Development of Real-Time Smart City Mapping Utilizing Game Engines

Tucker Clark, Evan Brock, Dalei Wu, Yu Liang
Department of Computer Science and Engineering
University of Tennessee at Chattanooga, Chattanooga, TN 37403

Abstract— Game engines are ideal platforms to generate and
visualize digital twins of smart cities in real time. The real-time
mapping of a smart city faces two challenges: (1) streaming
data from Internet of Things (IoT) devices , (2) rendering a
high-throughput and heterogeneous digital twin. Current game
engine infrastructure is not built to handle the influx of real time
data streams from a diverse array of IoT devices, nor can they
render a real-time dynamic mesh streamed from a scanning
device such as a LIDAR. As meshes are the basic framework
needed to render digital twin objects that represent their real
word counterparts and real time IoT streams are necessary for
modeling an accurate digital twin, both of these issues must
be resolved in order to use game engines to create a digital
twin of a smart city. In this paper, we propose a networking
infrastructure capable of handling a wide variety of IoT devices
and a novel mesh rendering algorithm. Additionally, we provide
a quantitative error analysis. Experimental results show that
the proposed streaming method and rendering algorithm could
enable a game engine to efficiently generate a digital twin of a
smart city.

Keywords: LIDAR, mapping, GIS, augmented reality

I. INTRODUCTION

Visualization is one of the most powerful tools used by
computer scientists to portray the information that we gather.
Recently, visualization has become close to a requirement for
all subfields, due to the large amount of data generated by the
numerous different sources found in each domain. As fields
commingle, and interdisciplinary work becomes more and
more common, we will continually push our current tools to
their limits as they attempt to integrate with systems that they
were not built to mesh with. Every so often, a tool will fit
perfectly into an interdisciplinary application at a high level,
but will not have the underlying low level framework built to
interface with new and unique software. This is currently the
case with geographic information systems (GIS) and game
engines [1].

Game engines are often used to render large, detailed, 3D
environments, the same kind that geospatial experts seek to
replicate. The coordinate system within any game engine
can be used to replicate 3D localization of objects and
terrain, while taking advantage of their optimization and
portability. Both interactable and performant, game engines
seem to be the perfect candidate to visualize and interact
with the geographic environment, and thus are a near perfect
candidate to visualize a smart city [2]; industry clearly
agrees. Both Google and Mapbox have built APIs and SDKs

This work was supported by the National Science Foundation under grant
numbers 1647175 and 1924278.

in order to bring their infrastructure and frameworks into the
Unity game engine [3], [4].

But, game engines are just not built with IoT devices
in mind, which predominantly power the data pipeline of
any smart city. Game engines are simply not built to handle
live streaming data from unsupported objects, nor are they
built to render dynamically changing meshes defined by live
streaming data. In this paper, we describe both a framework
used to connect IoT devices to game engines through the
use of low level networking and a novel algorithm used
to circumvent current mesh rendering limitations found in
modern game engines, along with experimental results veri-
fying our theoretical findings. This enables both a data feed
and data visualization of a smart city in a game engine, a
desirable framework for geospatial experts seeking to model
infrastructure.

II. RELATED WORK

LIDARs are very desirable instruments for three-
dimensional mapping, because a basic mapping algorithm
involves two operations: acquisition of the LIDAR data, and
localization of sensors. Most previous work seek to local-
ize an object through deducing their own location through
LIDAR data [5], [6]. Other work uses a combination of
telemetry sensors and LIDAR data to achieve the same
purpose [7]. While these work great for object detection or
short term scans, they do not support collaborative scans,
where multiple scans can be stitched together automatically
through the geographical significance of their vertices in any
three-dimensional environment.

Using game engines for visualization of real GIS data
is uncommon, but [8] makes a notable step towards the
normalization of game engine mapping by developing an
application for 3D viewing of real data inside the game
engine, Virtools. They specifically note that their choice of
a game engine for 3D viewing is because of their “powerful
render engines that allow the visualisation of complex, highly
detailed landscapes in 3D in real-time”. These render engines
are desirable for allowing us to process and render data in
real-time, with acceptable performance

In this paper, a GPS is used for absolute localization,
and telemetry sensors for precise movements to store scans
with respect to geographical coordinates. Our algorithm
also allows for the reconstruction of an environment to be
observed in real-time. This is not an uncommon feature for
mapping technologies [9], but the implementation of our live

Authorized licensed use limited to: UTC Library. Downloaded on October 01,2021 at 17:00:00 UTC from IEEE Xplore. Restrictions apply.

maps on such a large scale inside a game engine has proven
to be very intuitive in our testing.

III. PROBLEM STATEMENT

Game engines have pros and cons for smart city mapping
applications. Game engines are development environment
that are created solely for the purpose of making video
games. Abstracting that, they are development environments
containing tools that make it easy to manipulate a virtual
environment.

To use a game engine to aggregate data streamed from
IoT devices, the software must be designed in such a way
that connectivity is supported to a wide variety of devices,
diverse in both operating system and in computational power.
This is the case with IoT devices. 10T devices are often low
power, low performance microcontrollers that run on some
type of embedded operating system, or run on a lightweight
distribution of Linux. In either case, the data sources for a
smart city, [oT devices, cannot connect to game engines as
a client using the networking modules built into most game
engines.

Another issue underlying game engines, is that they are
built to render objects fetched from secondary memory
periodically, such as when a new level or map is loaded
into RAM in order for the player to interact with it in game
[10]. In all cases, this object comes in the form of a 3D
mesh. In a smart city application, real world object data will
need to be streamed into the engine. In this case, the mesh
used to represent the object will not be known in advance,
but will be built procedurally as the information is streamed
into the engine. Game engines are currently not optimized
to handle this operation, as this feature would never need
to be present in a traditional game. Thus, it is the case that
the underlying data structures supporting mesh generation,
do not lend themselves to the scenario of a live, constantly
mutating mesh.

There has been research has been conducted on the dif-
ferent rendering methods available inside of current game
engines. But, to the best of our knowledge, no research
has revealed whether or not a game engine can handle live
streaming data from IoT devices. Most often, meshes begin
as raw point cloud data, coming from a scanning device such
as a LIDAR, which we will be using in our experiment to
generate point cloud data. So we ask: can a game engine
support the live streaming data from a wide variety of IoT
devices? If it can, can the game engine render this data in
real time?

IV. DATA PREPROCESSING

The data that is used to generate a scan is interpreted as
a collection of the geographical data from the drone and
the relative data from the LIDAR. The drone is responsible
for recording the offset of each scan, which is the vertical,
horizontal and orientation components difference from the
user-defined geographical zeroing point. The LIDAR detects
all objects within range and records their relative position to
the drone. The offset of the drone and the relative data are

processed every frame such that the offset is added to each
relative point to give each point geographical significance,
a process described in Equation 2. This allows us to take
multiple scans that will align automatically if parts of them
overlap. Keep in mind that the offset of the drone also
includes the orientation of the drone, so all recorded data
will always be placed on the same plane the drone is on
when a certain scan is recorded. This processed data is used
for all of the following rendering methods.

We consider X, Y, and Z to be the Cartesian components
for the three dimensional LIDAR data relative to the drone.
For a given point, n, the components of roll, pitch, and yaw
are xy, Pn, and Yy, respectively. The distance measured by
the lidar is returned as d,. For each point, x, and p, are
usually the same as x,_1 and p,_1 and only vary once the
LIDAR redefines as new scan with the new telemetry data,
which results in %, and p, being updated. ¥, will never be
the same as 1,,_1, as well as d,, This is because the LIDAR
will scan many points, returning a different 1, and d, for
each point before the x, and p, are updated. The Cartesian
components X;, Yy, and Z, of point n can be computed as

X, dysin () * cos(ky)

Y, | = dncos(y) * cos(pn)
Zn di/ (sin(xn)sin(ipn))? + (sin(on)cos(ipn))?

The derivation of components X,, Yy, and Z, can be
explained as follows by assuming the drone rolls along the
Y-axis, pitches along the X-axis, and yaws along the Z-
axis. Xj, is determined by every rotation of the drone except
for the rotation along the X-axis, which is pitch, p. The
value of d,,sin(y,) increases as ¢ approaches 90° and 270°,
because those are the angles perpendicular to the X-axis, and
therefore, the farthest away from it, increases the value of
this component. d,sin () is then multiplied by cos(xy) to
account for the return toward the X-axis as the drone rolls.
As the drone rolls farther, the X component becomes closer
to 0 as p approaches 90°, because the scanned point would
be directly above or below the X axis in such a case.

Y, can be determined very similarly to the X component,
except it is unaffected by roll, x. It approaches maximum
distance as 1 approaches 0° and 180°. The value of the Y
component can also equal zero if p were to equal 90°, where
the drone is in completely vertical pitch, in which case, the
Y component would be directly above or below the Y axis.

Determining Z, is slightly more complex, because all
orientations of the drone affect the vertical location of a data
point. The p and x both affect the vertical position of a point.
The significance of p and x varies based on ¢, because the
closer a point is to an axis that it is rotated around, the less
its vertical position changes. For example the significance of
the first half of the equation, d,sin(x,)sin(y,), increases as
1 approaches 90° or 270°, at these points a change in x is
most significant because the point is as far away as possible
from the axis it is being rotated around. Similar is true for
the second half of the equation, d,sin(p,)cos(¢y), except a
change in p is most significant at a ¢ of 0° and 180°. Because

Authorized licensed use limited to: UTC Library. Downloaded on October 01,2021 at 17:00:00 UTC from IEEE Xplore. Restrictions apply.

of this relationship, as the significance of a change in one
component increases, the significance of a change in the
other component decreases. This is because as distance from
one axis of rotation increases, the distance from the other
axis of rotation decreases. The square root of the squared
components, dy,sin(iy,)sin(p,) and dysin(on)cos(Py), is
taken to calculate the entire Z component.

It is important to note that 1, is representative of the same
axis that both the LIDAR rotates on and the drone yaws on.
Because of this, we compensate for the drone’s rotation such
that the 1, is always relative to an absolute point, and is not
affected by the yaw of the drone. We consider D to be the

Fig. 1: Application of a rotation of the drone in an indoor
environment

three-dimensional position of the drone in meters, and can
add geographical significance to any point by adding the X,
Y, and Z components of D (i.e., Dy, Dy, and D), to the
relative components of any point: X,;, Yy, and Z,,. This will
allow us to produce the geographic set of coordinates, Gy,
Gy, and G;. This is important because sometimes, when there
are no objects to represent the global location of the drone,
we need to place vertices for our point cloud with respect to
the global origin, rather than relative to the location of the
drone at a certain time.

Gy Xn Dy
GZ Zn DZ

V. 3D RENDERING

When rendering the data in a 3D environment, it is
important that the objects used to render can hold a global
position and be combined with old data seamlessly. The
amount of data rendered increases throughout a scan, mean-
ing a lightweight rendering method is highly favorable. It
is important that the algorithm chosen to do this performs
well, because if the frames per second (FPS) drops below
the scan rate of any scanning device, data will begin to be

thrown out, as it will possibly be updated before the next
frame is processed.

A. Rendering Methods

Point clouds have many properties that make them ideal
for mapping LIDAR data in 3D environments. The problem
is that we needed a point cloud that we could constantly add
data to, circumventing the array restrictions of most game
engines. There are several different ways to implement this.
We will be using the Unity game engine for the following
rendering methods.

1) Single Mesh

Game engines’ array restrictions prevent us from directly
appending new data to old data, but they do not prevent us
from redefining the data entirely, and including the newest
data. This can be used to restrict the amount of objects we use
to render the scene to only one, and hosting all the data from
it. This creates an object with rapidly changing geometry,
as more vertices are added to it each second. Every vertex
is positioned using the pre-processing algorithm described
section 4. This does not scale well because the more data is
being rendered, the longer the array is that must be entirely
redefined every time new data is available. This linear growth
can be seen in Figure 3.

2) Parallelized Meshes

Using a hybrid system of smaller meshes hosted by
individual objects, we were able to significantly improve
scalability. The premise is to use the drone’s location at a
given time to generate an object every frame. When that
object is generated, it retrieves the current data from the
LIDAR and hosts the data to itself. This essentially creates an
object whose virtual location is representative of the drone’s
location at a given time, and whose mesh vertices represent
each individual point that was recorded while the drone was
at that position. This results in many objects with vertices
that resemble a LIDAR scan. In our implementation, about
70 points are hosted per object, which has a considerable
impact on performance since 16.67 objects are being gener-
ated per second, but has a logithmic growth function. It does
not drop below 60 FPS until about 60 seconds of scanning
and bottoms out at around 30 FPS, which is sufficient, but
still undesirable. This can be seen in Figure 3.

3) Compressed Parellelized Meshes

Compressed parallelized meshes strongly resemble the
previous method, but with an additional measure of opti-
mization. Almost all of the load from the previous method
comes from the amount of 3D objects required to host all
of the vertices, the vertices themselves have very little effect
on performance. This can be fixed by hosting more than
70 vertices per object, so that less of them are required for
the same data. By recording global data using the method
described in equation 2, we are able to use it periodically
to generate a new object that hosts thousands of points, and
then deleting all the objects hosting identical information.
This compression results in far fewer objects required, and
results in superior performance and scalability, as seen in
figure 3.

Authorized licensed use limited to: UTC Library. Downloaded on October 01,2021 at 17:00:00 UTC from IEEE Xplore. Restrictions apply.

B. Dynamic Scan Construction

The performance of this solution can be further improved
by combining all of these smaller meshes once the scan is
saved. Since a save deems the scan is complete, it is no
longer necessary to create new objects or have more than
one to represent the most recent changes to the scan. This
is done by recording the global coordinates of all vertices
throughout the scan, then reconstructing the scan attached to
a single object. This allows the scan to still be dynamically
constructed during the scan for operator convenience and
preserves resources once it is no longer necessary to modify
the scan.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

In order to evaluate the performance of the mentioned
rendering algorithms, we are conducting an experiment that
connects a LIDAR, carried by drone, to a Unity environment,
where rendering takes place. The data being rendered is
supplied from the LIDAR in the form of a point cloud. A
Raspberry Pi acts as the drone’s micro controller controlling
data streams to and from the LIDAR and drone.

A. Experiment Setup and Data Flow

Our networking scheme is built from scratch and uses
only the built-in socket functions on each machine, the
differing languages are primarily used as a way to access
these functions. Our networking scheme is divided into
two sections: the Unity server and the raspberry pi micro-
controller.

Networking in any game engine is one of the most
important features it can offer. Communication speed and
integrity are of the highest priority in multiplayer games,
which our application essentially is. Unity offers a wide suite
of networking features, but the majority of these features
only work between two Unity environments, where client and
server must be on a machine that is capable of running Unity.
In the case of smart cities, almost all devices used for data
acquisition do not meet the requirements to run Unity. Our
code on both ends: client and server, must be built from basic
networking libraries in languages that each device supports.
This puts limitations on the code that we use in Unity. We use
the basic C# library, which uses OS level sockets no matter
what platform the application is running on. When building
our project to a Windows, iOS, or Android machine, it will
always use OS level sockets to communicate. It follows
that our communication format must also be language and
platform agnostic, as a variety of IoT devices will be used.
One of Unity’s best features is the ability to parse a string in
JavaScript Object Notation (JSON) format directly into the
3D environment through the use of Game Objects, which are
discussed later. It is a safe bet to assume that a given IoT
device can send a string over the network, which means it
can send a string formatted as a JSON. We do just that. Once
the JSON is received through the Unity socket, it is parsed
directly into the 3D environment.

For our testing, we used a DJI M100 with a SLAMTEC
RPLiDAR A2 mounted on top, producing two-dimensional
scans aligned with the drone.

B. Localization of the Drone in a Virtual Environment

Localizing the drone correctly and proportionally in a vir-
tual environment is necessary to properly generate a virtual
map. Most 3D environments’ coordinate system consists of
arbitrary units, so it’s important to unify all sensors and
hardware to use the same unit. It required considerable post-
processing on the host side of the network to convert various
inputs with inconsistent formats into meters.

1) GPS Localization

The GPS coordinates in the DJI SDK are represented
in geographic radians, which is a simple conversion in
geographic degrees. From there, we must use a function of
latitude to convert longitude to meters, since the significance
of a degree of longitude varies at different latitudes.

40075 * cos(latitude) /360 3)

The conversion for latitude is simply done with a constant.
Once the data is in the correct unit, we can properly represent
the horizontal position of the drone using the two values to
represent both axes.

2) Orientation of Drone

Knowing the orientation of the drone is required due
to the variability of the LIDAR data with respect to the
physical drone’s orientation. This must be represented in the
virtual environment to generate map data along the plane
of the drone’s current orientation. The orientation of the
drone is represented by a compass and a gyroscope. These
components need to be mapped to an object in the virtual
environment that represents the orientation of the physical
drone. The result is a virtual drone that yaws, rolls, or pitches
identically to the physical drone.

3) Derivation of Drone’s Altitude

The altitude of the drone is measured by barometer,
which are not suited for accurate sea level measurement, as
fluctuations in air pressure can easily cause tens of meters
of error in the measured altitude in the same location when
measured at different times. However, we can retrieve the
sea level altitude at any global coordinate from an online
database and use it as an offset, and use the barometer as
a relative measurement. This makes any fluctuations in air
pressure limited to the duration of the flight, since the drone
can be re-zeroed once it lands in the same spot it took off
from.

4) Localization Inaccuracies

The accuracy of our scans is limited by our hardware,
primarily our GPS and barometer. With the solution to our
barometer inconsistencies resolved, we can now focus on
the accuracy problems relating to the GPS when relying
on it for centimeter-level precision. The GPS itself is rated
to be accurate within a 15 meter radius. The drone uses
this GPS only for calibrating itself via satellite, and the
precision of the location information that it sends is the result
of it using an accelerometer in combination with the GPS

Authorized licensed use limited to: UTC Library. Downloaded on October 01,2021 at 17:00:00 UTC from IEEE Xplore. Restrictions apply.

to estimate more precisely the difference even the smallest
movements make in the recorded coordinates. This does not
affect the local scan quality, but it does affect the accuracy
of the recorded coordinates each scan is associated with.
This present problems only when multiple adjacent scans
are stitched together. They do not always align properly, but
they are generally always in the right orientation, and the
right relative direction from adjacent scans. This could be
improved by using more accurate hardware, or by matching
similar sections of the scans, which would require all scans
to be done adjacently.

C. Error Breakdown

To further characterize the errors introduced during the
aforementioned drone-positioning process, Figure 2 provides
a visual representation of all possible sources of error relative
to the orientation of the drone, presented from three different
views of the drone: top view, rear view, and side view,
respectively. The drone has lateral error on all three axes,
as well rotational error on all three axes. In addition to this,
it has rotational error from the LiDAR, and distance error
from the LiDAR’s laser. All of these are defined relative to
the airframe of the drone and are listed in Table I [11].

Fig. 2: Error Components

Otx o wy cos(6)]| [1
oy | = oy wy sin(0)| | d 4)
Otz 0z Wy Tz 04

TABLE I: Comprehensive Sources of Positional Error

GPS Error Ox,0y

Barometer Error 0y

Drone Orientation p_(pitch), x (roll), ¥ (yaw)
Orientation Error 0 (pitch), oy (roll),) (yaw)
The angle of LiDAR | 6

LiDAR Angle Error oy

LiDAR Range Error | oy

where

wy £ sin(6) sin(op) + sin() sin(oy) + cos(8) sin(oy) (5)
wy £ cos(0) sin(vp) + cos(6) sin(vy) + sin(0) sin(ox) (6)

w, & \/(51'11(6)51'71(0'K))2 + (cos(B)sin(0,))? (7)
- \/(s1'11((9)sz'n(1<))2 + (cos(0)sin(p))? (8)

Equations (4)-(6) can be described as a breakdown of the
significance of certain error sources under certain circum-
stances. As such, many of the sources of error are amplified
or reduced depending on the recorded angle of the scanned
point. One linear source of error is distance, as all sources of
error except Oy, 0y, 0z, and 0, are increased by the distance
of the scanned point.

The quantification for oy, is slightly different because
the effects of pitch and roll both manipulate the vertical
position of a scanned point, while the yaw of the drone,
when compensated for in pre-processing, does not.

D. Results and Discussion

Paint Cloud Performance

50 ﬁ\\\

0 20 40 60 20 100 120 140 160 180

Runtime (Seconds)

— Parallelized Meshes
Compressed Parallelized Meshes (Our method)
Game Objects

Single Mesh

Fig. 3: Comparison of performance of rendering methods.

The combination of geographic localization and relative
mapping results in a powerful application that can be used
to update current geographic databases easily, or construct
a new one from scratch. This is due to all scans containing
data relating to their real world coordinates, which makes
them very easy to locate in a 3D environment.

When we take the real world environment in Figure 5 from
Google Earth, and scan it in two separate flight sessions, the

Authorized licensed use limited to: UTC Library. Downloaded on October 01,2021 at 17:00:00 UTC from IEEE Xplore. Restrictions apply.

7

Fig. 4: The building and the field are scanned separately,
but are combined automatically in a 3D environment

Fig. 5: Building and nearby field for reference. Coordinates:
35.04276671,-85.29910206

result is still a single large scan, with a seamless border
between the two.

The results shown in Figure 4 very closely represents the
distinctive features in the environment, such as the walls of
the facility and the trees surrounding it, but it does struggle
to represent the ground when scanning the field. This is
because our results were recorded with a two-dimensional
LiDAR where the horizontal configuration of the LiDAR
made it difficult to scan the ground. This resulted in a low
point density on areas defining the ground, and during post-
processing, the density was not high enough to produce a
distinctive plane. While some areas of the scan could be
improved, the project shows promising application for real
time mapping with respect to previous data.

The quality and density of the scan could be improved
greatly by using a three-dimensional LIDAR, which would
also help scan the ground, since the drone would not have
to perform aggressive maneuvers to point the sensor at
the ground. However, the concept and functionality can be
applied to virtually any scanning hardware.

VII. CONCLUSIONS

In this paper, we have proposed both a networking
paradigm and a unique algorithm for rendering real time
dynamic meshes in a game engine, both key features in
using a game engine for the modeling of a smart city.
Experimental implementations have shown FPS increases
that are 25% higher for a runtime of 120 seconds and
33% higher for a runtime of 180 seconds than the current
methods implemented by Unity, an industry leader in game
engine design. This paper brings to light a fundamental
issue underlying the implementation of mesh rendering in
game engines, specifically for dynamic meshes that change
according to a real time stream.

ACKNOWLEDGEMENT

The authors would like to thank Dakila Ledesma and
Maxwell Omwenga for their helpful discussion and sugges-
tions.

REFERENCES

[1] C. Andrews, “Gamification in gis and aec,” [online] Available at:
https://www.esri.com/arcgis-blog/products/arcgis/3d-gis/gamification-
in-gis-and-aec/ [Accessed on May 30, 2020], Feb. 2020.

[2] C. Rusu, “Ar, vr, gamification: cutting-edge technologies applied

in smart cities,” [online] Available at: http:/citisim.org/ar-vr-

gamification-cutting-edge-technologies-applied-in-smart-cities/

[Accessed on May 30, 2020], 2018.

Maps SDK for Unity Overview -

Platform Gaming Solution [Online].

[3

—

Google Maps
Available:

https://developers.google.com/maps/documentation/gaming/overview_musk

[Accessed on May 30, 2020].

Maps for Unity. [online] Available at: https://www.mapbox.com/unity/

[Accessed on May 30, 2020].

[5] Z. J. Chong, B. Qin, T. Bandyopadhyay, M. H. Ang, E. Frazzoli,
and D. Rus, “Synthetic 2D LIDAR for precise vehicle localization in
3D urban environment,” in Proc. IEEE International Conference on
Robotics and Automation, Karlsruhe, Germany, May 2016.

, “Mapping with synthetic 2D LIDAR in 3D urban environment,”

in Proc. IEEE/RSJ International Conference on Intelligent Robots and

Systems, Tokyo, Japan, Nov. 2013.

I. Toroslu and M. Dogan, “Effective sensor fusion of a mobile robot

for SLAM implementation,” in Proc. The 4th International Conference

on Control, Automation and Robotics, Auckland, New Zealand, April

2018.

[8] P. Greenwood, J. Sago, S. Richmond, and V. Chau, “Using game

engine technology to create real-time interactive environments to assist

in planning and visual assessment for infrastructure,” in Proc. Interna-
tional Congress on Modelling and Simulation, Cairns, Australia, July

2009.

P. Agrawal, A. Igbal, B. Russell, M. K. Hazrati, V. Kashyap, and

F. Akhbari, “PCE-SLAM: A real-time simultaneous localization and

mapping using LiDAR data,” in Proc. IEEE Intelligent Vehicles
Symposium (IV), Los Angeles, CA, Jun. 2017.
[10] B. Klein, “Managing the scalability of visual exploration using game
engines to analyse UHI scenarios,” Procedia Engineering, vol. 169,
pp. 272-279, 2016.

[11] N. May and C. Toth, “Point positioning accuracy of airborne LiDAR
systems: A rigorous analysis,” in Proc. Photogrammetric Image Anal-
ysis, Munich, Germany, Sept. 2007.

[4

=

[6]

[7

—

[9

—

Authorized licensed use limited to: UTC Library. Downloaded on October 01,2021 at 17:00:00 UTC from IEEE Xplore. Restrictions apply.

