
2-hop Blockchain: Combining
Proof-of-Work and Proof-of-Stake

Securely

Tuyet Duong1, Lei Fan2, Jonathan Katz3, Phuc Thai1,
and Hong-Sheng Zhou1(B)

1 Virginia Commonwealth University, Richmond, USA
{duongtt3,thaipd,hszhou}@vcu.edu

2 Shanghai Jiao Tong University, Shanghai, China
fanlei@sjtu.edu.cn

3 George Mason University, Fairfax, USA
jkatz2@gmail.com

Abstract. Bitcoin-like blockchains use a proof-of-work (PoW) mecha-
nism, where security holds if the majority of the computing power is
under the control of honest players. However, this assumption has been
seriously challenged recently, and Bitcoin-like systems fail if this assump-
tion is violated. In this work we propose a novel 2-hop blockchain protocol
that combines PoW and proof-of-stake (PoS) mechanisms. Our analysis
shows that the protocol is secure as long as the honest players control
a majority of the collective resources (which consist of both computing
power and stake). In particular, even if the adversary controls more than
50% of the computing power, security still holds if the honest parties
hold sufficiently high stake in the system. As an added contribution, our
protocol also remains secure against adaptive adversaries.

1 Introduction

Cryptocurrencies like Bitcoin [28] have been a phenomenal success. At the heart
of Bitcoin is a global, distributed ledger, called a blockchain, that records transac-
tions in successive time windows. The blockchain is maintained by a peer-to-peer
network of miners via a so-called proof-of-work (PoW) mechanism: in each time
window, cryptographic puzzles (also called proof-of-work puzzles [1,15]) are gen-
erated, and all miners are incentivized to solve those puzzles; the first miner who
finds a puzzle solution is allowed to extend the blockchain with a block of trans-
actions. The more computing power a miner invests, the better its chances of
solving a puzzle first.

T. Duong—Work supported in part by a research gift from IOHK.
J. Katz—Portions of this work were done while at the University of Maryland, and were
performed under financial assistance award 70NANB19H126 from U.S. Department of
Commerce, National Institute of Standards and Technology.
P. Thai and H.-S. Zhou—Work supported in part by NSF award #1801470, and a
research gift from Ergo Platform.

c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 697–712, 2020.
https://doi.org/10.1007/978-3-030-59013-0_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_34&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_34

698 T. Duong et al.

Bitcoin is an open system; any player who invests a certain amount of com-
puting resources is allowed to join the effort of maintaining the blockchain. This
feature, along with a smart incentive strategy, have helped the system attract a
huge amount of computing resources over the past several years.

The Nakamoto consensus protocol underlying Bitcoin has recently been
proven secure in various models. In particular, Garay et al. [19] and Pass
et al. [30] showed that, assuming the majority of mining power is controlled by
honest miners, Nakamoto consensus satisfies several important security proper-
ties. On the other hand, if an adversary controls a majority of the computational
power in the network, security of Bitcoin cannot be guaranteed.

While it is appealing to assume that the majority of computing power in
a blockchain network is honest, this assumption has been seriously challenged
in recent years. For example, in 2014 the mining pool GHash.io exceeded 50%
of the computational power in the Bitcoin network [21]. In 2017, one mining
pool controlled 50% of the mining power in the Zcash system.1 Currently, many
of the top Bitcoin mining pools are in China; at times, they have collectively
controlled more than 60% of the mining power in the Bitcoin ecosystem.2 Efforts
have been made to address this crisis, with some work [27] trying to discourage
the formation of mining pools. However, these ideas have not seen much adoption
in practice, and it is anyway unclear whether they would prevent certain types
of attacks (e.g., nation states who wish to disrupt a cryptocurrency).

In part to address these issues, other design paradigms for blockchains have
been considered. The most prominent such designs are based on proof-of-stake
(PoS) mechanisms, which require miners to own a certain amount of coins
(“stake”) in order to extend the blockchain; the probability that a particular
miner is allowed to extend the blockchain in any iteration is proportional to the
amount of stake it owns.

1.1 Our Results

We propose a hybrid blockchain protocol that uses a combination of PoW
and PoS mechanisms. We prove that security of the blockchain holds as long
as the honest parties control a majority of the collective resources in the system,
where these collective resources consist of both computing power and stake. As
an additional contribution, and in contrast to several other PoS protocols that
have been proposed, we show that our protocol tolerates an adaptive adver-
sary who can decide which parties to corrupt during the course of the protocol
execution. Source code for our protocol is publicly available (https://bitbucket.
org/twinscoinccs/twinscoin), and an experimental evaluation of the protocol has
been done [10]. Our focus here is on definitions and proofs of security. In what
follows, we give an overview of the underlying ideas.

Our main idea is to have two coupled blockchains, one (denoted C) based
a PoW mechanism and another (denoted C̃) using a PoS-based approach; we

1 See https://twitter.com/kyletorpey/status/910622595388715020.
2 See https://www.buybitcoinworldwide.com/mining/pools.

https://bitbucket.org/twinscoinccs/twinscoin
https://bitbucket.org/twinscoinccs/twinscoin
https://twitter.com/kyletorpey/status/910622595388715020
https://www.buybitcoinworldwide.com/mining/pools

2-hop Blockchain: Combining Proof-of-Work and Proof-of-Stake Securely 699

refer to PoW-miners who extend the former and PoS-holders (or stakeholders)
who extend the latter, but of course one entity may play both roles. These
two blockchains are extended alternately, so that their respective heights are
always within one block of each other. Roughly, the overall (logical) blockchain
is extended by first having a PoW-miner extend C and then having a PoS-holder
extend C̃.

A pictorial illustration of our blockchain structure is given in Fig. 1. Rectan-
gular blocks correspond to C, while circular blocks correspond to C̃. (Our 2-hop
blockchain can be bootstrapped3 from an already existing blockchain, denoted
by grey blocks in the figure.) Intuitively, C serves as a (possibly biased) random
beacon for choosing a stakeholder to extend C̃. If Nakamoto consensus is a 1-hop
protocol, then ours is a 2-hopprotocol.

Fig. 1. 2-hop blockchain structure. Rectangular blocks denote the PoW chain, and
circular blocks denote the PoS chain. Grey blocks (which need not be present) represent
a pre-existing blockchain.

In more detail, say we have a PoW chain C consisting of blocks B1, . . . , Bi and
a PoS chain C̃ consisting of blocks B̃1, . . . , B̃i; when we refer to a chain pair we
mean a pair of valid chains C, C̃ of the same height. A new block pair—consisting
of a new block Bi+1 on C and a new block B̃i+1 on C̃—is generated as follows:

1. A PoW-miner extends C in the usual way, but building on both C and C̃.
That is, a miner first computes h = hash(Bi, B̃i), and then attempts to find
a suitable nonce ω such that H(h, ω) < T for some target T. The new block
on C takes the form Bi+1 = 〈h, ω〉.

2. Each PoS-holder holds two pairs of signing keys (vk, sk) and (vk′, sk′), where
the first is for a unique signature scheme and the second can be for an ordinary
signature scheme. A PoS-holder can extend C̃ if H̃(Bi+1, ω̃, vk) < T̃, where
ω̃ = Signsk(Bi+1) and T̃ is the current target. A new block takes the form
B̃i+1 = 〈(Bi+1, ω̃, vk),X , σ, vk′〉, where X ∈ {0, 1}∗ is the payload of the
block (also denoted as payload(B̃i+1)); and σ = Sign′

sk′((Bi+1, ω̃, vk),X).

While we defer a detailed discussion of the security of our protocol to Sect. 4,
we observe some interesting properties of our protocol here:
3 This also implies that our design could be used as a strategy for converting a PoW-

based blockchain into a pure PoS one, via a sequence of hard forks.

700 T. Duong et al.

– We can obtain adaptive security since the identity of the PoS-holder who
can extend C̃ is hidden before it publishes the new block; once the new PoS
block is published and incorporated in the chain, it is too late for adversarial
corruption to have any effect.

– Our protocol can resist a nothing-at-stake attack in which a malicious PoS-
holder attempts to generate new blocks on multiple forks simultaneously. The
reason is that in our 2-hop protocol the PoS chain builds on a PoW chain
that, in general, will have fewer forks.

– Our protocol also resists long-range attacks in which an adversary tries to
create a long chain, starting from the genesis block, that overtakes the main
chain. This is because although creating a long PoS chain may be feasible,
creating a long PoW chain is computationally infeasible.

1.2 Related Work

Bitcoin and the underlying PoW-based Nakamoto consensus protocol have been
analyzed in both rational [16,17,32,33] and adversarial [19,22,23,30,34] settings.
The idea of using proofs of stake in place of proofs of work was first introduced
in an online forum [5], and several PoS-based protocols have been proposed and
implemented in deployed cryptocurrencies [3,11,25,29,35]. These early proposals
lack rigorous security analysis. Subsequent work [2,8,9,12,13,18,20,24,31], done
concurrently with our own (an early version of this work [14] was posted online
in 2016), has given formal proofs of security for PoS-based blockchain protocols.
However, many proof-of-stake solutions [12,24,31] are not adaptively secure.

Hybrid PoW/PoS blockchains have been suggested by some previous work [4,
11,25] and cryptocurrencies (e.g., https://decred.org). However, none of these
systems has a formal proof of security. In addition, they are easily seen to be
insecure against an adaptive adversary.

1.3 Paper Organization

We present our model and definitions in Sect. 2, and the details of our protocol
in Sect. 3. In Sect. 4, we provide the high-level idea of our security analysis; full
proofs are deferred to the full version of our paper.

2 Preliminaries

2.1 System Model

In order to study the security of Bitcoin-like protocols, Garay et al. [19] and
then Pass et al. [30] set up the first cryptographic models by following Canetti’s
formulation of the “real world” executions [6,7]. We further extend their mod-
els so that more blockchain protocols, e.g., 2-hop blockchains, are allowed. The
underlying communication for blockchain protocols is the atomic unauthenti-
cated broadcast in a semi-synchronous setting with an upper bound Δ network
delay.

https://decred.org

2-hop Blockchain: Combining Proof-of-Work and Proof-of-Stake Securely 701

Protocol Players. We consider two types of players, PoW-miners and
PoS-holders, who may generate two types of blocks, PoW blocks and PoS
blocks; We can then define PoW-chain and PoS-chain, for PoW blocks and
PoS blocks respectively. These two types of chains could be tied and grow
together. In our model, without loss of generality, we assume all PoW-miners
have the same amount of computing power and all PoS-holders have the same
amount of stake. Note that this is an “idealized model”. In the reality, each
different honest PoW-miner or PoS-holder may have a different amount of com-
puting power/stake; nevertheless, this idealized model does not sacrifice gen-
erality since one can imagine that real-world honest PoW-miners/PoS-holders
are simply clusters of some arbitrary number of honest idealized-model
PoW-miners/PoS-holders.

Protocol Execution. We consider the execution of the blockchain protocol Π =
(Πw,Πs) that is directed by an environment Z(1κ) (where Πw and Πs denote
the code run by PoW-miners and PoS-holders, and κ is a security parameter),
which activates up to n PoW-miners and up to ñ PoS-holders. For simplicity,
in this paper, we consider the static computing power and stake setting (where
the total amount of computing power and stakes invested to the protocol will
not change over time). We also consider that, all players, i.e., n PoW-miners
and ñ PoS-holders, are activated at the beginning of the protocol execution by
the environment. Note that the environment Z can “manage” protocol players
through an adversary A who may adaptively corrupt honest parties.

Protocol execution typically consists of two phases, initialization phase and
blockchain-extension phase, and the execution proceeds in rounds. In the ini-
tialization phase, each PoW-miner can join the protocol execution by investing
certain amount of computing power. Similarly, each PoS-holder can join the
execution by investing certain amount of stake. Note that, the state of the ini-
tialization phase, if needed, can be recorded in the genesis block of blockchain
system.

The blockchain-extension phase consists of multiple rounds. In each round,
Z provides inputs for all players and receives outputs from them; the players
communicate with each other via the network. More concretely, in each round,
each honest player receives an input from the environment Z, and potentially
receives incoming network messages (delivered by the adversary A), and then
updates its local state; then based on the stored information, the player carries
out some (mining) operations; in the case that a new block is generated, the
player sends out the new block which will be guaranteed to be delivered to all
players in the beginning of the next round.

Let EXECΠ,A,Z be a random variable denoting the joint view of all parties in
the above execution; note that this joint view fully determines the execution.

2.2 Security Properties

As in the original Bitcoin white paper [28], a proof-of-work blockchain is created
and maintained by a set of players called PoW-miners. A PoW blockchain C

702 T. Duong et al.

consists of a sequence of concatenated PoW-blocks B∅‖B1‖B2‖ · · · ‖B�, where
� ≥ 0, and B∅ denotes the genesis block. For each blockchain, we specify several
notations such as head, length, and subchain: (i) blockchain head, denoted
head(C), refers to the topmost block B� in chain C; (ii) blockchain length,
denoted len(C), is the number of blocks in blockchain C after the genesis block,
and here len(C) = �; (iii) subchain, refers to a segment of a blockchain; we use
C[1, �] to denote an entire blockchain, and use C[j,m], with j ≥ 1 and m ≤ �,
to denote a subchain Bj‖ · · · ‖Bm; in addition, we use C[i] to denote the i-th
block Bi in blockchain C; finally, if blockchain C is a prefix of another blockchain
C′, we write C � C′. Similarly, we define a proof-of-stake (PoS) blockchain C̃
by a sequence of concatenated PoS-blocks B̃∅‖B̃1‖B̃2‖ · · · ‖B̃�̃ for �̃ > 0 that is
maintained by a set of PoS-holders; here B̃∅ denotes the genesis block.

Chain Growth, Common Prefix, and Chain Quality. Several important
security properties have been considered for blockchain protocols. The common
prefix and chain quality properties were originally formalized by Garay et al.
[19], with the common prefix property later strengthened by Pass et al. [30].
The chain growth property was first formally defined by Kiayias et al. [22].
We provide corresponding definitions here, specialized to the case of a 2-hop
blockchain protocol.

Definition 1 (Chain growth). Consider 2-hop blockchain protocol Π. The
chain growth property Qcg with parameter g ∈ R, states that for any honest
player with the local chain-pair 〈C, C̃〉 in round r and 〈C′, C̃′〉 in round r′ where
r′ − r > 0, in EXECΠ,A,Z . It holds that len(C′) − len(C) ≥ g · (r′ − r) and
len(C̃′) − len(C̃) ≥ g · (r′ − r).

Definition 2 (Common prefix). Consider 2-hop blockchain protocol Π. The
common prefix property Qcp with parameter κ ∈ N states that for any two honest
players i in round r and j in round r′ with the local chain-pairs 〈Ci, C̃i〉 and
〈Cj , C̃j〉, respectively, in EXECΠ,A,Z where r ≤ r′, it holds that Ci[¬κ] � Cj, and
C̃i[¬κ] � C̃j.

Definition 3 (Chain quality). Consider 2-hop blockchain protocol Π. The
chain quality property Qcq with parameters μ ∈ R and � ∈ N states that for any
honest player with the local chain-pair 〈C, C̃〉 in EXECΠ,A,Z , it holds that for large
enough � consecutive block-pairs of chain-pair the ratio of honest block-pairs (an
honest block-pair is a pair of an honest PoW-block and an honest PoS-block) is
at least μ.

Note that each block-pair consists of a PoW block and a PoS block. When
the payload is attached only to PoS blocks (resp., PoW blocks), we can define
the property of chain quality based on the ratio of honest PoS blocks (resp.,
PoW blocks).

2-hop Blockchain: Combining Proof-of-Work and Proof-of-Stake Securely 703

3 Construction

3.1 The Main Protocol

Our protocol uses standard cryptographic building blocks: As in the original
Bitcoin design, we use hash functions H and hash, and a regular digital signature
scheme Σ′ = (Gen′,Sign′,Verify′); In addition, we need a unique signature scheme
Σ = (Gen,Sign,Verify) and a third hash function H̃.

Initialization. In the initialization phase, PoW players join the system by
investing certain amount of computing power (as in the original Bitcoin design).
To enable PoS players to register to the system, each PoS player first generates
two pairs of signing-verification keys based on the signature schemes Σ and Σ′.
More concretely, for all i ∈ [ñ], PoS player Si computes (ski, vki) ← Gen(1κ)
and (sk′

i, vk
′
i) ← Gen′(1κ). Then based on the identity vki, vk

′
i, the PoS player

Si can join the system via investing certain amount of stake. We note that, the
registration information including all PoS players’ identities {vki, vk

′
i}i∈[ñ] will

be recorded in the genesis block B∅.

Blockchain Extension. Our (logical) blockchain consists of a PoW-chain C
and a PoS-chain C̃. In order to extend the blockchain, for each block height, we
will first extend PoW chain with one PoW-block, and then extend the PoS-chain
with one PoS-block. Concretely, consider that we have a blockchain with height
i; that is, PoW chain C = B∅‖B1‖ . . . ‖Bi and PoS chain C̃ = B∅‖B̃1‖ . . . ‖B̃i.
Next PoW block Bi+1 and then PoS block B̃i+1, will be generated, as follows.

In the first hop, PoW-miners attempt to extend C as usual, but building
on both C and C̃. That is, a miner first computes h = hash(Bi, B̃i), and then
attempts to find a suitable nonce ω such that H(h, ω) < T for some target T. The
new block on C takes the form Bi+1 = 〈h, ω〉.

The protocol now moves to the second hop. Intuitively, C serves as a (pos-
sibly biased) random beacon for choosing a stakeholder to extend C̃. Once the
new PoW-block Bi+1 is published in the system, a PoS-holder is allowed to
extend C̃ if H̃(Bi+1, ω̃, vk) < T̃, where ω̃ = Signsk(Bi+1) and T̃ is the current
target. A new block takes the form B̃i+1 = 〈(Bi+1, ω̃, vk),X , σ, vk′〉, where
X ∈ {0, 1}∗ is the payload of the block (also denoted as payload(B̃i+1)); and
σ = Sign′

sk′((Bi+1, ω̃, vk),X).
At this moment, both PoW-chain C and PoS-chain C̃ have been extended with

one new block Bi+1 and B̃i+1, respectively, and the two-hop iterations continue.
Please refer to Fig. 2 for the details of our main protocol. We note that all players
collect blockchain information from the network, and wining players publish their
generated blocks through the network; The protocol Π is parameterized by a
content validation predicate V (·), which determines the proper structure of the
information that is stored into the blockchain (as in [19,30]).

Best Chain-Pair Strategy. In the above protocol execution, players including
Protocol players, PoW-miners and PoS-holders, need to be aware, which chain-
pair is the best one during the protocol execution. We describe a strategy to
decide the best chain-pair via BestValid process; please see Fig. 3 for details.

704 T. Duong et al.

Protocol Π = (Πw, Πs)

The protocol Π = (Πw, Πs) is executed by (n+ ñ) players, including n PoW-
miners and ñ PoS-holders. Initially, each player holds local state statei :=
{〈Ci, C̃i〉} for 1 ≤ i ≤ n + ñ, where Ci = C̃i = B∅.

PoW-Miner Πw by PoW-miner Wi, for 1 ≤ i ≤ n, with local state statei.
Upon receiving an input message from Z, and/or receiving messages of the
form (Broadcast, 〈C, C̃〉) from the network, player Wi proceeds as follows:

1. Select the best local chain-pair:
Set C to be the set of all chain-pairs collected from the network;
Compute 〈Cbest, C̃best〉 := BestValid(C ∪ {〈Ci, C̃i〉},PoW-miner); // process

BestValid() can be found in Fig. 3 below.

Set Ci := Cbest and C̃i := C̃best.
2. Attempt to extend PoW-chain:

– Compute h := hash(head(Ci), head(C̃i));
– Identify ω so that H(h, ω) < T;

If ω �=⊥, then set B := 〈h, ω〉, Ci := Ci‖B, statei := statei ∪{〈Ci, C̃i〉},
and send (Broadcast, 〈Ci, C̃i〉) to the network;

Return an output message to the environment Z.

PoS-Holder Πs by PoS-holder Sj , for n + 1 ≤ j ≤ n + ñ, with statej .

Upon receiving an input message from Z, and/or receiving messages of the
form (Message, 〈C, C̃〉) from the network, player Sj proceeds as follows:

1. Select the best local chain-pair:
Set C as the set of all chain-pairs collected from the network;
Compute 〈Cbest, C̃best〉 := BestValid(C ∪ {〈Cj , C̃j〉},PoS-holder); // process

BestValid() can be found in Fig. 3 below.

Set Cj := Cbest and C̃j := C̃best.
2. Attempt to extend PoS-chain:

– Set B as the new PoW-block in Cbest; Compute ω̃ := Signsk(B);
– If H̃(B, ω̃, vk) < T̃, then compute σ ← Sign′

sk′((B, ω̃, vk),X), and set
B̃ := 〈(B, ω̃, vk),X , σ, vk′〉; Set C̃j := C̃j‖B̃, and statej := statej ∪
{〈Cj , C̃j〉}. and send (Broadcast, 〈Cj , C̃j〉) to the network.

Return an output message to the environment Z.

Fig. 2. Our main protocol Π = (Πw, Πs).

The BestValid process is parameterized by a content validation predicate V (·)
which determines the proper structure of the information that is stored into
the blockchain as in [19], and takes as input a chain-pair set C

′. Intuitively, the
process validates all chain-pair 〈C, C̃〉 in C

′, then finds the valid chain-pairs with
the longest PoW-chain. It also ensures that, if Type = PoW-miner, every valid
chain-pair should have its member chains C and C̃ of the same length. On the
other hand, if Type = PoS-holder, we allow the PoW-chain to be longer than

2-hop Blockchain: Combining Proof-of-Work and Proof-of-Stake Securely 705

the PoS-chain by one block since there may be a new PoW-block produced in
the previous rounds. We emphasize that since each valid PoS-block is tied to a
PoW-block, and each PoW-block or PoS-block is valid if their peers are valid.
The strategy to deal with multiple chains with the same length is discussed in
Remark 1 at the end of this section.

Process BestValid

Upon receiving the input (C′,Type), the process BestValid proceeds as
follows:

For every chain-pair 〈C, C̃〉 ∈ C
′,

– If len(C) − 1 = len(C̃), then
• Set � := len(C); Parse C[�] into 〈h�, ω�〉.
• If hash(C[� − 1], C̃[� − 1]) �= h�, remove this chain-pair from C

′;
• If H(C[�]) ≥ T, remove this chain-pair from C

′.
– Else if len(C) = len(C̃) and V (payload(C̃)) = 1

)
, or len(C) − 1 =

len(C̃) and Type = PoS-holder
)
, then for i from len(C̃) to 1, proceed

as follows:
• Verify PoW-block C[i]: Parse C[i] into 〈hi, ωi〉;

If hash(C[i − 1], C̃[i − 1]) �= hi, or H(C[i]) ≥ T, set b1 := 0; Else,
set b1 := 1;

• Verify PoS-block C̃[i]: Parse C̃[i] into 〈B, ω̃, vk,X , σ, vk′〉;
If Verify′

vk′((B, ω̃, vk,X), σ) = 1, set b2 := 1; Else set b2 := 0;
If Verifyvk(B, ω̃) = 0, or H̃(B, ω̃, vk) ≥ T̃, or B �= C[i], set b3 := 0;
Else, set b3 := 1;

• If b1 = 0 or b2 = 0, or b3 = 0, remove this chain-pair from C
′.

Find the valid chain-pair 〈Cbest, C̃best〉 ∈ C
′ with the longest PoW-chain.

Then set 〈Cbest, C̃best〉 as the output.

Fig. 3. The chain set validation process BestValid. The process is parameterized by a
content validation predicate V (·).

Remark 1 (Tie breaking). Our protocol primarily deals with length so it makes
sense to adopt a simple tie-breaking strategy to choose the best chain-pair from
two chain-pairs of equal length. While there is work that show the advantages
of choosing a chain randomly (viz. [17]), we follow the simple strategy consid-
ered in [19]; in which the best chain-pair is the one with the PoW-chain that
is lexicographically the smallest. If two chain-pairs have same length, and the
PoW-chains are same, we compare the PoS-chains with the same tie breaking
mechanism for PoW-chains.

706 T. Duong et al.

Remark 2 (Attaching transaction payloads to the PoW-chain). In the 2-hop pro-
tocol description above, the transaction payloads are attached to the PoS-chain.
We note that, this is just a design choice; alternatively, the payloads can be
attached to the PoW-chain. In the full version, we will provide the details.

4 Security Analysis

For simplicity, we analyze security assuming a fixed set of participants. Denote
the total number of PoW-miners by n, and the portion of malicious computing
power by ρ. Let p be the probability that a player can generate a PoW-block
in a round. Let α = (1 − ρ)np be the expected number of PoW-blocks that
honest PoW-miners can find in a round. Let β = ρnp be the expected number
of PoW-blocks that malicious PoW-miners can find in a round. Thus α

β = 1−ρ
ρ .

We assume 0 < α
 1, 0 < β
 1 and α = λβ where λ ∈ (0,∞).
We then describe the important parameters in the second hop (i.e., proof-of-

stake blockchain). Similarly, denote the total number of PoS-holders by ñ, and
the portion of malicious stakes by ρ̃. Let p̃ be the probability that a PoW-block
is mapped to a PoS-holder. We assume p̃ñ
 1. Let α̃ = 1 − (1 − p̃)(1−ρ̃)ñ ≈
(1 − ρ̃)ñp̃ be the probability that a PoW-block is mapped to at least one honest
PoS-holder. Let β̃ = 1 − (1 − p̃)ρ̃ñ ≈ ρ̃ñp̃ be the probability that a PoW-block
is mapped to at least one malicious PoS-holder.

Now, we have a parameter α̂ = αα̃ which is the probability that honest parties
find a new PoW-block and is mapped to an honest PoS-holder in a round. We
also have β̂ = ββ̃, the expected number that malicious parties find new PoW-
blocks and are mapped to malicious PoS-holders in a round. We say α̂ and β̂
are collective resources for honest parties and malicious parties respectively.
Note that γ̂ = α̂

1+2Δα̂ can be viewed as a “discounted” version of α̂ due to the
fact that the messages sent by honest parties can be delayed by Δ rounds; γ̂
corresponds to the “effective” honest collective resource.

As shown in the analysis of PoW protocol [19,30], due to the network delay,
the block time (i.e., the time period between two consecutive blocks) has to be
set very long; in other words, the probability to generate new blocks is very small.
We note however in our 2-hop protocol, the block time of generating PoW-blocks
can be much shorter. As long as the block time of generating new block-pairs is
long, the security properties of our 2-hop protocol can be achieved.

Note that, the expected number of PoW-blocks that are generated in a round
is α + β = pn; the expected number of PoS-blocks that map to a PoW-block is
α̃+ β̃ ≈ p̃ñ. In our analysis, we assume (α+β)(α̃+ β̃)Δ
 1; that is, most of the
time, no block-pair is generated. We are now ready to state our main theorems.

Theorem 1 (Chain growth). Consider 2-hop blockchain protocol Π =
(Πw,Πs) in Sect. 3.1. For any honest player with the local chain-pair 〈C, C̃〉
in round r and 〈C′, C̃′〉 in round r′ = r + t where t > 0. In EXECΠ,A,Z , the
probability that

len(C′) − len(C) ≥ g · t, len(C̃′) − len(C̃) ≥ g · t,

2-hop Blockchain: Combining Proof-of-Work and Proof-of-Stake Securely 707

is at least 1 − e−Ω(t) where g = (1 − δ)γ̂, for any δ > 0.

Theorem 2 (Chain quality). We assume γ̂ = λ̂(α+β)β̃ and λ̂ > 1. Consider
protocol Π = (Πw,Πs) in Sect. 3.1. For any honest player with the local chain-
pair 〈C, C̃〉. In EXECΠ,A,Z , the probability that for large enough � consecutive
block-pairs of chain-pair the ratio of honest block-pairs is no less than

μ = 1 − (1 + δ)
(α + β)β̃ + βα̃

γ̂ + βα̃

is at least 1 − e−Ω(�), for any δ > 0.

Theorem 3 (Common prefix). We assume α̂ = λ̂(α + β)β̃ and λ̂ > 1.
Consider protocol Π = (Πw,Πs) in Sect. 3.1. Let κ be the security parameter.
For any two honest players Pi in round r, and Pj in round r′, with the local
best chain-pairs 〈Ci, C̃i〉, 〈Cj , C̃j〉, respectively, in EXECΠ,A,Z where r ≤ r′, the
probability that,

Ci[¬κ] � Cj , Cj [¬κ] � Ci, C̃i[¬κ] � C̃j , C̃j [¬κ] � C̃i,

is at least 1 − e−Ω(κ).

4.1 Proof Intuition

Due to space limitations, we defer the full security analysis to the full version of
our paper. Here, we present the main ideas underlying the security analysis.

In our protocol, there are two types of players, PoW-miners and PoS-holders.
Both PoW-miners and PoS-holders can be honest or malicious. In order to extend
the pair of blockchains, a PoW-miner needs to generate a PoW-block first, and
then the corresponding stakeholder will sign this block. We note that, our secu-
rity analysis mainly focuses on PoS-chain, and the analysis for PoW-chain is
followed from PoS-chain’s. Consider that players may be honest or malicious, we
have

– Case 1: An honest PoW-miner finds a new PoW-block which is mapped to
an honest PoS-holder. The honest PoS-holder will generate the corresponding
PoS-block faithfully.

– Case 2: A malicious PoW-miner finds a new PoW-block which is mapped
to a malicious PoS-holder. The malicious PoS-holder may generate the cor-
responding PoS-block faithfully, or just discard it.

– Case 3: An honest PoW-miner finds a new PoW-block which is mapped to
a malicious PoS-holder. Again, as in Case 2, the malicious PoS-holder may
generate the corresponding PoS-block faithfully, or just discard it.

– Case 4: When a malicious PoW-miner finds a new PoW-block which is
mapped to an honest PoS-holder. The malicious PoW-miner may publish the
new PoW-block (so that the corresponding honest PoS-holder can generate
the PoS-block), or withhold the PoW-block and discard it.

708 T. Duong et al.

We note that, intuitively in Case 1, the malicious players cannot stop honest
players from extending the chain-pairs; thus the chain growth property can be
ensured. Now let’s consider the total number of PoS-blocks from malicious play-
ers in Case 2 and in Case 3. If the number of PoS-blocks from honest players in
Case 1 is larger than that from the malicious players in Case 2 and Case 3, we
can also see that the common prefix property is ensured.

In Case 2 or Case 3, the malicious PoS-player may generate multiple PoS-
blocks based on a single PoW-block. We remark here that this malicious strategy
will bring no advantage to the attacker, since only one of the multiple PoS-blocks
will be extended by honest PoW-miners.

As discussed above, α̂ = αα̃ and β̂ = ββ̃ are the collective probabilities of
Case 1 and Case 2, respectively. We define them as the collective resources of
the honest and malicious parties, respectively.

In our protocol, the malicious players are allowed to delay communication
messages for at most Δ rounds. When the malicious players delay the communi-
cation messages, each honest player might not be able obtain its best chain-pair
on time. As a consequence, honest miners may work on a wrong chain-pair during
the delayed communication rounds. In our analysis, we thus use the discounted
version of the computing/stake resource to calculate the probability that the
honest players can generate a block in a round.

Chain Growth. The malicious players may delay all of the communication
messages from the honest players up to Δ rounds. Consider that to generate a
block-pair, two hops are needed; The adversary can delay at most 2Δ rounds
for a PoS-block generation. We use γ̂ to denote the discounted collective honest
resources where γ̂ = α̂

1+2Δα̂ .
In the formal proof, we introduce a hybrid execution, formalizing the worst

case communication delay. In the hybrid execution, the malicious players will
not contribute to the chain growth; furthermore, the adversary will delay all
communication messages from the honest players with the goal of stopping the
chain growth as much as possible. When Case 1 occurs, the longest chain-pair
that can be observed by all honest players, will increase by 1 block-pair (one
PoW-block and one PoS-block). Note that the probability that Case 1 occurs in
a round is γ̂. Also note that the probability that Case 1 occurs in our protocol
execution, will not be smaller than that in the worst case hybrid execution. Thus
the chain growth rate is guaranteed by γ̂.

Chain Quality. Assume p̃ñ
 1. With high probability, at the same block
height, there is at most one block-pair in Case 1 or Case 4. During any t con-
secutive rounds, the expected number of block-pairs generated in Case 1, is at
least γ̂t. Let θt denote the number of block-pairs generated in Case 4 during the
t rounds, for some θ. Then we can have 0 ≤ θ ≤ βα̃. The chain growth in the t
round is (γ̂ + θ)t. In addition, the expected number of block-pair that generated
in Case 2 or Case 3 during t rounds, is at most (α + β)β̃t. Therefore, the chain
quality is at least 1 − (α+β)β̃+θ

γ̂+θ ≥ 1 − (α+β)β̃+βα̃
γ̂+βα̃ .

2-hop Blockchain: Combining Proof-of-Work and Proof-of-Stake Securely 709

Common Prefix. Assume 2(α + β)(α̃ + β̃)Δ
 1. We can compute that, the
probability that no new block-pair is generated in a round, is 1−2(α+β)(α̃+β̃)Δ.
We can also compute that, the probability for honest players to generate at least
one new block-pair in a round, is at least α̂. We can further argue that, the
probability for honest players to generate exactly one new block-pair in a round,
is α̂(1 − α̂), which approximates to α̂, given that we assume α̂
 1.

After the publication of one block-pair in the system, if in the upcoming 2Δ
rounds, there is no block-pair published, then all honest players will have the
same best chain-pair, and their views will be convergent. The malicious play-
ers may generate blocks to achieve their goal of stopping the honest players to
develop convergent views of the best chain-pair. However, based on our assump-
tion, the malicious players cannot generate enough number of block-pairs to
achieve this goal.

On Adaptive Corruption. In our protocol, the adversary can corrupt any
player adaptively at any time. We note that in the first hop the adversary cannot
predict which PoW-player will be able to find a solution to the PoW puzzle before
the solution is published. Thus, adaptively corrupting PoW miners will not bring
the adversary any extra advantage. Then in the second hop, the solution to the
PoS puzzle consists of the (unique) signature from a PoS-player. Again, the
adversary cannot predict which PoS-player will be elected before the solution to
the PoS puzzle is published. Similarly, the adaptive corruption strategy will not
bring extra advantage.

A Unique Signature Schemes

Unique signature schemes were introduced in [26], which consists of four algo-
rithms, a randomized key generation algorithm KeyGen, a deterministic key ver-
ification algorithm KeyVer, a deterministic signing algorithm Sign, and a deter-
ministic verification algorithm Verify. We expect for each verification key there
exists only one signing key. We also expect for each pair of message and verifi-
cation key, there exists only one signature. We have the following definition.

Definition 4. We say (KeyGen,KeyVer,Sign,Verify) is a unique signature
scheme, if it satisfies:

Correctness of key generation: Honestly generated key pair can always be verified.
More formally, it holds that

Pr
[
(pk, sk) ← KeyGen(1κ) : KeyVer(pk, sk) = 1

] ≥ 1 − negl(κ)

Uniqueness of signing key: There does not exist two different valid signing keys
for a verification key. More formally, for all ppt adversary A, it holds that

Pr
[

(pk, sk1, sk2) ← A(1κ)
: KeyVer(pk, sk1) = 1 ∧ KeyVer(pk, sk1) = 1 ∧ sk1 �= sk2

]
≤ negl(κ)

710 T. Duong et al.

Correctness of signature generation: For any message x, it holds that

Pr
[

(pk, sk) ← KeyGen(1κ);σ := Sign(sk, x)
: Verify(pk, x, σ) = 1

]
≥ 1 − negl(κ)

Uniqueness of signature generation: For all ppt adversary A,

Pr
[

(pk, x, σ1, σ2) ← A(1κ)
: Verify(pk, x, σ1) = 1 ∧ Verify(pk, x, σ2) = 1 ∧ σ1 �= σ2

]
≤ negl(κ)

Unforgeability of signature generation: For all ppt adversary A,

Pr
[

(pk, sk) ← KeyGen(1κ); (x, σ) ← ASign(sk,·)(1κ)
: Verify(pk, x, σ) = 1 ∧ (x, σ) �∈ Q

]
≤ negl(κ)

where Q is the history of queries that the adversary A made to signing oracle
Sign(sk, ·).

References

1. Back, A.: Hashcash–a denial of service counter-measure (2002). http://hashcash.
org/papers/hashcash.pdf

2. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
composable proof-of-stake blockchains with dynamic availability. In: Lie, D., Man-
nan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 913–930. ACM Press,
October 2018

3. Bentov, I., Gabizon, A., Mizrahi, A.: Currencies without proof of work. In: Bitcoin
Workshop (2016)

4. Bentov, I., Lee, C., Mizrahi, A., Rosenfeld, M.: Proof of activity: extending bitcoin’s
proof of work via proof of stake. ACM SIGMETRICS Perform. Eval. Rev. 42, 34–
37 (2014)

5. Bitcointalk: Proof of stake instead of proof of work (2011). Online post by Quantum
Mechanic, https://bitcointalk.org/index.php?topic=27787.0

6. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000). https://doi.org/10.1007/s001459910006

7. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2000). http://eprint.iacr.
org/2000/067

8. Chen, J., Gorbunov, S., Micali, S., Vlachos, G.: Algorand agreement: super fast
and partition resilient Byzantine agreement (2018). https://eprint.iacr.org/2018/
377

9. Chen, J., Micali, S.: Algorand (2017). http://arxiv.org/abs/1607.01341
10. Chepurnoy, A., Duong, T., Fan, L., Zhou, H.-S.: Twinscoin: a cryptocurrency via

proof-of-work and proof-of-stake. In: Proceedings of the 2nd ACM Workshop on
Blockchains, Cryptocurrencies, and Contracts, pp. 1–13. ACM (2018)

11. CryptoManiac. Proof of stake (2014). NovaCoin wiki. https://github.com/
novacoin-project/novacoin/wiki/Proof-of-stake/

12. Daian, P., Pass, R., Shi, E.: Snow White: robustly reconfigurable consensus and
applications to provably secure proof of stake. In: Goldberg, I., Moore, T. (eds.)
FC 2019. LNCS, vol. 11598, pp. 23–41. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-32101-7 2

http://hashcash.org/papers/hashcash.pdf
http://hashcash.org/papers/hashcash.pdf
https://bitcointalk.org/index.php?topic=27787.0
https://doi.org/10.1007/s001459910006
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067
https://eprint.iacr.org/2018/377
https://eprint.iacr.org/2018/377
http://arxiv.org/abs/1607.01341
https://github.com/novacoin-project/novacoin/wiki/Proof-of-stake/
https://github.com/novacoin-project/novacoin/wiki/Proof-of-stake/
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-030-32101-7_2

2-hop Blockchain: Combining Proof-of-Work and Proof-of-Stake Securely 711

13. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros Praos: an adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 3

14. Duong, T., Fan, L., Zhou, H.-S.: 2-hop blockchain: combining proof-of-work and
proof-of-stake securely (2016). https://eprint.iacr.org/2016/716

15. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-48071-4 10

16. Eyal, I.: The miner’s dilemma. In: IEEE Symposium on Security and Privacy, pp.
89–103. IEEE Computer Society Press, May 2015

17. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

18. Fan, L., Zhou, H.-S.: A scalable proof-of-stake blockchain in the open setting (or,
how to mimic Nakamoto’s design via proof-of-stake), July 2017. https://eprint.
iacr.org/2017/656/

19. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

20. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-
tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles, pp. 51–68. ACM (2017)

21. Goodin, D.: Bitcoin security guarantee shattered by anonymous miner with 51%
network power (2014). http://arstechnica.com/

22. Kiayias, A., Panagiotakos, G.: Speed-security tradeoffs in blockchain protocols.
Cryptology ePrint Archive, Report 2015/1019 (2015). http://eprint.iacr.org/2015/
1019

23. Kiayias, A., Panagiotakos, G.: On trees, chains and fast transactions in the
blockchain. In: Lange, T., Dunkelman, O. (eds.) LATINCRYPT 2017. LNCS, vol.
11368, pp. 327–351. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25283-0 18

24. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

25. King, S., Nadal, S.: PPCoin: peer-to-peer crypto-currency with proof-of-stake
(2012). https://peercoin.net/assets/paper/peercoin-paper.pdf

26. Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-
DDH separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 597–612.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 38

27. Miller, A., Kosba, A.E., Katz, J., Shi, E.: Nonoutsourceable scratch-off puzzles to
discourage bitcoin mining coalitions. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM
CCS 2015, pp. 680–691. ACM Press, October 2015

28. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

29. NXT whitepaper (2014). https://www.dropbox.com/s/cbuwrorf672c0yy/
NxtWhitepaper v122 rev4.pdf

https://doi.org/10.1007/978-3-319-78375-8_3
https://eprint.iacr.org/2016/716
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/978-3-662-45472-5_28
https://eprint.iacr.org/2017/656/
https://eprint.iacr.org/2017/656/
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
http://arstechnica.com/
http://eprint.iacr.org/2015/1019
http://eprint.iacr.org/2015/1019
https://doi.org/10.1007/978-3-030-25283-0_18
https://doi.org/10.1007/978-3-030-25283-0_18
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://peercoin.net/assets/paper/peercoin-paper.pdf
https://doi.org/10.1007/3-540-45708-9_38
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf
https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf

712 T. Duong et al.

30. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

31. Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 380–409. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 14

32. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in
bitcoin. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 515–
532. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 30

33. Schrijvers, O., Bonneau, J., Boneh, D., Roughgarden, T.: Incentive compatibility
of bitcoin mining pool reward functions. In: Grossklags, J., Preneel, B. (eds.) FC
2016. LNCS, vol. 9603, pp. 477–498. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54970-4 28

34. Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in bitcoin. In:
Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 507–527. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 32

35. Vasin, P.: Blackcoin’s proof-of-stake protocol v. 2 (2014). http://blackcoin.co/
blackcoin-pos-protocol-v2-whitepaper.pdf

https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-70697-9_14
https://doi.org/10.1007/978-3-662-54970-4_30
https://doi.org/10.1007/978-3-662-54970-4_28
https://doi.org/10.1007/978-3-662-54970-4_28
https://doi.org/10.1007/978-3-662-47854-7_32
http://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf
http://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf

	2-hop Blockchain: Combining Proof-of-Work and Proof-of-Stake Securely
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Paper Organization

	2 Preliminaries
	2.1 System Model
	2.2 Security Properties

	3 Construction
	3.1 The Main Protocol

	4 Security Analysis
	4.1 Proof Intuition

	A Unique Signature Schemes
	References

