; # (), by Meyer’s theorem (see e.g. Theorem 4.30 in [5]) P and P; have the same
recession cone. Therefore max,cp ax is finite and is larger than 3, because ax < [ is not valid
for P. Since finite maxima are attained at vertices, we have that —nulaljcc < maxgzep, az < 8 <
maxgep ar < nullal/s, which proves the lemma. O

Next, we will prove that when the relaxation is a translated cone, the clockwise algorithm finds
the solution in polynomial time. An important point of the proof is that when the tilt is not
a Chvatal cut, the pivot remains unchanged. Otherwise, a new facet of the integer hull of the
translated cone is obtained when the tilt is a Chvatal cut (see Lemma 3 (ii)). Since one has only
a polynomial number of facets of the integer hull (see Theorem 8), it suffices to show that only a
polynomial number of tilts are made about any one fixed pivot. This is achieved by appealing to
Lemmas 2 and 3. We formalize this below.

Theorem 10. Let Az < b be a description of a translated cone C C R? and let ¢ € 72\ {0}
be such that max{cx : © € C} is finite. Then the clockwise algorithm solves the integer program
max{cz : # € C NZ2%} in O((log||Als)?) iterations. Furthermore, there is a polynomial function

f(,+) (independent of the data) such that every cut computed by the algorithm admits a description
ar < § where ||alloo < [[Alloo and [B] < f(||Allco [[blloo)-

Proof. We use the same notation as in Definition 1 and the fact that since C' is a translated cone,
if p € Z2 is a pivot element of a cut computed by the algorithm, then p € C.

Let T; be the cutting plane produced by the clockwise algorithm at iteration ¢, where we assume
that Tj is the Chvatal strengthening of H;.

CrLaM 1. If T; defines the early facet of C N1y N ---NT;, the clockwise algorithm computes an
optimal solution in iteration i + 1.

Proof of claim. In this case (T;_1,T;) is the new translated cone whose apex is the pivot element
p; of iteration i. As p; € C' NZ2, at iteration i 4+ 1 the algorithm determines that p; is an optimal
solution. o

T; is the tilt (with pivot element p;) with respect to the translated cone (T;_1, H2). Also recall
that by Lemma 3 (i), 7; is Chvétal strengthened. This fact will be important because we will work
with the translated cone (7;, H2) below and use notions from Definition 1 and results based on
these notions, which assume that the facet Hy; = T; of the translated cone is Chvatal strengthened.

CrLAM 2. There is a polynomial function f(-,-) such that T; admits a description ax < [ where
lalloc < [|Alloe and [B] < f([[Alloo 1b]loo)-



Proof of claim. By induction on i. The base case ¢ = 0 is trivial.

We first show that 7; admits a description ax < 8 where ||al|c < [|A||oo- If T; defines a Chvatal
cut with respect to the translated cone (T;_1, Hz), as by induction T;_; satisfies the claim, we are
done by Lemma 3 (ii) and Theorem 8.

So we assume that (T;_1, H2) W7 # () (where W] is as in Definition 1 with respect to (Tj—1, H2)).
Consider the translated cone (T;_1, HS), where H} is the translation of Hy through ¢’ (see Figure
1(ii)). As T; is the tilt with respect to (T;—1, Hs), we have that p;,y’ € T;- N Z%. Furthermore, T;_;
satisfies the claim by induction. It follows that T; is a facet of the integer hull of (7;_1, H}) and,
by Theorem 8, T; admits a description ax < 8 where ||allc < || A]|co-

Let w be the largest infinity norm of a vertex of C' or C7. Then u is bounded by a polynomial
function of ||Al|s and ||b|ec (see, e.g., [12, Theorems 10.2 and 17.1]). Therefore, by Lemma 9, there
is a polynomial function f(-,-) such that || < f(||A/co,||b]|cc). This completes the proof of the
claim. o

We finally show that in O((log ||A]|~)?) iterations the clockwise algorithm finds an optimal
solution to the program max{cz : € C N Z?%}. By Claim 1 if the cut T; becomes the early facet
in iteration 4, then the algorithm finds an optimal solution in iteration ¢ + 1. By Claim 2 all cuts
T,...,T; admit a description az < 8 where ||a||c < ||A|lco and |5] < f(||Alloo, ||b]|co)- Therefore,
by Theorem 8, it suffices to show that within at most O(log || A||«) iterations beyond any particular
iteration 7, the algorithm either finds an optimal solution or computes the facet adjacent to T; of
the integer hull of the translated cone (T;, H2). Note that, as all pivot elements are in C, this is
also a facet of Cf.

By Lemma 3 (ii), the facet adjacent to T; of the integer hull of the translated cone (T}, Hs) is
obtained when Wi N (T, Ha) = 0, i.e., when T;1; is a Chvatal cut (this Wj is as in Definition 1
with respect to the translated cone (T;, Hs)). If W1 N (T}, He) # 0, by Lemma 3 (iii), we have that
0<dy —6< qu—57 where dz < § is the inequality defining Ho in the description of (7;, Ha). We
now observe that the new translated cone to be processed is (T;41, Hz) with apex 3. Moreover, the
pivot remains p for the next iteration. Further, it is important that the facet Hs has not changed.
Thus, one may iterate this argument and since dy’ — § € Z at every iteration, by Lemma 2, after
at most O(log||A||~) iterations the algorithm will produce a Chvétal cut. O

Corollary 11. Any cut derived during the execution of the clockwise cutting plane algorithm on
any pointed, full-dimensional polyhedron P admits a description ax < 3 where ||al|c < ||Allso and
18] < f(|Alloos ||b]lcc), where f(-,-) is the function from Theorem 10.

Proof. The argument in Claim 2 of the proof of Theorem 10 also applies here to show that ||a|lec <
|A||loo, since we introduce new cutting planes by processing translated cones formed by original
facet defining inequalities of P or the previous cuts.

To argue for the right hand side 3, we consider two cases: when P; # () and when P; = (.
In the first case, the result follows from Lemma 9. In the second case, we again break the proof
into two cases: when P is bounded and when P is unbounded. When P is bounded, note that all
the cuts except for the last one must be valid for at least one vertex of P (otherwise, we would
have proved infeasibility). For any such cut, let w be the vertex that is valid and let w’ be a
vertex that is cut off (which must exist because no cut in the algorithm is valid for P). Then,
=2||lw||solla]|oe < aw < B < maxzep ar < 2||w']|col/al|co- This proves the claim for all cuts except

for the last one. The last cut is obtained from a translated cone defined by original inequalities
and/or previous cuts. Theorem 10 now applies.



We now tackle the case when P is unbounded and P; = (). This implies that P has two
unbounded facets. Let the half-planes corresponding to these unbounded facets be H; and Hs. We
must have that H; N Hs is a split set. Let the cuts introduced by the algorithms be T7,...,T}.
While at least one vertex of P survives, the argument from above can be used to bound |3|. Thus,
let s € {1,...,k} be the smallest index such that T; cuts off every vertex of P. T; must be derived
from a translated cone using original inequalities and/or previous cuts and Theorem 10 applies. If
i = k, then we are done. Otherwise, after iteration ¢ we have a polyhedron with three facets Hy, T;
and Hs, in clockwise order. If the new optimal vertex is at the intersection of H; and Tj, then the
Chvatal strengthening of Hy gives an empty polyhedron and the algorithm terminates. Else, if the
new optimal vertex is the intersection of T; and Ho, then the new cutting plane T;;; will be a tilt
of T; and will therefore also cut off every vertex of P. Repeating this argument, it follows that for
all 7 < j <k, the half-plane T} cuts off every vertex of P, and T; N P = T; N Hy N Ha. Moreover,
all the cuts T;,...,T;_1 are valid for the integer hull of the translated cone formed by T; and Ha,
and Theorem 10 applies. Finally, T}, is either a Chvatal cut obtained by strengthening Hi, or is a
cut valid for the translated cone formed by T;_1 and Hs. In either case, we are done by previous
arguments. O

We now extend Theorem 10 to handle the case of a general pointed polyhedron P C R2.

Definition 12. (Facet ordering) We let Q; be the polyhedron computed at the beginning of iteration
1 of the clockwise algorithm and T; be the cutting plane computed at iteration i. We start our
iterations at i = 0,1,..., so Qo = P and Q; = Q;—1 NT;_1. When Q; is full-dimensional, we let
Fi1,...,Fim, be the facets of Q; so that the optimal vertex of Q; is the apex of (Fjm,, Fi1) and T;
is either the Chvdtal strengthening or the tilt of F; ,, with respect to (Fjm,, Fi1).

Note that, when @; is full-dimensional, T; is either the early or the late facet of Q;+1, as T;
defines the optimal vertex chosen by the algorithm.

Definition 13. (Potentially late and potentially early facets) Given vectors a, b, we define Z(a,b) as
the clockwise angle between a and b, starting from a. When Q; is full-dimensional, let a;1,. .., G;m,
be the normals of Fii,...,Fim, (as defined in Definition 12). Then Z(aim,;,c) < 180° and
Z(c,a;1) < 180°. We define a facet F' of Q; with normal a potentially late if either F' = F; ,,, or
0 < Z(a,c) < 180° and potentially early if either F' = F;1 or 0 < Z(c,a) < 180°. Note that if a
facet of Q; satisfies Z(c,a) = 180°, then it cannot define the optimal vertex of Q;, j > i.

Lemma 14. Consider iterations i and j > i and let Q); and Q) be the full-dimensional polyhedra
defined in Definition 12 at these iterations. If F is a potentially early facet of Q;, then it cannot
become a potentially late facet of Q; and if F' is a potentially late facet of Q;, then it cannot become
a potentially early facet of Q;.

Proof. Let a be the normal of F. The result is obvious when Z(a,c) > 0 and Z(c,a) > 0. If
Z(a,c) =0, i.e., F = argmax,cq, cx, then F' remains potentially late or potentially early, by the
choice of the optimal vertex; see Assumption 6. O

Definition 15. (Families of facets and tilts) Given a full-dimensional pointed polyhedron P =
Qo € R? and an objective vector ¢ € Z* \ {0} such that max{cx : x € P} is finite, let Fy1,..., Fox
be the potentially early facets of Qo and Fy pi1,. .., Fom, be the potentially late facets of Qo. We
say that facet Fyy of P belongs to family £ and we recursively assign a cut T; produced at iteration
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Figure 3: Illustration of the proof of Theorem 17. In (a), m; = 7, Fj; is the early facet, and Fj 7 is
the late facet as defined in Definition 5. In (b), the left-hand side normals correspond to potentially
late families, while those at right-hand side belong to potentially early families. Thus, E; = 3 (L;
will depend on the original set of facets).

i of the algorithm to the family of the late inequality that is used to produce T;. We finally say that
family ¢ is extinct at iteration k if no facet of Q. belongs to family €.

Remark 16. By Lemma 14, no facet that is potentially early can become potentially late and vice
versa; therefore, all cuts produced by the clockwise algorithm belong to the m —k families associated
with the potentially late facets of Qo (assuming the input to the algorithm is full-dimensional;
otherwise, the algorithm terminates in at most two iterations —see Step 2 in Algorithm 1).

Theorem 17. Let Az < b be a description of a pointed polyhedron P C R? with m facets, and
c € 72\ {0} be such that max{cz : x € P} is finite. Then the clockwise algorithm solves the integer
program max{cz : x € PN Z?} in O(m(log||Al|s)?) iterations.

Proof. We refer to the definitions of ); and T;, and when @); is full-dimensional, to the definitions
of F1,..., Fjm, with corresponding normals a; 1, ..., a;m, (see Definition 12 and Definition 13). In
this case, we assume Fj1,..., F;, are potentially early and Fjy, t1,...,F;;,, are potentially late.
Moreover, let E; be the number of facets of Q; that are potentially early (i.e., F; = k;) and let
L; be the number of families that are not extinct at iteration ¢ and such that the last inequality
added to the family is potentially late. See Figure 3 for an illustration of these notations. Figure 4
illustrates some iterations of a potential run of the algorithm.

By Theorem 10, there exists a function z + g(z), where g € O((log 2)?), such that the clock-
wise algorithm applied to any translated cone with description A’z < b terminates in g(||A||oo)
iterations. Define ¢ := g(||A||oo)-

Cram. Assume dim(Q;) = 2. Let j be the largest natural number such that at iteration i + j,
dim(Qiyj) = 2, Fitjm; isin the same family as F; ,,,, and F;;1 and F; 1 are both defined by the
same normal. Then

1. 7 <t, and



Figure 4: Illustration of an instance P with 3 iterations of the algorithm producing cuts T, T» and
T3 with pivots p1, p2 and ps3 respectively. The consecutive LP optimal solutions are labeled as vy,
vy and vs.

2. either dim(Qi4j+1) < 1, or the algorithm terminates at iteration i + j + 1, or Eiyji1 +
2Li+j+1 < Ez + 2L7, — 1.

Proof of claim. 1. follows from Theorem 10 and Corollary 11, after observing that during iterations
i,...,1+ 7 the algorithm computes the same cuts as those that it would compute if the polyhedron
at iteration ¢ was the translated cone (Fj p,, Fi1).

We now prove 2. Suppose dim(Q;i4;+1) = 2. We will establish that either the algorithm termi-
nates at iteration i +j+1 or B j41+2L4 511 < E;+2L; — 1. Let (Fi+j+1,mi+j+1,ﬂ+j+1,1) be the
translated cone at iteration 7 + j + 1. Recall that, by the choice of the optimal vertex, T;4; must
be either Fiyji1m;, ;. or Fitjr11. We distinguish two cases.

Case 1 Assume T = Fitjt1,m;, 4, Since Tiy; is in the same family as Fiyj m,;, which is in the
same family as F; ,,;, by definition of ¢ we must have that Fj; is distinct from Fj ;i1 1. Then F;;
is a redundant inequality for Q;y;j41. Therefore, by Lemma 14, E; ;11 < E; — 1 and L;yj41 = L;.
Thus, Eitj41 +2Li4j41 < E; +2L; — 1.

Case 2 Assume T;1j = Fiqj11,1. Let p be the pivot element of the translated cone (Fiyjm,, ;, Fitj1)-
If p is feasible, i.e., p € P N Z?, then p will be the optimal integral vertex in the iteration i + j + 1
and the algorithm terminates. Else p is infeasible. This means that p must violate the inequality
defining Fi1j11,m; P Consider the facet F' of P that is the original facet of P from the same
family as T;4;. We will now show that F' and all the inequalities in this family except for T;,;
are redundant for (Fiij11,m,, .1, Ti+j) and therefore for Qiyjy1 € (Fitjt1,miy i1 Titj). Since we
have processed this family during the algorithm, there must have been an optimal vertex defined
by (F, F') for some inequality F”’ that is facet defining at some point during the algorithm. Let @’
be the polyhedron computed as in Definition 12 at the iteration of the algorithm when the vertex
v defined by (F, F') was optimal.

Since Fitj11,m;,;4, is not redundant for Q" (as it is not redundant for Q;4 ;41 which is a subset
of @), and the inequality defining Fi{ji1m,,;,, is valid for the optimal vertex v of @', its normal
vector cannot be contained in the cone generated by the normals of F' and F’. Since the vertex
defined by (F, F’) was optimal for the relaxation @', ¢ is contained in the cone generated by the
normals of F" and F’. Thus, the normal of Fj4 i1 m, +j41 cannot be contained in the cone generated
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by the normal of F' and c¢. This means that the normal of F' is contained in the cone between the
normal of Fi+j+17mi+j+1 and c¢, since both F' and Fi+j+1,mi+j+1 are late facets at some time during
the algorithm. Moreover, the normals of the inequalities in the family of F' are contained in the
cone generated by the normal of F' and T, ;, and therefore, in the cone generated by the normals
of Fitjt1m, ., and Tj1;. Since our current optimal vertex is defined by Fiiji1m,,,,, and Tiij,
all these inequalities from the family must be redundant for (Fyj11m, Y +17Ti+j)~

Thus, we have established that F' and all the inequalities in its family except for T;,; are
redundant for @;4j4+1. Since Tj4; is from the same family and is early at iteration i + j + 1, we
must have L;1 ;11 < L; —1 by Lemma 14. Moreover, T;,; is the only new early facet, and therefore,
E;i; < E; +1 by Lemma 14. Thus, E;;j41 +2L;1 ;41 < E; +2L; — 1. This completes the proof of
the claim. o

By the above claim, in at most O(log||A||%,) iterations after iteration i, either the algorithm
terminates or the number E;+2L; must decrease by at least 1. Since the maximum value of F;+2L;
is at most 2m, we have the result. O

Remark 18. The upper bound on the number of iterations given in the above theorem does not
depend on c.

Remark 19. By Lemma 3, when C N Wy # 0, the tilt T produced by the algorithm may not
be a facet of the split closure of the translated cone C. However, this property is crucial for the
convergence of the algorithm. Indeed, if the “best cut” is used, the algorithm may not converge as
shown by the following example.

Define pg := 3 and pjy1 := 2p; — 2 for all integers i > 1. Given i > 0, consider the following
integer program, which we denote by P;:

max xo (1)
s.t.xp <4 (2)
(2pi — Da1 — (4pi —4)22 > 0 (3)

5x1 — 8xy > 0 (4)

T1, T2 €7 (5)

(Note that for i = 0 the inequalities Eq. (3) and Eq. (4) coincide.) The optimal solution of the
2t
Eq. (2) and Eq. (3) at equality.

We will use the same notation as in Definition 1, where Hy and Ho are the two half-planes
defined by Eq. (3) and Eq. (2), respectively. Since (2p; — 1) and (4p; — 4) are coprime numbers, H
is defined by the equation (2p; — 1)x1 — (4p; — 4)xe = 1. Combined with the fact that the pivot is
p = (0,0), this implies that ¢ = (4p; — 4,2p; — 1).

We claim that © = (—2p; + 3,—p; + 1) and y = (2p; — 1, p;). This follows from the following
three observations: (i) these two points are integer and belong to H; (i) —2p;+3 < 4 < 2p; — 1
(because this is true for i =0 and p; increases as i increases); (iii) y —x = q — p.

It follows that Wi~ is defined by the equation (p; — 1)x1 — (2p; — 3)xe = 1. This line intersects

the edge {(1‘1,1‘2) cx1 =4, 19 < %} of the continuous relaxation at ¢ = (4, 3??3) (note that

% < 2;?—__11). Thus the strongest cut would be (4p; —5)x1 — (8p; —12)xe > 0. Since pi+1 = 2p; — 2,

continuous relaxation is (4 ) ¢ 772, which is the unique point satisfying both constraints
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the cut can be written as (2p;4+1 —1)x1 — (4pit1 —4)xe > 0. When we add this cut to the continuous
relaxation, Eq. (3) becomes redundant and we obtain problem P;y1. Then this procedure never
terminates.

3 Polynomiality of the split closure

In this section we prove the following result:

Theorem 20. Let Az < b be a description of a polyhedron P C R? consisting of m inequalities.
Then the split closure of P admits a description whose size is polynomial in m, log ||Al|~ and

1og [[b]] -
We will make use of the following result, which holds in any fixed dimension.

Theorem 21. [}] Let d > 1 be a fized integer and let Az < b be a description of a polyhedron
P C RY consisting of m inequalities. Then the Chudtal closure of P admits a description whose
size is polynomial in m, log ||A|lec and log ||b]|cc-

Because of Theorem 21, in order to prove Theorem 20 it is sufficient to show that the intersection
of all the split cuts for P that are not Chvatal cuts is a polyhedron that admits a description of
polynomial size.

We now start the proof of Theorem 20. We can assume that P C R? is pointed, as otherwise
it is immediate to see that the split closure of P is P; and is defined by at most two inequalities.
The following result holds in any dimension.

Lemma 22 ([1]; see also [5, Corollary 5.7]). The split closure of P is the intersection of the
split closures of all the corner relaxations of P (i.e., relazations obtained by selecting a feasible or
infeasible basis of the system Az <b).

Since there are at most (g”) corner relaxations of P (i.e., bases of Az < b), because of Lemma 22
in the following we will work with a corner relaxation of P, which we denote by C. Thus C is a
full-dimensional translated pointed cone. We denote its apex by v.

Definition 23. (Effective split sets and effective split cuts) We say that a split set S is effective
for C if v lies in its interior; note that this happens if and only if there is a split cut for C derived
from S that cuts off v. Such a split cut will also be called effective.

Since C'is a translated cone, for every effective split disjunction (7, m) we have C™™ = CNH
for a unique split cut H derived from this disjunction. In the following, whenever we say “the
split cut derived from a given disjunction” we refer to this specific split cut. Note that when the
boundary of an effective split set S intersects the facets of C' in precisely two points, the split cut
derived from S is delimited by the line containing these two points, while when the boundary of S
intersects the facets of C' in a single point, the line delimiting the split cut derived from S contains
this point and is parallel to the lineality space of S. (In the latter case, the split cut is necessarily
a Chvétal cut.)

In the following, we let intr(X) denote the interior of a set X C R2.

Lemma 24. FEvery effective split cut for C is of one of the following types:
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1. a Chvdtal cut;

2. a cut derived from a split set S such that S Nintr(Cy) # 0; in this case, both lines delimiting
S intersect the same facet of Cf.

Proof. Consider any effective split cut given by a split set S. We look at two cases: the recession
cone of C' contains a recession direction of S, or not. In the second case, one of the boundary of
S intersects with both facets of C', and the other one does not intersect with C' since S is assumed
to be effective. Then the split cut is a Chvatal cut. In the first case, if the recession direction of
S is on the boundary of the recession cone of C, the two boundaries of S are parallel to a facet
of C. In this case as well, the split cut is a Chvatal cut. Finally, suppose that the interior of the
recession cone of C' contains a recession direction of S. Since C' and C7 have the same recession
cone, S intersects the interior of C;. As no vertex of C7 can be in the interior of .S, the bounding
lines of S must intersect the same facet of Cj. ]

Definition 25. Let F},... , FP be the facets of C;. For every i € {1,...,n} we denote by (% the

line containing F} Furthermore, we define 63 as the unique line with the following properties:
1. @ is parallel to 0% ;
2. 63 contains integer points;
3. there is no integer point strictly between fil and EZ'I;
4. ﬁg NCr=0.
Given two split cuts H, H' for C, we say that H dominates H' if CNH C C N H'.

Lemma 26. Fizi € {1,...,n} and define the split set S := conv (¢}, (%), If v € intr(S), then the
split cut for C derived from S is a Chvdtal cut that dominates every split cut derived from a split
set intersecting F}

Proof. Since v € intr(S), the facets of C' do not intersect £4. This implies that the split cut for C
derived from S is a Chvatal cut.

Let S’ be any split set intersecting F' }, and denote by hi, he the two lines delimiting S’. Since
there is no integer point in intr(S’), both hy and hs intersect Fi. We denote by z! (resp., 2%) the
intersection point of hy (resp., hy) and F¥. Also we define y! (resp., y?) as the intersection point

~

of hy (resp., h2) and ¢%. Since x',2? € C and y',y* ¢ C (as ¢} does not intersect C), hy and ho
intersect the facets of C' in two points contained in intr(S). This implies that any split cut derived
from S’ is dominated by the Chvatal cut derived from S. O

Definition 27. (Unit interval) Given a line ¢ containing integer points, we call each closed segment
whose endpoints are two consecutive integer points of £ a unit interval of £.

Observation 28. Any split set can intersect at most one unit interval of a given line not parallel
to the split.
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Figure 5: Tllustration of the notation used in the proof of Lemma 31. The red cutting plane H(.J, J )
dominates the dark green cutting plane derived from the split S.

Definition 29. Fizi € {1,...,n}. Given a unit interval J of 63 and a unit interval J of K"I, there
exists a unique parallelogram of area 1 having J and J as two of its sides. We denote by S(J, j)

the split set delimited by the lines containing the other two sides of this parallelogram. If S(J, j) 18
effective, we denote by H(J,J) the split cut for C' derived from S(J,J).

Lemma 30. Fiz i € {1,...,n} such that v ¢ intr(conv(¢%,¢%)). Then there exists a unique unit

interval J of 63 such that J N C # (). Furthermore, for each unit interval J of fif contained in F},
S(J,J) is an effective split set.

Proof. The existence of J follows from the assumption v ¢ intr(conv(fil,@)). Furthermore, J is

~

unique because, by definition of Kil, there are no integer points in C'N E}.

We now prove that for each unit interval .J of £; contained in Fi, S(.J,.J) is an effective split
cut. Up to a unimodular transformation, we can assume that J = {z € R%2:29=0,0<uz < 1}
and J = {z € R? : 29 = 1, 0 < z; < 1}. Then the split set S(.J,.J) is defined by the inequalities
0 S T1 S 1.

Since the second coordinate of v is vo > 1 and Cf is contained in the half-plane defined by
29 < 0 (as this inequality induces facet F' } of Cf), it follows that both facets of C' intersect the
lines defined by z2 = 0 and x9 = 1. Thus one facet of C' contains points (a;,0) and (b1,1), and
the other facet contains points (ag,0) and (be, 1), where a1 < 0, a2 > 1 and 0 < by < by < 1. It
is now straightforward to verify that v, which is the intersection point of the two facets, satisfies
0 < v1 < 1. This shows that S(.J,J) is an effective split set. O

Lemma 31. Fizi € {1,...,n}. Let S be a split set that gives an effective split cut of type 2 from
Lemma 24, where S intersects Fyj. Suppose that this split cut is not dominated by a Chvdtal cut.
Let J be the unit interval of 53 that intersects both lines delimiting S (see Observation 28), and let

J be the unit interval of 0% such that JNC #0 (see Lemma 30). Then:
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(i) both lines delimiting S intersect J;
(ii) any cut produced by S is dominated by H(J,J).

Proof Up to a unimodular transformation, we can assume that J = {z € R%2:29=0,0<2; < 1}
and J = {x €R? :29 =1,0 < 27 < 1}. Since the split cut derived from S is not dominated by

a Chvatal cut, by Lemma 26 the apex v does not lie strictly between E} and E’I. In other words,
v9 > 1. Furthermore 0 < v1 < 1, as shown in the proof of Lemma 30.

Let hy and hg be the lines delimiting S, and define the segments J| := {z € R? : 21 = 0, 0 <
vy <1} and J}:={z € R?:2; = 1,0 < x5 < 1}. Since both h; and hy intersect J and there is no
integer point strictly between h; and ho, we have that hy U hs can contain points from the relative
interior of at most one of J;, J5 and J.

Assume that hy and hgy intersect the relative interior of Ji. Since hi and hg also intersect J, we
have

hi={z €R?: zy = uxy + 1}, hy = {z € R? : 2y = uzy + 1o},

for some u < 0, and r1,7r2 € R.
Given any Z € hy N {x € R? : 29 > 1}, we have
To—T 1—r
2 1 1

T = < < 0.
u u

Thus hy N {x € R? : 25 > 1} C {z € R? : 21 < 0}. Similarly, ho N {z € R? : 25 > 1} C {z € R?:
x1 < 0}. As0 < v <1 and vy > 1, it follows that v does not lie strictly between h; and ha, a
contradiction.

A similar argument shows that hy and he do not intersect the relative interior of Jj. It follows
that h; and hy intersect J, and (i) is proven.

We now prove (ii). Since, by part (i), each of hy and hy intersects both J and J, each of hy and
ho intersects the boundary of C. Moreover, because S is an effective split set, hy U hy intersects
the boundary of C' in at most two points. It follows that each of hy and ho intersects the boundary
of C in a single point, say ¢! and ¢, respectively. Note that ¢i > 0 and ¢35 > 0, because h; and hs
intersect J. Label ¢! and ¢? in such a way that ¢' (resp., ¢?) belongs to the facet of C' contained
in the half- plane x1 < wyp (resp., x1 > v1). See Figure 5.

If0o < q2 < 1 for some j € {1,2}, then 0 < q1 < 1, because hj and hs intersect both J and J.
Ifq%Zl then again 0 < ¢f < 1, as {x € C': le}Q{mERQ 0<z <1}

The split set S(J, J ) is effective by Lemma 30, and its boundary intersects the facets of C' in
two points r!, 72 that satisfy r} = 0 and r? = 1. Then r! (resp., r?) is further from the apex than
q' (resp., ¢?) is, as ¢!, ¢® and v all satisfy 0 < x1 < 1. It follows that the cut H(.J, j) dominates
any split cut derived from S. d

Lemma 32. Fizi € {1,...,n} such thatv ¢ intr(conv (¢4, ¢%)), and let J be as in Lemma 30. Write
FIZ = JoU---UJs, where Jy, ...,y are the unit intervals contained in F} ordered consecutively (i.e,

Jp—1 0 Jg Only contains a smgle point for every k € {1,...,t}). Then every point that violates
H(Jy,J) for some k € {0, ...t} also violates H(Jy,J) or H(Jt, J).

See Figure 6 for an illustration of Lemma 32 and its proof.
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Figure 6: Ilustration of the notation used in the proof of Lemma 32. The intersection of the two

red cutting planes H(Jy, J) and H(J;, J) from the leftmost and rightmost splits dominates all other
split cuts H(Jg, Jo), k= 0,...,t, illustrated here in dark green.

Proof. Up to a unimodular transformation, we can assume that J = {z € R2 : 25 =1, 0 < 27 < 1}
and Jy = {z € R?: 29 = 0, k < 21 < k+ 1} for every k € {0,...,t}. As argued in the proof of
Lemma 30, one facet G; of C contains points (a1,0) and (b1, 1), and the other facet G2 contains
points (ag,0) and (be,1), where a3 < 0, ag > 1 (in fact, ag — 1 >t > 0) and 0 < by < by < 1.
Then the lines containing G and G2 are defined by the equations x; + (a1 — b1)z2 = a; and
x1 + (ag — ba)xo = ag, respectively.

Given any k € {0,...,t}, the lines delimiting the split set S(Jg, J ) are defined by the equations
x1 + kxo = k and x1 4+ kxo = k + 1. The intersection points of the former line with G; and of the
latter line with G5 are respectively the following:

k bik k—aq k bok +by —as k+1—as
T = by —a1+k'by—a+k)’ N by —ags+k "by—as+ k)’

A

Consider any k € {0,...,t}. Since H(Jg,J) is a half-plane that does not contain v, it is defined
by an inequality of the form c¢*(z—wv) > 1, where ¢* € R%. Note that and c¢*(¢* —v) = F(r¥ —v) =1,
as ¢® and 7* belong to the line delimiting H (J, j)

Let Z be any point in G; and k € {0,...,t}. Then = v + pu(¢® — v) for some pu > 0 and
therefore 3
v — X1

Ul—q]f

@ —v) = pc(¢" —v) = p=

We claim that, for fixed £ € G, the above right hand side is a concave function of k when k is
considered as a continuous parameter in [0,¢]. To simplify the argument, we will show that %
1
is a concave function of k: this is sufficient to establish the claim, as v; — by > 0 and v; — Z1 > 0.

We can calculate

bk . (’Ul — bl)k? +v1by —viaq
bl—a1+k_ by —a1 +k

k
U1 —qp = V1 —

)
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from which we obtain

v — by (’01 —bl)k—i—(vl —bl)(bl —al)

v —q]f N (v — b1)k + v1by —viay
(v1 —b1)(b1 —a1) — (v1b1 — v1a1)
(Ul — bl)]{? + Ulbl — vi1a1
bi(ar — b1)
(7}1 — b1)k + U1b1 — vi1aq ’

=1+

=1+
Since b1 > 0, a1 — b1 < 0 and v — by > 0, the last fraction above is of the form Bkiﬂ’ where a < 0,
B > 0 and v € R. It is immediate to verify that such a function of k is concave for k£ > —%. In

%, which is a negative number. Thus the function

k + ¢¥(z — v) is concave over the domain [0,#]. A similar argument shows that, for any fixed
T € Go, the function k +— c¥(Z — v) is concave over [0,#] (using the fact that ¢t < as — 1).

If Z is any point in C, then we can write = Az! + (1 — \)2?, where 2! € Gy, 22 € G2 and
0 < A <1. Then *(z—v) = AF(z! —v)+ (1= \)c¥(2? —v) is a concave function of k. This implies
that the minimum of the set {c¥(z—wv) : k € {0,...,t}} is achieved for k = 0 or k = ¢. In particular,
if z violates H(Jy, J) for some k € {0,...,t}, then min{c®(z — v), ' (z — v)} < *(z —v) < 1, and

thus z also violates H(Jp, J) or H(J, J). O

our context, this condition reads k > —

Theorem 33. The number of facets of the split closure of a translated cone C C R? is at most
twice the number of facets of Cr plus the number of facets of the Chvdtal closure of C.

Proof. Let E C {1,...,n} be the index set of the facets of Cj such that v does not lie strictly
between 63 and K’}. By Lemma 30, for every i € E there exists a unit interval Jt of E? such that

Jinc # (. Moreover, let Ji, . .. Jtii be the unit intervals of 53 contained in F}, ordered consecutively.
Let @ denote the Chvatal closure of C. We show that the split closure of C' is given by

Qn () (HU TN HL D), (6)

ieE

which suffices to prove the theorem.

Consider any split cut H derived from a split set S. Since Eq. (6) is contained in @, we may
assume that H is not dominated by a Chvétal cut. Therefore it must be of type 2 in Lemma 24,
and thus there is a facet F? of Cr that intersects the two lines delimiting S. By Lemma 26, i € E.
By Lemma 31 part (ii), H is dominated by H(J,i,jl) for some k € {0,...,t;}. By Lemma 32,
H(J}, J?) is in turn dominated by H(Jg, J%) N H(J}, Jh. O

To conclude the proof of Theorem 20, we note that by Lemma 22, Theorem 33 and Theorem 8,
the number of inequalities needed to define the split closure of P is polynomial in m, log || A]|s and
log ||b]|co- Furthermore, the above arguments show that the size of every inequality is polynomially
bounded. (However, it is known that also in variable dimension every facet of the split closure of
a polyhedron P is polynomially bounded; see, e.g., [5, Theorem 5.5].)

Remark 34. Given a translated cone C C R?, the arguments used in this section show that, for
every facet F} of Cy, the split closure C' of C is strictly contained in the interior of the half-plane
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delimited by ?3— and containing C' (where we adopt the notation introduced in Definition 25). This
implies that the Chuvdtal closure of C' is Ct. In particular, the split rank of C is at most 2.

Now let P be a polyhedron in R?. It is folklore that the integer hull of P is the intersection of

the integer hulls of all the corner relaxations of P. (This is not true in higher dimensions.) Then,
by the previous argument, the split rank of P is at most 2.
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