
FPRA: A Fine-grained Parallel RRAM Architecture

Xiao Liu1 Minxuan Zhou1 Rachata Ausavarungnirun2 Sean Eilert3

Ameen Akel3 Tajana Rosing1 Vijaykrishnan Narayanan4 Jishen Zhao1

1University of California, San Diego 2King Mongkut’s University of Technology North Bangkok
3Micron Technology, Inc. 4Pennsylvania State University

Abstract—Emerging resistive memory (RRAM) based crossbar
array is a promising technology to accelerate neural network
applications. RRAM-based CNN accelerators support a high-
degree of intra-layer and inter-layer parallelism. The intra-layer
parallelism duplicates kernels for each network layer while the
inter-layer parallelism allows execution of each layer when a
portion of input data is available. However, previously proposed
RRAM-based accelerators do not leverage data sharing between
duplicate kernels leading to significant idleness of crossbar arrays
during inference. This shared data creates data dependencies that
stall the processing of the next layer in the pipeline.

To address these issues, we propose Fine-grained Parallel
RRAM Architecture (FPRA), a novel architectural design, to
improve parallelism for pipeline-enabled RRAM-based accelera-
tors. FPRA addresses the data sharing issue with kernel batching
and data sharing aware memory. Kernel batching rearranges the
layout of the kernels and minimizes the data dependencies created
by the input shared data. The data sharing aware memory
uniformly buffers the input and output data for each layer,
efficiently dispatching data to duplicate kernels while reducing
the amount of data transferred between layers. We evaluate
FPRA on eight popular image recognition CNN models with
various configurations in a cycle-accurate simulator. We find
that FPRA manages to achieve 2.0× average latency speedup,
and 2.1× average throughput increase, as compared to the state-
of-the-art RRAM-based accelerators.

I. INTRODUCTION

The emergence of non-volatile memory (NVRAM) pro-
vides an alternative for memory devices. One representative
NVRAM – Resistive RAM (RRAM), or memristor, enables
not only data storage ability, but also computation ability [31].
This duality blurs the boundary between memory and compu-
tation and is also referred to as processing-in-memory (PIM).
PIM architecture may achieve higher performance and better
power efficiency, compared to the conventional storage-only
memory architecture [3].
The RRAM-based PIM architecture has been intensively

explored to accelerate deep neural network (DNN) applications
in recent years [5], [23], [25]. Multiple RRAM cells form
an array structure called “crossbar”, which can conduct a
multiply-accumulate operation in a single cycle. This Sin-
gle Instruction, Multiple Data (SIMD) design allows parallel
matrix multiplications and convolutions, which are the fun-
damental operations in various DNNs. For instance, calcu-
lations in fully connected layers and convolutional layers in
convolutional neural networks (CNN) are essentially matrix
multiplications and convolutions. Prior works demonstrate
SIMD architecture can achieve better performance compared
to CMOS-based application-specific integrated circuits (ASIC)
accelerators [5], [23], [25], and higher energy efficiency com-
pared to GPU [2], [25].
However, existing RRAM-based DNN accelerators com-

promise performance due to the data dependency. The data

dependency resulting from shared data in the existing pipeline
design degrades the performance of the accelerator. Based on
our analysis of the pipeline that consists of both inter-layer
and intra-layer parallelisms [23], [25], we discover that the
existing designs spend up to 50% of inference time on idle
cycles because of the shared data induced dependency. As
we demonstrate in Section II, data sharing between duplicate
kernels intensifies the data dependencies between different
layers, which leads to significant pipeline stalls during the
execution. Our experimental results show that idle cycles
caused by shared data can take up to 50% of the single
inference latency for certain network models.
Some existing RRAM-based accelerators attempt to pro-

vide flexibility and reconfigurability [11], [12] while ignoring
the shared data and the pipeline architecture. Other existing
accelerators attempt to address the issue by abandoning the
pipeline design [6], [19]. However, these solutions underutilize
the on-chip area of RRAM, which leads to lower throughput.
To obtain performance benefits of the pipeline and address
data sharing issue, we introduce Finer-grained Parallel RRAM
Architecture (FPRA), a RRAM-based accelerator design that
provides high parallelism by resolving the data dependency
due to shared data in duplicate kernels. FPRA is based on the
insight that the proper arrangement of the duplicate kernels
and unified data buffering of input and output data can resolve
the shared data induced dependency. FPRA introduces kernel-
batching to group the computation of the duplicate kernels of
the same layer, and data sharing aware memory to uniformly
manage the input and output data of duplicate kernels.
This paper makes the following contributions:

• We discover that shared data induces data dependency,
and evaluate the corresponding inefficiency in the pipeline
design of the RRAM-based NN accelerators.

• We propose FPRA, a highly parallel RRAM-based NN
accelerator. FPRA consists of two main mechanisms: kernel
batching, and data sharing aware memory.

• We evaluate FPRA on eight image recognition DNN mod-
els. Our results show 2.0× speedup1 and 2.1× throughput
increase against the state-of-art baseline.

II. BACKGROUND & MOTIVATION

A. RRAM-based NN Accelerators

Accelerator architecture. As Figure 1 (a) shows, the mem-
ristors are placed in a grid such that they are horizontally
connected by the wordlines and vertically connected by the bit-
lines. For each memristor, the output current on the wordline is
the product of memristor conductance and input voltage on the
bitline (Kirchoff’s Law). The currents from all the memristors
connected with the same wordline are summed up. Hence, the

1Speedup represents the speed up of a single inference latency.978-1-6654-3922-0/21/$31.00 ©2021 IEEE

20
21

 IE
EE

/A
C

M
 In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

Lo
w

 P
ow

er
 E

le
ct

ro
ni

cs
 a

nd
 D

es
ig

n
(I

SL
PE

D
) |

 9
78

-1
-6

65
4-

39
22

-0
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

LP
ED

52
81

1.
20

21
.9

50
24

74

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on October 01,2021 at 19:48:03 UTC from IEEE Xplore. Restrictions apply.

DAC

ADC

v1

gi,j

i1

V1 n

I1 m i2 ij im

v2

vi

vn

DAC

DAC

DAC

Gn m

ADC
ADC ADC ADC

Input
buffer

Output
buffer

RRAM
XbarD

A
C

ADC

S+A

MAC

Pooling

Tile

R

Controller

R

MAC

eDRAM

RRAM
XbarD

A
C

ADC

RRAM
XbarD

A
C

ADC

RRAM
XbarD

A
C

ADC

RRAM
XbarD

A
C

ADC

RRAM
XbarD

A
C

ADC

MAC

MAC

MAC

MAC

MAC

MAC

(a) (b)

(c) (d)

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Fig. 1. Overview of RRAM-based DNN accelerator.

input voltages vector V1×n is able to conduct matrix multipli-
cation with the memristors conductance matrix Gn×m to get
the output currents vector I1×m, i.e., I1×m = V1×n ×Gn×m.
Such crossbar arrays, along with analog converters (DACs),
analog to digital converters (ADCs), and the shift-and-add
(S+A) unit form a multiply accumulator (MAC).
To process a neural network, MACs have pooling unit

and embedded DRAM (eDRAM) to process non-matrix-
multiplication operations in the network (Figure 1 (c)). Certain
number of MACs, along with shared pooling unit and eDRAM,
form a tile. As shown in Figure 1 (d), a tile is the highest-
level computational component. Tiles and chip controller are
interconnected with routers to form a 2D mesh-connected
network-on-chip (NoC). Tiles use routers to forward input and
output data to each other. The chip controller is in charge of
pre-processing and I/O operations.

Inference using RRAM-based accelerators. To process an
DNN inference, the crossbar arrays process the convolutional
and fully connected layers and the pooling units process
the pooling layers [5], [23]. The accelerator processes the
convolutional layer in the weight stationary form [27] by
assigning weights as the conductance of the crossbar array
(i.e., Gn×m on Figure 1 (a)). The three-dimensional kernel
flattens to a single dimension which fits into a column of the
crossbar array. The output on the bitline directly corresponds
to output of the convolution. Weights of a kernel can be stored
over the different columns of a crossbar array. Considering
the limitations on the size of the crossbar array and the
bitwidth of RRAM cells, all the weights of the same kernel are
usually spread across multiple crossbar arrays (i.e., a column
of crossbar arrays shown in Figure 1 (b)).

Existing parallelisms in RRAM-based accelerator. Similar
to the CMOS-based NN accelerators [4], [13], RRAM-based
accelerators possess intra-layer parallelism. In the intra-layer
parallelism, the computations of all the parameters of a kernel
are concurrent. RRAM-based accelerators obtain intra-layer
parallelism through mapping the kernel parameters to the
crossbar arrays. To further improve parallelism, RRAM-based
accelerators can also duplicate kernel parameters to different
groups of crossbar arrays, such that different parts of the input
feature map are processed concurrently.
The pipeline design in the RRAM-based accelerators intro-

duces inter-layer parallelism. RRAM-based accelerators can
deploy more computational units within the same chip area

because of the size advantage of the memristor. Existing
RRAM-based accelerators [23], [25] deploy all the network
layers on an RRAM-based accelerator at the same time. To
do that, the accelerator allocates tiles for each layer, such
that each layer becomes a pipeline stage. This pipeline design
allows each layer to start computation when the required kernel
input pixels are ready [23].
We estimate the theoretical maximum throughput of the

RRAM based accelerator (with the configuration in Table I)
to be 6.5×103 GOP/s (e.g., giga 16-bit operations per second)
for each tile. Figure 2 compares the theoretical throughput
with the throughput of four RRAM-accelerated neural net-
works executing on the simulator. Results show a significant
performance gap between theoretical throughput and simulated
throughput. Based on our detailed analysis in the following
section, we find that the majority of the performance gap is
the data dependency related pipeline idleness.

0
0.2
0.4
0.6
0.8

1

VGG-16 VGG-19 ResNet-18 ResNet-50

N
or

m
al

iz
ed

Th

ro
ug

hp
ut Theoretical

Max.

Fig. 2. The throughput of four neural networks. Numbers are normalized to
the theoretical maximum throughput of the accelerator.

B. Shared Data Induced Data Dependency
Shared data between duplicate kernels emerges when

pipelining and kernel duplication are applied at the same time.
In kernel duplication, the feature map is evenly divided by
the kernels [23]. Different kernels compute different parts of
the output feature map such that none of the computation is
repeated. However, when the kernel size is larger than 1×1,
parts of the input feature map overlap among the duplicate
kernels. Figure 3 shows the data sharing of a convolutional
layer with four duplicate 2×2-sized kernels. The input feature
map can be partitioned in a different way. However, shared
data still exists among duplicate kernels.

Kernel BKernel A

Kernel C Kernel D

Layer i outputLayer i input

Kernel BKernel A

Kernel C Kernel D

Fig. 3. Shared data in a convolutional layer with four duplicate kernels.

The shared data does not affect intra-layer parallelism by
itself when all the input feature maps are prepared at the
start of computation. The pipeline naturally has the data
dependencies between consecutive layers. The shared data,
however, further aggravates the data dependencies because
the shared data blocks multiple kernels in the subsequent
layers. Figure 4 illustrates an example of shared data induced
data dependency in the first two convolutional layers in a
DNN model. These two layers both use a 2×2-sized kernel
and both kernels are duplicated twice. As the figure shows,
all the output feature maps are divided into two halves. In
each layer, two duplicate kernels share the middle part of the
pixels of the input feature maps. During the computation, each
kernel computes a single output pixel within a compute cycle.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on October 01,2021 at 19:48:03 UTC from IEEE Xplore. Restrictions apply.

Starting at the top left corner of its input, the kernel moves
from left to right to perform computations. The first layer
has all its input feature maps (a) ready at the beginning.
Therefore, none of the kernels (b , c) in layer 1 are blocked.
In layer 2, kernel B (f) is blocked due to the missing input
data (output pixel 4 in the layer 1) (d). Kernel B needs to
wait until the output pixel 4 from layer 1 is computed. We may
change the order of computation in layer 1 to force kernel A
to compute the shared data first. This, however, blocks the
computation of kernel A (e) in layer 2. With more duplicate
kernels and deeper network layers, more shared data exists in
the input feature map. This aggravates the data dependency
problem, inducing more idleness of the duplicate kernel.

Layer 1

Layer 1 input

Layer 2 output

Kernel A Kernel B

Layer 1 output
(Layer 2 input)

Layer 2 Kernel A Kernel B
Blocked!

Non-blockedNon-blocked

Non-blocked

3 5 6421 7

3 5 6421

8

a

d

b c

fe

…

1Layer 1

Layer 2
5

2 3 4

6idle

Kernel A

Kernel B 5 6 7 8

Kernel A

Kernel B

1 2 3 4 …
…
…

Compute
cycle

Shared input

Shared input

Fig. 4. An example of data sharing in the first two layers of a DNN model.

To quantify the inefficiency of the shared data induced
data dependency, we simulate a pipeline-enabled RRAM-
based accelerator (configuration details in Section IV) and
breakdown the single inference latency, as shown in Figure 5.
We breakdown the latency into five categories: computation
time of crossbar arrays, idle time resulting from shared data
related dependency, communication time (e.g., time for syn-
chronization between tiles and MACs), data movement time
(e.g., timing for transferring input and output data), and others.

Data Sharing Caused Idle
48%

Computation
32%

Communication 11%

Data Movement 7%

Others 2%

Fig. 5. Single inference latency breakdown.

Due to the pipeline, crossbar arrays belonging to different
layers have significantly different cycles on each type of
operation. We collect the cycles for each type of operation
and calculate the breakdown for all the crossbar arrays of
each layer. We calculate the overall breakdown with the
geometric mean of each layer. We observe that the shared
data induced idleness forms a significant portion, contributing
to nearly 50% of the overall latency. This can be attributed

Kernel A

Kernel B

Kernel C

Kernel D

Kernel A

Kernel B

Kernel C Kernel D

(a) (b)

Fig. 6. Two kernel batching types: (a) linear batching, and (b) square batching.

to pending shared data blocking computations of multiple
kernels. Therefore, arranging the sequence of computations on
shared data becomes critical to the performance of pipeline-
enabled RRAM accelerators.

III. FINER-GRAINED PARALLEL RRAM ARCHITECTURE

To alleviate the shared data induced data dependencies in
RRAM-based accelerators, we propose Finer-grained Parallel
RRAM Architecture (FPRA). FPRA aims to achieve higher
parallelism with finer-grained coordination of data between
different kernels and different layers. FPRA is a architecture
design consisting of two mechanisms: kernel batching and
data sharing aware memory. The kernel batching groups
duplicate kernels and uniformly manages their data forwarding
and computation. The data sharing aware memory stores
shared input/output data between all batched kernels and
manages data for all the kernels together to reduce unnecessary
data duplication.

Kernel batching. The shared data induced dependency exists
because of the partitioned input feature map for each kernel
(Section II-B). We observe that enforcing all the kernels of
the same layer to simultaneously compute over continuous
shared data, can eliminate the shared data induced dependency
and only keep the data dependency between layers. We refer
this mechanism as kernel batching. When all the layers in the
network apply kernel batching, all the kernels belonging to
the same layer behave uniformly - either pending for input or
computing output.
Kernel batching requires several rules to guarantee the

computations follow the network configuration without being
repeated on different kernels. First, the kernel batching places
all the kernels together with one stride size between any
adjacent two kernels. This makes sure the generated output
data are continuous within each computation iteration. Second,
the duplicate kernels shift in the same direction with the same
gap between each computation. This makes sure the generated
output data between computation iterations are continuous.
Third, the duplicate kernels shifts may shift multiple strides
between computations. Depending on how the kernels are
batched and the direction kernels are moving, each kernel may
take multiple strides to avoid recomputating the data.
We propose two types of kernel batching: linear batching

and square batching. The linear batching places all the kernels
in a row (or a column). Figure 6 (a) shows an example of
the linear batching in a convolutional layer. The kernel size is
2×2×64, and the stride size is 1. The same kernel is duplicated
into four replicas in a row with indices A, B, C, and D. The
batched kernels move in a vertical direction with a single stride
gap. The linear batched kernels rely on rectangular-shaped
input to generate a one-line output. The square batching places
the same amount of kernels in consecutive rows and columns.
Any two adjacent kernels still share only one stride gap.
Figure 6 (b) shows an example of the square batching. In
this example, we use the same kernel size and stride as the

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on October 01,2021 at 19:48:03 UTC from IEEE Xplore. Restrictions apply.

linear batching. The square batched kernels rely on the square-
shaped input to generate a square-shaped output.
Two types of kernel batching have different advantages.

The squared batching fit with the convolutional layer connects
to the pooling layer. Because pooling layer relies on square-
shaped input, if the squared batched kernels produce exactly
the same sized output data for every computation iteration,
the idleness between the convolutional layer and the pooling
layer is minimized. However, the square batching requires
the kernel duplication number to be square, which is much
less feasible to the available hardware resources. The linear
batching, which can be achieved with any number of duplicate
kernels, is more feasible. FPRA uses linear batching and
square batching simultaneously. We explore the performance
impact of different strategies of batching type in Section IV.

Data sharing aware memory. The kernel batching helps re-
duce the shared data induced idleness in the pipeline. However,
as the batched kernels share more data, the amount of input
data used by all the kernels is significantly increased. For
example, in a convolutional layer with 64 64×64-sized input
feature maps and four kernel replicas, using linear batching
can increase the amount of input data by 1.6× compared
to no kernel batching. Because the duplicate kernel is not
aware of the shared data, the amount of data forwarding
between layers can significantly increase. The increased data
movement exhausts the bandwidth of NoC, and leads to
limited performance increase (Section IV).
To solve the issue, we propose data sharing aware memory

to efficiently forward data between layers, and dispatch data
to duplicate kernels. The data sharing aware memory utilizes
the eDRAM of each tile. The data sharing aware memory
buffers a part of the input and output feature maps of the layer.
As the Figure 7 shows, the feature maps data is transferred
via inter-tile data synchronization through NoC. The output
data of four linearly batched kernels in layer i stores in the
data sharing aware memory, and transfer to the memory of
layer i + 1 together. The data sharing aware memory stores
the input feature map for all the kernels as an entirety. The
memory dispatches the input data to each kernel’s crossbar
arrays. The dispatch only happens inside the tile (e.g., intra-
tile data synchronization), which costs no NoC bandwidth.
This is because each kernel is loaded across multiple crossbar
arrays, where crossbar arrays belong to different tiles. In this
example, the data sharing aware memory dispatches data a –
d to the kernel A’s crossbar arrays, c – f to the kernel B’s
crossbar arrays, e – h to the kernel C’s crossbar arrays, and g
– j to the kernel D’s crossbar arrays.

Kernel A

Kernel B

Kernel C

Kernel D

Shared MemoryShared Memory

Kernel A

Kernel B

Kernel C

Kernel D

A1 Inter-tile data
sync

Intra-tile data
sync

Intra-tile data
sync

B1 C1 D1
A2 B2 C2 D2
A3 B3 C3 D3

A1 B1 C1 D1

A2 c e g
A3 d f h

A1

i
j

a
b

Used and Released

Received
Not received

Layer i Layer i + 1

Fig. 7. Data sharing aware memory in two layers of a DNN.

Data sharing aware memory also manages the execution of
batched kernels. Since data sharing is invisible to duplicate
kernels, the memory utilizes intra-tile data synchronization

to start computation of each kernel. The data sharing aware
memory keeps track of the kernel’s location and progress, as
the duplicate kernels metadata are stored inside the memory.
This provides corresponding input data for each layer upon
receiving these data. As batched kernels move with the same
stride and direction, the data sharing aware memory uses the
batched window to uniformly keep track of the input and
output data. Figure 8 shows an example of the batched window
shifting over the input and output shared memories.

1111
2222222
3333333
4

5555
6666666
7777777
8

6
1111
2222222
3333333
4

666
5
666666
7777777
8

Kernel A

Kernel B

Input Feature Map Output Feature Map
Fig. 8. Batched window shifting in the shared input/output feature maps
of a convolutional layer. The layer uses two batched 2×2×64-sized kernels
with one stride size. When two kernels are batched together, the shared input
forms a 2×3×64-sized window. The numbers indicate the steps of the window
movement. The red arrow represents the direction of the window movement.

Intra-tile data synchronization. As shown on Figure 9, the
intra-tile data synchronization consists of the following steps.
At the beginning, MACs remain idle when the input data
within the batched window is still pending (1). When all the
data in the batched window is received, the tile controller noti-
fies all the MACs, and forwards the corresponding data to the
MAC belonging to each kernel (2). The MACs start compu-
tation upon receiving their input data (3). When computation
finishes, the output data is forwarded to the shared memory
(4). Once the output data within the output batched window
is received, the tile controller sends data to the other tiles (e.g.,
next layer’s tiles) through inter-tile data synchronization. To
start the next iteration of computation, the controller also shifts
the batched windows for both output and input (5). The tile
is reset to pending, and the input memory re-evaluates the
accessibility of data within the batched window. All MACs
resume to the idle state and wait for the input data (1).

Idle

Forward data to
MACs

Computation

Shift
batched window

Forward data
to output

shared memory
Input data within the
batched window ready

1

Data
received

All MACs notify
upon finish

Computation done

Input data within the batched window pending

2 3

4

5

Fig. 9. State diagram of the intra-tile data synchronization.

Tile Architecture. To support kernel batching and memory
sharing, we design the tile-level architecture for FPRA (as
shown in Figure 10). This architecture design that consists
of I/O buffer, shared memory, tile controller and MACs. The
I/O buffer handles the data transfer between tiles. The buffer
connects to the router to handle communications with other
tiles. The buffer uses two circular FIFO queues to send data
and receive data separately.
The shared memory stores input/output feature maps and

kernel-related metadata. The buffered input/output feature
maps are stored separately and shared among all the MAC
units. Kernel-related metadata contains hardware assignment

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on October 01,2021 at 19:48:03 UTC from IEEE Xplore. Restrictions apply.

Shared memory

Shared feature
maps data Kernel

metadata

Tile ctrl. unit MACI/O buffer
Send queue Receive queue

Router

Connect to NoC

MAC

MAC

MAC

Fig. 10. Tile architecture.

data and the execution model. Unlike feature maps data, meta-
data are written into the memory during the accelerator’s pre-
configuration, and cannot be modified during the execution.
Metadata is used by the tile controller to perform kernel
batching and manage data sharing aware memory.
The tile controller manages the data forwarding between the

rest of the components. The preconfigured metadata provides
the controller information on how MACs are assigned to
different kernels and how data is shared between MACs. The
tile controller uses the intra-tile data synchronization to not
only transfer the data between shared memory and MACs, but
also manage the execution of MACs in the correct order.

IV. EVALUATIONS

FPRA simulation. We build our in-house cycle-accurate
simulator in Python. Our simulator implements the entire
architecture of the RRAM-based accelerator, and simulates
computational and data movement operations. The simula-
tor models the pipeline between layers, such that hardware
belonging to each layer has its own status (e.g., cycles and
power) and uses message passing for data movements and
communication. We adopt and modify the DRAM timing
model in Ramulator [14] to simulate the eDRAM. For the
operations in the crossbar, we include the cycle parameters of
matrix multiplication, ADC, and S+A based on [8], [23]. We
use the statistics from [10] to model the power consumption
of crossbar array. The power and area of the tile controller
are validated with System Verilog through Synopsys Design
Compiler and Synopsys 32nm PDK [26]. The power and area
of ADC and DAC is based on [15] and [21], respectively.
We use CACTI tool [17] to model the rest of the on-chip
components including eDRAM and buses under 32nm. The
detailed parameters of the simulations are listed in Table I.

Baselines. We include two other baselines for our evalua-
tion: pipeline enabled RRAM-based accelerator without kernel
duplication (w/o kernel duplication), and pipeline enabled
RRAM-based accelerator with kernel duplication (w/ kernel
duplication opt). The implementation of these two baselines
are based on the architecture described in [23] and [25].

Benchmarks. We select eight representative DNN mod-
els for ImageNet classification [7]. These networks include
GoogleNet [28], MobileNet [22], ShuffleNet [16], Incep-
tionV3 [29], ResNet [9], and VGG [24]. As FPRA and
baselines only accelerate the inference operation, we use the
pre-trained weights in the torchvision package [30] for the
experiments. Because FPRA avoids any modification on the
network models and the input data, results show no compro-
mise over the inference accuracies (both top-one and top-five).
To utilize existing DNN models [1], [18], the simulator

uses the inference trace generated by the Glow compiler [20].

TABLE I
HARDWARE CONFIGURATION OF THE FPRA.

Component Parameter Spec. Power

Controller Frequency 1GHz 0.3mW

Tile Number 168 312mW

Shared eDRAM
Size 64KB
Bus-width 256b 17.66mW
Tread/Twrite 12ns

I/O buffer Size
256 entries
2 queues

5.3mW

MAC No. per tile 12 24mW

Crossbar array

No. per MAC 8
Size 128×128 2.4mW
Bit-width 2
Tmul/TADC /TS+A 1 cycle

We modify the compiler to generates a trace of the network
inference. The trace includes the number of computation oper-
ations, input and output data sizes, the sequence of executions.

Performance. Figure 11 shows performance results under
three metrics. Besides the FPRA configuration, we add the
FPRA configuration without data sharing aware memory (re-
ferred to as FPRA w/o data sharing aware memory). Fig-
ure 11 (a) is the speedup over baseline w/o kernel duplication.
The accelerator idle ratio in Figure 11 (b) is measured with
the geometric mean of each layer’s idle ratio. The throughput
result in Figure 11 (c) is measured in giga 16-bit operations
per second (GOP/s). We normalize the result to the w/ kernel
duplication baseline. The result is generated with a 16-chip
setup. We exclude the w/o kernel duplication, due to its
underutilization of the hardware and low throughput.

S
pe

ed
up

0
1
2
3
4
5
6

GoogleNet MobileNet ShuffleNet Inception ResNet-18 ResNet-50 VGG-16 VGG-19 Gmean

w/o kernel duplication w/ kernel duplication FPRA w/o data sharing aware memory FPRA

Id
le

 R
at

io

0

0.2

0.4

0.6

0.8

1

GoogleNet MobileNet ShuffleNet Inception ResNet-18 ResNet-50 VGG-16 VGG-19 Gmean

w/o kernel duplication w/ kernel duplication FPRA w/o data aware memory sharing FPRA

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0
0.5

1
1.5

2
2.5

3

GoogleNet MobileNet ShuffleNet Inception ResNet-18 ResNet-50 VGG-16 VGG-19 Gmean

w/ kernel duplication FPRA w/o data sharing aware memory FPRA

(a)

(b)

(c)

Fig. 11. Comparison of results over (a) speedup of inference latency, (b) idle
ratio, and (c) throughput under different configurations.

We make two observations from the result. First, FPRA has
a clear advantages over performance. We observe FPRA has
the highest speedup and throughput among all configuration.
FPRA has a 2.0× speedup and 2.1× throughput increase
against w/ kernel duplication on average. Beside, FPRA ob-
tains a higher speedup on the networks with more layers.
For instance, compared to the w/ kernel duplication, FPRA
has a 2.1× speedup on the VGG-19, and a 1.9× speedup on
the VGG-16. We observe the same trend on the ResNet that
the speedup is higher on ResNet-50 than on ResNet-18. This
indicates FPRA brings more benefit with deeper networks, as

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on October 01,2021 at 19:48:03 UTC from IEEE Xplore. Restrictions apply.

they tend to have a more severe data dependency. We identify
that FPRA achieves the lowest idle ratio among configurations.
FPRA is able decrease the shared data induced idleness by
3.5× compared to w/ kernel duplication. Second, data sharing
aware memory is essential to the FPRA. The FPRA w/o
data sharing aware memory configuration suffers from high
idle ratio. We discover that the kernel batching increases the
traffic to throttle the NoC bandwidth. The FPRA with data
sharing aware memory manages to reduce idle ratio and further
increases over the speedup and throughput.

Batching strategies. Figure 12 compares three strategies for
using two types of kernel batching. All-linear utilizes linear
batching on all the layers. Square-max attempts to use square
batching wherever possible. This strategy batches the kernel
to the maximum possible square, and places squares next to
each other. For example, for 2048 kernels, it batches them
to two 32×32 square batches, and then places them side by
side. The pooling-square utilizes square batching on the layer
before the pooling layer whenever possible. This strategy first
batches the kernels to the size of pooling filter, and then
linearly places them in a row. For instance, for 32 kernels on
a layer before 2×2 max-pooling, it batches them into eight
2×2-sized batches and places them in a row. We observe
that pooling-square achieves the best performance on average.
Hence, FPRA uses the pooling-square by default.

1

2

3

4

5

GoogleNet MobileNet ShuffleNet Inception ResNet-18ResNet-50 VGG-16 VGG-19 Gmean

all linear sqaure max. pooling sqaure

S
pe

ed
up

Fig. 12. Speedup of three batching strategies with FPRA.

Power efficiency. Figure 13 shows the power efficiency re-
sult of two FPRA configurations and baseline. The power
efficiency is measured by giga 16-bit operations per second
per watt (GOPS/W). We normalized the results of two FPRA
configurations to the w/ kernel duplication opt baseline. We
make two observations from the result. First, the FPRA
without data sharing aware memory configuration only has a
24% increase compared to the baseline on the power efficiency.
The kernel batching brings more data movements between
tiles. The heavy memory traffic delays the communication
between tiles. Second, the FPRA manages to achieve 2.4×
power efficiency of the baseline. With kernel batching and
data sharing aware memory, FPRA is able to reduce idleness
during the inference, which leads to more operations with a
single unit of power.

0
0.5

1
1.5

2
2.5

3

GoogleNet MobileNet ShuffleNet Inception ResNet-18 ResNet-50 VGG-16 VGG-19 Gmean

w/ kernel duplication FPRA w/o data sharing aware memory FPRA

N
or

m
al

iz
ed

P

ow
er

 E
ffi

ci
en

cy

Fig. 13. Power efficiency of three configurations.

V. CONCLUSION

We propose FPRA, a highly-parallel RRAM-based accelera-
tor design. FPRA applies the kernel batching and data sharing
aware memory to reduce the data sharing induced idle in the
pipeline. FPRA’s kernel batching positions the kernel closer
to each other to reduce the data sharing induced data de-
pendencies between kernels while FPRA’s data sharing aware

memory efficiently manages data forwarding between layers
and duplication kernels. The evaluation shows FPRA achieves
2.0× speedup improvement, 2.1× throughput increase, and
2.4× power efficiency increase compared to the state-of-the-
art baseline.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers from ISLPED 2021.
This research is partially supported by the SRC/DARPA
Center for Research on IntelligentStorage and Processing-in-
memory, and the Sirindhorn International Thai-German Grad-
uate School of Engineering (TGGS) New Researcher Grant.

REFERENCES

[1] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-
ing,” in OSDI, 2016.

[2] A. Ankit et al., “PUMA: A programmable ultra-efficient memristor-
based accelerator for machine learning inference,” in ASPLOS, 2019.

[3] A. Boroumand et al., “Google workloads for consumer devices: Miti-
gating data movement bottlenecks,” in ASPLOS, 2018.

[4] Y. Chen et al., “Eyeriss: An energy-efficient reconfigurable accelerator
for deep convolutional neural networks,” JSSC, 2017.

[5] P. Chi et al., “PRIME: A novel processing-in-memory architecture for
neural network computation in ReRAM-based main memory,” in ISCA,
2016.

[6] T. Chou et al., “CASCADE: Connecting rrams to extend analog dataflow
in an end-to-end in-memory processing paradigm,” in MICRO, 2019.

[7] J. Deng et al., “ImageNet: A large-scale hierarchical image database,”
in CVPR, 2018.

[8] D. Fujiki et al., “In-memory data parallel processor,” in ASPLOS, 2018.
[9] K. He et al., “Deep residual learning for image recognition,” in CVPR,

2016.
[10] M. Hu et al., “Dot-product engine for neuromorphic computing: Pro-

gramming 1t1m crossbar to accelerate matrix-vector multiplication,” in
DAC, 2016.

[11] Y. Ji et al., “Bridge the gap between neural networks and neuromorphic
hardware with a neural network compiler,” in ASPLOS, 2018.

[12] Y. Ji et al., “FPSA: A full system stack solution for reconfigurable
ReRAM-Based NN accelerator architecture,” in ASPLOS, 2019.

[13] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in ISCA, 2017.

[14] Y. Kim et al., “Ramulator: A fast and extensible dram simulator,” CAL,
2016.

[15] L. Kull et al., “A 3.1mW 8b 1.2GS/s single-channel asynchronous SAR
ADC with alternate comparators for enhanced speed in 32nm digital
SOI CMOS,” in ISSCC, 2013.

[16] N. Ma et al., “ShuffleNet V2: Practical guidelines for efficient CNN
architecture design,” in ECCV, 2018.

[17] N. Muralimanohar et al., “CACTI 6.0: A tool to model large caches,”
HP laboratories, 2009.

[18] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in NIPS, 2019.

[19] X. Qiao et al., “Atomlayer: A universal ReRAM-Based CNN accelerator
with atomic layer computation,” in DAC, 2018.

[20] N. Rotem et al., “Glow: Graph lowering compiler techniques for neural
networks,” 2018.

[21] M. Saberi et al., “Analysis of power consumption and linearity in
capacitive digital-to-analog converters used in successive approximation
adcs,” TCAS-I, 2011.

[22] M. Sandler et al., “MobileNetV2: Inverted residuals and linear bottle-
necks,” in CVPR, 2018.

[23] A. Shafiee et al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in ISCA, 2016.

[24] K. Simonyan et al., “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[25] L. Song et al., “PipeLayer: A pipelined ReRAM-Based accelerator for
deep learning,” in HPCA, 2017.

[26] Synopsys, “Teaching resources for ic design,” 2020,
https://www.synopsys.com/community/university-program/teaching-
resources.html.

[27] V. Sze et al., “Efficient processing of deep neural networks: A tutorial
and survey,” Proceedings of the IEEE, 2017.

[28] C. Szegedy et al., “Going deeper with convolutions,” in CVPR, 2015.
[29] C. Szegedy et al., “Rethinking the inception architecture for computer

vision,” in CVPR, 2016.
[30] Torch Contributors, “torchvision – pytorch master documentation,” 2019,

https://pytorch.org/docs/stable/torchvision/index.html#torchvision.
[31] S. Yu, “Neuro-inspired computing with emerging nonvolatile memorys,”

Proceedings of the IEEE, 2018.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on October 01,2021 at 19:48:03 UTC from IEEE Xplore. Restrictions apply.

