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We present a secure two-factor authentication (TFA) scheme based on the user’s possession of a password and
a crypto-capable device. Security is “end-to-end” in the sense that the attacker can attack all parts of the sys-
tem, including all communication links and any subset of parties (servers, devices, client terminals), can learn
users’ passwords, and perform active and passive attacks, online and offline. In all cases the scheme provides
the highest attainable security bounds given the set of compromised components. Our solution builds a TFA
scheme using any Device-enhanced Password-authenticated Key Exchange (PAKE), defined by Jarecki et al.,
and any Short Authenticated String (SAS) Message Authentication, defined by Vaudenay. We show an efficient
instantiation of this modular construction, which utilizes any password-based client-server authentication
method, with or without reliance on public-key infrastructure. The security of the proposed scheme is proven
in a formal model that we formulate as an extension of the traditional PAKE model. We also report on a pro-
totype implementation of our schemes, including TLS-based and PKI-free variants, as well as several instan-
tiations of the SAS mechanism, all demonstrating the practicality of our approach. Finally, we present a us-
ability study evaluating the viability of our protocol contrasted with the traditional PIN-based TFA approach
in terms of efficiency, potential for errors, user experience, and security perception of the underlying manual
process.1
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1 INTRODUCTION

Passwords provide the dominant mechanism for electronic authentication, protecting a plethora of
sensitive information. However, passwords are vulnerable to both online and offline attacks. A net-
work adversary can test password guesses in online interactions with the server while an attacker
who compromises the authentication data stored by the server (i.e., a database of salted password
hashes) can mount an offline dictionary attack by testing each user’s authentication information
against a dictionary of likely password choices. Offline dictionary attacks are a major threat, rou-
tinely experienced by commercial vendors, and they lead to the compromise of billions of user
accounts [1, 2, 4, 5, 8, 9]. Moreover, because users often re-use their passwords across multiple
services, compromising one service typically also compromises user accounts at other services.

Two-factor password authentication (TFA), where user U authenticates to server S by “prov-
ing possession” of an auxiliary personal device D (e.g., a smartphone or a USB token) in addition
to knowing her password, forms a common defense against online password attacks as well as a
second line of defense in case of password leakage. A TFA scheme, which uses a device that is
not directly connected to U’s client terminal C, typically works as follows: D displays a short one-
time secret PIN, either received from S (e.g., using an SMS message) or computed by D based on
a key shared with S, and the user manually types the PIN into client C in addition to her pass-
word. Examples of systems that are based on such one-time PINs include SMS-based PINs, TOTP
[63], HOTP [62], Google Authenticator [14], FIDO U2F [13], and schemes in the literature such as
Reference [67].

Vulnerabilities of traditional TFA schemes. Our work addresses a large set of vulnerabilities
unresolved by the current practice of composing the standard password-over-TLS authentication
with PIN-based TFAs. These vulnerabilities include:

• Password is always visible to the server at the TLS decryption endpoint leading to password
exposure to insiders and accidental storage of plaintext passwords [12, 15].

• Password is open to PKI attacks and exposure at midpoints (e.g., TLS decryption points for
content inspection, at CDNs, etc.).

• Password is vulnerable to offline dictionary attacks upon compromise of the user’s state
(“password file”) at the server.

• Password guesses can be validated through login attempts at the server (not prevented by
TFA schemes that first verify the password and only then activate the TFA mechanism).

• TFA defense is broken if keys shared between TFA device and server leak to the attacker
(e.g., they are stolen from the server).

• Low-entropy PINs have non-negligible probability of being guessed, e.g., PIN guessing can
be used in a large-scale online attack against accounts whose passwords the attacker already
collected [4, 5, 8, 9].

• PIN sent from server to device is vulnerable to PIN redirection attacks, e.g., via SMS hijack-
ing and SIM card swap attacks [6].2

2PINs diverted to the attacker’s phone exploiting SS7 vulnerabilities [54] led to NIST’s recent decision to deprecate SMS
PINs as a TFA mechanism [7].
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• PIN entered by user into the host computer is vulnerable to eavesdropping via shoulder-
surfing, PIN recording, keyloggers, screen scrapers [58], PIN phishing [49], and so on. (Note
that some eavesdropping attacks are also possible with high-entropy PIN’s such as QR
codes.)

The first two vulnerabilities, specific to password-over-TLS, can be addressed by replacing this
protocol with a PKI-free asymmetric PAKE (aPAKE) (e.g., Reference [47]). The other weaknesses
are prevented by our TFA design even if used with password-over-TLS!

Our Contributions. The main contribution of the present article is the design of a device-based
TFA and PAKE solution that eliminates all of the above weaknesses. Particularly, we: (1) introduce
a precise security model for TFA schemes capturing well-defined maximally-attainable security
bounds, (2) exhibit a practical TFA scheme, which we prove to achieve the strong security guar-
anteed by our formal model, and (3) prototype several methods for validating user’s possession of
the secondary factor, and evaluating usability of each method.

TFA Security Model with End-to-end Security. We introduce a Two-factor Authenticated

Key Exchange (TFA-KE) model in which a user authenticates to server S by (1) entering a pass-
word into client terminal C and (2) proving possession of a personal device D, which forms the
second authenticator factor by the user confirming in the device equality of a t-bit checksum dis-
played by D with a checksum displayed by C. Following Reference [72] (see below), this imple-
ments a t-bit C-to-D user-authenticated channel, which confirms that the same person is in control
of client C and device D. This channel authentication requirement is weaker than the private chan-
nel required by current PIN-based TFAs and, as we show, it allows TFA schemes to be both more
secure and easier to use.

The TFA-KE model, that we define as an extension of the standard Password-authenticated

Key Exchange (PAKE) [25] and the Device-enhanced PAKE (DE-PAKE) [45] models, captures
what we call end-to-end security by allowing the adversary to control all communication channels
and compromise any protocol party. For each subset of compromised parties, the model specifies
best-possible security bounds, leaving inevitable exhaustive online guessing attacks as the only feasi-
ble attack option. In particular, in the common case that D and S are uncorrupted, the only feasible
attack is an active simultaneous online attack against both S and D that also requires guessing the
password and the t-bit checksum. Compromising server S allows the attacker to impersonate S, but
does not help in impersonating the user to S, and in particular does not enable an offline-dictionary
attack against the user’s password. Compromising device D makes the authentication effectively
password-only, hence offering best possible bounds in the PAKE model (in particular, the offline
dictionary attack is possible only if D and S are both compromised). Finally, compromising client
C leaks the password, but even then impersonating the user to the server requires an active attack
on D. We prove our protocols in this strong security model.

Practical TFA with End-to-end Security. Our main result is a TFA scheme, GenTFA that
achieves end-to-end security as formalized in our TFA-KE model and is based on two general
tools. The first is a DE-PAKE scheme as introduced by Jarecki et al. [45]. Such a scheme assumes
the availability of a user’s auxiliary device, as in our setting, and utilizes the device to protect
against offline dictionary attacks in case of server compromise. However, DE-PAKE schemes pro-
vide no protection in case that the client machine C is compromised and, moreover, security com-
pletely breaks down if the user’s password is leaked. Thus, our approach for achieving TFA-KE
security is to start with a DE-PAKE scheme and armor it against client compromise (and pass-
word leakage) using our second tool, namely, a SAS-MA (Short-Authentication-String Message
Authentication) as defined by Vaudenay [72]. In our application, a SAS-MA scheme utilizes a
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t-bit user-authenticated channel, called a SAS channel, to authenticate data sent from C to D. More
specifically, the SAS channel is implemented by having the user verify and confirm the equality of
two t-bit strings, called checksums, displayed by both C and D. It follows from Reference [72] that
if the displayed checksums coincide then the information received by D from C is correct except
for a 2−t probability of authentication error. We then show how to combine a DE-PAKE scheme
with such a SAS channel to obtain a scheme, GenTFA, for which we can prove TFA-KE security,
hence provably avoiding the shortcomings of PIN-based schemes. Moreover, the use of the SAS
channel relaxes the required user’s actions from a read-and-copy action in traditional schemes to
a simpler compare-and-confirm, which also serves as a proof of physical possession of the device
by the user (see more below).

We show a concrete practical instantiation of our general scheme GenTFA, named OpTFA, that
inherits from GenTFA its TFA-KE security. Protocol OpTFA is modular with respect to the (asym-
metric) password protocol run between client and server, thus it can utilize protocols that assume
PKI as the traditional password-over-TLS, or those that do not require any form of secure chan-
nels, as in the (PKI-free) asymmetric PAKE schemes [26, 39]. In the PKI case, OpTFA can run over
TLS, offering a ready replacement of current TFA schemes in the PKI setting. In the PKI-free case
one gets the advantages of the TFA-KE setting without relying on PKI, thus obtaining a strict
strengthening of (password-only) PAKE security [25, 59] as defined by the TFA-KE model.

The cost of OpTFA is two communication rounds between D and C, with 4 exponentiations by
C and 3 by D, a one-round Diffie-Hellman exchange between C and S, plus the cost of a password
authentication protocol between C and S. In the PKI setting the latter is the cost of establishing
a server-authenticated TLS channel, while in the PKI-free case one can use an asymmetric PAKE
(e.g., Reference [47]) with cost (some of it computable offline) of three exponentiations for C, two
for S, and one multi-exponentiation for each.

Implementation and SAS Channel Designs. We prototyped protocol OpTFA, in both the PKI
and PKI-free versions, with the client implemented as a Chrome browser extension, the device
as an Android app, and D-C communication implemented using Google Cloud Messaging. We
also designed and implemented several instantiations of the human-assisted C-to-D SAS channel
required by our TFA-KE solution and model. Recall that a SAS channel replaces the user’s read-
and-copy action of a PIN-based TFA with the compare-and-confirm action used to validate the
checksums displayed by C and D. The security of a SAS-model TFA-KE depends on the checksum
entropy t , called the SAS channel capacity, hence the two important characteristics of a physical
design of a SAS channel are its capacity t and the ease of the compare-and-confirm action required
of the user. In Section 6, we show several SAS designs with different channel capacity and usability.

Our base-line implementation of a SAS channel encodes 20-bit checksums as six-digit decimal
PINs, which the user compares when displayed by C and D (no copying involved). We also propose
two novel and higher-capacity SAS channels. In the first design, the device D is assumed to have a
camera and the checksum calculated by the client is encoded as a QR code and displayed by C. The
user prompts D to capture this QR code, which D decodes and compares against its own checksum.
The second design is based on an audio channel implemented using speech transcription. If device
D is a smartphone, then the user can read out an alphanumeric checksum displayed by C into D’s
microphone,3 and D decodes the audio using the transcriber tool and compares it to its checksum.

Usability Study of our SAS Channel Designs. Perhaps the most interesting aspect of OpTFA,
from the usability perspective, is that the user interaction in this method is changed from copying

3Thanks to the full resistance of our TFA-KE to eavesdropping, overhearing the spoken checksum is of no use to the
attacker.
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the PIN (as in PIN-based TFA) to verifying the equality of the checksums. The hypothesis is that
such verification provides higher usability compared to manual PIN copying of PIN-based TFA,
while the use of a full-size PIN over the authenticated and secure channel improves the security
of TFA. Also, while in the OpTFA, the SAS-MA protocol is used in conjunction with DE-PAKE, its
use could be extended to any other standard TFA method to improve the security against online
guessing and offline dictionary attacks, and to provide resistance against PIN eavesdropping by
authenticating the device-client channel. Hence, it is important to evaluate the usability of such
strong protocol.

We ran a lab-based study with 30 participants and asked them to use each of the aforementioned
SAS transfer methods and the traditional TFA PIN entry (as the baseline of the study) multiple times
as part of the login procedure to a website we created for this study. We recorded the participants’
responses to analyze the user errors that might occur while inputting the PIN or checksum, as well
as errors that might occur due to the transcriber, or the QR code decoder while automatically veri-
fying the checksum. We also recorded the time it takes to perform each of the tasks to measure the
efficiency/delay overhead of each method. We then asked the participants to answer several ques-
tions about the usability of the system, and their perception regarding the adoptability, security,
trust, and efficiency of the system. Our results showed that OpTFA could provide a higher usability
compared to PIN-TFA if the QR code checksum comparison method is to be deployed. This method
also seems to be more efficient compared to other approaches and offers higher usability in terms
of user perception. Our study design is in line with other TFA studies [35, 40, 73–75].

Contribution over Conference Publication. This work is an extension of our earlier PKC
2018 publication [46], in which we introduced our end-to-end secure two-factor authentication
scheme. In this publication, we extend our PKC 2018 work by reporting on an extensive usability
study of the PKC 2018 protocol and comparing it as the baseline to the traditional PIN-based
two-factor authentication. We also include cryptographic proofs of the security theorems claimed
in Reference [46].

2 TFA-KE SECURITY

We introduce the TFA-KE security model that defines the assumed environment and participants
in our protocols as well as the attacker’s capabilities and the model’s security guarantees. Our
starting point is the DE-PAKE model, introduced in Reference [45], which extends the well-known
two-party PAKE model [25] to a multi-party setting that includes users U, communicating from
client machines C, servers S to which users log in, and auxiliary devices D, e.g., a smartphone. A DE-
PAKE scheme has the security properties of a two-server PAKE (2-PAKE) [30, 53] where D plays
the role of the second server. Namely, a compromise of either S or D (but not both) essentially does
not help the attacker, and in particular leaks no information about the user’s password. However,
a DE-PAKE scheme has the additional crucial property that even an adversary who compromises
both S and D must still stage an offline dictionary attack to learn the password.

The TFA-KE model considers the same set of parties as in the DE-PAKE model and all the same
adversarial capabilities, including controlling all communication links, the ability to mount on-
line active attacks, offline dictionary attacks, and to compromise devices and servers. However,
the DE-PAKE model does not consider client corruption or password leakage. Indeed, in case of
password leakage an active adversary can authenticate to S by impersonating the legitimate user
in a single DE-PAKE session with D and S. Since a TFA scheme is supposed to protect against
the client corruption and password leakage attacks, our TFA-KE model enhances the DE-PAKE
model by adding these capabilities to the adversary while preserving all the other strict secu-
rity requirements of DE-PAKE. DE-PAKE requirements were such that the only allowable attacks,
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under a given set of corrupted parties, are the unavoidable exhaustive online guessing attacks for
that setting; the same holds for TFA-KE but with additional best resilience to client compromise
and password leakage.

Note, however, that if C,D, S communicate only over insecure links then an attacker who learns
the user’s password will always be able to authenticate to S, by impersonating the user to D and
S. Consequently, to allow device D to become a true second factor and maintain security in case
the password leaks, one has to assume some form of authentication in the C to D communication,
which would allow the user to validate that D communicates with the user’s own client terminal
C and not with the attacker who performs a man-in-the-middle attack and impersonates this user
to D.

To that end our TFA-KE model augments the communication model by an authentication ab-
straction on the client-to-device channel, but it does so without requiring the client to store any
long-term keys (other than the user’s password). Namely, we assume a uni-directional C-to-D
“Short Authenticated String” (SAS) channel, introduced by Vaudenay [72], which allows C to com-
municate t bits to D that cannot be changed by the attacker. The t-bit C-to-D SAS channel abstrac-
tion comes down to a requirement that the human user compares a t-bit checksum displayed by
both C and D, and approves (or denies) their equality by choosing the corresponding option on
device D.

As is standard, we quantify security by attacker’s resources that include the computation time
and the number of instances of each protocol party the adversary interacts with. We denote these
as qD ,qS ,qC ,q

′
C , where the first two count the number of active sessions between the attacker and

D and S, respectively, while qC (respectively, q′C ) counts the number of sessions where the attacker
poses to C as S (respectively, as D). Security is further quantified by the password entropy d (we
assume the password is chosen from a dictionary of size 2d known to the attacker), and parameter
t , which is called the SAS channel capacity. As we explain in Section 3, a C-to-D SAS channel
allows for establishing a confidential channel between D and C, except for the 2−t probability of
error [72], which explains 2−t factors in the TFA-KE security bounds stated below.

TFA Security Definition. We consider a communication model of open channels plus the
t-bit SAS-channel between C and D, and a man-in-the-middle adversary that interacts with
qD ,qS ,qC ,q

′
C sessions of D, S,C, as described above. The adversary can also corrupt any party,

S, D, or C, learning its stored secrets and the internal state as that party executes its protocol,
which in the case of C implies learning the user’s password. All other adversarial capabilities, as
well as the test session experiment, are as in the DE-PAKE model, and we refer to Reference [45] for
the detailed exposition of this model. In particular, the adversary’s advantage is in distinguishing
between a random string and a key computed by S or C on a tested session, and this advantage can
be intuitively understood as the probability that the adversary successfully attacks any session key
output by either client C or server S in the course of adversary’s interaction with the TFA scheme.

The security requirements set by Definition 2.1 below are the strictest one can hope for given the
communication and party corruption model. That is, wherever we require the attacker’s advantage
to be no more than a given bound with a set of corrupted parties, then there is an (unavoidable)
attack - in the form of exhaustive guessing attack - that achieves this bound under the given
compromised parties. Importantly, and in contrast to typical two-factor authentication solutions,
the TFA-KE model requires that the second authentication factor D not only provides security in
case of client and/or password compromise, but that it also strengthens online and offline security
(by 2t factors) even when the password has not been learned by the attacker.

Definition 2.1. A TFA-KE protocol TFA is (T , ϵ )-secure if for any dictionary Dict of size
2d , t-bit SAS channel, and attacker A bounded by time T , attackers’s advantage AdvTFA

A in
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distinguishing the tested session key from random is bounded as follows, for qS ,qC ,q
′
C ,qD as

defined above:

(1) If S, D, and C are all uncorrupted, then

AdvTFA
A ≤ min{qC + qS/2

t ,q′C + qD/2
t }/2d + ϵ .

(2) If only D is corrupted, then AdvTFA
A ≤ (qC + qS )/2d + ϵ .

(3) If only S is corrupted, then AdvTFA
A ≤ (q′C + qD/2t )/2d + ϵ .

(4) If only C is corrupted (or the user’s password leaks by any other means), then AdvTFA
A ≤

min(qS ,qD )/2t + ϵ .
(5) If both D and S are corrupted (but not C), and qS and qD count A’s offline operations

performed based on, respectively, S’s and D’s state, then AdvTFA
A ≤ min{qS ,qD }/2d .

Explaining Security Bounds. The security of the TFA scheme relative to the DE-PAKE model can
be seen by comparing the above bounds to those in Reference [45]. Here, we explain the meaning
of some of these bounds. In the default case of no corruptions, the adversary’s probability of attack
is at most min(qC+qS/2t ,q′C+qD/2t )/2d improving on DE-PAKE bound min(qC+qS ,q

′
C+qD )/2d

and on the PAKE bound (qC+qS )/2d . For simplicity, assume that qC = q
′
C = 0 (e.g., in the PKI

setting where C talks to S over TLS and the communication from D to C is authenticated), in
which case the bound reduces to min(qS ,qD )/2t+d . The interpretation of this bound, and similarly
for the other bounds in this model, is that to have a probability q/2t+d to impersonate the user,
the attacker needs to run q online sessions with S and also q online sessions with D. (In each such
session, the attacker can test one password out of a dictionary of 2d passwords and can do so
successfully only if its communication with D is accepted over the SAS channel, which happens
with probability 2−t .) This is the optimal security bound in the TFA-KE setting, since an adversary
who guesses both the user’s password and the t-bit checksum can successfully authenticate as the
user to the server.

In case of client corruption (and password leakage), the adversary’s probability of imperson-
ating the user to the server is at most min(qS ,qD )/2t , which is the best possible bound if the
password leaks. In case of device corruption, the adversary’s advantage is at most (qC+qS )/2d ,
which matches the optimal advantage of PAKE, i.e., where there is no device. In case of server
corruption, the adversary’s probability of impersonating the user to an uncorrupted server ses-
sion is (assuming q′C = 0 for simplicity) at most qD/2t+d . In other words, learning server’s private
information allows the adversary to authenticate as the server to the client, but it does not help
to impersonate the client to the server. In contrast, widely deployed PIN-based TFA schemes that
transmit passwords and PINs over a TLS channel are subject to an offline dictionary attack in this
case.

Note on Security under S and C Corruptions. If S is corrupted, then the adversary cannot
test any C session keys (technically, such sessions are declared “not fresh,” see Reference [45]).
Indeed, an adversary who learns S’s long-term secrets can successfully authenticate as S to C.
However, even if S is corrupted and its long-term secrets leak, we can still achieve security for S

sessions whose local state is not compromised by the adversary. (This is known as KCI-security
of Authenticated Key Exchange, see, e.g., Reference [45].) By contrast, if client C is compromised
and its password leaks, then we must also declare all C sessions “not fresh,” because in our model
the client has no other input than the password, and it has no other means of authenticating either
server S or device D,4 as our assumption is that the SAS-channel authenticates C to D, and not

4However, see the discussion of the “password-over-TLS” implementation option under the aPAKE heading in Section 3.
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Fig. 1. SAS Message Authentication (SAS-MA) [72].

vice versa.5 Consequently, an adversary who learns the password can successfully authenticate
to the client. However, our TFA model requires security of S sessions in the C-corruption case,
which is the main concern of TFA authentication: If the password leaks, then the adversary must
still have at most 2−t probability of authenticating to the server per each attempt, which involves
an interaction with both server S and device D.

Extension: The Case of simultaneous C and S Corruption. Note that when C and D are
corrupted, there is no security to be offered, because the attacker has possession of all authenticator
factors, the password and the auxiliary device. However, in the case that both C and S are corrupted
one can hope that the attacker could not authenticate to sessions of S that the attacker does not
actively control. Indeed, the above model can be extended to include this case with a bound of
min(qS ,qD )/2t . Our protocols as described in Figures 2 and 4 do not achieve this stronger bound,
but it can be achieved by the following small modification (refer to the figures): S is initialized with
a public key of D and before sending the value zid to D (via C), S encrypts it under D’s public key.

3 BUILDING BLOCKS

We recall several of the building blocks used in our TFA-KE protocol.

SAS-MA Scheme of Vaudenay [72]. The Short Authentication String Message Authentica-

tion (SAS-MA) scheme allows the transmission of a message from a sender to a receiver so that
the receiver can check the integrity of the received message. A SAS-MA scheme considers two
communication channels. One that allows the transmission of messages of arbitrary length and is
controlled by an active man-in-the-middle, and another that allows sending up to t bits that can-
not be changed by the attacker (neither channel is assumed to provide secrecy). We refer to these
as the open channel and the SAS channel, respectively, and call the parameter t the SAS channel
capacity. A SAS-MA scheme is called secure if the probability that the receiver accepts a message
modified by a (computationally bounded) attacker on the open channel is no more than 2−t (plus
a negligible fraction). In Figure 1, we show a secure SAS-MA implementation of Reference [72] for
a sender C and a receiver D. The SAS channel is abstracted as a comparison of two t-bit strings
checksumC and checksumD computed by sender and receiver, respectively. As shown in Refer-
ence [72], the probability that an active man-in-the-middle attacker between D and C succeeds in
changing message MC while D and C compute the same checksum is at most 2−t . Note that this
level of security is achieved without any keying material (secret or public) pre-shared between the

5A bi-directional SAS channel would allow client session security in the case of leaked password, up the 2−t bound, and
it would authenticate D to C in the password-over-TLS implementation; see footnote 3. Note that all SAS channel imple-
mentations in Section 7.1 extend to bi-directional authentication if checksum validation is done on both D and C.
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parties. Also, importantly, there is no requirement for checksums to be secret. (In Section 5, we
present a formal SAS-MA security definition.)

Thus, the SAS-MA protocol reduces integrity verification of a received message MC to verifying
the equality of two strings (checksums) assumed to be transmitted “out-of-band,” i.e., away from
adversarial control. In our application, the checksums will be values displayed by device D and
client C whose equality the human user verifies and confirms via a physical action, e.g., a click, a
QR snapshot, or an audio read-out (see Section 6). In the TFA-KE application this user-confirmation
of checksum equality serves as evidence of the physical control of terminal C and device D by the
same user, and a confirmation of user’s possession of the second authentication factor implemented
by D.

SAS-SMT. One can use a SAS-MA mechanism from C to D to bootstrap a confidential channel
from D to C. The transformation is standard: To send a message m securely from D to C (in our
application m is a one-time key and D’s PTR response, see below), C picks a CCA-secure public
key encryption key pair (sk, pk) (e.g., pair (x ,дx )) for an encryption scheme (KG, Enc,Dec), sends
pk to D, and then C and D execute the SAS-MA protocol on MC = pk. If D accepts, then it sends
m encrypted under pk to C, who decrypts it using sk. The security of SAS-MA and the public-key
encryption imply that an attacker can intercept m (or modify it to some related message) only by
supplying its own key pk′ instead of C’s key, and causing D to accept in the SAS-MA authentication
of pk′, which by SAS-MA security can happen with probability at most 2−t . The resulting protocol
has four messages, and the cost of a plain Diffie-Hellman exchange if implemented using ECIES
[23] encryption. We refer to this scheme as SAS-SMT (SMT for “secure message transmission”).

aPAKE. Informally, an aPAKE (i.e., an asymmetric or augmented PAKE) is a password protocol that
offers limited form of security against server compromise [26, 39]. Namely, the server stores a one-
way function of the user’s password, and the attacker who breaks into the server can only learn
information on the password through an exhaustive offline dictionary attack. While the aPAKE
terminology is typically used in the context of password-only protocols that do not rely on public
keys, we extend it here (following Reference [45]) to the PKI-based password-over-TLS protocol.
This enables the use of our techniques in the context of TLS, a major benefit of our TFA schemes.
Note that password-over-TLS, while secure against server compromise, is not strictly an aPAKE
as it allows an attacker to learn plaintext passwords (decrypted by TLS) while the attacker is in
control of the server. As shown in Reference [45], dealing with this property requires a tweak in
the DE-PAKE protocol (C needs to authenticate the valueb sent by D in the PTR protocol described
below - see also Section 6).

DE-PAKE. A DE-PAKE [45] is an extension of the asymmetric PAKE model by an auxiliary device,
which strengthens aPAKE protocols by eliminating offline dictionary attacks upon server compro-
mise. We use DE-PAKE protocols as a main module in our general construction of TFA-KE, and
our practical instantiation of this construction, protocol OpTFA, uses the DE-PAKE scheme of Ref-
erence [45], which combines an asymmetric aPAKE with a password hardening procedure PTR

described next.

Password-to-Random Scheme PTR. A PTR is a password hardening procedure that allows client
C to translate with the help of device D (which stores a key k) a user’s master password pwd into
independent pseudorandom passwords (denoted rwd) for each user account. The PTR instantiation
from Reference [45] is based on the Ford-Kaliski’s Blind Hashed Diffie-Hellman technique [38]:
Let G be a group of prime order q, let H ′ and H be hash functions that map onto, respectively,
elements of G and κ-bit strings, where κ is a security parameter. Define Fk (x ) = H (x , (H ′(x ))k ),
where the key k is chosen at random in Zq . In PTR this function is computed jointly between C
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Fig. 2. OpTFA: Efficient TFA-KE Protocol with Optimal Security Bounds.

and D where D inputs key k and C inputs x = pwd as the argument, and the output, denoted rwd =

Fk (pwd), is learned by C only. The protocol is simple: C sends a = (H ′(pwd))r for r random in Zq ,
D responds with b = ak , and C computes rwd = H (x ,b1/r ). Under the One-More (Gap) Diffie-

Hellman (OM-DH) assumption in the Random Oracle Model (ROM), this scheme realizes a
universally composable oblivious PRF (OPRF) [44], which in particular implies that x = pwd

is hidden from all observers and function Fk (·) remains pseudorandom on all inputs that are not
queried to D.

4 OpTFA: A PRACTICAL SECURE TFA-KE PROTOCOL

In Section 5, we present a general design, GenTFA, of a TFA-KE scheme based on two generic
components, namely, SAS-MA and DE-PAKE. But first, in this section, we show a practical instan-
tiation of GenTFA, called OpTFA, using the specific building blocks presented in Section 3, namely,
the SAS-MA scheme from Figure 1 and the DE-PAKE scheme from Reference [45] (that uses the
DH-based PTR scheme described in Section 3 composed with any asymmetric PAKE). This con-
crete instantiation serves as the basis of our implementation in Section 6 and helps explaining the
rationale of our general construction. Protocol OpTFA is presented in Figure 2, and in a schematic
form in Figure 3.

Enhanced TFA via SAS. Before going into the specifics of OpTFA, we describe a general technique
for designing TFA schemes using a SAS channel. In traditional TFA schemes, a PIN is displayed
to the user who copies it into a login screen to prove access to that PIN. As discussed in the
introduction, this mechanism suffers of significant weaknesses mainly due to the low entropy of
PINs (and inconvenience of copying them). We suggest automating the transmission of the PIN
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Fig. 3. Schematic Representation of Protocol OpTFA of Figure 2.

over a confidential channel from device D to client C. To implement such channel, we use the SAS-
SMT scheme from Section 3 where security boils down to having D and C display t-bit strings
(checksums) that the user checks for equality. In this way, low-entropy PINs can be replaced with
full-entropy values (we refer to them as one-time keys (OTK)) that are immune to eavesdropping
and bound active attacks to a success probability of 2−t . These active attacks are impractical even
for t = 20 (more a denial-of-service than an impersonation threat) and with larger t ’s they are even
more so, as illustrated in Section 6. Note that this approach works with any form of generation of
OTK’s, e.g., time-based mechanisms, challenge-response between device and server, and so on.

4.1 OpTFA Explained

Protocol OpTFA (Figure 2) requires several mechanisms that are necessary to obtain the strong
security bounds of the TFA-KE model. To provide rationale for the need of these mechanisms we
show how the protocol is built bottom-up to deliver the required security properties (refer to the
introduction for a list of vulnerabilities this design addresses). We stress that while the design
is involved the resultant protocol is efficient and practical. The presentation and discussion of
security properties here is informal but the intuition can be formalized as we do via the TFA-KE
model (Section 2), the generic protocol GenTFA in next section and the proof of Theorem 5.1.

In general terms, OpTFA can be seen as a DE-PAKE protocol using the PTR scheme from Sec-
tion 3 and enhanced with fresh OTKs transmitted from D to C via the above SAS-SMT mechanism.
The OTK is generated by the device and server for each session and then included in the aPAKE
interaction between C and S. We note that OpTFA treats aPAKE generically, so any such scheme
can be used. In particular, we start by illustrating how OpTFA works with the standard password-
over-TLS aPAKE, and then generalize to the use of any aPAKE, including PKI-free ones.

• OpTFA 0.0. This is standard password-over-TLS where the user’s password is transmitted from
C to S under the protection of TLS.

•OpTFA 0.1. We enhance password-over-TLS with the OTK-over-SAS mechanism described above.
First, C transmits the user’s password to S over TLS and if the password verifies at S, S sends a
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nonce zid to C who relays it to D. On the basis of zid (which also acts as session identifier in our
analysis), D computes an OTK z = RKz

(zid ) where R is a PRF and Kz a key shared between D

and S. D transmits z to C over the SAS-SMT channel and C relays it to S over TLS. The user is
authenticated only if the received value z is the same as the one computed by S.

This scheme offers defense in case of password leakage. With a full-entropy OTK it ensures
security against eavesdroppers on the D-C link and limits the advantage of an active attacker to a
probability of 2−t for SAS checksums of length t . However, the scheme is open to online password
attacks (as in current commonly deployed schemes), because the attacker can try online guesses
without having to deal with the transmission of OTK z. In addition, it offers no security against
offline dictionary attacks upon server compromise.

• OpTFA 0.2. We change OpTFA 0.1 so that the user’s password pwd is only transmitted to S at the
end of the protocol together with the OTK z (it is important that if z does not verify as the correct
OTK, that the server does not reveal if pwd is correct or not). This change protects the protocol
against online guessing attacks and reduces the probability of the successful testing of a candidate
password to 2−(d+t ) rather than 2−d in version 0.1.

•OpTFA 0.3. We add defense against offline dictionary attacks upon server compromise by resort-
ing to the DE-PAKE construction of Reference [45] and, in particular, to the password-to-random
hardening procedure PTR from Section 3. For this, we now assume that the user has a master pass-
word pwd that PTR converts into randomized passwords rwd for each user account. By registering
rwd with server S and using PTR for the conversion, DE-PAKE security ensures that offline dictio-
nary attacks are infeasible even if the server is compromised (case (3) in Definition 2.1). Note that
the PTR procedure runs between D and C following the establishment of the SAS-SMT channel.

•OpTFA 0.4. We change the run of PTR between D and C so that the value a computed by C as part
of PTR is transmitted over the SAS-authenticated channel from C to D. Without this authentication
the strict bound of case (3) in Definition 2.1 (simplified for q′C = 0), namely, AdvTFA

A ≤ qD/2d+t + ϵ
upon server compromise, would not be met. Indeed, when the attacker compromises server S, it
learns the key Kz used to compute the OTK z so the defense provided by OTK is lost. So, how
can we still ensure the 2t denominator in the above bound expression? The answer is that by
authenticating the PTR value a under SAS-MA, the attacker is forced to run (expected) 2t sessions
to be able to inject its own value a over that channel. Such injection is necessary for testing a
password guess even when Kz is known. When considering a password dictionary of size 2d this
ensures the denominator 2d+t in the security bound.

• OpTFA 0.5. We add the following mechanism to OpTFA: Upon initialization of an authentication
session (for a given user), C and S run an unauthenticated (a.k.a. anonymous) key exchange uKE

(e.g., a plain Diffie-Hellman protocol) to establish a shared key KCS that they use as a MAC key
applied to all subsequent OpTFA messages. To see the need for uKE assume it is omitted. For
simplicity, consider the case where attacker A knows the user’s password. In this case, all A needs
for impersonating the user is to learn one value of z, which it can attempt by acting as a man-in-
the-middle on the C-D channel. AfterqD such attempts, A has probability ofqD/2t to learn z, which
together with the user’s password allows A to authenticate to S. In contrast, the bound required
by Definition 2.1 in this case is the stricter min{qS ,qD }/2t . This requires that for each attempt at
learning z in the C-D channel, not only A needs to try to break SAS-MA authentication but it also
needs to establish a new session with S. For this, we resort to the uKE channel. It ensures that a
response z to a value zid sent by S over a uKE session will only be accepted by S if this response
comes back on the same uKE session (i.e., authenticated with the same keys used by S to send
the challenge zid). It means that both zid and z are exchanged with the same party. If zid was
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sent to the legitimate user, then the attacker, even if it learns the corresponding z, cannot use it
to authenticate back to S. We note that uKE is also needed in the case that the attacker does not
know the password. Without it, the success probability for this case is about a factor 2d/qS higher
than acceptable by Definition 2.1.
Note. When all communication between C and S goes over TLS, there is no need to establish a
dedicated uKE channel; TLS serves as such.

• OpTFA 0.6. We stipulate that D never responds twice to the same zid value (for this, D keeps
a stash of recently seen zid’s; older values become useless to the attacker once they time out at
the server). Without this mechanism the attacker gets multiple attempts at learning z for a single
challenge zid . However, this would violate bound (1) (for the case qC = q

′
C = 0) min{qS ,qD }/2d+t ,

which requires that each guess attempt at z be bound to the establishment of a new session of the
attacker with S.

• OpTFA 0.7. Finally, we generalize OpTFA so that the password protocol run as the last stage of
OpTFA (after PTR generates rwd) can be implemented with any asymmetric aPAKE protocol, with
or without assuming PKI, using the server-specific user’s password rwd. As shown in Reference
[45], running any aPAKE protocol on a password rwd produced by PTR results in a DE-PAKE
scheme, a property that we use in an essential way in our analysis.

We need one last mechanism for C to prove knowledge of z to S, namely, we specify that both C

and S use z as a MAC key to authenticate the messages sent by protocol aPAKE (this is in addition
to the authentication of these messages with key KCS ). Without this, an attack is possible where
in case that OpTFA fails the attacker learns if the reason for it was an aPAKE failure or a wrong z.
This allows the attacker to mount an online attack on the password without the attacker having to
learn the OTK. (When the aPAKE is password-over-TLS the MAC mechanism is not needed, since
authentication is achieved by encrypting rwd and z under the same CCA-secure ciphertext [41]).

•OpTFA. Version 0.7 constitutes the full specification of the OpTFA protocol, described in Figure 2,
with generic aPAKE.

Performance: The number of exponentiations in OpTFA is reported in the introduction; implemen-
tation and performance information is presented in Section 6.

OpTFA Security. Security of OpTFA follows from that of protocol GenTFA, because OpTFA is its
instantiation. See Theorem 5.1 in Section 5 and Corollary 5.2.

5 THE GENERIC GenTFA PROTOCOL

In Figure 4, we show protocol GenTFA, which is a generalization of protocol OpTFA shown in
Figure 2 in Section 4. (Figure 4 shows a simplified protocol that separates the C-D secure channel
establishment in step II from DE-PAKE in step III, but see a note below on a round-optimized
version of this protocol.) Protocol GenTFA is a compiler that converts any secure DE-PAKE and
SAS-MA schemes into a secure TFA-KE. It uses the same uKE and CCA-PKE tools as protocol
OpTFA, but it also generalizes two other mechanisms used in OpTFA as, respectively, a symmetric-
key Key Encapsulation Mechanism (KEM) scheme and an Authenticated Channel (AC) scheme.

A (symmetric-key) Key Encapsulation Mechanism (KemE,KemD) (see, e.g., Reference [69]), al-
lows for encrypting a random session key given a (long-term) symmetric key Kz , i.e., if (zid, z) ←
KemE(Kz ), then z ← KemD(Kz , zid ). An adversarial distinguishing advantage ϵKEM (n) against n
instances of KEM is defined as the distinguishing advantage between pairs (zid1, z1), . . . , (zidn , zn )
output by n runs of KemE(Kz ) and values (zid1, z

∗
1 ) . . . , (zidn , z

∗
n ),where z1∗, . . . , z∗n are chosen as

n independent randomκ-bit strings. In protocol OpTFA of Figure 2, KEM is implemented using PRF
R: zid is a randomκ-bit string and z = R (Kz , zid ), in which case ϵKEM (n) ≤ q2/(2κ ) + ϵPRF (n) where
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Fig. 4. Generic TFA-KE Scheme: Protocol GenTFA.

ϵPRF (n) is the bound on the distinguishing advantage against PRF R where n is the number of PRF
quaries. We also generalize the usage of the MAC function in OpTFA as an Authenticated Channel,
defined by a pair ACSend,ACRec, which implements bi-directional authenticated communication
between two parties sharing a symmetric key K [32, 43]. Algorithm ACSend takes inputs key K
and message m and outputs m with authentication tag computed with key K , while the receiver
procedure, ACRec(K , ·), outputs either a message or the rejection symbol ⊥. We assume that the
AC scheme is stateful and provides authenticity and protection against replay.

Round optimization. Protocol GenTFA in Figure 4 is simplified by separating the C-D secure
channel set-up in step II from DE-PAKE in step III. This is not round-optimal if the first step of the
DE-PAKE scheme also consists of a round of C-D interaction, as is the case for, e.g., the DE-PAKE
scheme of Reference [45], which we use to instantiate protocol GenTFA in Section 4. Indeed, such
round of DE-PAKE communication could be piggy-backed onto the C-D communication in step
II as follows: C can generate its first DE-PAKE message a on its input password pwd, and run
step (1) as in Figure 4 but for MC = (pk, zid,a). Then device D runs step (2) as in Figure 4, but it
forms the ciphertext it sends to C as eD ← Enc(pk, (z,KCD ,b)), where b is its DE-PAKE response
computed on C’s message a and D’s local input k . Finally, in step (3) C parses the decryption of eD

as (z,KCD ,b) ← Dec(sk, eD ) and runs the rest of the DE-PAKE execution as in step III in Figure 4
from this point on. Protocol OpTFA of Section 4 is an instantiation of this round-optimized version
of GenTFA.

The security of GenTFA is stated in the following theorem:

Theorem 5.1. Assuming security of the building blocks DE-PAKE, SAS, uKE, PKE, KEM, and AC,
protocol GenTFA is a (T , ϵ )-secure TFA-KE scheme for ϵ upper bounded by

ϵDEPAKE + n · (ϵSAS + ϵuKE + ϵPKE + 6ϵAC) + 2ϵKEM (n),
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for n = qHbC +max(qS ,qD ,qC ,q
′
C ), where qHbC denotes the number of GenTFA protocol sessions

in which the adversary is only eavesdropping, and each quantity of the form ϵP is a bound on the
advantage of an attacker that works in time ≈ T against a single instance of protocol building block
P, or against n instances in case of ϵKEM (n).

Theorem 5.1 applies to both the GenTFA protocol as shown in Figure 4 and to its round-
optimized version. Thus, as a corollary, we obtain a proof of TFA-KE security for protocol OpTFA

from Figure 2, which uses specific secure instantiations of GenTFA components. The corollary fol-
lows by applying the result of Vaudenay [72] on the security of the SAS-MA scheme used in OpTFA,
assuming ROM, and the result of Reference [45] on the security of DE-PAKE used in OpTFA, assum-
ing OM-DH assumption and that a secure asymmetric PAKE scheme. The factors in front of each
expression of the form ϵP in Theorem 5.1 are upper-bounded by n = qHbC +max(qS ,qD ,qC ,q

′
C ),

and the exact quantities can be found in the corresponding step in the security proof.

Corollary 5.2. Assuming that aPAKE is a secure asymmetric PAKE, uKE is secure Key Exchange,
(KG, Enc,Dec) is a CCA-secure PKE, R is a secure PRF, and MAC is a secure message authentication
code, OpTFA is a secure TFA-KE scheme under the OM-DH assumption in ROM.

Security definition of SAS authentication. For the purpose of the proof below, we state the
security property assumed of a SAS-MA scheme, which was informally described in Section
3. While Reference [72] defines the security of SAS-MA using a game-based formulation, here
we do it via the following (universally composable) functionality FSAS[t]: On input a message
[SAS.SEND, sid, P ′,m] from an honest party P , functionality FSAS[t] sends [SAS.SEND, sid, P , P ′,m]
to A, and then, if A’s response is [SAS.CONNECT, sid], then FSAS[t] sends [SAS.SEND, sid, P ,m]
to P ′, if A’s response is [SAS.ABORT, sid], then FSAS[t] sends [SAS.SEND, sid, P ,⊥] to P ′, and
if A’s response is [SAS.ATTACK, sid,m′] then FSAS[t] throws a coin ρ, which comes out 1 with
probability 2−t and 0 with probability 1− 2−t , and if ρ = 1 then FSAS[t] sends succ to A and
[SAS.SEND, sid, P ,m′] to P ′, and if ρ = 0 then FSAS[t] sends fail to A and [SAS.SEND, sid, P ,⊥]
to P ′.

In our main instantiation of the generic protocol GenTFA of Figure 4, i.e., in protocol OpTFA

of Figure 2, we instantiate SAS-MA with the scheme of Reference [72], but even though the orig-
inal security argument given for it in Reference [72] used the game-based security notion, it is
straightforward to adopt this argument to see that this scheme securely realizes the above (uni-
versally composable) functionality.

Proof of Theorem 5.1. We consider first protocol GenTFA as shown in Figure 4, and we explain
separately below how this proof extends to the round-optimized version. Let A be an adversary
limited by time T playing the TFA-KE security game, which we will denote G0, instantiated with
the TFA-KE scheme GenTFA. Let the security advantage defined in Definition 2.1 for adversary
A satisfy AdvTFA

A = ϵ . Let ΠS
i , ΠC

j , ΠD
l

refer to, respectively, the ith, jth, and lth instances of S, C,
and D entities, which A starts up. Let t be the SAS channel capacity, κ the security parameter,
qS ,qD ,qC ,q

′
C the limits on the numbers of rogue sessions of S, D, C when communicating with

S, and C when communicating with D, and let qHbC be the number of GenTFA protocol sessions
in which A plays only a passive eavesdropper role except that we allow A to abort any of these
protocol executions at any step. Let nS = qS + qHbC , nD = qD + qHbC , nC = max(qC ,q

′
C ) + qHbC ,

and note that these are the ranges of indexes i, j, l for instances ΠS
i , ΠC

j , and ΠD
l

. We will use [n] to
denote range {1, . . . ,n}.

The security proof goes by cases depending on the type of corrupt queries A makes. In all cases
the proof starts from the security-experiment game G0 and proceeds via a series of game changes,
G1, G2, etc, until a modified game Gi allows us to reduce an attack on the DE-PAKE with the
same corruption pattern (except in the case of corrupt client C) to the attack on Gi . In the case of
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the corrupt client the argument is different, because it does not rely on the underlying DE-PAKE
(note that DE-PAKE does not provide any security properties in the case of client corruption). In
some game changes, we will consider a modified adversary algorithm, for example an algorithm
constructed from the original adversary A interacting with a simulator of some higher-level
procedure, e.g., the SAS-MA simulator. Wlog, we use Ai for an adversary algorithm in game Gi .

We will use pi to denote the probability that Ai interacting with game Gi outputs b ′ s.t. b ′ = b
where b is the bit chosen by the game on the test session. Recall that when A makes the test
session query test(P , i ), for P ∈ {S,C}, then, assuming that instance ΠP

i produced a session key sk,
game G0 outputs that session key if b = 1 or produces a random string of equal size if b = 0 (and if
session ΠP

i did not produce the key then G0 outputs⊥ regardless of bit b). Note that by assumption

AdvTFA
A = ϵ , we have that p0 = 1/2 + 1/2 · AdvTFA

A = 1/2 + ϵ/2.

Case 1: No party is compromised. This is the case when A makes no corrupt queries, i.e., it is
the default “network adversary” case.6

Game G1: Let (zidi , zi ) be the KEM (ciphertext,key) pair generated in Step I.1 by ΠS
i . Let Z be a

random function that maps onto κ-bit strings. Let EZcol be the event that any two S sessions pick
the same zid field, i.e., that for any i1, i2 in [nS ], we have i1 � i2 and zidi1 = zidi2 . Let A1 = A0

and let game G1 be like G0 except that (1) it aborts if EZcol happens and (2) it sets each zi as
zi←Z (zidi ). We have that p1 ≤ p0 + 2ϵKEM (nS ), because the difference between G0 and G1 can be
upper-bounded by the distringuishing advantage between nS KEM instances using, respectively,
real and random keys, which is ϵKEM (nS ), plus the probability of zid-collision. However, the last
probability can also be upper-bounded by ϵKEM (nS ), because a zid-collision immediately implies
an attack on KEM, since in the real execution zid-collision implies a repeat of the key z, while in
the random-key KEM game each z is independently random.

Game G2: Let SIMSAS be the simulator for the SAS-MA scheme. Let A2 = A1, and let G2 be like
G1 except that in Step II.1 when instance ΠC

j of C and instance ΠD
l

of D execute the SAS-
MA sub-protocol, we replace this SAS-MA execution with a simulator SIMSAS interacting with
A1 and the ideal SAS-MA functionality FSAS[t]. Namely, instance ΠC

j , instead of sending MC =

(pk, zid ) to A1 and starting a SAS-MA instance to authenticate MC to D, will issue command
[SAS.SEND, sid,ΠD

l
,MC] to FSAS[t], which triggers SIMSAS to start simulating to A1 the SAS-MA

protocol between ΠC
j and ΠD

l
on message MC as an input. Depending on the way A1 responds,

SIMSAS can act in one of the following three ways: (1) If SIMSAS sends [SAS.CONNECT, sid] to
FSAS[t], then FSAS[t] sends [SAS.SEND, sid,ΠC

j ,MC] to ΠD
l

and ΠD
l

proceeds to step II.2 using this re-

ceived message; (2) If SIMSAS sends [SAS.ABORT, sid] to FSAS[t], then FSAS[t] sends⊥ to ΠD
l

and ΠD
l

aborts; (3) If SIMSAS sends [SAS.ATTACK, sid,MC
∗] to SIMSAS for some MC

∗ (w.l.o.g. MC
∗ � MC),

then FSAS[t] throws a coin ρl , which comes out 1 with probability 2−t and 0 with probability 1 − 2−t ,
and if ρ = 0 then FSAS[t] sends fail to SIMSAS and ⊥ to ΠD

l
and ΠD

l
aborts, and if ρ = 1 then FSAS[t]

sends succ to A and [SAS.SEND, sid,ΠC
j ,MC

∗] to ΠD
l

, and then ΠD
l

proceeds to step II.2 using mes-

sage MC
∗. Since the SAS-MA protocol realizes the UC functionality FSAS[t] with at most error ϵSAS

(per instance), and the simulator SIMSAS executes independently from the rest of the security game
G2, it follows that p2 ≤ p1 +min(nC ,nD ) · ϵSAS.

Game G3: Note that in the above security game adversary A2 interacts with game G2, which inter-
nally runs interactive algorithms SIMSAS and FSAS[t]. Note also that the SIMSAS algorithm interacts
only with FSAS[t] on one end and A2 on the other. We can, therefore, draw the boundaries between

6We refer to the eprint version of this article [48] for an overview of the game changes in the proof below, where each
game is described more intuitively and in less technical terms.
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the adversarial algorithm A and the security game G slightly differently: Consider an adversarial
algorithm A3, which executes the steps of A2 and SIMSAS, and a security game G3, which exe-
cutes the rest of game G2, including the operation of functionality FSAS[t]. Note that G3 does not
execute the SAS-MA protocol, but interacts with A3 using the FSAS[t] interface to SIMSAS, i.e., G3

sends to A3 messages of the type [SAS.SEND, sid,ΠC
j ,Π

D
l
,MC], and A3’s response must be one

of [SAS.CONNECT, sid], [SAS.ABORT, sid], and [SAS.ATTACK, sid,MC
∗]. Since we are only re-

drawing the boundaries between the adversarial algorithm and the security game, we have that
p3 = p2.

Game G4: Let A4 = A3 and let G4 be as G3 except that if G3 sends [SAS.SEND, sid,ΠC
j ,Π

D
l
,MC]

for some (j, l ) pair, and A4 sends [SAS.CONNECT, sid] in response, then we make the following
changes: First, eD sent by ΠD

l
is formed as Enc(pk, (0κ , 0κ )) instead of Enc(pk, (z,KCD )) as in G3,

for pk specified in MC = (pk, zid ). Second, if A3 passes this eD to ΠC
j , then ΠC

j decrypts it as the

(z,KCD ) pair, which was generated by ΠD
l

. Otherwise, the game does not change, and in particular

if A3 passes some other ciphertext e∗D � eD to ΠC
j then ΠC

j decrypts e∗D in a standard way. By the

reduction to CCA security of PKE (KG, Enc,Dec), it follows that p4 ≤ p3 +min(nC ,nD ) · ϵPKE.

Game G5: Let EACbreak(CD) be an event that there is some session pair (ΠC
j ,Π

D
l

) s.t. (a) A4 responded

with [SAS.CONNECT, sid] to [SAS.SEND, sid,ΠC
j ,Π

D
l
,MC], and (b) A4 delivered eD sent by ΠD

l
to

ΠC
j , and (c) in the DE-PAKE interaction between ΠC

j and ΠD
l

authenticated by key KCD in step
III either party accepts a message either not sent by the counterparty or delivered out of order.
Let A5 = A4 and G5 be as G4 except that G5 aborts if EACbreak(CD) ever happens. Since in game G4,
under conditions (a) and (b), the adversary has no information about key KCD used by both ΠC

j

and ΠD
l

, by the security of the authentic channel implementation, we have that condition (c) can

hold with probability at most min(nC ,nD ) · ϵAC, hence p5 ≤ p4 +min(nC ,nD ) · ϵAC.

Game G6: Let EACbreak(CD′) be an event that there is some session pair (ΠC
j ,Π

D
l

) s.t. (a) A4 responded

with [SAS.CONNECT, sid] to [SAS.SEND, sid,ΠC
j ,Π

D
l
,MC], (b) A4 did not deliver eD sent by ΠD

l

to ΠC
j , and (c) instance ΠD

l
did not abort in step III. Let A6 = A5 and G6 be as G5 except that G6

aborts if EACbreak(CD′) ever happens. Since in game G5, under conditions (a) and (b), only ΠD
l

has
information on key KCD , by the security of the authenticated channel implementation we have
that condition (c) can hold with probability at most qD · ϵAC, hence p6 ≤ p5 + qD · ϵAC.

Game G7: Let A7 = A6 and G7 be as G6 except that for every uKE instance in step I.1 between ΠS
i

and ΠC
j , if the adversary is an eavesdropper on it then G7 replaces key KCS output by ΠS

i and ΠC
j

with a random key. By uKE security it follows that p7 ≤ p6 +min(nC ,nS ) · ϵuKE.

Game G8: Let EACbreak(CS) be an event that there is some session pair ΠS
i ,Π

C
j s.t. (a) the adversary

is passive on the KE executed in step I.1 and (b) in the DE-PAKE interaction between ΠC
j and ΠS

i

authenticated by key KCS in step III either party accepts a message either not sent by the counter-
party or delivered out of order. Let A8 = A7 and G8 be as G7 except that G8 aborts if EACbreak(CS)

ever happens. Since in game G7 the adversary has no information about KCS , by the security of
the authenticated channel implementation, we have that p8 ≤ p7 +max(nC ,nS ) · ϵAC.

Note that at this point the game has the following properties: If A is passive on the C-S key
exchange in step I, then A is forced, by game G8, to be passive on the C-S link in the DE-PAKE
in step III. Also, if A does not attack the SAS-MA sub-protocol and delivers D’s ciphertext to C

in step II then A is forced, by game G5, to be passive on the C-D link in the DE-PAKE in step III
(and if A does not deliver D’s ciphertext to C, then this D instance will not respond to any further
messages, by game G6). The remaining cases are thus active attacks on the key exchange in step
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I and when A either attacks the SAS-MA sub-protocol and gets D to accept MC∗ � MC or sends
e∗D � eD to C.

We will handle these cases next, and the crucial issue will be what the adversary does with the
zid values created by S. Consider any S instance ΠS

i in which the adversary interferes with the key
exchange protocol in step I.1. Without loss of generality assume that the adversary learns key KCS

output by ΠS
i in this step. Note that D keeps a variable zidSet in which it stores all zid values it

ever receives, and that D aborts if it sees any zid more than once. Therefore, each game execution
defines a 1-1 function L : [nS ]→ [nD ] ∪ {⊥} s.t. if L(i ) �⊥, then L(i ) is the unique index in [nD ]
s.t. ΠD

L(i )
receives MC = (pk, zidi ) in step II.1 for some pk, and L(i ) =⊥ if and only if no D session

receives zidi . If L(i ) �⊥, then consider two cases: First, if MC = (pk, zidi ), which contains zidi ,
originates with some session ΠC

j , and second if MC = (pk, zidi ) is created by the adversary.

Game G9: Consider first the case of a rogue session ΠS
i and a rogue session ΠC

j to which the ad-

versary sends zidi in step I.2. Consider first the case when the adversary stops ΠC
j from getting

the corresponding zi . Namely, let EzidOmit(i) be an event s.t. the adversary (a) either never issues
[SAS.ATTACK, sid,MC

∗] for MC
∗ containing zidi or it does but the corresponding coin toss comes

out ρ = 0, (b) does not send zidi to any C instance, or it does send it to ΠC
j for some j ∈ [nC ], but

either responds with [SAS.ABORT, sid] to [SAS.SEND, sid,ΠC
j ,Π

D
l
,MC] in step II.1 or responds

with [SAS.CONNECT, sid] but does not deliver eD sent by ΠD
l

to ΠC
j in step II.2. Note that by

conditions (a) and (b), and the fact that already in game G4 ciphertext eD created in response to
[SAS.CONNECT, sid] does not contain any information about zi = Z (zidi ), neither session ΠC

j nor
the adversary have any information about zi . Therefore, by the security of the authenticated chan-
nel implementation ΠS

i should reject. Consider A9 = A8 and G9 like G8 except G9 sets ΠS
i ’s output to

⊥ at the end of step III if EzidOmit(i) happens. By the argument above we have thatp9 ≤ p8 + qS · ϵAC.

Game G10: Consider the same case of a rogue session ΠS
i and a rogue session ΠC

j to which the

adversary sends zidi in step I.2, but now consider the possibility that the adversary lets ΠC
j get the

corresponding zi but does not learn zi itself. Namely, let EzidPass(i, j) be an event for some i ∈ [nS ]
and j ∈ [nC ], (a) ΠC

j receives zidi in step I.2, (b) the adversary responds with [SAS.CONNECT, sid]

to [SAS.SEND, sid,ΠC
j ,Π

D
l
,MC] in step II.1, (c) the adversary never issues [SAS.ATTACK, sid,MC

∗]

for MC
∗ containing zidi , and (d) the adversary delivers eD sent by ΠD

l
to ΠC

j in step II.2. Consider
A10 = A9 and G10 like G9 except that if EzidPass(i, j) happens and in the DE-PAKE interaction between
ΠC

j and ΠS
i (where both parties use zi to authenticate this interaction), if the adversary does not

deliver to either ΠS
i or ΠC

j the messages of the counterparty in the correct order, G10 makes this
party abort and sets its output to ⊥. (Note that this means that the other party will also abort,
unless the misdelivered message was the last message this party sent.) Note that by conditions
(a) and (b) instance ΠD

l
receives zidi in MC sent by ΠC

j . By condition (c) this is the first time

D receives zidi , hence it will not abort, and by condition (d) ΠC
j will receive zi corresponding

to zidi . Since the adversary has no information about zi , by the security of the authenticated
channel implementation it follows that ΠC

j and ΠS
i output K �⊥ only (except for the probability

of an attack on the authenticated channel) if the adversary passes the DE-PAKE messages m′

(authenticated by z) between these two rogue instances as a man-in-the-middle. It follows that
p10 ≤ p9 +min(qC ,qS ) · ϵAC.

Note that by the changes done by games G9 and G10, if the adversary interferes with the
KE in step I.1 with session ΠS

i , sends zidi to some ΠC
j and does not send it to some ΠD

l
in a

[SAS.ATTACK, sid, (pk∗, zidi )] message for any l then the adversary is forced to be a passive eaves-
dropper on the DE-PAKE protocol in step III, or otherwise ΠS

i will output ⊥. Note that this is the
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case when L(i ) = l s.t. the game issues [SAS.SEND, sid,ΠC
j ,Π

D
l
, (pk, zidi )] for some pk, i.e., if some

ΠD
l

receives zidi , then it receives it as part of a message MC originated by some client session ΠC
j .

Game G11: Consider now the case when the adversary sends zidi to D by itself, i.e., when L(i ) = l
s.t. the adversary does sends [SAS.ATTACK, sid,MC

∗ = (pk∗, zidi )] for some pk∗ in response to
[SAS.SEND, sid,ΠC

j ,Π
D
l
,MC] for some j and MC. Let EzFail(i, l) be an event that (a) the above condi-

tions hold, (b) that the adversary does not send zidi to any client instance in step I.2, and (c) that
ρl = 0, i.e., that ΠD

l
rejects MC

∗ and aborts. Consider A11 = A10 and G11 just like G10 except that G10

makes ΠS
i abort in step III and sets its output to ⊥ in case of event EzFail(i, l) for any l ∈ [nD ]. Note

that by condition (a) and (b) session l = L(i ) of D is the only one that gets zidi , hence if ρl = 0 then
the adversary has no information about zi = Z (zidi ), hence by the security of the authenticated
channel it follows that p11 ≤ p10 + qS · ϵAC.

After these game changes, we are finally ready to make a reduction from an attack on underlying
DE-PAKE to an attack on the TFA-KE. Specifically, we will construct an algorithm A∗, which runs in
time comparable to A, achieves advantage AdvDEPAKE

A∗ = 2 · (p11 − 1/2) against the underlying DE-
PAKE scheme, and makes q∗S ,q

∗
D ,qC ,qC rogue queries, respectively, to S, D, to C on its connection

to S, and to C on its connection with D, whereq∗S = q
∗
D = q

∗, whereq∗ is a random variable equal to
the sum of q = min(qS ,qD ) coin tosses that come out 1 with probability 2−t and 0 with probability
1 − 2−t . Recall that AdvTFA

A = 2 · (p0 − 1/2) and that by the game changes above, we have that |p11 −
p0 | is a negligible quantity, and hence AdvDEPAKE

A∗ is negligibly close to AdvTFA
A .

Reducing DE-PAKE attack to TFA-KE attack. The reduction works by A∗ internally running algo-
rithm A and emulating entities S, C, and D to A as in game G11. If A starts up an instance ΠS

i , ΠC
j ,

and ΠD
l

, then A∗ starts up its local state for these sessions, which we will denote Π̄S
i , Π̄C

j , and Π̄D
l

.

Emulation of Step I of GenTFA to A: When A∗ starts up Π̄S
i or Π̄C

j , it runs the KE on their behalf

in step I.1. Let KS
CS,i , K

C
CS, j be the keys these instances output from the KE step. If A connects Π̄S

i

and Π̄C
j in HbC fashion, then we call this pair HbC-paired, and A∗ sets KS

CS,i = KC
CS, j to a random

key, as in G11 (see G7). In Step I.2 for Π̄S
i , A∗ picks zidi and sets zi = Z (zidi ) as in G11 (see G1), and

sends ACSend(KS
CS,i , 1, zidi ). Denote this (zidi , zi ) pair as (zidS

i , z
S
i ). When Π̄C

j receives a message

in step I.2, it decodes it as zidC
j using ACRec(KC

CS,i , 1, ·). If ACRec fails, then Π̄C
j aborts. If Π̄S

i and

Π̄C
j are not HbC-paired but zidC

j = zidS
i , then we call these instances zid-paired.

Emulation of Step II of GenTFA to A: A∗ picks (sk, pk) as C in step II.1 and sends
[SAS.SEND, sid,ΠC

j ,Π
D
l
,MC] to A for MC = (pk, zid ) and zid = zidC

j , where l is an index in [nD ]
set by A. If A responds with [SAS.CONNECT, sid] and zid was not sent to D before (otherwise
Π̄D

l
aborts), then A∗ generates eD as an encryption of two constants, as in G11. If A forwards

this eD to Π̄C
j , then A∗ sets zC

j = Z (zidC
j ), picks a random key KC

CD, j , sets KD
CD,l
= KC

CD, j , and de-

notes such Π̄C
j , Π̄

D
l

instances as paired. However, if A responds with [SAS.ATTACK, sid,MC
∗] for

MC∗ = (pk∗, zid∗) s.t. zid∗ was not sent to D before (otherwise Π̄D
l

aborts), A∗ picks coin ρl as in

G11 (see G2) and aborts Π̄D
l

unless ρl = 1 (which happens with probability 2−t ). If Π̄D
l

does not

abort, then A∗ picks a random key KD
CD,l

and sends out eD = Enc(pk∗, (Z (zid∗),KD
CD,l

)). If A did

not respond with [SAS.CONNECT, sid] or Π̄C
j receives e∗D , which differs from eD sent by Π̄D

l
, then

A∗ sets (zC
j ,K

C
CD, j ) ← Dec(sk, e∗D ).

As in G11, A∗ can abort some sessions at this point: (1) A∗ aborts Π̄D
l

if A responds with

[SAS.CONNECT, sid] above but does not forward eD to Π̄C
j (see G6); (2) A∗ aborts Π̄S

i and sets
its output to ⊥ if the conditions of event EzidOmit(i) are satisfied (see G9), i.e., (a) A was not HbC
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in the key exchange with Π̄S
i in step I, (b) A either does not send [SAS.ATTACK, sid, ·] with zidS

i

or it does but the corresponding coin-toss ρ comes out 0, (c) A does not sent zidS
i to any Π̄C

j

session, or it does for some j but then either does not do [SAS.CONNECT, sid] or does not de-
liver the resulting eD to Π̄C

j ; (3) A∗ aborts Π̄S
i and sets its output to ⊥ if the conditions of event

EzFail(i, l) are satisfied for some l ∈ [nD ] (see G11), i.e., A does not send zidS
i to any Π̄C

j instance,

sends [SAS.ATTACK, sid, (pk∗, zidS
i )] to some Π̄D

l
but coin ρl comes out 0.

Emulation of Step III of GenTFA to A: Finally, A∗ emulates step III of TFA-KE by using the state
held by Π̄P

i for any P ∈ {S,C,D} and i s.t. Π̄P
i reached step III of GenTFA without aborting. A∗ per-

forms this emulation by implementing the Authenticated Channel layer as in step III of GenTFA

using the corresponding state computed above, i.e., KS
CS,i , z

S
i for Π̄S

i , KC
CS, j , z

C
j ,K

C
CD, j for Π̄C

j , and

KD
CD,l

for Π̄D
l

, and implementing the DE-PAKE messages by initiating and communicating with the

external DE-PAKE parties, respectively, ΠS
i , ΠC

j , and ΠD
l

. However, if at any point the authenticated

channel receiver ACRec(·, ·, ·) outputs ⊥ for any Π̄P
i , then A∗ aborts this Π̄P

i and never communi-
cates with ΠP

i again. Moreover, A∗ aborts whenever (1) event EACbreak(CD) ever happens for paired
sessions Π̄C

j , Π̄
D
l

(see G5), (2) event EACbreak(CS) ever happens for HbC-paired sessions Π̄C
j , Π̄

S
i (see

G8), (3) if Π̄S
i and Π̄C

j are zid-paired and Π̄C
j and Π̄D

l
are paired (i.e., if event EzidPass(i, j) occurs), but

Π̄S
i or Π̄C

j accept any message except that sent by the counterparty in the corrent order (see G10).

By the above rules the only ΠS
i instances on which A∗ can be rogue are s.t. A was

not passive in the key exchange with Π̄S
i in step I, and there is a unique l ∈ [nS ] s.t. A

sent [SAS.ATTACK, sid, (pk∗, zidS
i )] in response to [SAS.SEND, sid,ΠC

j ,Π
D
l
, ·], and Π̄D

l
did not

abort, which in particular implies that coin ρl came out 1. Note also that the only ΠD
l

in-
stances on which A∗ can be rogue are s.t. A sent [SAS.ATTACK, sid, (pk∗, zid∗)] in response to
[SAS.SEND, sid,ΠC

j ,Π
D
l
, ·], and Π̄D

l
did not abort, implying again ρl = 1. Therefore, each rogue

session ΠS
i corresponds to a unique rogue session ΠD

l
, hence w.l.o.g. we can assume a 1-1 relation

between rogue ΠS
i sessions and rogue ΠD

l
sessions. Since for each such pair of sessions A∗ aborts

them unless ρl comes out 1, which happens with probability 2−t , we have that the number of both S

and D rogue sessions A∗ makes is bounded by q∗S = q
∗
D = q

∗ where q∗ is a random variable equal to
the sum of q = min(qS ,qD ) coin tosses that come out 1 with probability 2−t and 0 with probability
1 − 2−t . Since the interaction of A∗ with the DE-PAKE scheme emulates the security experiment
G11 to A exactly, it follows that A∗ advantage in this DE-PAKE attack is AdvDEPAKE

A∗ = 2 · (p11 − 1/2),
and hence AdvTFA

A ≤ AdvDEPAKE
A∗ + 2(p11 − p0).

Finally, we consider an attacker A∗, which makes (q∗S ,q
∗
D ,qC ,q

′
C ) rogue queries of respective

type, where q∗S = q
∗
D = q

∗ is a random variable as above to the overall advantage of A∗. We will
treat qC ,q

′
C ,qD ,qS as constants, we will set q = min(qS ,qD ), and we will treat q∗ as a random

variable. Note that for every (qC ,q
′
C ,q

∗
S ,q
∗
D ) where q∗S = q

∗
D = q

∗, the assumption of DE-PAKE

security implies that AdvDEPAKE
A∗ is bounded by a linear expression of the typea · qC + b · q′C + c · q

∗.

Since q∗ is a random variable whose expectation is q/2−t when we measure AdvDEPAKE
A∗ over all the

randomness in the reduction and the DE-PAKE game, which includes the randomness in q∗ (i.e.,
the coins ρl for l ∈ [nD ]), the overall contribution of term c · q∗ will be

∑q
i=0 Pr[q∗ = i] ∗ (c · q∗) =

c · Exp(q∗) = c · q/2t .
Hence, over all the randomness of A, A∗, and the DE-PAKE security game, AdvDEPAKE

A∗ is bounded
by a · qC + b · q′C + c ·min(qS ,qD )/2t . Consequently, if the DE-PAKE is (T ′, ϵDEPAKE)-secure for
T ′ ≈ T (namely, T plus the emulation work of A∗, which takes O (1) cryptographic ops per each
party instance), then the TFA-KE scheme GenTFA is (T , ϵ )-secure for ϵ ≤ ϵDEPAKE + (p11 − p0) ≤ n ·
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(ϵKEM + ϵSAS + ϵPKE + ϵuKE + 6ϵAC) + n2/2κ where n = qHbC +max(qS ,qD ,qC ,q
′
C ), which implies

the theorem statement for the case where no party is corrupted.

Extension to the round-optimized version. Recall that if the DE-PAKE protocol starts by a
round of C-D communication then the round-optimized version of GenTFA amends the protocol
by forming the SAS-authenticated C-to-D message as MC = (pk, zid,a) where a is C’s first DE-
PAKE message, and forming the D-to-C’s response as eD ← Enc(pk, (z,KCD ,b)) whereb is D’s DE-
PAKE response to a. The security proof extends to this version, because SAS-MA authentication
of MC and CCA-security of PKE bind DE-PAKE messages a,b to this session in the same as the
ACSend(KCD , ·) mechanism binds the DE-PAKE to this session in the non-optimized protocol.
Specifically, by G6 applied to the round-optimized protocl, we have the following cases: (1) If A let
message MC pass from C to D and message eD pass from D to C, then the C-D DE-PAKE exchange
a+b was delivered honestly and A is likewise reduced to only passive attack on the rest of C-to-D
DE-PAKE communication; (2) If A attacks this SAS session and succeeds, then it gets access to
a rogue D instance of DE-PAKE, just like in the non-optimized protocol; (3) If A sends its own
ciphertext e∗D � eD to C, then it gets access to a rogue C instance of DE-PAKE, again just like
above.

Case 2: Party Corruptions. Due to lack of space, we defer to the eprint version of the article
[48] for the security proofs for the cases of client, device, and server corruption, showing that
our scheme achieves all the bounds of Definition 2.1. Here, we briefly comment on how these
bounds are derived. For the D-corruption case, the value z is learned by the attacker hence it is
equivalent to setting t = 0. Also, rogue queries to D are free for the attacker, hence, qD is virtually
unbounded (can think of it as “infinity”). Setting these values in the bound of Case 1, one obtains
the claimed bound (qC + qS )/2d for the D-corruption case. Similarly, in the S-corruption case one
sets qS to “infinity.” In addition, and in spite of the attacker learning z in this case, one obtains
a bound involving 2−t thanks to the fact that we run the DE-PAKE over the SAS channel, thus
reducing the probability of an adversarial password test by 2−t . In the C-corruption case, where
the attacker learns the user’s password pwd, we can set d = 0 (i.e., consider a dictionary of size 1)
and qC = q

′
C = 0, because interaction with C can be emulated given the leaked password. Finally,

when both D and S are corrupted one gets the same security as plain DE-PAKE, namely, requiring
a full offline dictionary attack to recover pwd.

6 SYSTEM DEVELOPMENT AND PERFORMANCE EVALUATION

Here, we report on an experimental prototype of protocol OpTFA from Figure 2 on page 10 and
present novel designs for the SAS channel implementation. We experiment with OpTFA using
two different instantiations of the password protocol between C and S. One is PKI-based that
runs OpTFA over a server-authenticated TLS connection; in particular, it uses this connection
in lieu of the uKE in step I and implements step III by simply transmitting the concatenation
of password rwd and the value z under the TLS authenticated encryption. The second protocol
we experimented with is a PKI-free asymmetric PAKE borrowed from References [29, 44, 47].
Roughly, it runs the same PTR protocol as described in Section 3 but this time between C and
S. C’s input is rwd and the result Fk (rwd) serves as a user’s private key for the execution of an
authenticated key-exchange between C and S. We implement the latter with HMQV [55] (as an
optimization, the DH exchange used to implement uKE in step I of OpTFA is “reused” in HMQV).

In Table 1, we provide execution times for the various protocol components, including times for
the TLS-based protocol and the PKI-free one with some elements borrowed from the implementa-
tion work from Reference [45]. As mentioned in Section 1, the cost of OpTFA is two communication
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Table 1. Average Execution Time of OpTFA and Its Components (10,000 Iterations)

Protocol Purpose Parties
Average Time in

ms (std. dev.)

SAS (excluding user’s
checksum validation)

Authenticate C-D
Channel

C and D 128.59 (0.48)

PTR Reconstruct rwd C and D 160.46 (3.71)
PKI-free PAKE PAKE C and S 182.27 (3.67)
PKI PAKE (TLS) C-S link encryption C and S 32.54 (1.38)
Overall in PKI-free Model C, D, and S 410.77 ms

Overall in PKI Model C, D, and S 263.27 ms

rounds between D and C, with 4 and 3 exponentiations by C and D, respectively, and a one-round
Diffie-Hellman exchange between C and S.

We build on the following platform. The webserver S is a Virtual Machine running Debian 8.0
with 2 Intel Xeon 3.20 GHz and 3.87 GB of memory. Client terminal C is a MacBook Air with 1.3
GHz Intel Core i5 and 4 GB of memory. Device D is a Samsung Galaxy S5 smartphone running
Android 6.0.1. C and D are connected to the same WiFi network with the speed of 100 Mbps and
S has Internet connection speed of 1Gbps. The server side code is implemented in HTML5, PHP,
and JavaScipt. On the client terminal, the protocol is implemented in JavaScript as an extension
for the Chrome browser and the smartphone app in Java for Android phones.

All DH-based operations (PTR, key exchange and SAS-SMT encryption) use elliptic curve NIST
P-256, and hashing and PRF use HMAC-SHA256. Hashing into the curve is implemented with
simple iterated hashing till an abscissa x on the curve is found (it will be replaced with a secure
mechanism such as Reference [27]).

Communication between C and S uses a regular internet connection between the browser C and
web server S. Communication between C and D (except for checksum comparison) goes over the
internet using a bidirectional Google Cloud Messaging (GCM) [10], in which D acts as the GCM
server and C acts as the GCM client. GCM involves a registration phase during which GCM client
(here C) registers with the GCM generated client ID to the GCM server (here D), to assure that D

only responds to the registered clients. In case that the PAKE protocol in OpTFA is implemented
with password-over-TLS, Reference [45] specifies the need for D to authenticate the PTR value
b sent to C (see Section 3). In this case, during the GCM registration, we install at C a signature
public key of D.

7 CHECKSUM VALIDATION DESIGN AND USABILITY STUDY

7.1 Checksum Validation Design

An essential component in our approach and solutions (in particular in protocol OpTFA) is the
use of a SAS channel implemented via the user-assisted equality verification of checksums dis-
played by both C and D (denoted hereafter as checksumC and checksumD , respectively). Here, we
discuss different implementations of such user-assisted verification, which we have designed and
experimented with.

Manual Checksum Validation. In the simplest approach, the human user compares the check-
sums displayed on D and C and taps the Confirm button on D in case the two match [71]. Although,
this type of code comparison has recently been deployed in TFA systems, e.g., Reference [16], it
carries the danger of neglectful users pressing the confirm button without comparing the check-
sum strings. Another common solution for checksum validation is “Copy-Confirm” [71] where
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the user types the checksum displayed on C into D, and only if this matches D’s checksum does
D proceeds with the protocol. We refer to this method as Num-C-D. We implemented this scheme
using a six-digit number. We stress that in spite of the similarity between this mechanism and
PIN copying in traditional TFA schemes, there is an essential security difference: Stealing the PIN
in traditional schemes suffices to authenticate instead of the user (for an attacker that holds the
user’s password) while stealing the checksum value entered by the user in OpTFA is worthless to
the attacker (the checksum is a validation code, not the OTK value needed for authentication).

The above methods using human visual examination and/or copying limit the SAS channel
capacity (typically to four to six digits) and may degrade usability [65]. As an alternative, we
consider the following designs (however, one may fallback to the manual schemes when the more
secure schemes below cannot be used, e.g., missing camera or noisy environments).

QR Code Checksum Validation. In this checksum validation model, which we refer to as QR-
C-D, we encode the full, 256-bit checksum computed in protocol OpTFA into a hexstring and show
it as a 230 × 230 pixel QR Code on the web-page. We used ZXing library to encode the QR code
and display it on the web page and read and decode it on D. To send the checksum to D, the user
opens the app on D and captures the QR code. D decodes the QR code and compares checksums,
and proceeds with the protocol if the match happens. With the larger checksum (t = 256) active
attacks on SAS-SMT turn infeasible and the expressions 2−t in Definition 2.1) negligible.

Voice-based Checksum Validation. We implement a voice-based checksum validation approach
that assumes a microphone-equipped device (typically a smartphone) where the user speaks a
numerical checksum displayed by the client into the device. We refer to this method as Voice-
C-D. The device D receives this audio, recognizes and transcribes it using a speech recognition
tool, and then compares the result with the checksum computed by D itself. The client side uses a
Chrome extension as in the manual checksum validation case, while on the device we developed a
transcriber application using Android.Speech API. The user clicks on a “Speak” button added to the
app and speaks out loud the displayed number (six-digit in our implementation). The transcriber
application in D recognizes the speech and convert it to text that is then compared to D’s checksum.
To further improve the usability of this approach one can incorporate a text-to-speech tool that
would speak the checksum automatically (i.e., replacing the user). The transcription approach
would perhaps be easy for the users to employ compared to the QR-based approach, but would
only be suitable if the user is in an environment that is non-noisy and allows her to speak out-loud.
We note that the QR-code and audio-based approaches do not require a browser plugin or add-on
and can be deployed on any browser with HTML5 support.

The three concrete checksum validation user interaction methods we implemented and tested
for usability are described in Section 7.2.2.

7.2 Usability Study Implementation and Preliminaries

7.2.1 The Study Setup. Overview: To evaluate the usability of different OpTFA checksum
comparison methods and to compare them with PIN-TFA as the baseline, we built a study plat-
form. In this setup, we designed a webpage to show the instructions, receive the PIN (related to
PIN-TFA), and show the checksums (related to OpTFA). We also developed an Android application
to display the PIN (for the PIN-TFA approach) and to receive the checksum (for OpTFA checksum
comparison). This setup mimics a TFA login experience where the user should input a correct
PIN/checksum to login to an account. Since the password entry procedure could be the same for
both PIN-TFA and OpTFA schemes, we skip the password entry and proceed with PIN/checksum
entry. That is, we assume that the user has already entered the username and password and is
navigated to the TFA page to prove the possession of the secondary device. The participants could
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open the study webpage from a client and perform the tasks as instructed on the webpage. In
our implementation, the webserver is a virtual server running Apache HTTP Server. Client is a
desktop with 2.38 GHz Intel 2 Core Duo and 8 GB of memory. Device is a Samsung Galaxy S5
running Android 6.0.1. The server-side code is implemented in HTML5, PHP, and JavaScript. The
smartphone app is developed in Java for Android.
One-Time PIN Generation: We mimic the generation of the PIN/checksum on the server and
the device using a random generation function. In the PIN-TFA approach, the PIN is generated
by the study app on the smartphone using the Random() function in Java and is displayed as a
six-digit number to the participants. In OpTFA, the checksum is generated using rand() function in
PHP and is displayed to the participants as a six-digit number for Num-C-D, and Voice-C-D, and
is encoded into QR code for QR-C-D.
Storing Participant Responses: To store the responses provided by the participants (the entered
PIN/checksum), we use a MySQL database. In case of Num-C-D and PIN-D-C, the responses are
stored as entered by each participant. In case of QR-C-D the checksum is recorded as captured
and decoded by the QR code decoder, and for Voice-C-D, the checksum is stored as transcribed by
the transcriber. We also keep the displayed PIN/checksum in the same database for further offline
comparison of the displayed and the entered value. The time it takes to complete each task, and
participants’ responses and ratings are also stored in the same database.
Off-line Processing: To verify the correctness of the PIN/checksum entered by the participants,
we process the data stored on the database offline and report on any error committed by the par-
ticipants in entering the PIN (PIN-D-C), entering the checksum (Num-C-D), encoding/decoding
the checksum (QR-C-D), and speaking or transcription of the checksum (Voice-C-D). While the
number of failed attempts would have remained the same whether the processing was to be done
in real-time or offline, a real-time analysis could have given feedback to the users and requested
them to make another attempt, which might impact the usability score. However, this impact would
probably have been the same on all methods equally.

7.2.2 Implementation of User Interaction Methods. We implemented the following user inter-
action methods tested via our study:
Num-C-D: In this manual checksum approach of OpTFA, the checksum is displayed as a six-digit
number on the webpage on C. We ask the participants to enter the checksum into the smartphone
app. This method is shown in Figure 5(a).
QR-C-D: In this OpTFA method, we encode the six-digit checksum as a 300 × 300 pixel QR code on
the webpage using Google Chart API. To send the checksum to D, each participant opens the app
on D and captures the QR code. We used ZXing library [22] to decode the captured checksum on
the app. In this setting, the participant does not need to enter the checksum but only needs to hold
her/his phone and scan the QR code displayed on the browser’s screen as shown in Figure 5(b).
Voice-C-D: In the Voice-C-D approach of OpTFA, similar to Num-C-D, we display the checksum
on C. However, rather than entering the checksum on D or capturing the QR code, we ask the par-
ticipants to speak the checksum into her/his smartphone as shown in Figure 5(c). The smartphone
receives this audio, recognizes and transcribes it using a speech recognition tool based on IBM
Research Speech-to-Text API in our current implementation. The participant clicks on a “Record”
button we embedded in the app and speaks the six-digit number. The transcriber application rec-
ognizes the speech and converts it to numbers that can be compared against the locally computed
checksum.
PIN-D-C: In the PIN-D-C approach (PIN-TFA), we map the PIN into a six-digit number. We ask
the participants to press the generate button to display the six-digit number in textview box on
the study app and to enter it on the webpage, as it is presented in Figure 6.

ACM Transactions on Privacy and Security, Vol. 24, No. 3, Article 17. Publication date: April 2021.



Two-factor Password-authenticated Key Exchange with End-to-end Security 17:25

Fig. 5. OpTFA user interaction methods.

Fig. 6. Traditional PIN-D-C two-factor authentication (PIN-TFA).

7.3 Study Design

7.3.1 Study Objectives and Metrics. To analyze the effectiveness of the OpTFA approach from
the point of view of usability and adoption potential, we conducted a formal lab-based study to
quantify the following metrics:

(1) Delay: How long does it take for the participants to perform each user interaction method?
The starting point is the time the PIN/checksum was generated and the ending point is
the time each PIN/checksum was received at the other end. OpTFA is reported to have a
negligible delay [46], and therefore we only time the user interaction.

(2) Error rate: How often do the participants, transcriber, and QR encoder/decoder produce an
error in transferring the checksum? We recorded all PIN/checksum values the participants
had entered and the one displayed to them and compared them with each other to deter-
mine the number/fraction of errors committed in each method.

(3) Usability: How easy or difficult the participants find the system? Can they easily learn how
to use the system? Do they need the support of a technical person? To capture these aspects
and to quantify the usability of the tested methods, we used the standard System Usabil-
ity Scale (SUS)7. We also consider users’ perception of Adoptability, Trust, Security, and
Efficiency of the system.

7SUS is a conventional method to measure the usability of systems on 0–100 scale [31]. SUS has been designed to measure
the usability of a system with respect to learnability, need for support, participants experience, and satisfaction.
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Fig. 7. Study protocol.

7.3.2 Study Protocol. We recruited 30 participants from diverse educational backgrounds from
our university’s campus (students and non-students), by word of mouth. After a brief introduc-
tion about TFA and our study, the participants were navigated by an examiner to a desk and were
provided an Android phone that had the study app installed and a desktop that had the study
webpage opened. The examiner supervised and observed the participants throughout the study.
Upon completion of each task, the participants filled out a survey form. To assure that participants
received equal guidance, all information and instructions were shown on each page. We only aim
to compare the usability of the user interaction model in the TFA process, and therefore, the instal-
lation and setup was not evaluated in our study. Also, since we compare different OpTFA methods
with PIN-TFA methods, and we do not solely evaluate the usability of OpTFA, we do not require
to define a primary task for the users (e.g., checking emails). Hence, performing same set of tasks
in multiple trials would be a sufficient and valid usability design to compare OpTFA with the tra-
ditional approach. The study took about 20 min for each participant to complete. The study was
approved by our university’s IRB. Participation in the study was voluntary, and standard ethical
procedures were fully followed (e.g., participants being informed, given choice to discontinue, and
not deceived).

The study was composed of three phases as shown in Figure 7: the pre-study, the main study, and
the post-study phase. Analyzing the participants’ answers, error rates, and behavior in the study
helped us to: (1) reason about the usability of each method (or its lack thereof), (2) compare the
usability of different methods, and (3) investigate possible security issues arising from the usability
problems.

Pre-Study Phase: The quantitative/qualitative pre-study questions were grouped into two
categories:

• Q1. Demographics: The participants were asked to fill out a demographic questionnaire.
These questions polled for each participant’s age, gender and education.

• Q2. Technical Background: The participants were asked about their general computer and
security skills, and about their familiarity with the subject of the study (two-factor authen-
tication).

Main Study Phase: The main study phase aims to evaluate the average error rate and the delay
related to each of the tested methods. As discussed in Section 7.2, below is the list of the four user
interaction methods that participants were asked to perform. We randomized the ordering of these
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four methods to remove any learning biases. We asked the participants to perform the tasks related
to each method ten times. Since inputting the username and password is similar regardless of the
two-factor authentication scheme, we did not ask users to perform it to keep the study short and
concise.

• M1. Num-C-D: In this method, we asked the participants to get the checksum number from
the webpage and enter it into the app.

• M2. QR-C-D: In this method, the participants were asked to capture the QR code from the
webpage using the phone.

• M3. Voice-C-D: In this method, the participants were asked to get the checksum number
from the webpage and to speak it to the phone app.

• M4. PIN-D-C: As the baseline for our study, we asked the participants to enter the PIN
number from the phone to the webpage.

The task related to each method was shown on a webpage followed by the post-study ques-
tions. After completion of each task and answering the post-study questions related to that specific
method, the participants were instructed to test the next user interaction method.

Post-Study Phase: The post-study phase consists of the following set of questionnaires to eval-
uate and compare the usability of the four tested methods.

• Q3. System Usability Scale: In the first set of post-study questionnaires, the participants were
asked to fill out the SUS questionnaire for each of the four user interaction methods.

• Q4. TFA-Specific Questions: In the second questionnaire, we asked more specific questions
about each of the user interaction methods to figure out how participants felt about the
security and usability of each TFA interaction method. This questionnaire addressed users’
perception of: Adoptability, Trust, Security, and Efficiency.

• Q5. Open-Ended Question: The study concluded with one open-ended question about the
system (i.e., we asked if the participants had additional comments and if they preferred any
method).

7.4 Results and Analysis

7.4.1 Pre-Study Analysis. The pre-study demographics questionnaire shows that the 30 partic-
ipants were from the age group of 18–24 years (30%), 25–34 (60%), and 35–44 (10%) with an equal
number of undergraduate and graduate students from diverse educational backgrounds, includ-
ing education, engineering, healthcare, and science. Only one of the participants was specialized
in computer security. Twenty-three percent of the participants were female and 77% were male.
Seventy-seven percent of the participants speak English as a second language, and 23% speak
English as their mother language. They ranked their general computer background as Poor (4%),
Average (73%), and Excellent (23%), and their general computer security skills as Poor (3%), Aver-
age (83%), and Excellent (14%). Therefore, we believe that our sample is representative of diverse
participants.

7.4.2 Main Study Analysis.

Delay: We estimated the time it takes the participants to transfer the PIN/checksum in each of the
user interaction methods. As mentioned in Section 7.3, in computing the delay, we considered the
starting point to be the time the PIN/checksum was generated and the ending point to be the time
the PIN/checksum was received by the client/device. Figure 8 shows the average delay of each
method.
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Table 2. The Average Error Rate for

Each Method

TFA Method Average Error Rate

Num-C-D 4%
QR-C-D 2%
Voice-C-D 5.3%
PIN-D-C 5%

Fig. 8. Mean (std. dev) of delay in seconds.

Num-C-D had the highest delay compared to other methods, with the average and standard
deviation of 15.03s (3.62s). This result was expected, as in this method, the user enters the check-
sum manually on the phone using the small phone keypad. In contrast, QR-C-D imposes the least
amount of delay compared to the other methods, with an average of 7.96 s (2.45 s). The average
delay for Voice-C-D was 13.53 s (4.23 s), and for PIN-D-C was 13.62 s (3.29 s).

The Friedman test was conducted to compare the delay among different user interaction meth-
ods in PIN-D-C, Num-C-D, Voice-C-D, and QR-C-D and rendered a Chi-square value of 49.375,
which showed a statistically significant difference with a p-value of 0.00. All results of statistical
significance are reported at a 95% confidence level (alpha level of 0.05). Further, Wilcoxon signed-
rank test,8 corrected using Bonferroni correction with an adjusted alpha level of 0.0125 per test
(0.05/4) showed a statistically significant difference for the following pairs9: (QR-C-D, PIN-D-C),
(QR-C-D, Voice-C-D), and (QR-C-D, Num-C-D), each with a p-value = 0.00. This confirms that QR-
C-D outperforms all the other tested methods in terms of the delay incurred in the TFA process.

Error Rates: The error rates for all tested methods are presented in Table 2. The table shows the
error rate for the Num-C-D method to be 4%, arising from the incorrect entry of the PIN numbers.
The lowest error rate was reported to be 2% for QR-C-D. In this method, the user captures the QR
code, while the phone makes the comparison by decoding the QR code. Since the QR decoder is
almost error-free, we observe that the cause of the errors was the failure of the users in capturing
the QR code, i.e., in some instances the participants failed to scan the QR Code and moved forward
to the next task. As expected, it seems users have higher error rate in manual checksum entry
Num-C-D compared to QR-C-D.

In the Voice-C-D method, we found the error rate to be 5.3%, which is higher than the other
methods. To compute the error rate, we compare the transcribed audio checksum with the check-
sum generated and displayed to the participants. We accepted the transcription errors for zero

8This is a non-parametric statistical hypothesis test used to compare two related samples. This test results in a statistically
significant outcome if the p value for comparison is less than 0.05 for a confidence level of 95%.
9In each reported (x, y) pair, the value of y is statistically significantly greater than x.
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Fig. 9. Mean (std. dev) of user perception ratings.

being transcribed as “Oh,” two being transcribed as “to,” and four being transcribed as “for.” To
understand the root cause of the errors we manually reviewed several of the audio samples and
noticed that the transcriber made errors in transcribing the spoken checksum in the presence of
background noise. Moreover, the majority of the participants were not native English speakers,
which may have increased the transcription errors, since the transcriber we used was designed
for native English speakers. Since we used an off-the-shelf transcriber, we could not set the gram-
mar to only generate digits. Access to the transcription grammar might improve the accuracy of
Voice-C-D method.

As the baseline, PIN-D-C resulted in a 5% error rate, arising from the incorrect input of the PIN
on the client. It seems that users make slightly higher errors compared to Num-C-D and QR-C-D,
however, this traditional TFA method shows a better result compared to Voice-C-D.

We conducted a Friedman test to compare the error rate among multiple methods, which showed
a statistically significant difference and rendered a Chi-square value of 7.847 with a p-value of
0.049. However, Wilcoxon signed-rank test, conducted using Bonferroni adjusted alpha levels of
0.0125 per test (0.05/4), did not show statistical significance for any of the pairs. It seems that most
methods have similar error rates, statistically speaking.

7.4.3 Post-Study Analysis. In the post-study questionnaire, users were asked to rate their agree-
ment level with several statements about the usability of each method. (5—strongly agree, 4—agree,
3—neither agree nor disagree, 2—disagree, 1—strongly disagree). The results are shown in Figure 9.

SUS Scores: For QR-C-D, we received the highest SUS score of 76.56 (15.12) compared to other
methods. For Voice-C-D, we had the lowest usability with the SUS score of 68.53 (17.45). The
average SUS for PIN-D-C reported by our study participants was 72.5 (15.96), and for Num-C-D the
SUS score was 70.17 (15.56). Except for Voice-C-D, other methods seem to offer a SUS of higher than
70, which is generally representative of a system with good usability. We conducted the Friedman
test to compare the SUS scores. The test did not show statistically significant difference.

User Perception Ratings: We analyze the different facets of the user perception ratings below.

• Adoptability: Most of the users found the QR-C-D method to be adoptable in practice
as reflected in the adoptability score of 4.59. The Num-C-D method had the second rank
in adoptability with the average score of 4.17, almost similar to PIN-D-C score with the
average of 4.11. Compared to the other methods, users seem to find the Voice-C-D method
to be less adoptable reflected in the average adoptability score of 3.93.

• Trust: We found the QR-C-D method to have the highest average trust score of 4.67. PIN-D-
C has the second place with an average score of 4.43. The trust score for Num-C-D method
was also high with the average of 4.03. Voice-C-D has the lowest trust score with the average
score of 3.86. Evidently, the users are more in agreement than disagreement that they can
trust the methods.
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• Security: The motivation of this question is to evaluate the users’ perception of security
(and not to evaluate the theoretical and practical security of each method). Therefore, in this
part of the post-study questionnaire, we asked the users how they felt about each method
from the security point of view. We found that most of the participants ranked QR-C-D to
be more secure compared to the other methods with the average score of 4.70. For PIN-D-C
the score was 4.43 and for Num-C-D this score was 4.00. As was the case for other usability
scores, compared to the other methods, the Voice-C-D method had a lower average security
score of 3.83.

• Efficiency: At the end of our post-study questionnaire, we asked the users how efficient/fast
they felt each method was. Most of the participants ranked QR-C-D to be the fastest schema
with an average score of 4.74. The score for PIN-D-C was 4.21 standing at the second place
and the score for Num-C-D was 4.07. The average score for Voice-C-D was 3.93 (the least
among all). Note that this result is the perception of the users of the efficiency of the system.
The actual delay is as reported in Section 7.4.2.

The Friedman test was conducted to compare the user’s perception of adoptability, trust, se-
curity, and efficiency of the methods, among different user interaction methods and rendered
Chi-square values of 8.968, 24.377, 18.485, and 11.349, respectively, which showed a statistically
significant difference with p-values of 0.03, 0.00, 0.00, and 0.01, for adoptability, trust, security,
and efficiency, respectively. This shows that users had a significantly different perception of the
adoptability, trust, security, and efficiency of the methods.

Further, Wilcoxon signed-rank test, conducted using the Bonferroni adjusted alpha level of
0.0125 per test (0.05/4), showed statistical significance for adoptability between (Voice-C-D, QR-
C-D) pair with a p-value of 0.009. For the level of trust, (Voice-C-D, PIN-D-C) and (Voice-C-D, QR-
C-D) pairs showed statistically significant difference with a p-value of 0.001 for both. Similarly,
for the perception of security between the (Voice-C-D, QR-C-D) pair with a p-value of 0.004 and
(Num-C-D, QR-C-D) pair with a p-value of 0.012 we noticed statistical significance. Finally, for the
perception of the efficiency, the (Voice-C-D, QR-C-D) pair with a p-value of 0.004 and (Num-C-D,
QR-C-D) pair with a p-value of 0.012, a statistically significant result was observed.

Informal Participant Statements. Most of the participants found the QR-C-D method relatively
effortless compared to the other methods. Many of the participants said the QR code is much easier
and faster to use. Comparatively, the participants found the voice method to be less usable among
other methods. Some of the participants expressed that they do not like to speak the checksum
values out loud in public places, and therefore, are not comfortable with the Voice-C-D method.
We quote some of the interesting comments:

• “I would not suggest the voice recording, because it is insecure in my opinion, also mistakes can
be made easily with voice recording. I suggest using the QR code, because it is faster and safer.”

• “The first one [Num-C-D] wasn’t easy for me, i needed support to get it done, the last one with
QR codes was fun and easy, i feel maybe more secure to use than others”

• “For 2fa, if text input is required, I prefer using my computer to type (or copy) the text into
the authenticating website. The best methods are those that don’t require me to type at all (on
computer or phone) but instead use confirmation links, Approval dialogues, or QR codes.

• “I prefer receiving codes via SMS, because I forward text messages to my computer, and can
copy and paste the authentication code into my browser. Duo is my favorite 2FA app, because
it gives me a pop up dialogue with an “approve” button, so I can login without typing any codes.

• In today’s study, the QR option felt like the fastest option, but in real life it might not be the
fastest. Today, I held the phone up to the screen and scanned one code after another. In real life,
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I would have to pull my phone out and open the app each time, so the total time to use the QR
code would be similar to the other options.”

7.4.4 Summary of the Results. After analyzing the 1,200 tasks that users performed in our study,
we found out that the QR-C-D method has the lowest error rate, lowest delay, and highest usability
perception ratings among all methods. While Voice-C-D had the lowest SUS score and highest error
rate compared to other methods, the average delay of the Voice-C-D method was in the second
place after QR-C-D. As expected, the two semi-automated user-assisted methods (i.e., QR-C-Dand
Voice-C-D) incurred lower delay compared to the manual PIN/checksum copy-confirm methods.
In contrast, PIN-D-C and Num-C-D showed a relatively higher delay compared to QR-C-D and
Voice-C-D, due to the fully manual copying of the PIN/checksum in Num-C-D and PIN-D-C (one
on the phone and the other on the client). The two tasks show somehow similar error rates (around
5%) and users’ perception of adoptability, trust, security, efficiency, and usability. However, we
observed that users are more comfortable entering the PIN on the client, than on the smartphone.
Even though the size of the PIN and the checksum were the same in our study, users seemed to
prefer using a full-size keyboard on the client than the smaller-form keypad on the smartphone to
enter the numbers.

7.4.5 Limitations. Similar to any other study involving human subjects, our study also had
certain limitations. Some of these limitations stem from the nature of the lab-study and the fact that
the users may feel being controlled and under observance of the examiner. In some of the tasks,
this may impact the users’ perception of usability/security. For example, in the lab setup users
may not be familiar with the people around them, hence they may be uncomfortable speaking the
checksum in the Voice-C-D method. In real life, they may be in their homes and may not feel this
discomfort. Although OpTFA does not require the secrecy of the checksum value, users may think
otherwise, contributing to a lower usability ranking for the Voice-C-D method.

Recall that in OpTFA the user enters the master password on the client and compares the check-
sum on the device, and the scheme then computes the hardened password that authenticates the
user to the server. From the user’s perspective, there are two tasks: (1) entering the password, and
(2) comparing the checksum. In the traditional PIN-based 2FA scheme, the user’s tasks are: (1)
entering the password, and (2) entering the PIN. Since the first task is the same in both schemes,
in our study we only evaluated the usability of the system with respect to the second task.

We simulated the PIN/checksum entry or comparison, but not the setup and installation. Also,
we did not set a primary task for the users (e.g., sending an email). This study design only compared
the PIN/checksum entry method among the new OpTFA and traditional PIN-TFA models. This
choice shortened the study and helped eliminate the fatigue affect while limiting the scope of the
study.

In this study, we collected data from 30 participants. Our sample size is commensurate with that
of many prior usability studies of authentication systems (e.g., Karole et al. [52], Chiasson et al.
[33], and Acar et al. [24]). While collecting data from a larger and more diverse sample can be con-
tinued in future, we believe that our study has sufficient statistical power to provide meaningful
results. Our analysis revealed that many of the differences we noted between the tested methods
are statistically significant and could not have occurred by chance and, therefore, can be gener-
alizable to larger samples. However, even though our participants’ demographics shows higher
number of male participants, the Mann-Whitney test between the female and the male partici-
pants to compare the two groups did not show statistically significant difference. Moreover, we do
not think our results will be significantly affected based on education, technical background, or
age, since the participants need to perform only simple tasks such as copying the PIN, scanning the
QR Code, and reading few digits. In case these factors impact the usability scores, we assume all
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methods will be impacted somewhat similar and not just one isolated apprach. Hence, the differ-
ence among different PIN/checksum entry methods will remain the same. Running an experiment
with a larger number of participants from different age groups and technical background could
help us to scientifically examine the impact of age and education on the usability.

8 DISCUSSION OF RELATED WORK

Device-enhanced password-authentication with security against offline dictionary at-

tacks (ODA). There are several proposals in cryptographic literature for password authentication
schemes that utilize an auxiliary computing component to protect against ODA in case of server
compromise. This was a context of the Password Hardening proposal of Ford-Kaliski [38], which
was generalized as Hidden Credential Retrieval by Boyen [28], and then formalized as (Cloud) Sin-

gle Password Authentication (SPA) by Acar et al. [24] and as a DE-PAKE by Jarecki et al. [45].
These schemes are functionally similar to a TFA scheme if the role of the auxiliary component is
played by the user’s device D, but they are insecure in case of password leakage, e.g., via client
compromise. We note that the scheme proposed in Reference [24] also shows a Mobile Device SPA,
which provides client-compromise resistance, but it requires the user to type the password onto
the device D, and to copy a low entropy value from D to C, thus increasing the amount of manually
transmitted data. By contrast, OpTFA dispenses entirely with manual transmission of information
to and from D. The threat of an ODA attack on compromise of an authentication server also mo-
tivated the notion of Threshold Password-authenticated Key Exchange (T-PAKE) [59], i.e., a
PAKE in which the password-holding server is replaced by n servers so that a corruption of up to
t < n of them leaks no information about the password. In addition to general T-PAKE’s, several
solutions were also given for the specific case of n = 2 servers tolerating t = 1 corruption, known as
2-PAKE [30, 53], and every 2-PAKE, with the user’s device D playing the role of the second server,
is a password authentication scheme that protects against ODA in case of server compromise.
However, as in the case of References [24, 28, 38, 45], if a password is leaked, then 2-PAKE offers
no security against an active attacker who engages with a single 2-PAKE session. Isler and Kupcu
[76, 77] present generalizations of the DE-PAKE work [45] (the basis of our work too) by noting
that the device in DE-PAKE and the login servers can be distributed over several machines essen-
tially using Threshold OPRFs. However, none of these techniques provide second-factor security
or security against password compromise. If the password leaks, then the security has already
degraded. However, the ability to distribute servers and devices applies to our work too but the
second factor requires physical possession by the user, hence it will typically be implemented with
one device.
TFA with ODA security. Shirvanian et al. [67] proposed a TFA scheme that extends the security
of traditional PIN-based TFAs against ODA in case of server compromise. However, OpTFA offers
several advantages compared to Reference [67]: First, Reference [67] relies on PKI (the client sends
the password and the one-time key, OTK, to the PKI-authenticated server), while OpTFA has both
a PKI-model and a PKI-free instantiation. Second, Reference [67] assumes full security of the t-
bit D-C channel for OTK transmission, while we reduce this assumption to a t-bit authenticated
channel between C and D. Consequently, we improve user experience by replacing the read-and-
copy action with simpler and easier compare-and-confirm. However, Reference [67] can use only the
t-bit secure D-C link while OpTFA requires transmission of full-entropy values between D and C.
TFA with the second factor as a local cryptographic component. Some Two-factor Au-
thentication schemes consider a scenario where the second factor is a device D capable of storing
cryptographic keys and performing cryptographic algorithms, but unlike in our model, D is
connected directly to client C, i.e., it effectively communicates with C over secure links. (However,
security must hold assuming the adversary can stage a lunch-time attack on device D, so D cannot
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simply hand off its private keys to C.) The primary example is a USB stick, like YubiKey [21],
implementing, e.g., the FIDO U2F authentication protocol [13, 57]. A generalized version of this
problem, including biometric authentication, was formalized by Pointcheval and Zimmer as Multi-
Factor Authentication [64], but the difference between that model and our TFA-KE notion is that
we consider device D, which has no pre-set secure channel with client C. Moreover, to the best of our
knowledge, all existing MFA/TFA schemes even in the secure-channel D-C model are still insecure
against ODA on server compromise, except for the aforementioned TFA of Shirvanian et al. [67].
Alternatives to PIN-based TFA with remote auxiliary device. Many TFA schemes improve
on PIN-based TFAs by either reducing user involvement, by not requiring the user to copy a PIN
from D to C, or by improving on its online security, but none of them protect against ODA in case
of server compromise, and their usability and online security properties also have downsides.

PhoneAuth [34] and Authy [19] replace PINs with S-to-D challenge-response communication
channeled by C, but they require a pre-paired Bluetooth connection to secure the C-D channel.
A full-bandwidth secure C-D channel reduces the three-party TFA notion to a two-party setting,
where device D is a local component of client C, but requiring an establishment of such secure con-
nection between a browser C and a cell phone D makes a TFA scheme harder to use. TFA schemes
like SlickLogin (acquired by Google) [3], Sound-Login [18], and Sound-Proof [51] in essence at-
tempt to implement such secure C-to-D channel using physical security assumptions on physical
media, e.g., near-ultrasounds [3], audible sounds [18], or ambient sounds detecting proximity of D

to C [51], but they are subject to eavesdropping attacks and co-located attackers.
Several TFA proposals, including Google Prompt [16] and Duo [11], follow a one-click approach

to minimize user’s involvement if D is a data-connected device like a smartphone. In References
[11, 16], S communicates directly over data-network to D, which prompts the user to approve
(or deny) an authentication session, where the approve action prompts D to respond in an entity
authentication protocol with S, e.g., following the U2F standard [13]. This takes even less user’s in-
volvement than the compare-and-confirm action of our TFA-KE, but it does not establish a strong
binding between the C-S login session and the D-S interaction. E.g., if the adversary knows the
user’s password, and hence the TFA security depends entirely on D-S interaction, a man-in-the-
middle adversary who detects C’s attempt to establish a session with S, and succeeds in establish-
ing a session with S before C does, will authenticate as that user to S, because the honest user’s
approval on D’s prompt will result in S authenticating the adversarial session.
Usability Study of TFA Schemes. Several studies have evaluated the usability of two-factor au-
thentication methods (e.g., hardware tokens, SMS, email). In a study published about the usability
of one factor and TFA in phone banking [40], a survey was conducted and users answered ques-
tions about the usability of different phone banking authentication methods. The result indicated
that while TFA is considered to be more secure compared to password-only authentications, it of-
fers lower usability. In another study about the usability of e-banking authentication tokens [74],
usability and efficiency of different tokens were compared. While the users’ perception of the se-
curity and the usability of the tokens were different, this study once again confirms that users
preferred the token with the highest usability even though their perception of the security of such
token was the least among all. In Reference [35], three popular TFA schemes, i.e., codes gener-
ated by security tokens, one-time PINs received via email or SMS, and dedicated smartphone apps
(e.g., Google Authenticator) were studied. This study shows that smartphone apps offer a higher
adoption possibility compared to other methods.

The usability of different checksum/fingerprint verification with respect to the fingerprint
exchange and presentation (e.g., hexstring, numeric, images) has also been studied in the past
[36, 68]. Similarly, there exists several studies that use SAS protocols and different out-of-band
channels for the purpose of device pairing [50, 56] to establish secure connection between two
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(or more) wireless devices communicating over a short-range channel, such as WiFi or Bluetooth.
Even though these studies have considered verification on smartphone applications, the user
interaction in these schemes is completely different from the user interaction in OpTFA. In the
mentioned studies, the user typically performs a compare-confirm verification of fingerprints
displayed on their devices or verbally recited to them. In contrast, the type of checksum verifi-
cation in OpTFA is copy-confirm where the copying part is performed manually by the user (e.g.,
Num-C-D and Voice-C-D) or somewhat automatically by user’s assistance (e.g., QR-C-D) and the
confirmation is performed automatically by the device.

Another communication channel that is being used in many security applications is the QR code
(e.g., TFA setup [11, 14], TFA PIN transfer [67], device pairing [37, 61, 70], and checksum compari-
son [17, 20]). While QR codes have been studied in the past, one unique difference between OpTFA

use of QR code from other security protocols could be in the asymmetric nature of the devices be-
tween which the code is transferred (i.e., a full computer terminal and a phone), as opposed to
symmetric devices, such as two phones, in other applications. Besides, in some of these applica-
tions (such as device pairing and checksum comparison), the QR code should be transferred in both
direction and its equality be verified on both parties of the protocol, while OpTFA only requires
the client to be authenticated and therefore the QR code is transferred in only one direction (from
the client to the device). Note that although some security applications such as TFA, transfers the
code in the same direction, their purpose is the initial setup and hence the transfer is a performed
only once.

Another line of studies related to the usability of device-based authentication is password man-
ager apps, in which the user reads the passwords from the password manager apps on the device
and copy it to the web page [60]. Isler et al. [42] studied usability of their mobile and cloud-based
single password authentication and compared them with traditional password and 2FA authen-
tication. Overall, their study with 25 participants shows that SPA could be a more usable alter-
native compared to traditional password-based and 2FA authentication. A fundamental difference
between the usability of OpTFA and other device-based one factor and two-factor authentication
solution is the direction of the user interaction task. While in other device-based authentication
solutions the user should copy the authentication token from the device to the client, in OpTFA the
checksum is transferred from the client to the device for verification. Of course, once the channel
gets authenticated the PIN is transferred from the device to the client. However, this PIN transfer
is not assisted by the user (only the checksum comparison is assisted by a human user). Therefore,
while our work follows a similar user study methodology, it is essentially different from other
studies.

Another related study is Reference [66], which performed a usability evaluation of the security
code verification deployed for the purpose of end-to-end encryption in Signal. One main differ-
ence between code verification in protocols such as Signal and OpTFA is that, in our protocol, the
checksum comparison is between two different devices (a phone and a laptop as opposed to two
phones) that are in close proximity and in possession of one single user. Also, the signal protocol
results in long security codes to compare, while we have short codes in OpTFA.

9 CONCLUSION

We designed a TFA system that offers end-to-end security by protecting against a “man-in-the-
middle” attacker that controls the communication channels between all parties and can compro-
mise any party. In particular, protection is provided upon server compromise, device compromise,
and client compromise (which implies password leakage). Our system utilizes the “short authenti-
cated strings” model [72] to add TFA security against attacks on the channel between the TFA de-
vice and the client machine. We formulated a rigorous security model for this setting and presented
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a protocol that provably satisfies this security model. We also prototyped an implementation of
this system based on device-to-client channels that require reduced user involvement compared
to the TFA systems deployed today, and we evaluated the usability of the resulting system.
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