
Building and Studying a Password Store that
Perfectly Hides Passwords from Itself
Maliheh Shirvanian , Nitesh Saxena, Stanislaw Jarecki, and Hugo Krawczyk

Abstract—We introduce a novel approach to password management, called SPHINX, which remains secure even when the password

manager itself has been compromised. In SPHINX, the information stored on the device is theoretically independent of the user’s

master password. Moreover, an attacker with full control of the device, even at the time the user interacts with it, learns nothing about

the master password – the password is not entered into the device in plaintext form or in any other way that may leak information on it.

Unlike existing managers, SPHINX produces strictly high-entropy passwords and makes it compulsory for the users to register these

passwords with the web services, which defeats online guessing attacks and offline dictionary attack upon service compromise. We

present the design, implementation and performance evaluation of SPHINX, offering prototype browser plugins, smartphone apps and

transparent device-client communication. We further provide a comparative analytical evaluation of SPHINX with other password

managers based on a formal framework consisting of security, usability, and deployability metrics.

Index Terms—Authentication, password, password manager

Ç

1 INTRODUCTION

THE central role of passwords for authentication and for
gaining access to resources, from casual website visits to

national security, is well known. Equally well known are the
major security vulnerabilities of such mechanisms spawned
by the limitations of human memory and the consequent low
entropy of passwords (e.g., [17], [20], [38], [44]). Such low-
entropy passwords are vulnerable to both online guessing and
offline dictionary attacks that build on password dictionaries
from which a significant portion of passwords are chosen.
Candidate passwords for authenticating a user to a server can
be tested by an attacker through online interactions with the
server. Evenmore seriously, an attacker breaking into a server
can mount an offline attack that uses information stored on
the server to test the different passwords in the dictionary.
Such offline dictionary attacks are an increasingly important
concern (see, e.g. [14], [15]), especially in light of frequent
attacks against major commercial vendors, as recently experi-
enced, e.g., by PayPal [2], LinkedIn [8], Blizzard [3] and Gmail
[7]. The offline attacks are particularly devastating as a single
server break-inmay lead to extraordinary numbers of compro-
mised passwords [6], [16]. Furthermore, since many users re-
use their passwords across multiple services, compromising
one service often compromises user accounts at other services.

Numerous approaches have been proposed by research-
ers and practitioners to improve the security of passwords

from the client-side or user-side alone (i.e., without making
any changes to a persistent server that uses traditional
password-based authentication). One broad class of such
approaches is referred to as password managers and forms
the central focus of this paper.

Traditional password managers (e.g., [1], [12]) allow the
user to store and retrieve (usually high-entropy) passwords,
denoted by rwd, 1for her multiple password-protected serv-
ices by interacting with a “device” serving the role of the
manager (a smartphone or an online third-party service)1

on the basis of a single (low-entropy) master password,
denoted pwd. These rwd’s are usually stored on the device
encrypted under pwd. In case of online password managers,
the user provides pwd to the service, which then unlocks
and sends rwd to the user (over a protected channel). In case
of smartphone managers, the user enters pwd directly on
the device, the device unlocks and displays rwd, and the
user then manually copies pwd over to the client machine.

These password managers clearly alleviate the memoriza-
tion burden on the user, andworkwell to defeat offline dictio-
nary attacks upon web service compromise, assuming the use
of high-entropy rwd’s is enforced. However, they are vulnera-
ble to leakage of rwd’s in the event the device is compromised
or is itself malicious, due to: (1) the storing of the passwords
rwd’s encrypted under pwd, and/or (2) the need to input the
master password to the device (smartphone managers). In
the first case, after retrieving encrypted rwd’s from the storage
unit of the password manager, the attacker can launch an off-
line dictionary attack against pwd.2 Such attacks are a serious

� M. Shirvanian and N. Saxena are with the University of Alabama at
Birmingham, Birmingham, AL 35294. E-mail: {maliheh, saxena}@uab.edu.

� S. Jarecki is with the University of California, Irvine, CA 92697.
E-mail: stasio@ics.uci.edu.

� H. Krawczy is with IBM Research, New York, NY 10598.
E-mail: hugo@ee.technion.ac.il.

Manuscript received 5 Feb. 2019, accepted 22 Feb. 2019, Date of publication
14 Mar. 2019; date of current version 30 Aug. 2019.
(Corresponding author: Maliheh Shirvanian.)
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TDSC.2019.2902551

1. Password managers that store rwd’s on the client machine
(browser) itself (e.g., [11]), make it very hard for the user to move from
one client to another, and may actually be equivalent to online manag-
ers to enable syncing of stored passwords across multiple clients
through an online server.

2. If all rwd’s are fully random then with careful enough encryption
an offline dictionary attack in this case may be avoided; yet concern (2)
would remain in this case too.

770 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2019

1545-5971� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 19:46:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9735-3723
https://orcid.org/0000-0001-9735-3723
https://orcid.org/0000-0001-9735-3723
https://orcid.org/0000-0001-9735-3723
https://orcid.org/0000-0001-9735-3723
mailto:
mailto:
mailto:

concern in light of recent breaches against commercial online
managers [43] and exfiltration approaches discussed in the
literature [35]. In the second case, pwd is directly exposed
to the attacker. With the advent of mobile computing, mal-
ware that can compromisemobile devices is becoming amajor
threat [4], [10], [46], and thus existing smartphone managers
open up a significant vulnerability of exposing pwd upon
entry and/or leaking rwd’s upon offline dictionary attack.

Cracking-resistant password encoding strategies have
been proposed in the literature to render offline dictionary
attacks ineffective [22]. They introduce the notion of output-
ting decoy passwords to an attacker who compromises the
manager and attempts to decrypt the passwords with a
wrong master password. Since the attacker is not aware of
the correct password, any attempt to login with the decoy
passwords can be prevented on the server, and raise an
alert. However, such a scheme seems to be vulnerable to an
attack presented in a very recent work [28], based on differ-
ences in the distribution of the passwords.

Other advanced password management solutions have
been proposed that do not require storage of rwd’s [29], [39],
[45]. For example, PwdHash [39], maps pwd to a rwd by
hashing (pwd, domain) pair and registering it as a strong
password with the server. PwdHash deterministically trans-
forms a user’s password into a more complex password but
this transformation does not protect against offline dictio-
nary attacks at a compromised web service. Moreover, if a
user uses the same memorable password pwd with
PwdHash for different services, the compromise of a single
server leads to the discovery of pwd via an offline dictionary
attack and then to the (deterministic) calculation of all the
user’s passwords derived from pwd. In our case, the com-
promise of a server does not help the attacker learn either
the randomized password rwd used for that server or the
underlying password pwd. We provide a brief review and
analysis of several password managers in Section 4.

In this paper, we introduce, build and study SPHINX, a
new password manager that offers a high level of security
even in case the password manager itself is compromised.
SPHINX’s most appealing features are: (1) the information
stored in the device is information theoretically independent of
the user’s master password pwd; hence, an attacker break-
ing into the device learns no information on pwd or the user’s
individual passwords rwd’s; and (2) an attacker with full
control of the device, even at the time the user interacts with
it, learns nothing about pwd; pwd is never entered into the
device in plaintext form or in any other way that may leak
information. The above properties hold unconditionally,
even against a computationally unbounded attacker.

Moreover, SPHINX produces strictly high-entropy rwd’s
and enforces the users to register these passwords with the
web services, while current password managers may let the
users choose and register low-entropy passwords thereby
still opening up the vulnerability to online guessing attacks
and offline dictionary attacks upon web service com-
promise. As an added advantage over existing managers
that require some form of secure channels between the
device and the client machine, SPHINX can work with non-
confidential channels offering additional layer of security.
Given the numerous vulnerabilities of PKI to certification
failures and man-in-the-middle (MitM) attacks (either due

to programmatic errors or human mistakes), e.g., [24], [27],
[42], relying upon secure channels in existing online manag-
ers may be problematic, a situation SPHINX avoids.

The design and security of SPHINX is based on the device-
enhanced password authenticated key exchange (DE-PAKE)
model of Jarecki et al. [31] that provides the theoretical basis
for this construction and is backed by cryptographic proofs of
security. The core technique is the use of an efficient oblivious
pseudo random function (OPRF) scheme [25], [26] that trans-
forms a human-memorable password into a random pass-
word with the aid of a device without the need to store the
passwords on the device andwithout the device learning any-
thing about the password evenwhen computing on it. Specifi-
cally, when using SPHINX, for each service with which the
user has an account, the device stores a unique key k. This key
is used to map the user-memorized password pwd (input by
the user into the client machine) into a randomized password
rwd ¼ FkðpwdjdomainÞ using the (oblivious) PRF Fk based on
a simple protocol between the device and the client.

In sum, SPHINX offers the following simultaneous combi-
nation of security features:

1) Resistance to online guessing attacks, due to the use
of high-entropy and mutually independent pass-
words rwd registered with web services.

2) Resistance to offline dictionary attacks under server
compromise (or server being malicious), due to the
server storing a salted one-way hash of rwd, a ran-
domized input [31].

3) Resistance to phishing attacks, due to the use of web-
site domain in the computation of rwd.

4) Resistance to offline dictionary attacks under device
compromise (or device being malicious), in particu-
lar hiding the user’s master password information
theoretically.

5) Resistance to eavesdropping and man-in-the-middle
attacks on the device-client channel without the need
to establish a confidential channel (the properties
of the OPRF protocol executed over this channel
ensure that no additional protection is needed).

The last two security properties are unique to SPHINX,
not offered by any existing password managers. The first
security property is provided by default in SPHINX, while
this property may or may not be provided by existing man-
agers depending upon whether or not high-entropy pass-
words are enforced by the manager. The contrasts are
summarized in Table 1. SPHINX also increases security
against online guessing attacks by making use of a strictly
random password registered with the service.

Security is not the only attractive feature of SPHINX.
SPHINX also strives to provide a level of user experience
close to that of password-only authentication but without
the burden of remembering multiple passwords, and with
full-entropy per-site passwords.

Detailed Contributions. While SPHINX is suitable for
different types of devices, here, we report on its concrete
instantiation developed on smartphones given their popu-
larity and trustworthiness as password managers as sug-
gested in the past [32].

1) A Novel Password Manager (Section 2): We introduce
SPHINX, a novel cryptographic password manager

SHIRVANIAN ETAL.: BUILDING AND STUDYING A PASSWORD STORE THAT PERFECTLY HIDES PASSWORDS FROM ITSELF 771

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 19:46:28 UTC from IEEE Xplore. Restrictions apply.

application that perfectly hides passwords from itself.
SPHINX is a novel application of the general device-
enhanced password key exchange (DE-PAKE) fram-
ework fron [31]. DE-PAKE is a broad modular
cryptographic primitive with several possible appli-
cations. SPHINX is one such important applications
(not studied in [31]). using an instantiation of DE-
PAKE that works with no modificationon the current
web services that use password-only authentication
(in particular, allowing for the use of SPHINX with
typical TLS-enabled services that used the pass-
word-over-TLS protocol). This practical application
was not studied by the authors of [31].

2) System Design and Implementation (Section 3). We pres-
ent the design, implementation and performance eval-
uation of a full smartphone-based SPHINX system
offering a prototype browser (Chrome) plugin and a
device (Android) app. As a main component of our
design, we highlight and address the challenges asso-
ciated in building transparent and robust bidirectional
browser-device communication.

3) Comparative Analytical Exposition (Section 4). We
provide a comprehensive analytical evaluation of
SPHINX comparative to other password manage-
ment approaches based on an adaptation of an exist-
ing elaborate framework of security, usability and
deployability metrics [21]. Our analysis shows that
SPHINX is a preferred choice assuming the presence
of a device during the login process.

Scope of the Work. Just like any other smartphone pass-
word manager (and even currently deployed two-factor
authentication mechanisms), our studied SPHINX instantia-
tion assumes the availability of the smartphone during the
authentication process. Based on this assumption, it simul-
taneously provides security properties 1-4 above, and a sat-
isfactory level of user experience when compared to regular
password-only authentication.

Like any password management, providing protection in
the event of client compromise is beyond the scope of
SPHINX. While some protection is provided by SPHINX in
the form of anti-phishing defenses and the ability to block
remote adversarial activity by requiring user confirmation
on the device upon SPHINX invocation, comprehensive
defenses based on two-factor authentication (TFA) techni-
ques, entitle server-side changes which password managers

avoid. Integrating SPHINX with a TFA solution is possible
but we leave this as an item of future work.

A further extension of our work could support a SPHINX
online instantiation that replaces or complements the smart-
phone-based instantiation (e.g., as a main passwordmanager
or as a backup option to the smartphone-based instantiation).
Fortunately, the security properties of SPHINX, particularly
its resistance to device compromise and security against
active man-in-the-middle attackers on client-device channel
without the need for confidential channels, make the online
variant very appealing. Although we discuss how our work
can be extended in the future to such an online case, building
and testing the full implementation is beyond the scope of the
current paper.

Contribution over Conference Publication. This paper is an
extension of our ICDCS 2017 paper [40]. In this submission,
we extend our ICDCS 2017 paper by presenting a compre-
hensive analytical comparison of SPHINX with other pass-
word managers based on a formal framework consisting of
security, usability and deployability metrics. We also pro-
vide a simple inspection analysis comparing the user task
flows in SPHINX, password-only authentication and other
device-based password managers.

2 OUR APPROACH

2.1 Background

We first review the notion of Device-Enhanced Password-
Authenticated Key Exchange (DE-PAKE) introduced in [31],
a cryptographic primitive which gives rise to our SPHINX
application.DE-PAKE securely transforms a user-memorable
password into a full-entropy random string (strong pass-
word) by leveraging a secondary device, and then uses this
random password as an input to any password-based
authenticated key exchange protocol (PAKE) [18]. In [31],
authors developed such a “password-to-random” (PTR) pro-
tocol functionality and studied its composition with any
PAKE protocol, giving rise to a DE-PAKE protocol that is
resistant to online guessing and offline dictionary attacks
(under server and device compromise), without the need for
confidential communication between device and the client.

In DE-PAKE protocol model, there are four parties: user,
client, server, and device, individually denoted U, C, S, and
D, respectively. U’s goal is to authenticate itself to S via C
by making use of a simple password and a personal device

TABLE 1
Security Properties of SPHINX in Contrast to Current Managers

Resistance to: SPHINX Current Managers

Offline dictionary attacks under server
compromise (or server being malicious)

Yes, by enforcing random independent
passwords per site.

Only if manager enforces high-
entropy per-site passwords.

Phishing attacks Yes, by incorporating domain name. Only the hash-based managers [29],
[39], [45].

Offline dictionary attacks under device
compromise (or device being malicious)

Yes, perfect security (information
theoretic secrecy).

No, passwords are stored or entered
on the manager.

Eavesdropping and/or man-in-the-middle
attacks on the device-client channel

Yes, without the need to establish a
confidential channel.

Enforced by external mechanisms or
physical security assumptions�.

� Current online managers require confidential and authenticated channels, while current smartphone managers require confidential channels.
Highlighted cells represent the unique advantages offered by SPHINX compared to other managers.

772 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2019

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 19:46:28 UTC from IEEE Xplore. Restrictions apply.

D. The protocol has two phases: initialization and authenti-
cated key exchange. In the initialization phase, U chooses a
password from a given dictionary Dict. The initialization
phase also includes the device-client communication that
establishes the state stored at D, as well as interaction with
S producing a user’s state sSðUÞ that S stores while U only
remembers its password. After initialization, the link
between U and D is subject to the same MitM adversarial
activity as in the links between U and S. In the authenticated
key exchange phase, U interacts with D, C and S over adver-
sary-controlled channels to authenticate itself to S and
establish session keys to protect communication with S.

The PTR protocol design [31] follows the “password hard-
ening” approach of Ford and Kaliski [25] (hence termed
FK-PTR). DE-PAKE model assumes a fully capable man-
in-the-middle attacker active on all the links between all par-
ties and one is allowed to compromise servers and devices at
will. The idea in the FK scheme is for C to interact with one or
more auxiliary servers to map the user’s (non-random) pass-
word into a (random) secret (the “hardened password”),
taken from a dictionary unknown to the attacker. This secret is
then used by U to authenticate to S. DE-PAKE adopts this
idea but replaces the auxiliary servers with a single device,
where the device-client channel is not confidential.

2.2 SPHINX Overview and Features

SPHINX is a compelling application of DE-PAKE [31]. It is a
password manager (Fig. 1), transparent to any existing ser-
vice that deploys password authentication in which, U
registers a hardened randomized password rwd with S, but
only remembers a memorable password pwd that could be
the same for multiple accounts (we use the terms master
password and memorable password interchangeably). For
each server S with which the user U has an account, the
device D stores a unique key k. The key is used to map the
pwd into a randomized password rwd ¼ FkðpwdjdomainÞ
using the (oblivious) PRF Fk. pwd and rwd are never stored
in C and (in contrast to the current managers 4) neither rwd
nor pwd is ever stored in or exposed to D. Instead, D and C
run the PTR protocol to obliviously compute rwd at the login
time. SPHINX offers several key security guarantees simul-
taneously (individually as well as combined), namely:

1) Resistance to online guessing attacks: SPHINX increases
security against online guessing attacks by making

use of a strictly random password registered with
the service.

2) Resistance to offline dictionary attacks under server com-
promise (or server being malicious): In SPHINX, the
server stores the salted-hash of the randomized pass-
word rwd, and hence the compromise of a server
does not help the attacker to learn rwd (or pwd). Note
that a dictionary attack is infeasible since rwd does not
belong to a dictionary known to the attacker.

3) Resistance to phishing attacks: SPHINX combines pwd
with the domain name of the web service to compute
rwd to provide protection under a phishing attack.
The phisher can not even perform an offline dictio-
nary attack to learn rwd or pwd.

4) Resistance to offline dictionary attacks under device com-
promise (or device being malicious): SPHINX does not
leak any information about pwd or rwd to the device
or a potential malicious code running on the device,
since neither the pwd nor rwd is stored or entered on
the device. Therefore, any offline attack against the
device (remote or physical) does not reveal any
information about the pwd or rwd, even during a
user’s active session.

5) Resistance to eavesdropping and man-in-the-middle
attacks on the device-client channel: SPHINX does not
require a confidential D-C channel, but is secure
against eavesdropping and MITM attack over D-C
channel.

Security is not the only compelling feature of SPHINX. It
also offers the following usability advantages:

1) Use of a human-memorable password: In SPHINX, the
user simply remembers pwd but registers a strong
randomized password rwd with the service. More-
over, pwd can be reused over multiple accounts
without compromising security, while the random-
ized password rwd is unique to each service.

2) Easy password updates: Rather than asking the user to
frequently change the password and memorize the
updated password (as is a common practice today),
only the key on the device can be changed (e.g.,
requesting key update for a service through SPHINX
extension). Therefore, if a given service requires fre-
quent password updates, the user needs to update
only the key for that specific account while still

Fig. 1. A high-level overview of SPHINX. U enters memorable password pwd and approves the communication on D (explicit consent), D and C run
an OPRF protocol (instantiated as FK-PTR) to construct a randomized password rwd, C sends rwd to S over SSL/TLS to authenticate to the service.
A smartphone instantiation is developed and tested in the paper. However, the phone can be replaced with an online service.

SHIRVANIAN ETAL.: BUILDING AND STUDYING A PASSWORD STORE THAT PERFECTLY HIDES PASSWORDS FROM ITSELF 773

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 19:46:28 UTC from IEEE Xplore. Restrictions apply.

continuing to use the same original master password.
This feature provides an improved level of usability.

3) Use of multiple types of devices: Since no information
about pwd or rwd is learned by the device and the
device-client channel does not need to be a secure
channel, a personal device could be a smartphone, a
wearable device (e.g., smartwatch) or even an online
service (as will be discussed in Section 5).

All the features are offered by SPHINX simultaneously,
while other password managers only provide a partial sub-
set of these properties, especially no other scheme provides
the last two properties, as will be elaborated in Section 4.

2.3 SPHINX Protocol and System Details

In the standard password-only authentication schemes, U
authenticates to S using pwd. In the SPHINX protocol as
shown in Fig. 2, C runs an instance of password authentica-
tion protocol not on pwd, but on value rwd ¼ FkðpwdjdomainÞ
where F is a pseudorandom function (PRF) and k is a key
held byD. Before authenticating to S,C contactsD (through a
client application) and obtains the rwd value using a special-
purpose (oblivious) PRF-evaluation protocol. Without knowl-
edge of k, the value rwd has full entropy in the range set of
function F and hence dictionary attacks do not apply against
rwd (not even if the server is compromised). Since D holds
only the PRF key k and S holds only information related to
pseudorandom value rwd ¼ FkðpwdjdomainÞ, we can ensure
that offline attacks against pwd are also infeasible whenS orD
are compromised. In the case of D compromise, the user’s
password is not exposed. Rather, security reduces to the secu-
rity of the memorable password (the attacker who obtains the
device can attempt to guess the memorable password only in
an online attack againstS).

SPHINX PRF protocol is defined in [31] as PTR, and is
designed in a way that neither the device or a MITM learn
anything about the password (pwd or rwd) and no one other
than the device learns anything about the key k.

The implementation of the SPHINX protocol is based on
an instantiation of the DE-PAKE primitive [31]. This instan-
tiation assumes a cyclic group G of prime order q, jqj ¼ t,
with generator g. At initialization, U chooses and remem-
bers pwd while D chooses and stores k Zq. To retrieve
rwd, C first blinds pwd by raising the hashed value
H 0ðpwdjdomainÞ to a random exponent r, and sends it to D.

This perfectly hides pwd from D and from any eavesdropper
on the C� D link. D checks that the received value is in the
group G and if so it raises it to the secret exponent k. Now,
C can de-blind this value by raising it to the power 1=r to
obtain H 0ðpwdjdomainÞk. Finally, C hashes this value with
pwd to obtain rwd.

Since rwd is a function of pwd and k, users can update it
by either choosing a new pwd or updating k. The latter pro-
vides a higher usability since the user does not require to
update and remember a new pwd.

Note that D contains no information related to pwd hence
an attacker interacting with D or even breaking into it,
learns nothing about pwd. Also, C does not run any test on
the value reconstructed in the FK-PTR protocol. Hence, an
attacker that interacts with C in the role of D does not learn
anything about pwd from watching the behavior of C. These
“obliviousness” and minimality properties of FK-PTR are
essential to achieve PTR security. The security of SPHINX
directly follows from the security of PTR and DE-PAKE. For
formal security arguments underlying PTR and DE-PAKE,
we refer the reader to [31].

3 DESIGN, IMPLEMENTATION & PERFORMANCE

EVALUATION

We instantiate the SPHINX system using the smartphone as
the device serving the role of the password manager. The
resulting SPHINX system has two essential components,
namely, the browser extension and the Android application
communicating over an authenticated channel.

3.1 SPHINX Browser Extension

Step 1–Reading the Password. The browser extension listens to
the keyboard events generated on login-page and gets acti-
vated once a predefined “@@” password prefix or the “F2”
function key is entered in the password field. This design
decision is similar to the approach of PwdHash [39] and
allows the user to choose whether to use the service for a
particular website or not (i.e., only passwords that are pre-
ceded by the prefix undergo the protocol). After getting acti-
vated, the extension reads the input password. We note that
the additional password prefix is only a design choice and
can be discarded from the design at no additional security/
usability cost. For example, an alternative design choice is

Fig. 2. SPHINX protocol details.

774 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2019

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 19:46:28 UTC from IEEE Xplore. Restrictions apply.

to ask the user to enable SPHINX for each service at the
enrollment time.

Step 2–Hashing the Password into the Elliptic Curve. The
entered password is input in a “Hash-into-Elliptic-Curve”
function. We call this function H 0 (Fig. 2). We implemented
H 0 using the Stanford Elliptic Curve Cryptography and
Core JavaScript libraries for curve and field computation,
and CryptoJS library for SHA-256 computation. The Hash-
into-Elliptic-Curve function maps the password into a point
on NIST P-256 curve. In this implementation, SHA-256 of the
input and the iteration counter is computed and truncated
into an element in Zq, and the computed value is considered
as the x coordinate of a point on the curve if the y value associ-
ated with it is a quadratic residue (i.e., x and y satisfy the
curve equation).Otherwise, the same computation is repeated
until a curve element is obtained. Such a point on the curve is
the output of the hash function.3 To add resistance against
phishing attacks, password is concatenated with the domain
name of thewebsite and then is input intoH 0.

Step 3–FK-PTR OPRF Protocol. After computing the hash,
the extension follows its role in the OPRF function to blind
the password. The OPRF function [30] is defined as
FkðxÞ ¼ Hðx; ðH 0ðxÞÞkÞ with input x from the client and k
from the device. The OPRF works over group G of prime
order p, which in our implementation is an elliptic curve
NIST P-256 group. The input to theOPRF function is the pass-
word concatenatedwith the domain name of the visited page.
As described in Fig. 2, the extension picks a random number
r 2 Zq and raises hash value of the input to the power r (note
that the use of the blinding factor r hides the password with
information-theoretic security), and sends it to the device (we
call this value a). In response, the extension receives b ¼ ak

from the device. After checking the group membership of b,
the extension reconstruct the randomized password by rais-
ing the received value to the power of r�1 2 Zq and then com-
puting SHA-256 hash of the calculated value. We used
Stanford Random Number Generator JavaScript API and
CryptoJS SHA-256 to generate the random number r. The
communication channel between the extension and the
devicewill be discussed inmore detail in Section 3.3.

Step 4–Entering the Randomized Password. The output of the
OPRF is encoded to a random combination of letters, num-
bers and symbols matching the password requirement of the
visitedwebsite as per the encoding functionality suggested in
[39], and is re-entered in the password field of the login page.

Extension Option Page. The extension has an option
page accessible from the options tab under the extension
name in chrome://extensions. Features included in the
options page encompasses “prompting the randomized
password” to show rwd once pwd is entered, “increment
offset” to communicate with the device to update the key
for a specific service, and “device IP address” for Web-
Socket configuration.

3.2 SPHINX Android Application

Step 1–Starting the FK-PTR Protocol. In the first step the
Android app receives a ¼ H 0ðpwdjdomainÞr from the client,
checks the group membership of a, and computes b ¼ ak.

The OPRF key k is picked by the device at the initialization
phase and is stored on the device. An update for k initiates
from the client’s browser extension that communicates with
the device to set a new key for a service. All elliptic curve
functions in our app are based on Java Security and Spongy
Castle libraries.

Step 2.1–Explicit Consent Mode. In this optional step,
which we consider as the primary design option for
SPHINX an alert message is displayed on the device to
make the user aware of the ongoing login process. The user
is required to confirm the alert before the protocol continues
to the next step. We call this alert box the explicit consent on
the device. This design choice is made to ensure that the
device does not respond to unauthorized requests (without
user’s awareness), preventing an attacker who obtains the
user’s master password from authenticating to the service.

Step 2.2–Zero-Interaction Mode. In the second option, user
can disable the explicit consent requirement, for the applica-
tion to run on the device with zero interaction with the user,
without seeking for user’s approval. This design choice is
assumed to be more usable and transparent to the user (we
refer to this feature as “Physically Effort-less” in Section 4).
However, an attacker who has obtained the master pass-
word (e.g., with a shoulder surfing attack), might be able to
login to the service (we refer to this feature as “Resilient-
to-Physical-Observation” in Section 4).

Step 3–Completing the FK-PTR OPRF Protocol. In this step
the device sends b to the client to complete its role in the
OPRF.

3.3 Device-Client Authenticated Channel

In our first implementation of the SPHINX system for
Google Chrome browser, we used the WebSocket protocol
to establish communication between the device and the
Chrome Extension. For the client to initiate the WebSocket
communication by sending a, the device needs to be set-up
as an HTTP server, the client being the HTTP client. We set
up an HTTP server on the device using NanoHttpd Java
application [9], adapted for Android.

In later implementation of SPHINX, we decided to use
Google CloudMessaging (GCM) to provide amore stable con-
nection between the device and the client. Note that since our
application does not require the device-client channel to be
secure, trusting on GCMwould not at all affect the security of
our approach. To our knowledge, this is the first implementa-
tion of GCM that makes a bi-directional connection between
two typically considered GCM clients (a phone and a brow-
ser) without the need for any additional relaying server.

3.4 Performance Evaluation

The overall execution time of the SPHINX and performance
of different major tasks on am LG G3 smartphone and the
client-side Chrome extension (on MacBook Air laptop with
a 1.3 GHz Intel Core i5 processor and 4 GB of memory) is
evaluated over 10,000 iterations, and the averaged results
are reported in Table 2. The total execution time for both the
WebSocket and GCM implementation are shown. We
excluded the time of human interaction with the system
(manual pwd entry, and explicit consent on the device) from
the evaluation. We also excluded authentication to the

3. An alternative, robust to side channels, is to use a hashing-
into-the-curve mechanism such as Elligator 2 [19].

SHIRVANIAN ETAL.: BUILDING AND STUDYING A PASSWORD STORE THAT PERFECTLY HIDES PASSWORDS FROM ITSELF 775

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 19:46:28 UTC from IEEE Xplore. Restrictions apply.

service, as this is the same in all schemes. Communication
between C and D is timed for a 10 Gbps WiFi Internet.

Based on our evaluation, for all parties, the most costly
computation is Elliptic Curve exponentiation (71.00 ms on
the extension, and 52.30 ms on the Android app with the
mentioned libraries). The overall execution time of SPHINX
protocol is around 500 ms and 400 ms, for WebSocket and
GCM communication, respectively (excluding human inter-
action), which seems reasonably efficient.

3.5 User Task Flow Analysis

We analyzed the user task flows in: password-only,
SPHINX in Zero-Interaction Mode, SPHINX in Explicit Con-
sent Mode, and currently deployed device-based password
managers. Table 3 shows the steps a user follows to authen-
ticate by her username and password to a typical server in
four different approaches. Compared to password-only sys-
tems, SPHINX in Zero-Interaction Mode does not impose
any additional burden to the user, and SPHINX in Explicit
Consent Mode requires the confirmation on the device. In
contrast, currently deployed device-based password man-
agers require the user to input master password on the
device, and then copy the password from the device to the
terminal manually. Just based on inspection of the user task
flows, it is clear that current device-based password man-
ager will have much lower usability compared to the other
three approaches. SPHINX in Zero-Interaction Mode also
seems very close to password-only in terms of usability.

4 SPHINX VERSUS OTHER MANAGERS

We analyze SPHINX with respect to several security, usabil-
ity and deployability metrics, and compare it with many
other managers. Our analysis is summarized in Table 4.

The listed metrics for comparison are built upon the eval-
uation framework of [21], which was designed to assess
web-based authentication schemes. We base our compari-
son upon a similar set of metrics but refine and extend the
list to meet the characteristics of password managers. Our
list may be independently used as a specialized framework
to evaluate password managers.

The list of studied schemes is comprehensive and includes
three main categories of password managers: (1) Hash-based
password managers, in which the passwords are generated by
applying a cryptographic function to the master password
and a tag (e.g., the visited website’s domain name). In addi-
tion to SPHINX, we included, in the comparison, three well-
recognized academic works, namely, PwdHash [39], Pass-
word-Multiplier [29], and Passpet [45]; (2) Traditional password
managers, that are usually available as browser extensions,
desktop applications, token-based application (e.g., USB key
or a smartphone apps), and online services. We included
highly ranked or widely used commercial password manag-
ers in the list, including Firefox [11], LastPass [12], 1Password
[1], Dashlane [5], and RoboForm [13]. We also included an
instance of a smartphone password manager, Tapas [37], that
is similar in functionality to traditional password managers,
but unlike others, runs a protocol between the device and the
terminal to encrypt, store and retrieve the password. In this
study, we exclude approaches that require service-side
changes (e.g., Phool Proof [34], MP-Auth [36], and Pico [41]).

4.1 Analyzed Schemes

We refer to the existing text-based password authentication
web services as password-only (PM0) (“without password
manager (PM)”). All the other schemes listed below are com-
pared with this model. Any scheme that can provide similar
level of usability as password-only while offering additional
security features is preferable.

Hash Based Password Managers
PM1. SPHINX. This refers to our proposed scheme. In

our analysis, we consider the primary design of SPHINX in
the explicit consent mode, and we will adjust any changes
in each of the metrics in case of the zero-interaction mode.

PM2. PwdHash. This refers to a mechanism in which the
browser extension computes a deterministic (i.e., unkeyed)
hash of input pwd and the domain name of the visited page
to construct a randomized password. The domain name is
used for resistance against phishing attacks. Although the
user can assign different tags to each service (rather than
the domain name), in real-life, users will typically choose a
weak predictable tag.

PM3. Password Multiplier. Similar to PwdHash, Password
Multiplier is a browser extension that applies an unkeyed
cryptographic hash function of the master username, master

TABLE 2
Performance Analysis of the Implemented SPHINX Protocol for
NIST P-256 Curve and 128 Bit OPRF Key; ? The Total Time

Excludes Users’ Interaction

Task Delay

Device Group Membership (a 2 G) 0.36 ms
Scalar Multiplication (b ¼ ak) 71.00 ms

Client EC-Hash (H 0ðpwdjdomainÞ) 2.23 ms
Scalar Multiplication
(H 0ðpwdjdomainÞr)

54.23 ms

Inverse (1=r) 0.23 ms
SHA256 Hash (H) 0.07 ms
Hðpwdjdomain; b1=rÞ 52.30 ms

Total Time? Websocket 510.00 ms
GCM 400.54 ms

TABLE 3
Users’ Task Flow in Different Password Managers (Usability Level Seems to Decrease from left to right)

Password-Only SPHINXZero-Interaction Mode SPHINXExplicit Consent Mode Device-based Password managers

1. Enter username 1. Enter username 1. Enter username 1. Enter username
2. Enter password 2. Enter master password (on client) 2. Enter master password (on client) 2. Enter master password (on device)

3. Click confirm on the device 3. Read and enter the password from
device to terminal

[Password is transferred to the
webpage automatically]

[Password is transferred to the
webpage automatically]

776 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2019

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 19:46:28 UTC from IEEE Xplore. Restrictions apply.

password and the target website domain to generate a ran-
domized password for a given user account. It offers resis-
tance to phishing attacks in the same way as SPHINX and
PwdHash.

PM4. Passpet. Similar to PwdHash and Password Multi-
plier, Passpet computes an unkeyed hash of a password to
construct a randomized password that will be registered
with the service. To provide phishing resistance, Passpet
incorporates domain name of the target website in hash func-
tion computation (the sameway as SPHINX and PwdHash).

Note that of all the above methods, only SPHINX uses a
secret keyed function to compute the randomized password.

Traditional Password Managers
PM5. Firefox Password Manager. Firefox Password Man-

ager stores the usernames and the passwords in the termi-
nal storage, and automatically fills the login form when the
users visits a website. Firefox Password Manager can work
with or without a master password (i.e., with or without
encrypting the stored passwords). In our analysis, we con-
sider the version with master password (since this is the fair
setting to compare with SPHINX and other password man-
agers). Although we pick Firefox as an instance of desktop
password managers, other browsers also offer similar built-
in password managers and our comparative analysis
applies to them exactly the same way.

PM6. Commercial PasswordManagers. This category of pass-
word managers can further be divided into: PM6.1. Client-
based (e.g., browser plugin), PM6.2. Token-based (e.g., a smart-
phone app), and PM6.3. Web-based (e.g., cloudbased service)
commercial password managers, that are often different in
the offered security or usability properties. Lastpass, 1Pass-
word, Dashlane, and Roboform are instances of commercial
cross-browser, cross-platform password managers that store
the passwords on some computational device (client/token
or web server) and lock them using a master password. They
offer several other features such as account syncing, pass-
word generation, and form auto fill that are orthogonal to the
features of SPHINX and can be adopted.

PM7. Tapas. Tapas is a device-based password manager
that suggests a dual-possession authentication, leveraging a
desktop computer and a smartphone, which runs a protocol
between the browser extension (Manager) and the smart-
phone (Wallet) over a “secure channel” to store the encry-
pted password on the Wallet and retrieve it when the user
visits the webpage. Tapas maintains security of the man-
aged passwords by encrypting and storing the passwords
on a smartphone, and keeping the decryption key inside
the browser on the paired computer. The dual-possession
feature of Tapas helps to protect the user-chosen password
in case of offline attacks against the device (unlike other

TABLE 4
SPHINX versus Other Password Managers

Notes:
� Enhanced by the use of two uniqueness parameters, domain name and OPRF key.
� They provide higher resistance compared to password-only, but still an ODA is possible after the phishing attack.
� Unless the user chooses a randomized master password.
� Unless the user chooses a randomized password for each account.
y Establishment of confidential channel necessary.
z Establishment of confidential and authenticated channel necessary.
� Establishment of confidential and authenticated channel necessary.
“ODA-Resistance” denotes resistance to offline dictionary attacks. Other metrics are drawn from [21].

SHIRVANIAN ETAL.: BUILDING AND STUDYING A PASSWORD STORE THAT PERFECTLY HIDES PASSWORDS FROM ITSELF 777

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 19:46:28 UTC from IEEE Xplore. Restrictions apply.

traditional token-based managers). SPHINX achieves this
property without the need to establish a confidential chan-
nel, between C and D.

4.2 Metrics and Comparative Analysis

Security Metrics
S1. Unique-Password-Enforcer (captured in S6, Resilient-

to-Leaks-from-Other-Verifiers, in [21]): SPHINX, PwdHash,
Password Multiplier, and Passpet uniquely select a random-
ized password for each website. All these mechanisms incor-
porate domain name of the target website (which is assumed
to be unique) in their cryptographic calculation. SPHINX
being a keyed mechanism assigns different keys to each service,
and, even without incorporating the domain, generates a dif-
ferent/unique secure password. In the other managers, it is
up to the user to select different passwords for each website.
Hence, users may prefer to reuse their password over differ-
ent services, which is amajor security issue.

S2. Resilient-to-Phishing (S7 in [21]). As mentioned earlier,
SPHINX, PwdHash, PasswordMultiplier, and Passpet, incor-
porate domain name of the webpage in their calculation (pre-
cisely in a hash function), and therefore are resistant to
phishing attacks. However, unlike SPHINX, other schemes
are susceptible to offline dictionary attacks as the phisher can
recover themaster password, given the hashed password cor-
responding to the phisher’s domain. Tapas provides phishing
protection by ensuring that passwords are submitted to the
exact site (determined by the site’s URL and SSL/TLS certifi-
cate) they were registered with. Other managers that we are
studying do not provide resistance against phishing.

S3. Offline-Dict-Attack-Resistant-Server-Compromise (cap-
tured in S5, Resilient-to-Internal-Observation, in [21]): This
feature is unique to SPHINX and no other password manager
offers security against offline dictionary attacks upon service
compromise (unless the user deliberately chooses a random
password to registerwith the service). SPHINX cryptographi-
cally randomizes the memorable password, but unlike other
hash-based password managers, the cryptographic function
is not a deterministic hash function. The cryptographic func-
tion is anOblivious-PRF function inwhich the browser exten-
sion inputs the password (and the domain name for phishing
protection) and the device inputs a secret key to reconstruct
the password. Therefore, the password that is registeredwith
the service is cryptographically random and attacker cannot
perform a dictionary attack against the server. Although,
PwdHash, Password Multiplier, and Passpet generate a ran-
domized password, the password is derived from a deter-
ministic hash function on input of a master password (and a
predictable domain name), that is susceptible to an offline
attack against the master password, upon learning the pass-
word hash on the server.

S4. Storeless: We refer to mechanisms that do not store the
password encrypted or unencrypted as storeless. Except for
the hash-based password managers in our list (i.e., SPHINX,
PwdHash, Password Multiplier, and Passpet) that compute
the password on the fly, all other mechanism store the pass-
word encrypted or unencrypted (on the token, on the client
machine, or on an online server). Passpet is the only hash-
based password manager that stores domain names, which
might expose the privacy of the user, but this does not affect
its security.

S5. Offline-Dict-Resistant-Device-Compromise (captured in
S5, Resilient-to-Internal-Observation, in [21]): This property
implies that an attacker cannot intercept the user’s input
from inside the user’s device (e.g., by a malware). Tapas as
well as token-based (and web-based) managers that store
the password encrypted might mistakenly appear to be
secure in case of the device (or the online password man-
ager server) gets compromised. However, note that once the
device gets compromised, the security falls back to the secu-
rity of the master/nominal password. In that case, commer-
cial password managers that require one single master
password to protect all accounts, offer lower level of secu-
rity (the attacker can compromise “all” the accounts that are
served by the password manager). In contrast in SPHINX
no information about the pwd and rwd is leaked from the
device, since pwd is not entered into the device and rwd is
not stored on the device.

S6. Resilient-Upon-Theft (S8 in [21]). This property app-
lies to token/device-based managers and implies that an
attacker who can get physical access to the device, tempo-
rarily or permanently cannot obtain the passwords. The
security arguments under this property are exactly the
same as the previous item.

S7. Resistance-to-MITM over Device-Client Channel (cap-
tured in S5, Resilient-to-Internal-Observation, in [21]): This
metric applies to all token-based and web-based password
managers. SPHINX is the only password manager does not
require any requirement on device-client channel confi-
dentiality4 and therefore is secure against MITM attack and
eavesdropping. Tapas creates an authenticated channel
between the Wallet (device) and the Manager (browser) (via
pairing, for example), and then only it can provide the
required security against MITM. Traditional web-based
password managers protect against MITM attack only
through the use of SSL channels (which might be compro-
mised) between the web-based password manager and the
client. In traditional token-based password managers the
users are required to manually read and enter the password
from the device, the manual-human based channel is typi-
cally considered secure against the MITM attack, however,
physical observation over this channel is possible and is
captured in the next item (S9).

S8. Resilient-to-Physical-Observation (S1 in [21]). This prop-
erty implies that the attacker cannot impersonate a user
after observing him/her during the authentication process
earlier. These attacks include shoulder surfing, filming the
keyboard, recording keystroke sounds, or thermal imaging
of keypad. All of the listed commercial password managers
require the user to enter the master password and therefore
are not resilient to physical observation. Although Passpet,
PwdHash and Password Multiplier fill in the password
field with the randomized password, they still require the
user to enter the master secret. SPHINX, however, is secure
to physical observation, since our primary design requires
the user to approve a dialog on the device before recon-
structing password and filling the password field. To
improve the usability of the SPHINX system, the user can
optionally disable the need for approval (zero interaction),

4. Authenticated channel between the device and the client is
required only if the client and server communicate over TLS/SSL.

778 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2019

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 19:46:28 UTC from IEEE Xplore. Restrictions apply.

however, in that case SPHINX would not be Resilient-to-
Physical-Observation.

Usability Metrics
U1. Memorywise-Effortless (U1 in [21]). We call a system

Memorywise-Effortless if the user is not required to remem-
ber any secrets except for a password or a master password
per service. With our definition, all the studied managers
are Memorywise-Effortless.

U2. Password-Update-Not-Necessary. SPHINX and all the
hash-based managers in our list (PwdHash, Password Mul-
tiplier, and Passpet) compute a cryptographic function of
the password that the user enters to the web-sites. Hence,
they require the user to update their original password
when moving over to one of these schemes from a pass-
word-only scheme.

U3. Scalable-for-Users (U2 in [21]). The schemes that do not
require extra effort from the users’ side when the number of
accounts are increased are considered as scalable. Scalability
is defined from the users point of view and not from the sys-
tem deployment perspective. With this definition, all the
studied password manager are scalable, since users’ effort
does not increase with increase in the number of accounts.

U4. Physically-Effortless (U4 in [21]). The schemes that do
not require user to do anything beyond typing one password,
and perhaps clicking a button to activate or run the password
manager service are “Physically-Effortless”. SPHINX requires
the user to tap the approve button on the device, which is a
design choice for extra security. SPHINX canwork as a service
on the phone and would not necessarily require this physical
approval from the user-side (at the loss of some security prop-
erties). Other hash-based password managers are Physically-
Effortless. However, commercial token-based, client-based,
and web-based password managers are not effortless since
they require the user to transfer the password from the
device to the client in addition to typing the master password
(unless they offer an additional feature of form auto filling).
Since SPHINX does not store either pwd and rwd, such form
auto filling by storing the passwords is not recommended in
our approach, although it is possible.

Deployability Metrics
D1. Client-Compatible (D4 in [21]). The schemes that do not

require any changes at the client-side are called Client-
Compatible. This includes schemes that do not require any
software or browser extension. Except for the Firefox pass-
word manager and web-based commercial password man-
ager, none of the other studied scheme are Client-Compatible.

D2. Nothing-to-Carry (U3 in [21]). The schemes that do not
necessarily require additional hardware to operate are in
this category. Device-aided schemes would not satisfy this
property. However, device-aided schemes increase the secu-
rity of the system, since an attacker who knows the master
password, requires the second factor to authenticate to the
service. SPHINX is a device-aided approach. The current
implementation of SPHINX uses a smartphone as the sec-
ondary device. Tapas is also a device-aided password man-
ager. Token-based password manager also require extra
hardware or device.

4.3 Summary of Comparison

SPHINX is different from traditional password managers in
many ways. Traditional password managers, such as [1],

[12], store the passwords encrypted with a single master
password. In particular, with existing device-based manag-
ers, the user types in her master password on the applica-
tion that unlocks the respective password and displays it on
the screen. The user then copies the password over to the
login-page to authenticate to the service. These managers
require a confidential channel (e.g., resistant to shoulder-
surfing) between the password manager app and the client,
and are also open to dictionary attacks upon application
compromise. In addition, an attacker could guess the master
password in an online guessing attack against the device.
Similarly a potentially malicious code running on the device
could learn the user’s master password as it is entered into
the device and learn all stored passwords. Such password
managers normally do not provide resistance against offline
dictionary attack in the event of server compromise unless
the user picks a random password for each site (i.e., the
manager does not enforce a policy). Resistance against
phishing is not provided by these managers.

In contrast, SPHINX does not require a confidential chan-
nel, and nothing (in an information-theoretic sense) is learned
about the password by the device (or a malicious software
running on the device) or over the device-client channel, even
without any encryption of this channel. Finally, by randomiz-
ing and hardening the passwords, SPHINX imposes resis-
tance against server-side offline dictionary attack.

SPHINX is also different from “hash-based password
managers” that compute a cryptographically hash of a
memorable password on the fly. An example of such pass-
word manager solutions is PwdHash [39]. PwdHash maps
a low entropy password to a randomized one by hashing a
(password, domain-name) pair and registering it as the
password with the server. PwdHash deterministically trans-
forms a user’s password into a more complex password but,
unlike our scheme, this transformation does not help
against offline dictionary attacks at a compromised server.
Moreover, if a user uses the same master password pwd
with PwdHash for different services, the compromise of a
single server leads to the discovery of pwd via an offline
attack and then to the (deterministic) calculation of all rwd’s
derived from pwd.

5 DISCUSSION

Online SPHINXService. Our current implementation of
SPHINX is geared for smartphones. However, it is by no
means limited to that. Since SPHINX does not require a
confidential channel between D and C and since the device
is oblivious to the user’s password (pwd or rwd), one possi-
bility is to outsource the device functionality to a remote
online (third-party) service, to give rise to an online man-
ager (Online SPHINX). For such an online setting, in con-
trast to other online password managers, SPHINX would
provide optimal resistance in the event of manager com-
promise since only OPRF key is stored on the online ser-
vice and is independent of user’s password (in particular,
this password is not needed for authenticating the user to
the online SPHINX).

The online SPHINX service can act as a full replacement
of the smartphone as an independent password manager.
Online SPHINX can also serve as the password manager to

SHIRVANIAN ETAL.: BUILDING AND STUDYING A PASSWORD STORE THAT PERFECTLY HIDES PASSWORDS FROM ITSELF 779

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 19:46:28 UTC from IEEE Xplore. Restrictions apply.

allow for login from the smartphone itself, which in our cur-
rent setting (smartphone instantiation) is not supported.
Finally, the online service can also be a complement to the
smartphone instantiation for backup purposes (see next dis-
cussion item).

Online SPHINX can also benefit from a distributed ser-
vice in which the OPRF keys for web accounts is distributed
among several servers. This prevents learning specific keys
upon the compromise of one server or a subset of servers
(with a threshold scheme). It also provides better “avail-
ability” guarantees. OPRF computation in SPHINX can be
thersholdized using polynomial secret sharing.

Further work is warranted to carefully design an online
version of SPHINX, which can retain all the security and
usability advantages of SPHINX while providing increased
service availability. Our assumption is that such setting will
provide the same security features as SPHINX inZero Interac-
tionmode, while it may provide better usability since the reli-
ance on the smartphonewould not be needed. In a real-world
system, both online and smartphone implementations can be
offered to the users as a holistic solution, similar to many cur-
rently-deployed commercial passwordmanagement services.

Key Back-Up and Device Upgrade. One natural concern
about any smartphone password manager, like the smart-
phone-based instantiation of SPHINX, is the permanent loss
of the phone. To deal with such situations, SPHINX users
should back-up the OPRF key on an external storage. When
using a new device, this key can then be recovered from the
back-up device. Similarly, when upgrading to a new device
(e.g., when buying a new phone), the key from the old
phone or the back-up device can be copied over to the new
device. Such a key transfer should be performed over a
secure channel (e.g., a wired connection between the devi-
ces). The current device-based password managers also
recommend backing up the list of stored passwords on the
device in the same way. Even the current two-factor auth-
entication (2FA) systems recommend similar strategies.
SPHINXonline service could be used to facilitate such a
back-up (as discussed above).

Client Compromise. Password managers are not intended,
designed or capable of resisting against client side compro-
mise. Indeed, none of the password managers that we stud-
ied are secure against client compromise. The reason is that
the password is entered in the webpage manually by the
user or automatically by the password manager. In either
case, an attacker who resides on a client can theoretically
intercept the password. Malicious code and key-loggers are
always a threat to browsers in spite of security enhance-
ments in the browsers. However, in our SPHINX system,
because we use a “key-ed” password hardening scheme, an
attacker who learns pwd using a key-logger can not succeed
in logging into the web service. An attacker, who compro-
mises the client machine and get it to execute a malicious
code, can obtain rwd of an on-going session, and thereby
succeed in logging to only that service, even if the user uses
the same pwd for all services.

One potential solution to offer security under client com-
promise could be to employ a 2FA mechanism. Since 2FA
mechanisms require a password as well as a one-time PIN
code produced by the device (the second factor), they can
offer better resistance in the event of client compromise

(key-logging one PIN code from the client machine will not
be sufficient for the attacker to log in over new sessions).
Since 2FA and SPHINX both use a device during the
authentication process, it seems natural to integrate the two
schemes together so as to achieve all the security advan-
tages provided by the latter and the resilience to client com-
promise offered by the former. Such integration may work
transparently with current web services that already use
2FA as a means to login users. However, a thorough future
investigation is necessary to formalize and realize such
SPHINX-enhanced 2FA mechanisms.

Preliminary Usability Evaluation. We conducted an initial
small-scale usability study of our SPHINX smartphone
manager in lab settings with participants of different educa-
tional backgrounds but none skilled in computer security,
and other small-scale study in real-life environments with
expert users (skilled in computer security), while these
users logged into popular daily used web services of their
choice (e.g., Gmail, Facebook and Yahoo) using their own
accounts. The study followed a methodology in line with
that of prior notable studies of password managers [23],
[33]. While these initial studies should be expanded in
future work, our preliminary results suggest that users’ per-
ception of SPHINX security and usability is high, and that
SPHINX user experience is satisfactory when compared to
password authentication using a human-memorable pass-
word (our study’s baseline).

6 CONCLUSIONS

Passwords are a “necessary evil”. In this paper, we
attempted to respond to the growing security and usability
problems with passwords by proposing SPHINX, a crypto-
graphic password manager that can address most security
and usability problems with passwords from the client/
user side alone (i.e., transparent to most existing web
authentication services). SPHINX is a password manage-
ment approach, built atop an existing oblivious PRF (OPRF)
scheme, that transforms a human-memorable password
into a random password with the aid of a device without
the need to store the passwords on the device. SPHINX
offers several key security guarantees, namely, resistance to:
(1) online guessing attacks, (2) offline dictionary attacks
under server compromise, (3) offline dictionary attacks
under device compromise, (4) phishing attacks, and (5)
eavesdropping and man-in-the-middle attacks on the
device-client channel. SPHINX also boasts to provide
almost the same level of user experience as that of authenti-
cation using an easy to memorize password. Unlike other
password managers, SPHINX perfectly hides passwords
and the master password from itself, and thus remains
secure under the realistic threat of the compromise of pass-
word managers. Also, unlike other password managers,
SPHINX does not require a confidential device-client chan-
nel. At the same time and like many other password manag-
ers, SPHINX can resist online guessing, offline dictionary
under web service compromise and phishing attacks. We
designed and implemented a smartphone-based instantia-
tion of SPHINX. Our performance and analytical evaluation
of this instantiation shows that it is efficient, highly secure,
likely simple to use, and easy to deploy in practice.

780 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2019

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 19:46:28 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

This submission is an extension to our previous work [40].

REFERENCES

[1] 1Password: Simple, Convenient Security. [Online]. Available:
https://1password.com/, Accessed 2019.

[2] Anonymous hackers claim to leak 28,000 PayPal passwords on
global protest day. [Online]. Available: http://goo.gl/oPv2h,
Accessed 2019.

[3] Blizzard servers hacked; emails, hashed passwords stolen.
[Online]. Available: http://goo.gl/OTNWJC, Accessed 2019.

[4] Current Android Malware. [Online]. Available: http://goo.gl/
0sWbXz, Accessed 2019.

[5] Dashlane Password Manager. [Online]. Available: https://www.
dashlane.com/, Accessed 2019.

[6] Fine the source of your leaks. [Online]. Available: https://www.
leakedsource.com/, Accessed 2019.

[7] Hackers compromised nearly 5M Gmail passwords. [Online].
Available: http://goo.gl/IRu07u, Accessed 2019.

[8] LinkedIn Confirms Account Passwords Hacked. [Online]. Avail-
able: http://goo.gl/AWB5KC, Accessed 2019.

[9] Nanohttpd java app. [Online]. Available: https://nanohttpd.com,
Accessed 2019.

[10] One Year Of Android Malware. [Online]. Available: http://goo.
gl/2UkUJS, Accessed 2019.

[11] Password Manager - Remember, delete, change and import saved
passwords in Firefox. [Online]. Available: https://goo.gl/Qve4l7,
Accessed 2019.

[12] Password Manager, Auto Form Filler, Random Password Genera-
tor & Secure Digital Wallet App. [Online]. Available: https://
lastpass.com/, Accessed 2019.

[13] RoboForm: World’s Best Password Manager. [Online]. Available:
https://www.roboform.com/, Accessed 2019.

[14] RSA breach leaks data for hacking securid tokens. [Online]. Avail-
able: http://goo.gl/tcEoS, Accessed 2019.

[15] RSA SecurID software token cloning: A new how-to. [Online].
Available: http://goo.gl/qkSFY, Accessed 2019.

[16] Russian Hackers Amass Over a Billion Internet Passwords.
[Online]. Available: http://goo.gl/aXzqj8, Accessed 2019.

[17] A. Adams and M. A. Sasse, “Users are not the enemy,” Commun.
ACM, vol. 42, no. 12, 1999.

[18] M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated key
exchange secure against dictionary attacks,” in Proc. Int. Conf. The-
ory Appl. Cryptographic Tech., 2000, pp. 139–155.

[19] D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange,
“Elligator: Elliptic-curve points indistinguishable from uniform
random strings,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2013, pp. 967–980.

[20] J. Bonneau, “The science of guessing: Analyzing an anonymized
corpus of 70 million passwords,” in Proc. IEEE Symp. Secur. Pri-
vacy, 2012, pp. 538–552.

[21] J. Bonneau, C. Herley, P. C. Van Oorschot, and F. Stajano, “The
quest to replace passwords: A framework for comparative evalua-
tion of web authentication schemes,” in Proc. IEEE Symp. Secur.
Privacy, 2012, pp. 553–567.

[22] R. Chatterjee, J. Bonneau, A. Juels, and T. Ristenpart, “Cracking-
resistant password vaults using natural language encoders,” in
Proc. IEEE Symp. Secur. Privacy, 2015, pp. 481–498.

[23] S. Chiasson, P. C. van Oorschot, and R. Biddle, “A usability study
and critique of two password managers,” in Proc. 15th Conf. USE-
NIX Secur. Symp. - Vol. 15, 2006, Art. no. 1.

[24] I. Dacosta, M. Ahamad, and P. Traynor, “Trust no one else:
Detecting MITM attacks against SSL/TLS without third-parties,”
in Proc. Eur. Symp. Res. Comput. Secur., 2012, pp. 199–216.

[25] W. Ford and B. S. Kaliski Jr , “Server-assisted generation of a
strong secret from a password,” in Proc. 9th IEEE Int. Workshops
Enabling Technol.: Infrastructure Collaborative Enterprises, 2000,
pp. 176–180.

[26] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold, “Keyword
search and oblivious pseudorandom functions,” in Proc. 2nd Int.
Conf. Theory Cryptography. 2005, pp. 303–324.

[27] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: Validating
ssl certificates in non-browser software,” in Proc. ACM Conf. Com-
put. Commun. Secur., 2012, pp. 303–324.

[28] M. Gollam, B. Beuscher, and M. Durmuth, “On the security of
cracking-resistant password vaults,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2016, pp. 1230–1241.

[29] J. A. Halderman, B. Waters, and E. W. Felten, “A convenient
method for securely managing passwords,” in Proc. 14th Int. Conf.
World Wide Web, 2005, pp. 471–479.

[30] S. Jarecki, A. Kiayias, and H. Krawczyk, “Round-optimal pass-
word-protected secret sharing and T-PAKE in the password-only
model,” in Proc. Int. Conf. Theory Appl. Cryptology Inf. Secur., 2014,
pp. 233–253.

[31] S. Jarecki, H. Krawczyk, M. Shirvanian, and N. Saxena, “Device-
Enhanced Password Protocols with Optimal Online-Offline
Protection,” in Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, 2016, pp. 177–188. [Online].
Available: http://eprint.iacr.org/2015/1099

[32] A. Karole, N. Saxena, and N. Christin, “A comparative usability
evaluation of traditional password managers,” in Proc. 13th Int.
Conf. Inf. Secur. Cryptology, 2010, pp. 233–251.

[33] A. Karole, N. Saxena, and N. Christin, “A comparative usability
evaluation of traditional password managers,” in Proc. Int. Conf.
Inf. Secur. Cryptology., 2010, pp. 233–251.

[34] M. R. Karthiga and M. K. Aravindhan, “Enhancing performance
of user authentication protocol with resist to password reuse
attacks,” Int. J. Comput. Eng. Res., vol. 2, no. 8, 2012.

[35] Z. Li, W. He, D. Akhawe, and D. Song, “The emperor’s new pass-
word manager: Security analysis of web-based password manag-
ers,” in Proc. 23rd USENIX Conf. Secur. Symp., 2014, pp. 465–479.

[36] M. Mannan and P. C. van Oorschot, “Using a personal device to
strengthen password authentication from an untrusted com-
puter,” in Proc. Int. Conf. Financial Cryptography Data Secur., 2007,
pp. 88–103.

[37] D. McCarney, D. Barrera, J. Clark, S. Chiasson, and P. C. van
Oorschot, “Tapas: Design, implementation, and usability evalua-
tion of a password manager,” in Proc. 28th Annu. Comput. Secur.
Appl. Conf., 2012, pp. 89–98.

[38] R. Morris and K. Thompson, “Password security: A case history,”
Commun. ACM, vol. 22, no. 11, pp. 594–597, 1979.

[39] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell,
“Stronger password authentication using browser extensions,” in
Proc. Proc. 14th Conf. USENIX Secur. Symp. - Vol. 14, 2005, p. 2.

[40] M. Shirvanian, S. Jarecki, H. Krawczyk, and N. Saxena, “Sphinx: A
password store that perfectly hides passwords from itself,” in Proc.
IEEE 37th Int. Conf. Distrib. Comput. Syst., 2017, pp. 1094–1104.

[41] F. Stajano, “Pico: No more passwords! in Proc. Int. Workshop Secur.
Protocols, 2011, pp. 49–81.

[42] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. F. Cranor,
“Crying wolf: An empirical study of ssl warning effectiveness,” in
Proc. 18th Conf. USENIX Secur. Symp., 2009, pp. 399–416.

[43] L. Whitney, “LastPass CEO reveals details on security breach,”
2011. [Online]. Available: https://goo.gl/WyNjjb

[44] J. Yan, A. Blackwell, R. Anderson, and A. Grant, “Password mem-
orability and security: Empirical results,” IEEE Secur. Privacy,
vol. 2, no. 5, pp. 25–31, Sep./Oct. 2004.

[45] K.-P. Yee and K. Sitaker, “Passpet: convenient password manage-
ment and phishing protection,” in Proc. 2nd Symp. Usable Privacy
Secur., 2006, pp. 32–43.

[46] Y. Zhou and X. Jiang, “Dissecting android malware: Characteriza-
tion and evolution,” in Proc. IEEE Symp. Secur. Privacy, 2012,
pp. 95–109.

Maliheh Shirvanian is a Staff Research Scientist in the System Security
team at Visa Research. Her main research interests are authentication,
system security, and user-centered security. She has several publica-
tions in top venue security conferences such as CCS and NDSS. She
received her PhD in 2018 from the University of Alabama at Birmingham
where she was affiliated with the Security and Privacy In Emerging com-
puting and networking Systems (SPIES) research group. She was the
recipient of UAB College of Arts and Sciences 2018 Dean’s Award and
UAB Departmental Outstanding Student Award. Currently, she is work-
ing on improving the security of usable authentication schemes.

SHIRVANIAN ETAL.: BUILDING AND STUDYING A PASSWORD STORE THAT PERFECTLY HIDES PASSWORDS FROM ITSELF 781

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 19:46:28 UTC from IEEE Xplore. Restrictions apply.

https://1password.com/
http://goo.gl/oPv2h
http://goo.gl/OTNWJC
http://goo.gl/0sWbXz
http://goo.gl/0sWbXz
https://www.dashlane.com/
https://www.dashlane.com/
https://www.leakedsource.com/
https://www.leakedsource.com/
http://goo.gl/IRu07u
http://goo.gl/AWB5KC
https://nanohttpd.com
http://goo.gl/2UkUJS
http://goo.gl/2UkUJS
https://goo.gl/Qve4l7
https://lastpass.com/
https://lastpass.com/
https://www.roboform.com/
http://goo.gl/tcEoS
http://goo.gl/qkSFY
http://goo.gl/aXzqj8
http://eprint.iacr.org/2015/1099
https://goo.gl/WyNjjb

Nitesh Saxena is a Professor of Computer Science at the University of
Alabama at Birmingham (UAB), and the founding director of the Security
and Privacy in Emerging Systems (SPIES) group/lab. He works in the
broad areas of computer and network security, and applied cryptography,
with a keen interest in wireless and mobile device security, and the
emerging field of usable security. Saxena’s current research has been
externally supported by multiple grants from NSF and NIJ, and by gifts/
awards/donations from the industry, including Google (2 Google Faculty
Research awards), Cisco, Comcast, Intel, Nokia and Research in
Motion. He has published over 120 journal, conference and workshop
papers, many at top-tier venues in Computer Science, including: IEEE
Transactions, ISOC NDSS, ACM CCS, ACM WWW, ACM WiSec, ACM
ACSAC, ACM CHI, ACM Ubicomp, IEEE Percom, IEEE ICME and IEEE
S&P. On the educational/service front, Saxena currently serves as the
director and principal investigator for the UAB’s Scholarship for Service
(SFS) program and a co-director for UAB’s MS program in Computer
Forensics and Security Management. He serves as an Associate Editor
for flagship security journals, IEEE Transactions on Information Foren-
sics and Security (TIFS), and Springer’s International Journal of Informa-
tion Security (IJIS). Saxena’s work has received extensive media
coverage, for example, at NBC, MSN, Fox, Discovery, ABC, Bloomberg,
MIT Tech Review, ZDNet, ACM TechNews, Yahoo! Finance, Communi-
cations of ACM, Yahoo News, CNBC, Slashdot, Computer World, Sci-
ence Daily and Motherboard.

Stanislaw Jarecki is a professor of Computer Science at the University
of California, Irvine. He received his PhD degree from MIT in 2001. His
research focuses on cryptography, applied cryptography, distributed
algorithms, fault-tolerance, and privacy.

Hugo Krawczyk is an IBM Fellow and Distinguished Research Staff
Member with the Cryptography Group at the IBM T.J. Watson Research
Center. He has contributed to the cryptographic design of numerous
Internet standards, particularly IPsec, IKE, and SSL/TLS, and is a co-
inventor of the HMACmessage authentication algorithm. His most recent
work in this area includes designs for TLS 1.3, the next generation TLS,
and HKDF, the emerging standard for key derivation adopted by TLS 1.3,
Signal, WhatsApp, Facebook Messenger and more. Hugo is an Associ-
ate Editor of the Journal of Cryptology, a Fellow of the International Asso-
ciation of Cryptologic Research (IACR), and an IBM Fellow. He is the
recipient of the 2015 RSA Conference Award for Excellence in the Field
of Mathematics, the 2018 Levchin Prize for Contributions to Real-World
Cryptography and two IBM corporate awards.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

782 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2019

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 01,2021 at 19:46:28 UTC from IEEE Xplore. Restrictions apply.

