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ABSTRACT
The most commonly adopted password management technique is
to store web account passwords on a password manager and lock
them using a master password. However, current online password
managers do not hide the account passwords or the master password
from the password manager itself, which highlights their real-world
vulnerability and lack of user confidence in the face of malicious
insiders and outsiders that compromise the password management
service especially given its online nature. We attempt to address
this crucial vulnerability in the design of online password managers
by proposing HIPPO, a cloud-based password manager that does
not learn or store master passwords and account passwords. HIPPO
is based on the cryptographic notion of device-enhanced password
authenticated key exchange proven by Jarecki et al. to resist online
guessing attacks and dictionary attacks. We introduce the HIPPO
protocol design and report on a full implementation of the system.

1 INTRODUCTION
Decades after the introduction of passwords, password-protected
systems still experience various attacks, including shoulder surfing
[19], online guessing (brute force) attacks [9], and offline dictionary
attacks [16]. Several of these attacks depend solely on the entropy
of the passwords itself. Users tend to pick memorable passwords,
however, such easier passwords generally imply easier attacks, while
secure and random passwords open up other venues of attacks due
to the memorability issue (e.g., writing down, storing electronically,
and less frequent updates). Moreover, users often tend to re-use the
same password to access multiple web services, which increases the
security risks since the compromise of any one of the services also
compromises the accounts with other services.

To address these issues, online password managers save the users’
(encrypted) web service account passwords on a password file on a
cloud service [1, 3, 5]. These password managers help to decrease
the possibility of password breaches by generally suggesting com-
plex and unique account passwords for each web service. However,
current online password managers do not protect the “account pass-
words“ or the “master password” from the password manager itself,
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which exposes them to malicious insider as well as outsider attacks
that compromise the password management service especially given
its online nature. Reports show several instances of the exploitation
of this crucial vulnerability of password managers [2, 4, 6, 15].

To address this fundamental vulnerability, we introduce HIPPO1,
a secure cloud-based password manager that is built on top of a
cryptographic primitive called Device-Enhanced Password Authen-
ticated Key Exchange (DE-PAKE) [13]. HIPPO does not store but
generates a secure and a randomized account password for each
website upon receiving the master password from the user. Hence, it
implicitly enforces high-entropy account passwords.

The randomized account password rwd is generated as a key-ed
function of the master password using an oblivious-pseudo random
function (OPRF) protocol [13] defined as Fk (pwd). Two parties
involved in the protocol: (1) a client from which the user initiates
an authentication attempt on the bases of a master password pwd,
and (2) a cloud-based password manager that holds a unique key k
per each service the user authenticates to. OPRF ensures that the
password manager does not learn or store rwd or pwd or anything
derived from them.

Contributions: The contributions are as follows:

1. A Hidden-Password Online Password Manager: We introduce
our password manager HIPPO, built on top of the DE-PAKE crypto-
graphic primitive. HIPPO does not store or learn the master password
and/or the web account passwords, rather, it computes a unique se-
cure account password for each service as a key-ed function of the
master password. The high-entropy account password is registered
with each service and is reconstructed during the authentication ses-
sion using an oblivious pseudo random function password hardening
approach that receives the master password from the user and the
key from the password manager server.

2. Design and Implementation of HIPPO: We designed HIPPO
as a cloud service responding to the password inquiries from the
users. Our implementation consists of the server-side Node.js service
and the client-side Chrome browser extension. This client-server
architecture provides secure password generation via HIPPO. The
account password is reconstructed on the client and is automatically
entered in the password field.

2 BACKGROUND
Device-Enhanced Password Authenticated Key Exchange. The
design of HIPPO is built on top of the Device Enhanced Password
Authenticated Key Exchange (DE-PAKE) protocol introduced in

1HIPPO denotes HIdden-Password Password manager Online. It is a strong password
manager, just like hippo is a strong animal.
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1a. user inputs pwd
1b. compute α=H’(x)ρ

(ρ is a random number)

3a. verify β   G
3b. set rwd = Fk(x) = H(x, H’(x)k)

= H(x, β1/ρ)

3c. uid, rwd

C

S

1c. UD, REA, α

2d. β
2a. guessing attack detection
2b. verify α   G
2c. compute β = αk  

M

Figure 1: HIPPO protocol reconstructs account password to authenticate user

[13]. DE-PAKE is an extension of the notion of Password Authen-
ticated Key Exchange (PAKE) with four parties: user U, client C,
server S, and a device D. DE-PAKE securely transforms a user-
memorable password pwd into a high-entropy random string rwd by
leveraging the device, and then uses this random string as a password
input to any password authenticated key exchange protocol (PAKE).
The authors of [13] studied the composition of their password-to-
random (PTR) protocol with any PAKE protocol, giving rise to
DE-PAKE that is resistant to online guessing attacks and offline dic-
tionary attacks (under server and device compromise), without the
need for secure communication between the device and the client.
Related Work on Storeless Password Managers. Hash-based
password managers (e.g., [12, 17, 21]) represent an alternative ap-
proach to traditional password managers that generates the account
password as a function of the master password on the fly. These type
of password managers do not store the account passwords (unlike
traditional online password managers), rather they compute the ac-
count password as the hash of the master password, once the master
password is entered on the website forms. Therefore, they address
the issues with the leakage of the password file. However, they are
still vulnerable to offline attacks upon the compromise of the web
services since they store a doubled-hash of the master password for
verification on the server.

SPHINX [18] is another password manager introduced based
on DE-PAKE primitive. SPHINX is a device-based password man-
ager that transforms a human-memorable password into a random
password with the aid of a smartphone. Upon receiving the master
password from the user, SPHINX runs the password hardening pro-
tocol with the smartphone to reconstruct the service password on the
client. SPHINX crucially relies on a smartphone to reconstruct the
password. The absence of such a device due to the loss of connec-
tivity or being out of the battery power, can cause serious usability
issues preventing the user from logging in (similar to two factor
authentication and device-based password managers [7, 10, 11, 20]).
Besides, log in to web services from the smartphone itself would
be problematic since the cryptographic key would be stored on the
same device (the phone) on which the master password is entered.
Our approach carries the security properties of the underlying DE-
PAKE protocol. However, it addresses several concerns related to
the deployment of the password manager as an online service, such
as reliability of the service.

3 OUR APPROACH
3.1 Protocol Instantiation
Figure 1 shows the steps taken by each party to reconstruct rwd and
to authenticate the user.

Step 1: The client initiates the protocol as follows:
• 1a. U inputs pwd on C. pwd is picked by the user and along

with uid, domain, and ctr is considered as the C’s input into the
password hardening OPRF.

• 1b. C picks and temporary remembers a random number ρ of size τ
and blinds the C’s OPRF input by computing α = H ′(uid,domain,
ctr, pwd)ρ . Blinding protects pwd from attackers listening to the
C-M channel and to those compromising M.

• 1c. C queries M by transferring UD, REA and α to the manager.
UD privately identifies the user account (i.e., while hiding the
username and the service domain name from M to protect the
user’s privacy). REA is used to send notification in case M detects
a suspicious guessing activity (through the rate limiting approach).
Since REA is used in rate limiting it is necessary in every OPRF
invocation.

Step 2: The manager continues the protocol upon receiving the
query following the steps discussed next.
• 2a. M verifies the validity of the connection based on the rate

limiting policy and aborts if any anomaly is detected. If no record
is found for UD (which happens in the very first attempt) M creates
a record for UD and asks the user to verify access to REA (e.g., by
sending an email for the user to return a code or click a link).

• 2b. M takes its OPRF role by verifying that α is an element of G
and aborts if verification fails.

• 2c. M uses master key mk to generate the OPRF key k and to
compute β = αk .

• 2d. M responds to the client by transferring β to C.
Step 3: C brings the HIPPO protocol to the conclusion upon receiv-
ing the response from M, as follows:
• 3a. C verifies that β is an element of G; aborts if not.
• 3b.C deblinds its OPRF input by computing β1/ρ . C discards
ρ at this step and sets rwd = Fk (uid,domain, ctr, pwd) =
H (uid,domain, ctr, pwd,H ′(uid,domain, ctr, pwd)k ).

• 3c. C transfers rwd to the server S.
The setup phase to register the account password rwd with a

service and the login phase follow the same steps and differs only
in the client interaction with the server as per the service password
update and login process.

3.2 Threat model and Security Properties
The formal and practical security of HIPPO derives from the DE-
PAKE formal framework and security proofs of [13]. HIPPO is an
implementation of that proven scheme where the password manager
M plays the role of the device in that model. Here we provide an
informal account of the main security properties of HIPPO as they
follow from the results of [13]. Please refer to [13] for details.

The security definition from [13] captures “best possible" secu-
rity in the sense that the only effective attacks are those that are
unavoidable, namely, exhaustive online dictionary attacks against
S and/or M, with offline dictionary attacks only possible upon the
compromise of both S and M. The model does not consider defenses
against client compromise or the leakage of the user’s master pass-
word. Such defenses for any password manager can be obtained via
second factor authentication (cf., [14]).

The DE-PAKE model considers an active attacker A that controls
all communication channels and may compromise the server S and/or
manager M. Security is quantified as a function of the number of
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online interactions between A and M and between A and S, where the
number of such interactions is denoted by qM and qS , respectively.
The results of [13], when applied to our setting, imply the following
security properties for HIPPO (below, Dict denotes a dictionary from
which pwd is chosen).
(1) Security against online and offline attacks: It is shown that

the probability of A to compromise the security of user authen-
tication and key exchange is at most min(qM ,qS )/|Dict|. In
practical terms, this means that the best possible attack is one
where the attacker guesses a value of pwd, runs HIPPO with M
on input pwd, and uses the resultant value rwd in an authentica-
tion session with S. Only if the latter authentication succeeds,
does the attacker learn pwd. This means that to be successful A
needs to perform an online attack of order |Dict| against both S
and M, and that offline attacks are ineffective.

(2) Resistance to Attacks upon Compromise of M: In case server
M is compromised, [13] shows that A’s probability to break the
protocol security when M is compromised is at most qS /|Dict|.
This means that the best possible (and inevitable) attack against
HIPPO is for A to use the compromised M’s key (an OPRF key)
to compute rwd for each value of pwd in Dict and test each
obtained rwd in online interaction with S. Thus, even with a
compromised M, the attacker still needs online interactions with
S in the order of |Dict|. Also here, offline attacks are ineffective.
These properties are to be contrasted with password managers
that store a list of passwords encrypted under pwd and where
the compromise of the password manager typically leads to an
offline-only attack on pwd and all encrypted passwords. In the
case of HIPPO, even if M is fully controlled by the attacker,
nothing (in the strongest information theoretic sense) is learned
about pwd or on the individual rwd.

(3) Resistance to Attacks upon Compromise of S: When a server
S is compromised, [13] shows an upper bound of qM /|Dict|
on the attacker’s probability of success. It implies that the best
attack against HIPPO in this case is an exhaustive online attack
against M using guessed values pwd to obtain rwd that can
then be validated against the compromised state of S. Note
that an exhaustive attack on rwd could also be possible in this
case; however, since rwd is a high-entropy secret such attack
is infeasible. Moreover, learning rwd directly from a server
S (e.g., breaking the server’s TLS communication), does not
compromise either pwd or any other password rwd as rwd’s are
random and computationally independent from each other as
long as the OPRF key is not disclosed.

(4) Resistance to Attacks upon Compromise of M and S: When
both M and S are compromised, an inevitable offline attack of
order |Dict| is possible. In it, one lists all possible pwd values
and uses the internal (OPRF) key at M to calculate rwd for each
pwd. Then rwd is tested against the compromised state at S.

(5) Resistance to Phishing Attacks: An additional important secu-
rity property attained by the HIPPO implementation is security
against phishing attacks obtained thanks to the use of the server’s
domain in the derivation of rwd.

(6) Full cryptographic security with random UT: HIPPO accom-
modates an optional value UT that can be set by the user to 0
or to a high-entropy random value. In the latter case (in which
UT needs to be carried to all the user’s client machines) and as

long as UT is not disclosed, no feasible attack, online or offline,
or upon the compromise of both M and S, exists against the
master password pwd and its derivatives rwd as any such attack
would require to guess UT. On the other hand, if UT is eventually
disclosed, HIPPO still guarantees all the above properties.

4 SYSTEM IMPLEMENTATION
4.1 HIPPO Client
We consider NIST P-256 as the group G over which the operations
run. We assume that the user has set a recovery email address REA
on the client and has verified it through standard verification pro-
cesses (e.g., by providing a code or clicking a link emailed from the
password manager server to REA). For the sake of simplicity, the
user only sets one recovery email.

The client runs when a website is accessed. It attempts to dynam-
ically locate a password web form. The client waits for the special
user input, either the “F2” or “@@” key sequences (in-line with
[17]), and then activates a callback when the user finishes typing in
the password field by relinquishing focus on that element. Upon acti-
vation of the callback, a TLS encrypted WebSocket connection with
the server is attempted, with which the client negotiates a message
containing (1) α = H ′(uid,domain, ctr, pwd)ρ as an elliptic curve
(x, y) coordinate pair, (2) the user identification UD computed using
the web form username and current website domain name, and (3)
the recovery email address REA. The client waits for the response
from the server (i.e., β). If the received value satisfies the ECC curve
equation, β is raised to 1/ρ to unblind H ′(uid,domain, ctr, pwd)k .
This value is then mapped to rwd to provide the generated password.
The generated password is then populated in the form.
Reading and Replacing the Password from/to Forms: This func-
tionality is a fork of the chrome port of Stanford’s PwdHash exten-
sion [17]. The password is received and replaced from/to website
forms similar to the Stanford’s PwdHash Google Chrome port, with
several modifications to adopt recent website forms. The mapping
of H (x ,H ′(x)k ) to rwd is also based on PwdHash HashedPassword
function from the same port.
WebSocket Client: Since most of the web-services to which the
user logs in (e.g., banks, social media, and email services) estab-
lish a SSL channel and serve the users through HTTPS, HIPPO
incorporates the Secure WebSocket protocol for the client-manager
communication. This choice is made to follow the browsers’ content
security policy that prevents mixed content. The HIPPO Chrome
browser extension provides the TLS encrypted WebSocket commu-
nication with the manager to exchange messages.
Elliptic Curve Cryptography (ECC) Operations: Upon pass-
word field loss of focus, extension reads the password field data
and maps it to a point on NIST P-256 curve using a hash into elliptic
curve function. It then picks the random 256-bit ρ and computes α
encoded into (x, y) pair coordinates. Upon receiving the computed β
from the manager it performs inverse exponentiation and maps the
generated point to a hex string using a SHA-256 hash function as
H (uid,domain, ctr, pwd, β1/ρ ). This hexstring is encoded to rwd by
applying password constraints as mentioned earlier.
Password Updates: To update the passwords without changing
pwd, the user can set a ctr on the client and increment it to change
the associated rwd for a specific account. Updating ctr changes
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the input to the OPRF protocol, and thereby, changes the account
password rwd. Therefore, even if the user keeps the master password
unchanged and only modifies ctr, HIPPO generates a new high-
entropy account password that can be registered with the service.
The use of ctr also increases the security of the system against online
guessing attacks on password manager server since the attacker not
only need to guess the master password but also ctr to successfully
authenticate to a service. In our design, ctr is managed on the client
extension, however, one can assume a design where ctr is managed
by the server or a separate service or app designed for this purpose.
Extension Options Page: The client browser extension has an
options page for configuring user’s preferences such as recovery
email, ctr and UT.

4.2 HIPPO Server
The server is built using the NodeJS framework providing the TLS
encrypted WebSocket handler for external client connections. The
ECC implementation is supported by the Stanford SJCL/JSBN li-
brary. In addition to the core framework, the following functionality
is provided through third party modules: the WebSocket protocol
implementation, the database for storing user notification/account
recovery preferences, the email protocol implementation for sending
notification emails/recovery instructions to users, and GeoIP for
identifying abnormalities in the user’s connection patterns.
Secure WebSocket Server: Although the HIPPO protocol does not
require and rely on confidentiality of the client-manager channel,
Secure WebSocket communication was essential as per the browser’s
content security policy. We acquired a key and certificate issued by
InCommon RSA Server CA on our manager and run Apache v2.4.6
with SSL enabled to accepts Secure WebSocket connections.
Account Look-up: HIPPO identifies the users’ account to 1) gen-
erate the OPRF key, and 2) to prevent guessing attacks by applying
rate limiting policies. This identification does not have any authen-
tication characteristics as HIPPO does not need to authenticate the
user per se. To uniquely identify each user account, we define a user
identification parameter UD per each account protected by HIPPO.
All records related to an account are stored in a database and are
tagged with UD. UD is set on the client and is transferred to the
password manager server as part of the initial message (step 1c in
Figure 1). UD can simply be the user id with a web-service. However,
since revealing the user id and the domain name may raise privacy
concerns (as the manager learns this information), HIPPO computes
the key-ed hash of the user id and domain name as UD, such that
UD=SHA256-HAMC(key = UT, input = (uid,domain)). The key
to the hash function (defined as UT) is optionally set by the user (0
if not set). If UT is set the user should populate it on other clients.
Key Generation: The OPRF key for each account is generated
as a function of a master-key mk, UD and REA. UD and REA are
transferred from the client to the manager (as shown in step 1c of
Figure 1) and the password manager holdsmk. We compute OPRF
key k as SHA256-HAMC(key =mk, input = (UD,REA)).
ECC Computation: As part of the HIPPO protocol, the manager
responds to the OPRF message received from the client. The man-
ager receives the computed α = H ′(uid,domainctr, pwd)ρ encoded
into a (x, y) coordinate representing a point on the NIST P-256
elliptic curve. Our implementation of Hash-into-Elliptic-Curve is in
line with that suggested in [18], however, other alternatives robust to

side channels would be possible [8]. The manager then checks if the
received (x, y) pair is a valid point on the curve. Then it computes
the value of β = αk and transfers β encoded into a (x, y) coordinate
to the client.
Phishing Prevention: The client inputs the domain name of the
web-service in the OPRF function. This design prevents phishing
attacks by involving the domain name domain in the generation of
rwd. Therefore, a phished domain name generates a different rwd.
Rate Limiting: Since HIPPO is implemented as an online service
with no need for user authentication it may be a target for an active at-
tacker guessing the client’s OPRF input (i.e., (uid,domain, ctr, pwd))
to reconstruct rwd and to attempt to log in to the web-service. To
avoid such attacks, we used two standard rate limiting approaches,
namely connection count per time interval and GeoIP matching.
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