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Abstract—Ground penetrating radars (GPRs) carried by
mobile platforms, such as vehicles and drones, have been applied
in various applications, for instance, subsurface utility detection,
structural health inspection, and autonomous driving. However,
existing GPR systems are not able to operate autonomously
and adaptively due to several challenges, including the lack of
intelligence, uncertain and dynamic nature of sensing environ-
ments, and huge state and action spaces. To overcome these
challenges, in this article, we propose an autonomous cognitive
GPR (AC-GPR) enabled by a deep reinforcement learning (DRL)
approach. Specifically, the operation of the proposed AC-GPR is
first formulated as a sequential decision process. A novel reward
function is developed for the DRL model by defining and combin-
ing two different types of entropy-based rewards resulting from
object detection and recognition, respectively. A deep Q-learning
network (DQN) is developed to address the extreme curse of
dimensionality in the state space and learn a policy directing the
actions of the AC-GPR. The AC-GPR is evaluated using software
called GprMax by combining DRL with GPR modeling and sim-
ulation. Results show that our proposed DRL-based AC-GPR
outperforms other GPR systems using different approaches in
terms of detection accuracy and operating time.

Index Terms—Autonomous cognitive ground penetrating radar
(GPR), deep reinforcement learning (DRL), subsurface sensing.

I. INTRODUCTION

GROUND penetrating radars (GPRs) have been exten-
sively used in many industrial applications, such as coal

mining, structural health monitoring, subsurface utilities detec-
tion and localization, and autonomous driving [1], [2]. In
subsurface detection applications, a GPR system transmits an
electromagnetic (EM) wave into the ground at several spatial
positions and receives the reflected signal to form GPR data,
called A-Scans, B-Scans, and C-Scans with a different num-
ber of dimensions [1], [3]. As shown in Fig. 1, a single radar
trace, or waveform, is called A-Scan, which is 1-D signal. A
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Fig. 1. 1-D A-Scan, 2-D B-Scan, and 3-D C-Scan.

set of consecutive radar waveforms along a particular direction
(for example, x-axis in Fig. 1) can be assembled into a 2-D
image called B-Scan. Multiple B-Scan images along a partic-
ular direction (for example, y-axis in Fig. 1) can be composed
into a C-Scan. In this article, we consider B-Scan because it
is the most commonly used GPR data modality for subsurface
object detection.

Although GPRs are effective in many nondestructive appli-
cations, most of the existing GPR systems are human-operated
due to the need for experience in operation configurations
based on the interpretation of collected GPR data. GPR-based
subsurface survey is complicated as various sensing environ-
ment and subsurface objects have dissimilar features. In actual
GPR survey, GPR sensing quality could be affected by many
factors, including environmental factors, such as soil dielectric
properties, environment noise, clutter, multipath effects, com-
bined near and far-field effects, and GPR operational system
parameters, such as wavelength (or frequency), waveform,
polarization, wave timing, transmitter and receiving antennas
direct coupling, etc.

In addition, the subsurface objects have different structural
features and EM properties that affect GPR EM wave propa-
gation differently. Hence, processing GPR data and extracting
information of interest are challenging and involve a series of
sophisticated steps. In nearly all existing GPR systems, GPR
data processing is performed offline where data from the field
are collected and stored, and then postprocessed on a computer
after the scanning. Such a processing approach is time con-
suming and lacks adaptivity. Also, some applications involve
sensing tasks within hazardous and inaccessible environments.

To achieve optimal sensing performance, it is desired to
design an autonomous GPR system that can operate adaptively
under varying sensing conditions. Specifically, the system is
able to adaptively move with a robotic platform and adjust
its operational parameters through real-time interaction with
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the sensing environment. Although the decision-making pro-
cess of operating an autonomous GPR can be modeled as a
finite-horizon Markov decision process (MDP) with finite state
and action spaces, the curse of extremely high dimensionality
of state space makes it computationally infeasible to derive
optimal action using the standard infinite-horizon MDP algo-
rithms [4]. Deep reinforcement learning (DRL) is suitable for
solving this problem since it can reduce the dimensionality of
the large state space while learning the optimal policy at the
same time.

This article is focused on the development of a DRL frame-
work that enables AC-GPR. To this end, a proper reward
function is needed to effectively reflect the value of different
actions of the AC-GPR agent at different states. Also, a DRL
algorithm with the reward function needs to be developed to
learn a policy that directs the AC-GPR’s actions. To the best
of our knowledge, this is the first work based on DRL for the
development of AC-GPR. The main contribution of this article
can be summarized as follows.

1) By formulating cognitive subsurface object detection
as a Markov decision problem, a DRL framework is
established to resolve the problem.

2) A deep Q-network (DQN) algorithm with a novel reward
function that combines rewards from both region of
interest (RoI) identification and object classification is
proposed.

3) To show the efficacy of the proposed framework,
simulation-based validations are performed on real-time
GPR data from GprMax simulator by combining DRL
with GPR operation modeling [5], [6].

The remainder of this article is organized as follows.
The related work is presented in Section II. In Section III,
an overview of the system model and architecture of the
proposed AC-GPR is presented. The proposed DRL approach
is discussed in Section IV. Section V presents performance
evaluation and discussion. Finally, Section VI concludes this
article.

II. RELATED WORK

The Internet of Things (IoT) and robotics fields are linking
up to forge Internet of Robotic Things (IoRT) [7] where smart
gadgets can screen the events occurring around them, inter-
twine their sensor information, utilize local and/or distributed
intelligence to autonomously plan the course of action(s) to
control gadgets in the physical world. For example, the com-
plexity of autonomous driving on urban roadways is addressed
by applying RL method [8] and DRL [9].

Autonomous GPRs have been extensively studied in
field robotics, remote sensing, and intelligent transportation
systems [10]–[15]. Cornick et al. [10] described a localizing
GPR system fused with GPS, LiDAR, and camera hooked
at the bottom of an autonomous vehicle for autonomous
ground vehicle localization. The system allows real-time cre-
ation of single-track maps with online data processing, as
well as real-time localization of the vehicle to a prior map.
Williams et al. [11] developed an autonomous robotic system
employing GPR probing of glacier surfaces for void detection

in ice. Supervised machine learning with pretrained models
was applied to automatically classify data into crevasse and
crevasse-free classes. Other machine learning techniques have
been applied to analyze B-Scans for object detection using
Faster R-CNN [12], and incorporating frequency domain fea-
tures in classification with augmented GPR data synthesized
by the generative adversarial network (GAN) [13]. Foessel-
Bunting et al. [14] described a sled-mounted GPR integrated
with position and latitude instrument for autonomous search
for Antarctic meteorites. Using nondestructive evaluation
(NDE) sensors, histogram of gradient (HOG) and Naive Bayes
classifier, Le et al. [15] developed an autonomous robotic
system for real-time bridge deck inspection that generates con-
dition map. Although the aforementioned systems have used
robotic systems to move GPR scanners, GPR movement and
its operational parameters were not adaptively adjusted on
the fly.

DRL techniques in autonomous robots and sequential deci-
sion making process have been broadly studied [16]–[18].
The current studies incorporate the versatile operation con-
trol of robots, mechanical control, and the administration
in multirobot frameworks locally, at the edge or the cloud.
Xin et al. [19] used a DQN to develop an end-to-end
autonomous robotic system that incorporates path planning.
Robots and humans safely coexist through socially compli-
ant interaction with inverse reinforcement learning (RL) [20].
The solution for mission-driven robotics with visual navigation
problems has been developed through DRL and AI2-THOR
framework in [21].

Recent research, such as automatic exploration for navi-
gation in unknown environment using DRL-based decision
algorithm with classical robotic methods [22] is gaining atten-
tion. Vehicle classification with the DRL algorithm that selects
key areas from an image automatically, through integrating
multiglimpse and visual attention mechanism which highlights
one part of an image and weaken the others [23].

By formulating active object detection as a sequential action
decision process, the work in [24] implemented a hybrid of
deep Q-learning network (DQN) with a dueling. DRL was also
studied in a sequential decision making process for imbalance
classification [25] by formulating a sensitivity reward function
for minority class data sets. An artificial agent is trained to
act in a human-like manner to reduce over-segmentation errors
through a joint surgical gesture segmentation and classification
method [26].

III. PROPOSED SYSTEM MODEL AND ARCHITECTURE

A. Original Concept of Cognitive GPR

A typical operational scenario is that a GPR moves around
in a predetermined geographical area (environment) to detect
a subsurface object through transmitting EM waves into the
ground, and receiving reflected EM waves whenever there’s a
contrast in material dielectric properties, as shown in Fig. 2.
Adaptive tuning of operational parameters of the AC-GPR,
such as frequency, waveform, polarization and wave timing,
may lead to considerable improvement in the quality and
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Fig. 2. Successive action choice procedure of dynamic subsurface object
detection, where the GPR takes a perception under certain state, and executes
an action, and receives an observed B-Scan image at time step t.

Fig. 3. Operational flows of traditional and cognitive GPRs. (a) Traditional
GPR. (b) Cognitive GPR.

efficiency of subsurface sensing. Fig. 3(a) shows the con-
ventional mode of GPR operation where an expert sets the
operational parameters into an optimal configuration based on
previous experience with similar past situations. This is, an
iterative time-consuming process. The conventional mode is
not suitable for continuous long-time operations, especially in
a complex environment inaccessible to humans.

The concept of cognitive GPR was proposed in [27] where
intelligence was expected to be generated on the fly to adap-
tively adjust the operational parameters based on data analysis
and feedback control. As shown in Fig. 3(b), the cognitive

TABLE I
NOMENCLATURE

GPR consists of an adaptive GPR transceiver, a perceptor mod-
ule, a memory module, and a cognitive analyzer. The operation
of the cognitive GPR follows a perception-action cycle: first,
the GPR transceiver collects the reflected wave data about sub-
surface objects and sends them to the preceptor. Then, the
preceptor processes and analyzes the data to extract signature
patterns and format a perception of subsurface conditions. The
memory module has a GIS database containing urban subsur-
face condition attributes and spatial locations. The cognitive
analyzer carries out machine learning based on both the pro-
cessing results from the perceptor and the prior knowledge
about GPR measurement from the memory module to pro-
duce intelligent responses, locally or at the edge [28] for the
control of radar transceiver reconfigurations.

Although the concept of cognitive GPR in [27] pointed to
promising direction in the system architecture development, no
unambiguous definition or approach for a cognitive GPR was
provided to build an adaptive and smart GPR that generates
intelligence to adaptively adjust its operational parameters in
an uncertain and dynamic sensing environment.

B. MDP Formulation of Cognitive GPR Operation

The cognitive control of the positioning and operational
parameters of a GPR can be formulated as a sequential
decision-making problem which can be further modeled as
a finite-horizon MDP with finite state and action spaces.

Without loss of generality, we consider a discrete-time
system in which time is divided into slots of unit length
�T such that each slot t corresponds to the time duration
[(t−1) ·�T, t ·�T). The complete notation used in this article
is given in Table I.

The MDP model is described as follows.
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Fig. 4. Iterative operational process of the proposed DRL-enabled AC-GPR.

1) S: A set of environment and system operational states.
Let st = (κt, �t) ∈ S denote the state of the GPR sens-
ing system and the environment in each discrete time
slot t. κt is the newly updated observation about the
environment, in the form of captured B-Scan image. �t

is the operating state vector of the GPR, such as the
remaining battery energy of the mobile GPR platform
and the agent’s position Xt ∈ C (a complex number),
i.e., Xt = xt + jyt, representing the GPR location with
coordinates (xt, yt).

2) A: A set of actions of the GPR. Let at = (ξt, �vt, �pt) ∈ A
denote the action vector to be performed at time step t
where �pt is the operational parameter values of the GPR;
(ξt, �vt) denote the moving direction and velocity of the
GPR platform, respectively. Thus, the position of the
GPR at time step t can be derived as Xt = Xt−1 + �vt ·
�T · ejξt .

3) Pt(s, a, s′) = Pr(st+1 = s′|st = s, at = a): The
probability of transition from state s to state s′ under
action a.

4) K: Horizon over which the GPR will act.
In the proposed research, the core problem of the MDP is

to find a “policy” for the GPR: a function π that specifies
the action at = π(st) that the GPR will choose in state st

to maximize its accumulative knowledge about the subsurface
object over horizon K : E[

∑T
t=0 γ trt(st, at)] where E[.] is the

expectation taken over st+1 ∼ P(st+1|st, at) and γ (0 ≤ γ ≤ 1)

is the discount factor of the reward at different time steps. Due
to the extreme curse of dimensionality in the state space S
and the immense challenge of identifying transition probability
P(st+1|st, at), it is impractical to use exact methods such as
linear programming and dynamic programming to solve the
MDP problem.

To overcome this challenge, we will investigate a DRL
framework where an AC-GPR agent is reinforced to
learn a policy. As a computational methodology for auto-
mated decision-making of intelligent agents in uncertain
environments, DRL has progressed tremendously in the past

decade [24], [29]. DRL is concerned with how a decision-
making agent ought to take actions from a given state of an
environment so as to maximize some notion of cumulative
reward. The full potential of DRL requires the agent to directly
interact with the environment to attain a flow of real-world
experience, as shown in Fig. 2.

C. Architecture of the Proposed AC-GPR

In this section, we present an overview of the proposed
AC-GPR architecture, as shown in Fig. 4. The architecture
has an iterative operational process involving environment
observation, reward identification, DQN-based policy learn-
ing, and action execution. The observations (B-Scan images)
from the AC-GPR agent are feed into a RoI detection module
where a RoI, for example, an image area including a hyper-
bolic signature resulting from a subsurface rebar, is identified
and extracted through the image segmentation technique using
Rényi entropy and Otsu method [30], [31]. The pretrained
classifier receives the RoI image as input for classification.
The classification probability output is used to characterize the
classification confidence. The output results from the RoI mod-
ule and classification module are used to form the reward for
the AC-GPR agent, which will be described in Section IV-A.

The DQN module takes a tuple of state, action, reward, and
future state as experience, and guides the AC-GPR agent to
learn an optimum policy that maximizes the future discounted
reward. The algorithm of the DQN module will be described
in Section IV-B. As one of value-based DRL methods, DQN
is considered because it provides a better sample efficiency
and more stable performance compared with policy gradient
methods that have drawback of high variance in estimating the
gradient.

IV. PROPOSED DRL APPROACH

The cognitive analyzer in Fig. 3(b) is a critical compo-
nent of the proposed AC-GPR. It produces intelligence to
direct the GPR movement and its operational configurations
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based on the collected GPR data and prior knowledge about
GPR measurement. This section presents a DRL approach to
the implementation of the cognitive analyzer with a novel
rewarding mechanism.

A. Reward Function

The AC-GPR agent is rewarded through the outcome of
RoI detection and object classification while interacting with
the environment. The reward function r : S × A → R is
derived by combining two types of rewards that are computed
based on Rényi entropy and Shannon entropy, respectively, that
effectively characterize the AC-GPR agent’s newly acquired
subsurface knowledge about the subsurface object from the
sensory data.

The rationale behind this combination of the two subrewards
is that the AC-GPR agent would receive reward ri

t when it
identifies an RoI in the B-scan image and receive reward rm

t
when it recognizes some object properties, such as the diam-
eter and material of a subsurface pipeline, through GPR data
classification.

Thus, the overall reward function is

rt(st, at) = ηri
t + �rm

t (1)

where ri
t denotes the RoI detection reward; rm

t denotes object
recognition reward; and η and � denote the weight coefficients
whose values are determined based on the relative importance
of the RoI detection reward and the object recognition reward.

In this section, we briefly present the concept of RoI detec-
tion reward in Section IV-A-1, and then describe subsurface
object classification reward in Section IV-A-2.

1) Reward Based on RoI Detection: Prior to the RoI
detection, a B-Scan image first goes through the following
preprocessing steps: signal denoising by removing the DC
component (arithmetic mean) from each trace of the GPR
image, time-zero correction which adjusts all traces to a com-
mon time-zero position where the first break of air-wave is
observed, and signal enhancement/amplification [3]. The pre-
processed B-Scan image is input to the RoI module in Fig. 4
to identify a peculiar area of the image, such as a hyper-
bola signature, through computing Rényi entropy and Otsu
threshold, generating an extracted RoI image. Rényi entropy
is preferred because of its high level of accuracy on signal
processing tasks compared to Tsallis [32]–[34]. Rényi entropy
has been considered in vast domains such as, structure health
monitoring clutter rejection for intrawall diagnostics [32],
tracking electroencephalographic signals changes [33], and
cardiac autonomic neuropathy in diabetic patients [34].

In this work, Rényi entropy is calculated to recognize the
singular region on a B-scan image. In particular, a high Rényi
entropy value demonstrates high level of information similar-
ity while a low Rényi entropy value features high level of
information peculiarity [30]. Let Z(τ ) denote the collected
GPR reflection signal which can be depicted as

Z(τ ) = D(τ ) + ζ (τ ) (2)

where D(τ ) represents the reflection signal from the object
of interest, and ζ(τ ) models remaining interference and noise

Fig. 5. Plots (A) and (B) shows Rényi entropy versus scan axis and Rényi
entropy versus two-way time, respectively. Plot (C) shows the dimension of
the Region of Interest (RoI) as the red box.

upon preprocessing. In calculation, power normalization is first
performed with the summation of the power of the same time
index data points on different traces, which can be expressed as

zi(τ ) = ||Zi(τ )||2
∑I

i=1 ||Zi(τ )||2 (3)

where zi(τ ) is the normalized signal, i is the trace index, I is
the total number of traces included; τ is the time index of
pulse data on each reflection trace waveform. Upon power
normalization, to assess data singularity over the wave travel
time axis (that is, y-axis) of the B-scan, a generalized Rényi
entropy is calculated as

Eα(τ ) = 1

1 − α
loge

I∑

i=1

[zi(τ )]α (4)

where Eα(τ ) is the entropy quantification, and α denotes the
entropy order. Equation (4) is equivalent to the basic Shannon
entropy limiting value as α → 1.

Similarly, Rényi entropy calculation is applied to the scan-
ning traces axis (that is, x-axis)

zj(�) = ||zj(�)||2
∑J

j=1 ||zj(�)||2 (5)

where zj(�) is the normalized signal, j is the time index of
pulse and J is the total number of time indexes; � = δt·�v is the
displacement along the trace axis of the pulse data. Then, as
shown in Fig. 5(a) the Rényi entropy to assess data singularity
over the scanning position along the x-axis of the B-scan is

Eα(�) = 1

1 − α
loge

J∑

j=1

[
zj(�)

]α
. (6)
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Fig. 5(a) and (b) show the entropy plots with respect to the
trace axis and two-way travel time axis of a B-Scan image,
respectively.

With two selected entropy thresholds 	1 and 	2, the B-scan
image can be segmented into three classes of nonoverlapping
regions: 1) singular region; 2) stationary background region;
and 3) the transition region in-between. The singular region
entropy values are lower than threshold 	1, the stationary
background region entropy values are higher than 	2. While
for the transitioning region, its entropy values are between
these two thresholds.

The optimum thresholds 	1∗ and 	2∗ are determined
through the Otsu method [31], a classic image segmenta-
tion technique for extracting an object from its background.
Specifically, by initializing both 	1 and 	2 at zero, the Otsu
method performs statistical analysis to identify appropriate
thresholds so as to segment image into different regions based
on the criteria: the intensity values variances of the same
region is minimized while the variances of different regions
are maximized. In this work, when applying the Otsu method,
the entropy is chosen as the intensity value [30].

Fig. 5(a) and (b) shows the calculated upper bound Otsu
thresholds: 	2∗ = 0.8601 over the scan axis and 	2∗ = 1.70
over the travel time axis, respectively. By identifying Rényi
entropy values that intersect with the thresholds, boundary
trace values (i.e., �1 = 182 and �2 = 363) and travel time
values (i.e., τ1 = 26, τ2 = 178) can be determined with low
entropy values contained in the resulting intervals. Then, these
four boundary values are superimposed on Fig. 5(c), demarcat-
ing the RoI, as shown by the red box. As an example, Fig. 5(c)
shows the resulting RoI including a section of hyperbola where
the highest value marked by the red ball is the position of the
object, such as a rebar or a pipe.

From the computed Rényi’s probability distributions Eα(τ )

and Eα(�), coupled with the optimum Otsu thresholds 	2∗
t =

E∗
α(τ ) and 	2∗

s = E∗
α(�), the reward for detecting the RoI is

computed as

ri
t = a(�Eα(τ ) · �Eα(�)) + b(�τ · ��) (7)

�Eα(τ ) = E∗
α(τ ) − min{Eα(τ )} (8)

�Eα(�) = E∗
α(�) − min{Eα(�)} (9)

�τ = τ2 − τ1 (10)

%�� = �2 − �1 (11)

where �Eα(τ ) and �Eα(�) denote the Rényi entropy vari-
ation with respect to the travel time axis and the scanning
position axis, respectively; �τ denotes the related two-way
travel time interval and �� the related scanning position
interval, indicating the dimension of the detected RoI; and
a and b are weight coefficients whose values are determined
based on the relative importance of the Rényi entropy variation
and the RoI dimension; As higher data singularity corresponds
to lower Rényi entropy, higher �Eα(τ ) and �Eα(�) indicate
higher chance of detecting the subsurface object [30]. The
proposed reward function in (7) combines the Rényi entropy
change with the RoI dimension, mitigating the false positive
detection resulting from outliers.

2) Reward Based on Subsurface Object Classification:
Subsurface objects can be recognized through different GPR
data classification tasks, for example, determining the material
type, burial depth, and diameter depending on specific appli-
cations. In GPR data processing and analysis, as shown in
the top part of Fig. 4, the RoI identified through the Rényi
entropy computation is passed to a pretrained convolutional
neural network (CNN) classifier. The use of CNN is moti-
vated by the fact that CNNs outperform other artificial neural
networks on conventional computer vision tasks, such as object
detection [35], facial expression recognition [36], and medi-
cal imaging segmentation [37], through feature learning. Let
P = {p(1), p(2), . . . , P(N)} denote the classification probabil-
ity output from the classifier where p(n) is the class probability
that the processed B-scan belongs to class n, and N is the total
number of classes. The possible classes depend on the specific
classification task. For example, if the classification task is to
determine the material type of the subsurface object, the possi-
ble classes could be different material types, namely concrete,
metallic, polyvinyl chloride (PVC), etc. As entropy is a mea-
sure of uncertainty [38], [39], in this work, Shannon entropy is
considered to quantify the confidence in the classification. The
Shannon entropy of the classification probability distribution
P can be computed as

rm
t = −

N∑

n=1

p(n) log(p(n)). (12)

It is inferred from (12) that a balanced classification prob-
ability distribution results in high entropy indicating high
uncertainty and low classification confidence while a skewed
classification probability distribution has low entropy indicat-
ing low uncertainty and high classification confidence.

B. DRL Algorithm

In RL, an agent learns to better perform tasks by learn-
ing from its experiences interacting with the environment. Our
proposed DRL method is based on the DQN algorithm taking
four inputs (s, a, r, s′), i.e., state observation, action, reward,
next state observation, via epsilon-greedy strategy.

As shown in Fig. 4 the DQN algorithm has three main
components: 1) the evaluation Q-network (Q(s, a; θ)); 2) the
target Q-network (Q̂(s, a; θ̂ )); and 3) the replay memory.
The evaluation Q-network and the target Q-network have
the same network structure but different weights and biases.
However, the evaluation Q-network is updated instantly for
every episode, whereas the target Q-network is updated peri-
odically after every H episodes as shown in Table III, by
replacing the values of the target Q-network with the eval-
uation Q-network values. The target network is updated only
infrequently in order to mitigate the risk of nonstationarity of
the target values in the loss function in (15) caused by the
feedback loops between the target and estimated Q-values.
The generated Q-values, through a replay memory with ran-
dom batch size of B as shown in Table III, are used to compute
the DQN loss in (15).
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The AC-GPR is inclined to execute the action with the
highest Q-value derived from each episode. The Q-value corre-
sponding to the pair of state and action represents an expected
discounted accumulated future reward.

As discussed in Section IV-A, the AC-GPR agent received
reward rt = r(st, at) at each time instance t. The accumulated
reward is defined as Rt = ∑T

t=0 γ trt with a discounting fac-
tor γ ∈ [0, 1]. The action-value function under action policy
π is defined as Qπ (st) = E[Rt|st, π ], and the optimal pol-
icy is determined by estimating the action-value function Qπ .
The estimation can be obtained by Bellman equation recur-
sively [40]. An episode is terminal on one of the following
two conditions: 1) when AC-GPR detects a subsurface object
or 2) when AC-GPR observes a B-Scan with a predefined
number of traces (A-Scans).

To improve the convergence of DQN, the agent’s experi-
ence at each time step t is stored at the replay memory, where
a batch B of experiences are randomly sampled, as shown in
Table III. This process is called experience replay that provides
diverse and decorrelated training data and solves the issue
of correlated inputs/output [41]. Let et represent the agent’s
experience at time t which is defined as

et = (st, at, rt, st+1). (13)

This tuple contains the state st, the action at taken at state st,
the reward rt given to the agent at time t as a result of the
previous state-action pair (st, at), and the next state st+1. The
replay memory is set to a finite size limit L, and therefore, it
will only store the latest L experiences.

The DQN utilizes a CNN as a nonlinear approximation to
the optimal action-value function Q(θ) → Q∗. All parame-
ters of the network are denoted as θ , and the parameters are
estimated iteratively by minimizing the temporal difference
error as

θ̂ = arg min
θ

E

[(

rt + γ max
at+1

Q̂
(

st+1, at+1; θ̂
)

−

Q(st, at; θ))2
]
. (14)

The optimization is converted into a regression problem in
DQN by regarding temporal difference error as loss

L(θ) =

⎡

⎢
⎢
⎢
⎣

rt + γ max
at+1

Q̂
(

st+1, at+1; θ̂
)

︸ ︷︷ ︸
target y

−Q(st, at; θ)

⎤

⎥
⎥
⎥
⎦

2

. (15)

In the training process, y is regarded as the target of the regres-
sion function. The loss function is used to train the neural
network to adjust parameters θ .

After training, parameters θ∗ are obtained, and the algo-
rithm stops after a finite number of steps M with the optimal
policy VπM = V∗. With approximation, the optimum policy
maximises the future discounted reward as

∀s π∗(st) = arg max
a

∑

st+1

Pst,at(st+1)V
∗(st+1) (16)

where Pst,at(st+1) is the state transition probability as dis-
cussed in Section III-B, and V∗ the optimum value function

Algorithm 1: Cognitive Subsurface Object Detection
Algorithm Based on Deep Q-Network

1 Initialize replay memory D to capacity L
2 Initialize Q with random parameter θ

3 Initialize Q̂ with weights θ̂ = θ

4 for episode = 1, M do
5 Initialize state s1
6 for t=1, T do
7 Select a random action at with probability ε;
8 Otherwise select at = arg maxa Q(st, a; θ);
9 Execute action at, capture B-Scan image, and

compute reward rt = ηri
t + �rm

t ;
10 Set st+1 = (xt+1, yt+1),
11 Store transition (st, at, rt, st+1) in D;
12 Sample random batch (sj, aj, rj, sj+1) from D;
13 Calculate target yj

yj =
{

rj if terminal sj+1

rj + γ maxa′ Q̂
(

sj+1, a′; θ̂
)

else;

Perform a gradient descent step in (15) with
respect to network parameters θ ;

14 Every H steps reset Q̂ = Q, i.e., set θ̂ = θ .
15 end
16 end

with convergence πt+1(st+1) = πt(st). Note that the computa-
tion of both Pst,at(st+1) and the sum in (16) is avoided due to
the action-value function approximation through Q(θ).

After learning the policy, the agent needs to perform action
selection and execution. The agent faces the well-known
exploration-exploitation dilemma of whether to exploit the
current knowledge by following the learned policy or to con-
tinue to explore the uncertain environment to acquire more
knowledge. To resolve the dilemma, the agent adopts an
ε-greedy-based policy for selecting actions where ε ∈ [0, 1]
denotes the exploration probability. The configuration that
ε = 0 would result in the pure greedy policy that always
selects the action corresponding to the highest Q-value. The
pure greedy method may cause the policy learning to get stuck
at a local optima. In contrast, the configuration that ε = 1
would result in the pure random policy that selects an action
randomly without considering the Q-value.

1) Data Set: A nonzero value of ε ∈ (0, 1) would allow the
agent to select random actions with probability of ε regard-
less of the actual Q-value. A decaying ε would allow the
agent to select random actions with decreasing probabilities
as the learning goes on. A decaying ε may help to stabilize
the learned policy which converges to an optimal one.

As described in Algorithm 1, at first (lines 1–3), the network
parameters are initialized randomly. To enhance the learning
stability, the target network is introduced which has the same
structure as the evaluation network. Then, the exploration pro-
cess is conducted, and the action is derived from the DQN.
The DQN employs the RoI and classifier modules to update the
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proposed reward function (line 9), by combining the RoI detec-
tion reward and object classification reward, which intuitively
measures the amount of the acquired information about the
subsurface object from the observed B-Scan image. Next (lines
11–14), the experiences are stored into the replay memory.
Then, the minibatch method is used to randomly collect exam-
ples from the replay memory. The weights and biases of the
network are updated by training the DQN according to the
loss function (15). The training process will terminate once it
reaches a predefined number of episodes. During each episode,
the AC-GPR agent stops performing actions after a predefined
number of time steps, or could terminate the episode early if
it detected the subsurface object. The computational complex-
ity of AC-GPR algorithm is expressed as O(MT), where M
denotes the total number of episodes and T the number of
time steps.

V. PERFORMANCE EVALUATION AND DISCUSSION

In this section, we systematically evaluate the performance
of the proposed AC-GPR by using a GPR simulator called
GprMax [5], [6] designed for modeling GPR operations.
B-scan images are generated by GprMax on the fly in
mimicing the GPR data acquisition in the real environment.

A. Experiment Settings

1) GprMax Simulator: The GprMax simulator used in this
study solves 2-D Maxwell equations using the finite-difference
time-domain (FDTD) method [42]. The simulation in this work
considers small diameter pipes or rebars made of three types
of materials, namely, concrete, metallic and PVC, as subsur-
face objects. GprMax characterizes the impact of common
pipe materials on resulting GPR data based on the dielectric
constant also called relative permittivity which indicates how
easily a material can become polarized. Relative permittivity,
defined as the ratio of the permittivity of a substance to the
permittivity of space of vacuum, is expressed as ε = (C/Co),
where C denotes the capacitance of the material as the dielec-
tric capacitor, Co = (εoA/d) represents the capacitance using
vacuum as the dielectric, εo the permittivity of free space
(8.85 × 10-12 F/m, i.e., Farad per meter), A the area of the
sample cross section area, and d the thickness of the sample.
The dielectric constant for PVC, concrete and metal are 4.0,
4.94, and infinity, respectively.

GprMax uses a mixing model for modeling radio propaga-
tion in soil [43]. The soil composition involves sand fraction
0.3, clay fraction 0.1, bulk density 2 g/cm3, sand particle den-
sity of 2.66 g/cm3, and a volumetric water fraction range of
0.001–0.25.

The GPR data set contains B-Scan images from the GprMax
simulator, which was used to train the classifier, as shown in
Fig. 4. Fig. 6 shows some example B-Scan images which are
corresponding to concrete, metallic and PVC objects. Some
images have sharp, dim or no hyperbola due to different
factors including, but not limited to, object material, burial
depth, soil dielectric properties, GPR antenna configuration
and orientation.

Fig. 6. Sample B-Scans of the data set used to the train the classifier. The
data set includes 1440 concrete, 1440 metallic, and 1440 PVC B-Scans.

In this work, we generated a total of 40 320 images with
each material type having 13 440 B-Scan images, derived from
varying soil dielectric properties and object diameter. All the
40 320 images are unique, each exhibiting different level of
contrast, shape and size on hyperbola signature. The B-Scans
from concrete objects exhibit weak or no hyperbola at all
due to the fact that the signals are attenuated as they propa-
gate through the soil and through the object hence weakening
the signal reflection. The PVC objects have a slightly higher
dielectric constant than concrete objects; accordingly, they pro-
duce B-Scans with slightly high hyperbola contrast. B-Scans
from metallic objects have strong and high resolution hyper-
bola contrast due to the high relative permittivity of metals
which allows for strong reflected signals.

2) RoI Detection: The RoI detection module in Fig. 4
receives a preprocessed B-Scan image and identifies a pos-
sible RoI with the method detailed in Section IV-A. The RoI
is resized into a 64 ×64 grayscale images which will be feed
into the classification module, as illustrated in Fig. 5.

3) Object Classification: The pretrained classifier in Fig. 4
is configured with two hidden convolutional layers. The first
layer has 32 filters, kernel size 3 applied with stride 2, while
the second one has 64 filters, kernel size 3 with stride 2. All
two layers are followed by a LeakyReLU nonlinearity. This
is followed by a fully connected layer with 256 units, and
three-class output layer and softmax, learning rate of 10−3 and
batch size of 64. Based on the classification outcome, i.e., the
probability values of different classes, Shannon entropy is cal-
culated. During training a high class prediction probability
means low uncertainty hence a high confidence of a partic-
ular class. Table II summarizes the hyperparameters of the
CNN-based object classifier.

4) DQN: Simulations are conducted on a core i7 computer
with four cores, 2.2-GHz Intel Xeon CPU, and 16-GB RAM.
The training process is run with Python 3.6 and tensorflow
1.10.0. The size of the replay memory is 5 × 104, and the
sample mini batch is B = 32. During the training process, the
GPR agent interacts with the environment and receives tuples
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TABLE II
ARCHITECTURE PARAMETERS OF THE CNN-BASED OBJECT CLASSIFIER,

AND THE EVALUATION AND TARGET NETWORKS OF DQN

TABLE III
DEEP Q-NETWORK SETTINGS

of state, action, reward and next state. A total of 5 × 104

such tuples are stored in the replay memory as experiences
which is then sampled and used during the learning. The
agent starts by exploring the environment to build knowledge
about transitions and action rewards. Then, through decaying
the exploration probability ε, the agent gradually exploits the
gathered information to detect subsurface objects. Tables II
and III summarize the architecture parameters and network
hyperparameters of DQN, respectively.

B. Performance Results

1) Likelihood of Successful Object Detection Versus Noisy
B-Scan Data: In this article, we evaluate the performance of
the proposed AC-GPR under different levels of clutter noise
caused by clutter from heterogeneous soil.

Based on the model of radio propagation proposed by
Peplinski [43], heterogeneous soils are modeled by considering
sand fraction, clay fraction, bulk density, sand particles density,
and the range for volumetric water fraction. The noise lev-
els are modeled through adjusting both sand and clay fraction
from 0.1 to 0.9. The clutter noise level increases as the fraction
value increases. To make the clutter noise levels more distinct,
different types of soil surfaces including smooth, rough, water,

Fig. 7. AC-GPR performance with noisy B-Scan images collected from
soils with varying clay and sand fractions. (a) Clay fraction analysis. (b) Sand
fraction analysis.

Fig. 8. AC-GPR performance with varying (a) object diameter and (b) object
burial depth.

and grass surfaces, are added to the fractal-box (a box that
houses Peplinski heterogeneous soil).

Interpreting noisy B-scan data caused by clutter noise is
challenging, and sometimes it is impossible to extract some
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Fig. 9. Classification accuracy versus RoI dimension for metallic, concrete and PVC objects buried in four different media: (a) dry sand, (b) wet sand,
(c) pavement, and (d) heterogeneous soil.

knowledge about the subsurface object from the data. In this
work, the likelihood of successful object detection and recog-
nition is used to evaluate the performance of the proposed
AC-GPR on this aspect. Specifically, a performance metric
termed success rate is defined as (w/(w+ l)) where w denotes
the number of episodes with successful object detection, and
l the number of episodes with failed detection. Successful
object detection and recognition are characterized by high
confidence results of object detection and material type classi-
fication, respectively, from a B-Scan image. Fig. 7 shows that
the resulting success rate decreases along with the increase of
the level of the clutter noise caused by the increased clay or
sand fraction.

2) Likelihood of Successful Object Detection Versus Object
Diameters and Burial Depths: To simulate real-world sce-
narios, the performance of the proposed AC-GPR was also
tested through modeling various object diameters and burial
depths in dry sand, pavement and heterogeneous soil. Fig. 8(a)
shows that as the diameter of the object increases the success
rate increases. This is because with a larger object diam-
eter more signals are reflected back to the GPR receiver,
hence generating B-Scans with higher resolution hyperbo-
las. As shown in Fig. 8(b), the success rate decreases as
the burial depth of the object increases. This is because the
deeper the object is buried the more attenuation the signals
incur as they propagate through the soil, resulting in weaker
reflection and fainter hyperbolas that makes it more challeng-
ing for the AC-GPR to detect and recognize the subsurface
object.

3) Classification Accuracy Versus RoI Dimension: As GPR
data interpretation is affected by the size of the detected RoI,
the impact of RoI dimension on the classification accuracy of
the classifier was also evaluated. Fig. 9 shows the classifica-
tion accuracy versus RoI dimension for metallic, concrete, and
PVC objects buried in four different media: 1) dry sand; 2) wet
sand; 3) pavement; and 4) heterogeneous soil. As shown in
Fig. 9(a), the classification for metallic objects in dry sand has
the highest accuracy. The level of accuracy increases as the RoI
dimension increases. Fig. 9(b) shows a slight decline in classi-
fication accuracy in wet sand with we compared with the result
of dry sand. That is, because the more water content in the wet
sand caused more signal attenuation. Fig. 9(c) and Fig. 9(d)
shows the low classification accuracy in Pavement and hetero-
geneous soil, respectively. This is, because the severe signal
attenuation in the pavement and heterogeneous soil resulted
in weak signature of object in the RoI, such as a hyperbola.
Even though the RoI dimension increases, the classifier fails
to produce a high level of confidence about the classification
of the object material.

C. Convergence Analysis

1) Comparison Between Reward Functions: In order to
evaluate the proposed reward function, we study the impact
of different reward function variations on performance con-
vergence. In the evaluation, three types of rewards were
considered, that is, the reward only from RoI detection, the
reward only from object classification, and the combined
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Fig. 10. Cumulative reward versus time steps with different ε-greedy policies and types of rewards. (a) AC-GPR decay (ε = 1 − 0.001). (b) AC-GPR
(ε = 0.001). (c) AC-GPR (ε = 1). (d) Q-Learning.

TABLE IV
COMPARISON OF THE TIME STEPS NEEDED FOR ALGORITHM 1 TO REACH

CONVERGENCE WITH DIFFERENT ε-GREEDY POLICIES AND TYPES OF

REWARDS

rewards from both RoI detection and object classification.
The rewards were computed from a heterogeneous soil setup
containing varying clay and sand fractions (0.1−0.9) with an
object having a diameter of 0.05 m at a burial depth of 0.3 m.
For comparison, different AC-GPRs with different ε-greedy
policies were investigated. In addition, a Q-Learning-based
method was also evaluated by considering a fairly small state
space. Fig. 10 shows the cumulative reward versus time step
in different cases. It is observed that the AC-GPR using the
proposed combined rewards outperforms the systems using
other types of rewards.

2) Time Steps to Reach Convergence: The time needed
for the proposed AC-GPR to reach converged performance
was also evaluated. The time steps to reach convergence
for different AC-GPR implementations adopting different
ε-greedy policies are displayed in Table IV. It is shown

that the proposed AC-GPR configured with decaying-epsilon-
greedy policy (ε decay) outperforms the rest. Additionally, the
proposed AC-GPR using the combined reward demonstrates
better convergence performance.

VI. CONCLUSION

In this article, an autonomous cognitive GPR (AC-GPR)
based on DRL was proposed. A novel reward function was
developed such that the AC-GPR agent is rewarded from both
RoI detection and object classification. With the proposed
reward function a DQN-based model was developed to enable
the AC-GPR to learn to take optimal actions that maximizes
the long-term discounted reward, hence detecting and iden-
tifying subsurface objects from its experiences of interacting
with the environment. The proposed AC-GPR was evaluated
by adapting the GPR operation simulator, GprMax, and simu-
lating real-world environment and GPR operations. Simulation
results show the proposed AC-GPR has superior performance
over other GPR systems in terms of object detection success
rate, object classification accuracy, and convergence.

It is worth noting that the proposed approach for AC-GPR
is suitable for the detection of a single subsurface object with
simple structural configurations, such as a pipe or a rebar, and
under relatively homogeneous environment. However, in real-
world environment, detection of subsurface objects involves
multiple challenges including inherent uncertainties and com-
plexities of the environment for EM wave propagation and
GPR data acquisition, scarcity of ground-truth GPR data set
for model training, and structural heterogeneity of different
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subsurface objects. As our future work, advanced machine
learning algorithms and models for an AC-GPR that incorpo-
rate effective GPR signal processing methods and GPR data
processing approaches will be developed for detecting and
modeling objects in complicated environments.
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