
Succinct Scriptable NIZK via Trusted
Hardware

Bingsheng Zhang1(B), Yuan Chen1, Jiaqi Li1, Yajin Zhou1, Phuc Thai2,
Hong-Sheng Zhou2, and Kui Ren1,3

1 Zhejiang University, Hangzhou, China
{bingsheng,yajin zhou,kuiren}@zju.edu.cn

2 Virginia Commonwealth University, Richmond, USA
{thaipd,hszhou}@vcu.edu

3 Key Laboratory of Blockchain and Cyberspace Governance of Zhejiang Province,
Hangzhou, China

Abstract. Non-interactive zero-knowledge proof or argument (NIZK)
systems are widely used in many security sensitive applications to
enhance computation integrity, privacy and scalability. In such systems,
a prover wants to convince one or more verifiers that the result of a
public function is correctly computed without revealing the (potential)
private input, such as the witness. In this work, we introduce a new
notion, called succinct scriptable NIZK, where the prover and verifier(s)
can specify the function (or language instance) to be proven via a script.
We formalize this notion is UC framework and provide a generic trusted
hardware based solution. We then instantiate our solution in both SGX
and Trustzone with Lua script engine. The system can be easily used by
typical programmers without any cryptographic background. The bench-
mark result shows that our solution is better than all the known NIZK
proof systems w.r.t. prover’s running time (1000 times faster), verifier’s
running time, and the proof size. Finally, we show how the proposed
scriptable succinct NIZK can be readily deployed to solve many well-
known problems in the blockchain context, e.g. verifier’s dilemma, fast
joining for new players, etc..

1 Introduction

Collaboration is one of the main driving forces for the sustainable advancement
of our civilization, growing from small-size tributes, to cities, and then to large-
scale states. Being a part of the modern society, we are interacting with hundreds
of known/unknown entities either physically or remotely. The main motivation
of this work is to introduce new concepts and frameworks to enable more effec-
tive collaborations. One potential candidate tool is a well-known cryptographic
primitive—zero knowledge (ZK) proof/argument system. In a ZK system, two
players, the prover and the verifier, are involved; one hand, the prover who holds
a valid witness of an NP statement, is able to convince the verifier that the state-
ment is true without revealing the corresponding witness; on the other hand, if
c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12972, pp. 430–451, 2021.
https://doi.org/10.1007/978-3-030-88418-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88418-5_21&domain=pdf
https://doi.org/10.1007/978-3-030-88418-5_21

Succinct Scriptable NIZK via Trusted Hardware 431

the prover does not know any valid witness of the statement, then he cannot
convince the verifier. ZK systems can be used to enable trustworthy collabo-
rations: all players in a protocol are required to prove the correctness of their
behaviors in the protocol execution. However, to enable effective collaborations,
desired properties are expected, and we will elaborate them below.

Our Design Choices. In a large-scale collaboration network, it is infeasible for
a party to prove the correctness of its computation to all other parties one by
one. The first property we need from ZK systems, is (1) non-interactiveness in
the sense that the prover only needs to prove the correctness of the computation
once, and the prover then can send the same proof to all other parties i.e., the
verifiers. From now on, we use NIZK to denote non-interactive ZK systems. The
second desirable property we need is (2) succinctness, given the fact that the
bottleneck for large-scale collaboration is the capacity of the underlying peer-to-
peer network communication. Furthermore, as already mentioned, we note that
in a typical application scenario a single prover will prove the same statement to
many verifiers. In this unbalanced setting, a desirable NIZK proof system should
have the property of (3) lightning fast verifier.

Up to now, those properties have already been achieved by a number of exist-
ing NIZK proof systems, such as zk-SNARK [15,33], zk-STARK [3], etc. How-
ever, these NIZK systems have not been widely used in practice yet. A significant
barrier is the that the computation of prover is very heavy. The state-of-the-art
NIZK systems need hours to prove large statement even on a powerful PC (32
cores and 512 GB RAM [3]), let alone portable devices such as smartphones,
tablets, and IoT devices. We aim to develop a NIZK system with the property
of (4) truly lightweight prover.

To enable wide adoption of NIZK in the real world, the design must be (5)
deployment friendly. The underlying cryptographic machinery should be trans-
parent to the developers, and the protocol can be operated without cryptographic
background. Unfortunately, all existing NIZK proof systems for universal lan-
guage require re-compilation of both prover and verifier’s executable binary files
for every new language instance.

Our Approach. We propose a new primitive, called succinct scriptable NIZK,
with the goal of achieving all desirable properties above. This new primitive
allows the developers to specify the language instance or computation to be
verified via a script without any re-compilation. Similar to NIZK proof systems
for universal language, a scriptable NIZK system can support multiple language
instances, depending on the script language design and the script engine execu-
tion environment. Different from existing succinct NIZK systems for universal
language, our scriptable NIZK is very easy to use; for a new language instance,
the players can easily define the scripts and no further compilation is required.

Defining Scriptable NIZK. We assume both the prover and the verifiers have
agreed on the function/script, denoted as C, the public input, denoted as Inputpub,
and the (public) output, denoted as Output; in addition, the prover keeps a private
input, denoted as Inputpriv, such that C(Inputpub, Inputpriv) = Output. The prover

432 B. Zhang et al.

is able to prove to the verifiers that he knows a private input Inputpriv that would
make the script execution C(Inputpub, Inputpriv) to generate output Output.

We note that not all scripts can be supported; each scriptable NIZK system
is parameterized by a predicate Q, and Q(C, Inputpub, Inputpriv,Output) = 1 for
any valid script C. The predicate Q is defined by the script language design and
the script engine execution environment.

An NP language L is defined by its polynomial-time decidable relation R;
namely, L := {x : ∃w s.t. (x,w) ∈ R}. In practice, for each relation R, we assume
there exists a corresponding script CR such that CR(x,w) = 1 iff (x,w) ∈ R;
otherwise, CR(x,w) = 0. To use the scriptable NIZK system for an NP language,
the prover and the verifiers set Inputpub := x, Inputpriv := w, Output := 1, and
the script as CR. The notion is formally modeled in the UC framework.

Constructing Succinct Scriptable NIZK. We then present a generic succinct
scriptable NIZK construction in the trusted hardware model. Trusted hardware
can enable an isolated and trusted computation environment where security
sensitive data can be stored and processed with confidentiality and integrity
guarantees. Most existing trusted hardware based applications, e.g., [14] empha-
size on the confidentiality aspect, while the security of our construction mainly
relies on the computational integrity guaranteed by trusted hardware. The main
idea is as follows. Recall that in a NIZK proof, the prover and the verifier
have common input (CR, Inputpub := x). The potentially malicious prover wants
to convince the verifiers that he knows a witness Inputpriv := w such that
CR(Inputpub, Inputpriv) = 1. Since the trusted hardware can guarantee computa-
tion integrity even when the host is malicious, we can let OQ

HW to execute the
relationship decision algorithm b ← CR(x,w) and sign the output b. To bind the
decision algorithm and statement, we let OQ

HW sign (CR, x, b) without revealing
the witness w. Therefore, by checking the signature, the verifier is convinced
that the prover must know a witness w such that CR(x,w) = 1 if (CR, x, 1) is
signed by OQ

HW. Similarly, for general computation, the private input Inputpriv is
not signed; therefore, zero-knowledge property is preserved even if the signature
leaks the signed message.

Although there are a number of works in the literature studying how to speed
up secure computing via trusted hardware, such as Intel SGX, we emphasize
that this problem has not been solved by previous works. The closest related
work is sealed-glass proof introduced by Tramer et al. [38], where the authors
try to explore some use cases even if the isolated execution environment has
unbounded leakage, i.e., arbitrary side-channels. We note that, their primitive is
interactive, thus not scalable; in their protocol, for each verification, the trusted
hardware must be interacted with. Our primitive is non-interactive, and in our
construction, the verifier can verify the proof without interacting with the trusted
hardware. There are also many theoretical differences between interactive ZK
and non-interactive ZK, such as the minimum assumptions needed to realize the
primitive; therefore, this work is not covered by [38]. Most importantly, ours is
the first work to investigate scriptable NIZK, which is developer-friendly.

Succinct Scriptable NIZK via Trusted Hardware 433

Instantiation. We instantiate our succinct scriptable NIZK proof system on two
most popular trusted hardware platforms: Intel SGX and Arm TrustZone. The
main component is the Q-compliant hardware functionality OQ

HW. In terms of
Intel SGX, the OQ

HW functionality is instantiated by three entities: the (trusted)
Intel server, the prover, and the SGX hardware device. In terms of Arm Trust-
Zone, currently only manufacture has the privilege to access TrustZone root
keys; nevertheless, our system uses Hikey 960 TrustZone development board.
The OQ

HW functionality is instantiated by two entities: the (trusted) authority
server, and the TrustZone development board.

With regard to scriptability, in practice, it is a challenge for a third party to
verify the consistency between an executable binary and its software specifica-
tion. That is, the binary contains no bug, no trapdoor, and it is not subverted.
Even if it is possible, it dramatically increases the verifier’s complexity. On the
other hand, it is implausible to assume a trusted third party that is available to
generate a certified binary for each language instance. To address this issue, we
decide to adopt a scripting language, called Lua. Lua is a lightweight script lan-
guage. We implemented modified Lua script engine for both Intel SGX enclave
computation environment and the TrustZone environment. At a high level, we
let the Intel server and/or the setup authority server to prepare and sign a Lua
engine enclave/binary. The signed Lua engine is published as a common refer-
ence string (CRS). In addition, the hardware is initialized with a signing key,
and it corresponding public key is also published as a part of the CRS. The
modified Lua engine takes input as a script C, a public input Inputpub, a private
input Inputpriv, and a tag tag that can be used to store auxiliary information,
such as session id. The Lua engine runs Output ← C(Inputpub, Inputpriv) and
signs 〈C, Inputpub,Output〉. Therefore, any verifier who has the public key can
verify the signature. The predicate Q is restricted by the Lua engine constrain.
For instance, there is a fixed heap size, e.g., 32MB when the Lua engine enclave
is built. It limits the maximum script size. Moreover, as security requirement,
one may want to introduce a maximum running time to prevent the script from
running forever. Such a running time cap would also reflected by Q.

Recall that scriptable NIZK proofs are typically deployed in a one-to-many
scenario, where the prover only needs to invoke the trusted hardware once and
many verifiers can check the validity of the proof; however, currently, the remote
attestation of Intel’s SGX requires the verifier to interact with the Intel Attesta-
tion Service (IAS) server. If each verifier needs to query the Intel IAS server to
check the proof, the overall performance is limited by the throughput of Intel’s
IAS. Moreover, the validity of a NIZK proof should be consistent over time, i.e.,
if a NIZK proof is verifiable at this moment, the same proof should remain verifi-
able in the future. Unfortunately, this would not be the case if we invoke the Intel
IAS in the verification process; certifying an old quote (say, generated 1 year ago)
is never the design goal of Intel’s remote attestation. This is because the quote
needs to contain a non-revoked proof for each item on the signature revocation
list, and the proof is no longer verifiable once the revocation list is updated at
the Intel side. That means a quote is only valid until the next revocation list
update. To resolve this issue, in our design, after generating the quote, the prover
immediately queries the Intel IAS server for the attestation verification report

434 B. Zhang et al.

on behave of a verifier. Since the attestation verification report is signed by Intel,
given Intel’s public key, anyone can verify the validity of the attached signature.
This tweak also makes the verification process non-interactive.

Performance. The performance of our succinct scriptable NIZK system is theo-
retically and experimentally evaluated and compared with the other NIZK proof
systems. Table 1 illustrates the asymptotic efficiency comparison measured by
the circuit size. |C| is the circuit size; |w| is the witness size; |c| is the problem
instance size; s is the number of copies of the subcircuits; d is the width of the
subcircuits. As we can see, our construction can achieve constant CRS size, con-
stant verifier’s complexity, and constant proof size. The prover’s complexity is
also minimum, which is |C|. Note that in theory, the verifier’s complexity cannot
be sublinear to the statement size |x|, but as a convention, it is ignored in the
table.

Table 1. Asymptotic efficiency comparison of different NIZK proof/argument systems.
|C| is the circuit size; |w| is the witness size; |c| is the problem instance size; s is the
number of copies of the subcircuits; d is the width of the subcircuits. DL stands for
discrete logarithm assumption, CRHF stands for collision-resistant hash functions, SIS
stands for shortest integer solution assumption, KE stands for knowledge-of-exponent
assumption, HW stands for trusted hardware model, and AGM stands for algebraic
group model.

Scheme Setup size Proof size Prover’s time Verifier’s time Setup Asm Comp. Asm

Ligero 1
√|C| |C| log |C| s log s + d log d RO CRHF

Bootle et al. 1
√|C| |C| |C| RO CRHF

Baum et al.
√|C| √|C| log |C| |C| log |C| |C| CRS SIS

zk-STARKs 1 log2 |C| |C| polylog(|C|) polylog(|C|) RO CRHF

Aurora 1 log2 |C| |C| log |C| |C| RO CRHF

Bulletproof |C| log |C| |C| log |C| |C| log |C| CRS + RO DL

SNARKs |C| 1 |C| log |C| |c| CRS/AGM KE

This work 1 1 |C| 1 HW Signature

In terms of the actual experimental performance. The prover’s running time
for evaluating a Boolean circuit consisting of 239 NAND gates only takes less
than 10 mins, which is 900 times faster than the state of the art, zk-STARK,
for circuits larger than 235 gates. Note that this performance result is tested
through Lua script, and native code for circuit evaluation is 10 times faster in
our experiment. The verifier’s running time is merely a signature verification,
which takes approximately 1.5 ms – better than all the other existing succinct
NIZK systems. The proof size is 297 Bytes with current Intel SGX signature,
where 256 Bytes are the signature. Hence, we envision it is possible to further
reduce the proof size by replacing the signature scheme. The TrustZone based
system uses ECDSA on the secp256k1 curve, so the proof size is only 32 Bytes.

Succinct Scriptable NIZK via Trusted Hardware 435

Applications. Finally, we discuss applications of our succinct scriptable NIZK.
We note that, many applications have been previously investigated. However, it
is very challenging to deploy them in practice due to the performance barrier.

Sound and Scalable Blockchain. As discussed at the very beginning of the Intro-
duction, lots of heated discussions are taking place in blockchain community,
with the goal of improving the performance in a sound manner. This consists of
two parts. First, we should address the existing issues, since many blockchain
scalability proposals have been implemented even the community is aware of the
security concerns. Again, we note that, these issues were not addressed probably
due to the missing of fast and succinct NIZK.

Second, we will enable new design paradigm for the interesting “one-to-
many” unbalanced computation scenarios. Using our NIZK, typically, a single
node as prover, can generate in very short time a proof that will convince all
other nodes to accept the validity of the current state of the ledger, without
requiring those nodes to naively re-execute the computation, nor to store the
entire blockchain’s state, which would be required for such a naive verification.

Privacy Preserving Smart Contracts. The zero-knowledge properties of ZK
proofs has already been intensively used in blockchain projects, with the goal
of ensuring the anonymity and protecting financial privacy. Notably, Succinct
Non-interactive ARguments of Knowledge (zk-SNARK) has been used in Zcash
and Ethereum; Bulletproofs has been used in Monaro. Recently, Ethereum has
the plan to explore the feasibility zk-STARK in its future version of their plat-
form. We note that, it is still not clear if zk-STARK can be widely adopted in
blockchain platforms given the fact that, the current proof size is 1000× longer
than zk-SNARKs. Fortunately, our NIZK is super succinct, and super fast.

2 Preliminaries

Trusted Execution Environment. Trusted execution environment (TEE)
refers to a range of technologies that can establish an isolated and trusted envi-
ronment where security sensitive data can be stored and processed with confiden-
tiality and integrity guarantees. TEE needs to be instantiated on top of a trusted
computing base (TCB), which consists of hardware, firmware and/or software.
Minimizing the size (attack surface) of TCB with reasonable assumptions is the
common goal of this line of research. In practice, TEE can be realized on top of
several promising trusted hardware technologies, such as ARM TrustZone and
Intel SGX. Although recently a few side-channel attacks, e.g. [9,28], have been
explored against those TEE candidates, new designs and fixes are proposed on
a monthly basis. Hence, we envision that TEE will be a cheap and acceptable
assumption in the near future. In this work, our benchmarks are mainly based
on the Intel SGX platform for its readily deployed remote attestation infras-
tructure; however, our technique can also be implemented on any other TEE
solutions.

436 B. Zhang et al.

Intel SGX. Intel Software Guard Extensions (SGX) is a widely used trusted
hardware solution to enable TEE. It provides a hardware enforced isolated exe-
cution environment against malicious OS kernels and supervisor software. The
SGX processor sets aside an exclusive physical memory space, called processor
reserved memory (PRM) to ensure the confidentiality and integrity of enclave’s
memory. Each SGX hardware holds two root keys: root provisioning key and
root seal key. The actual attestation keys are deviated from those root keys via
PRF. Intel’s (anonymous) attestation is based on an anonymous group signature
scheme called Intel Enhanced Privacy ID (EPID) [8]. In this work, we are partic-
ularly interested in SGX’s ability to enable attested computation, i.e. any third
party can audit an outcome is computed by a pre-agreed program in a genuine
SGX. More specifically, the application enclave first uses EREPORT to generate
a report for local attestation (identifying two enclaves are running on the same
platform). The report is then sent to a special enclave called Quoting Enclave
(QE) to produce a quote by signing the report with the group signature. In the-
ory, given the group public key (and the up-to-date revocation list), any verifier
can check the validity of the signed quote non-interactively; however, currently,
one must contact the Intel Attestation Service (IAS) for verification. IAS will
first verify the group signature and then create the corresponding attestation
verification report with its own signature.

NIZK Proof/Argument Systems. Let R be a polynomial time decidable
binary relation. We call x the statement and w the witness, if (x,w) ∈ R.
L := {x | ∃w : (x,w) ∈ R} is the NP language defined by R. In a zero-
knowledge (ZK) proof/argument system, the prover wants to convince one or
more verifier(s) x ∈ L, where L is an arbitrary NP language. The ZK system
is called non-interactive (NIZK) [6] if the prover can generate the proof with-
out interacting with a verifier, and any verifier(s) can check the validity of the
proof. However, it is not possible to realize a NIZK proof/argument system
unless the language is in BPP in the plain model (a.k.a. standard model) [18].
To circumvent this impossibility result, all NIZK proof/argument systems must
rely on some trusted setup assumptions, such as the common reference string
model, random oracle model, and generic group model, etc. A NIZK system is
called succinct if the proof size is asymptotically less than |w| + |x| (cf. Sect. 3).
Unfortunately, it is also shown in [16] that succinct NIZK proof/argument sys-
tems cannot be based on any falsifiable assumptions, i.e. an assumption that
can be written as a game. That means one must embrace “strong assumptions”
to enjoy the benefit of succinctness. In addition, many NIZK proof/argument
systems have a so-called unbalanced property, where the verifier’s complexity is
minimized (sometimes maybe at the cost of increasing the prover’s complexity).
This property is desirable when the number of verifiers is large, such as the
blockchain scenarios.

3 Security Definition

In this section, we formally define the scriptable NIZK. Our definition is through
an ideal functionality FQ

sNIZK. In addition, we present a setup functionality OQ
HW.

Succinct Scriptable NIZK via Trusted Hardware 437

We note that the two functionalities will be realized in Sect. 4 and instantiated
in Sect. 5, respectively.

Fig. 1. The scriptable functionality FQ
sNIZK.

Scriptable NIZK Ideal Functionality. The scriptable NIZK ideal functional-
ity FQ

sNIZK is depicted in Fig. 1. The functionality is parameterized by a predicate
Q. Given a script C, a public input Inputpub, a private input Inputpriv, and an
output Output, the functionality FQ

sNIZK allows the prover to obtain a proof π if
Q(C, Inputpub, Inputpriv,Output) = 1 and C(Inputpub, Inputpriv) = Output. Once a
proof π is generated, it will always is verified. Notice that the proof π is gener-
ated without the knowledge of the private input Inputpriv; therefore, the proof
generated by FQ

sNIZK has the conventional zero-knowledge. Since FQ
sNIZK must

obtain a private input Inputpriv such that C(Inputpub, Inputpriv) = Output before
recording a proof π. Hence, FQ

sNIZK also capture the (knowledge) soundness prop-
erty. In addition, the scriptable property is reflected by the predicate Q, which
restricts the class of functions that FQ

sNIZK supports. For instance, Q could be
the total execution steps is less than a certain bound.

The functionality FQ
sNIZK interacts with a set of players P := {P1, . . . , Pn}

as well as ideal adversary S. To generate a proof π, the prover needs to
submit the command 〈C, Inputpub, Inputpriv,Output〉 to FQ

sNIZK. After check-
ing the validity, FQ

sNIZK will inform the adversary S using command (Prove,
sid, ssid, Pi, C, Inputpub,Output). If the adversary S allows, she will then send
the proof π to FQ

sNIZK. FQ
sNIZK records the message (C, Inputpub,Output, π) and

returns it to the requestor. To verify a proof π, the functionality FQ
sNIZK first

438 B. Zhang et al.

checks if the tuple (C, Inputpub,Output, π) is recorded. If not, which means the
proof is not generated by the functionality itself, then FQ

sNIZK asks the adver-
sary S for the private input. Once a private input Inputpriv is submitted, FQ

sNIZK

checks Q(C, Inputpub, Inputpriv,Output) = 1 and C(Inputpub, Inputpriv) = Output.
If it is the case, FQ

sNIZK records the tuple (C, Inputpub,Output, π), and the proof
is accepted.

Remark on Succinctness. We say a NIZK proof system is succinct if the size of
the proof |π| = poly(λ)(|x| + |w|)o(1).

Fig. 2. The Q-compliant trusted hardware functionality OQ
HW.

Q-Compliant Trusted Hardware Model. Our scheme is built in the Q-
compliant trusted hardware model (Q-HW model), where Q is a predicate that
specifies the class of functions that the hardware is allowed to compute. In the
Q-HW model, all parties have access to an ideal functionality OQ

HW, which on
input queries, executes a given Q-compliant function and returns the execution
results. The predicate Q depends on the setup, which may vary from proto-
col to protocol. In this work, we abstract our requirement as the functionality
OQ

HW (cf. Fig. 2, below). The OQ
HW functionality is parameterized with a pred-

icate Q and a digital signature scheme, denoted DS := (KeyGen,Sign,Verify).
OQ

HW can be initialized once by sending the (Init, sid) command to it. It then
generates (PK,SK) ← DS.KeyGen(1λ) and record (sid,PK,SK). After initializa-
tion, anyone can query the public key PK using the GetPK command. Any-
one can then send (Compute, sid, ssid, C, Inputpub, Inputpriv) request to the func-
tionality OQ

HW, where C is the polynomial-time algorithm, Inputpub is the pub-
lic input, and Inputpriv is the private input. The functionality first computes
C(Inputpub, Inputpriv) = y and then asserts Q(C, Inputpub, Inputpriv, y) = 1; it
then returns (y, σ), where the signature σ ← DS.Sign(SK, 〈ssid, C, Inputpub, y〉).
Note that the private input is not signed.

Succinct Scriptable NIZK via Trusted Hardware 439

4 Our Succinct Scriptable NIZK Construction

In this section, we present our succinct scriptable NIZK construction in the
OHW-hybrid world. Before presenting our intuition and construction, we first set
up the context for succinct scriptable NIZK.

Common Information. Unlike most existing NIZK proof systems, the script
C (or language L to be proven) is not hardcoded in the prover and verifier exe-
cutable files. Our script NIZK proof system allows the users to configure the
language instance. This implicitly assumes that the prover and the verifier(s)
have some common information in addition to the statement x before the pro-
tocol execution. For instance, they all know the description of the NP language
L, which is usually represented by its polynomially decidable binary relation R.
Without loss of generality, for a relation R, we assume there exists an efficiently
computable algorithm CR such that CR(x,w) = 1 if (x,w) ∈ R and otherwise
CR(x,w) = 0. CR is the common public input to both the prover and the verifier.
Depending on the concrete implementation, different NIZK proof systems use
different CR representation; most popular NIZK proof systems use arithmetic
circuit representation, while some, e.g. [4], allows more developer-friendly rep-
resentations, e.g., in C programming language. Although, in principle, one can
convert any RAM model program into a circuit representation, this transform
imposes O(log n) overhead.

Intuition. Trusted hardware offers two important features: (i) data confidential-
ity and (ii) computation integrity. Most existing trusted hardware (TEE) based
applications, e.g., [14] mainly explore the data confidentiality aspect; whereas,
in this project, we emphasize the computation integrity aspect. Recall that in a
NIZK proof, the prover and the verifier have common input (CR, Inputpub := x).
The potentially malicious prover wants to convince the verifiers that he/she
knows a witness Inputpriv := w such that CR(Inputpub, Inputpriv) = 1. Since
the trusted hardware can guarantee computation integrity even when the host
is malicious, we can let OQ

HW to execute the relationship decision algorithm
b ← CR(x,w) and sign the output b. To bind the decision algorithm and state-
ment, we let OQ

HW signs (CR, x, b) without revealing the witness w. Therefore,
by checking the signature, the verifier is convinced that the prover must know a
witness w such that CR(x,w) = 1 if (CR, x, 1) is signed by OQ

HW. Similarly, for
general computation, the private input Inputpriv is not signed; therefore, zero-
knowledge property is preserved even if the signature leaks the signed message.

What is the difference between the above NIZK construction and trusted
computation in the OQ

HW functionality setting? Recall that NIZK proofs are
typically deployed in a one-to-many scenario, so the prover only needs to invoke
the OQ

HW once and many verifiers can check the validity of the proof; on the
contrary, the other existing TEE based trusted computation applications mostly
focus on one-to-one setting. Our crs is just the public key of OQ

HW.

Construction. Our Succinct Scriptable NIZK construction utilizes the Q-
compliant hardware functionality OQ

HW as defined in Fig. 2.

440 B. Zhang et al.

Fig. 3. The succinct scriptable NIZK protocol ΠQ
nizk in the OQ

HW-hybrid model.

We aim to achieve constant verification time; light-weight device can per-
form the verification. In addition, the verifier is only required to query the
OQ

HW functionality once to obtain the public key PK; when PK has already
been fetched, the verification can be executed offline. As depicted in Fig. 3, our
succinct scriptable NIZK proof protocol ΠQ

nizk uses a digital signature scheme
DS := (KeyGen,Sign,Verify) as its building block. At the beginning of the pro-
tocol, the hardware functionality needs to be initialized. In Fig. 3, this step is
performed by the prover (marked in grey) if it is not done yet. The prover
then asserts Q(C, Inputpub, Inputpriv,Output) = 1 and C(Inputpub, Inputpriv) =
Output; it sends (Compute, sid, ssid, C, Inputpub, Inputpriv) to OQ

HW and obtains
(Compute, sid, ssid, 〈Output, σ〉) from OQ

HW. σ is the proof.
To verify a proof π, the verifier needs to know the public key PK. This

step can be performed by a trusted setup, and PK is published as the
common reference string. Otherwise, the verifier can query OQ

HW to fetch it
(marked in grey). In the verification phase, the verifier V accepts the proof
if DS.Verify(PK, 〈ssid, C, Inputpub,Output〉, σ) = 1.

Security. We show the security of our succinct scriptable NIZK construction
via Theorem 1, below. Its proof can be found in the full version.

Theorem 1. Assume signature scheme DS := (KeyGen,Sign,Verify) is EUF-
CMA secure. The scriptable NIZK protocol ΠQ

nizk described in Fig. 3, UC-realizes
the FQ

sNIZK functionality depicted in Fig. 1 in the OQ
HW-hybrid world.

5 OQ
HW Instantiations

In this section, we realize the Q-compliant trusted hardware functionality OQ
HW

via Intel SGX and Arm TrustZone.

Succinct Scriptable NIZK via Trusted Hardware 441

Challenges. In both platforms, there are a number of challenges need to be
resolved. In terms of SGX, the remote attestation of Intel SGX currently requires
the verifier to contact the Intel IAS server. On the other hand, in a typical NIZK
proof system usage case, the prover aims to prove the truth of the statement to
a great number of verifiers. If each verifier needs to query the Intel IAS server
to check the proof, the overall performance is limited by Intel’s throughput.
Moreover, the validity of a NIZK proof should be consistent over time, i.e., if a
NIZK proof is verifiable at this moment, the same proof should remain verifiable
in the future. Unfortunately, this would not be the case if we invoke the Intel
IAS in the verification process; certifying an old quote (say, generated 1 year ago)
is never the design goal of Intel’s remote attestation. This is because the quote
needs to contain an non-revoked proof for each item on the signature revocation
list, and the proof is no longer verifiable once the revocation list is updated at
the Intel side. That means a quote is only valid until the next revocation list
update. To resolve this issue, in our design, after generating the quote, the prover
immediately queries the Intel IAS server for the attestation verification report
on behave of a verifier. Since the attestation verification report is signed by Intel,
given Intel’s public key, anyone can verify the validity of the attached signature.
This tweak also makes the verification process non-interactive.

Secondly, the existing SGX-based proof system, e.g., [38], requires the prover
and the verifiers agree on the executable binary (enclave) for the language to
be proven. It would make it impossible to build a universal NIZK system in
practice. Note that SGX only signs the measure of the enclave, which cannot be
directly compared with the corresponding algorithm. Imaging a verifier who is
checking a NIZK proof generated some time ago, how would the verifier know
the executable binary (enclave) is faithfully compiled? Therefore, NIZK systems,
like [38], would need a trusted party to generate an executable binary (enclave)
for a given problem instance, and the binary is served as the concrete CRS for
the given instance.

In terms of TrustZone, unlike the ecosystem of SGX that is controlled by
Intel, the fragmentation of the ARM TrustZone ecosystem may make it hard
to have a unique setup standard. To resolve this issue, we need to introduce a
trusted setup authority to serve as an attestation server.

SGX-Based System Overview. In our system, the protocolΠsgx involves three
entities: the (trusted) Intel server, denoted as IS, the prover P, and the SGX hard-
ware, denoted asHWsgx. In practice, it is still a challenge for a third party to verify
the consistency between an executable binary and its software specification.

Fig. 4. The script engine enclave SE .

That is, the binary contains no
bug, no trapdoor, and it is not
subverted. Even it is possible, it
dramatically increases the verifier’s
complexity. On the other hand, it
is implausible to assume a trusted
third party that is available to gen-
erate a certified binary for each

442 B. Zhang et al.

problem instance. To address this issue, we decide to adopt a scripting lan-
guage, called Lua. Lua is a lightweight script language, which is ideal for the
SGX enclave computation environment. We let a trusted party, i.e., the (trusted)
Intel server IS, to produce a Lua script engine enclave SE . IS then signs SE so
that no one can tamper with its functionality. As depicted in Fig. 4, SE has one
main function called VerifySign1. It takes three arguments: (i) a script C, (ii)
a public input Inputpub (iii) a tag, tag, that can be used to specify the proof
context, such as ssid, etc. The VerifySign function first loads the private input
Inputpriv from the prover; it then executes the script y ← C(Inputpub, Inputpriv)
using the script interpreter. Abort if y = ⊥, which means the execution error
happened; that is considered as Q(C, Inputpub, Inputpriv, y) = 0. Otherwise, it sets
h := hash(C, Inputpub, y) and ReportData := (tag, h); it then invokes EREPORT
to create a report r for QE to sign. Finally, it returns (y, r).

Remark. Technically, the private input Inputpriv can be input to the VerifySign
function together with the script C and the public input Inputpub as another
argument. We choose to load Inputpriv separately during the enclave execution
for the sake of uniformity: (i) for some applications, we could choose to hard
code C and Inputpub for efficiency; and (ii) in case that the prover needs to use
an SGX enabled server from a third party, it is possible to load Inputpriv in to
the enclave via secure channels to ensure privacy.

The hardware functionality OQ
HW is instantiated by the protocol ΠQ

sgx shown
in Fig. 5. The Init functionality is realized by the Intel server IS and the hard-
ware HWsgx. Upon receiving (Init, sid), IS invokes the EPID provisioning key
procedure [25] with HWsgx. The root seal key of HWsgx was generated during the
processor manufacturing, and Intel claims that they are oblivious to it; the root
provisioning key is set up by a special purpose offline key generation facility. The
actual procedure is complicated; HWsgx is registered to the Intel server IS via a
blind joining protocol. We refer interested reader to [25] for details. Hereby, we
simplify the description – at the end, HWsgx stores a group signature secret key
GSK, and the Intel server IS stores the corresponding group signature public key
GPK that allows it to verify the signatures generated by HWsgx. Note that the
group signature is only used to authenticate HWsgx to the Intel, rather than to
the public. Therefore, it is possible to replace the group signature scheme with
some symmetric key cryptographic primitive, e.g., MAC. In addition, IS also
generates (˜PK, ˜SK) ← DS.KeyGen(1λ). It then creates the script engine enclave
SE as depicted in Fig. 4 and signs it σ̃ ← DS.Sign(˜SK,SE). The public key is
defined as PK∗ := (˜PK,SE , σ̃). Anyone can query (GetPK, sid) to the Intel
server IS to fetch the public key PK∗. The Compute command is realized by
all three parties. Upon receiving (Compute, sid, ssid, 〈C, Inputpub, Inputpriv〉),
the prover Pi creates an enclave instance of SE to HWsgx; it then
invokes VerifySign(C, Inputpub, tag) (supplying Inputpriv during the execution).
HWsgx executes the script y ← C(Inputpub, Inputpriv); Abort, if y = ⊥,

1 The enclave also has a GetQEInfo function to receive the target information of QE.
It is omitted for simplicity.

Succinct Scriptable NIZK via Trusted Hardware 443

Fig. 5. Protocol ΠQ
sgx realizing OQ

HW via Intel SGX.

which is considered as Q(C, Inputpub, Inputpriv, y) = 0. Otherwise, it out-
puts a report r(C, Inputpub, y, tag) for local attestation. The prover Pi sends
the report r(C, Inputpub, y, tag) to the QE of HWsgx to produce a quote
q(C(Inputpub, Inputpriv)); the prover Pi sends the quote q(C, Inputpub, y, tag) to
the Intel server IS to verify. The above steps are simplified in Fig. 5. The Intel
server IS checks the validity of the quote, i.e., checking the group signature
and that the SGX platform generating the quote is not revoked; it then signs
and returns σ ← DS.Sign(SK, 〈C, Inputpub, y, tag〉); The prover Pi outputs (b, σ);
Fig. 6 summaries the basic flow for the Init, GetPK, and Compute protocols.

TrustZone-Based System Overview. ARM TrustZone is another popular
trusted hardware platform that can also be leveraged (as long as a device-unique,
asymmetric key pair signed by the device’s vendor exists). ARM TrustZone pro-
vides isolated execution by separating the CPU into two different worlds, i.e.,
normal world and secure world. The code running inside the normal world can-
not directly access the resource inside the secure world. Also only the application
inside the secure world can access the protected resource.

Specifically, the device-unique key pair can be used to sign the attention
blob that indicates the attestation data originates from the secure world. The
attestation data in this case contains 〈C, Inputpub, y, tag〉. The signed data will be
passed to the attestation server of device vendor (like Intel IAS). If the signature
verification passes on the device vendor’s attestation server, the prover generates
proof.

444 B. Zhang et al.

Fig. 6. SGX based trusted hardware instantiation

The Lua script engine design and system architecture is similar to the SGX-
based solution. However, it is more efficient, as the attestation data can be
verified without interacting with the the attestation server if the verifier already
fetched the public key PK from it.

6 Implementation and Evaluations

Our SGX-based prototype is implemented in C++ using the Intel(R) SGX
SDK v2.5 for Linux. Our implementation is built on top of [34], and we added
OpenSSL lib functions for common cryptographic primitives, such as SHA256,
ECDSA, etc. Since system call is not allowed in enclave, we also simulated a sim-
ple file system to support the Lua interpreter. The size of the compiled enclave
binary is approximately 3.2 MB. In Appendix A, we will present more detail on
our SGX-based prototype.

Our TrustZone-based prototype is developed on the Hikey 960 development
board, which is powered by Huawei Kirin 960 SoC with 4 ARM Cortex-A73
cores and 4 1.8 GHz ARM Cortex-A53 cores. There are 4 GB DDR4 memory
and 32 GB UFS flash on our board. In our experiment, we choose OPTEE (v3.6)
as the OS in the secure world, which is open source and well maintained. For
the normal world OS, we use a Linux distribution, which is developed by Linaro
Security Working Group based on Linux kernel v5.1 and able to corporate with
OPTEE. Then, we implement a Trusted App (TA) for the secure world, which
will be managed by OPTEE. The Client Application (CA) in the normal world
can invoke the TA through specific interface. Lua Intrepreter (v5.3.2) is adopted
and modified. The default secure memory size supported by OPTEE is 16 MB,
which restricts the script size. A signing key is stored in the TrustZone for the
experiment. The enclave structure and system design is similar to the SGX-
based solution, except we adopt ECDSA signature over the secp256k1 curve.
Therefore, the signature/proof size is only 32 Bytes.

Succinct Scriptable NIZK via Trusted Hardware 445

Fig. 7. Performance comparison of differ-
ent succinct NIZKs.

Figure 7a, 7b, 7c shows the perfor-
mance comparison of different succinct
NIZK proof systems w.r.t. prover’s
running time, verifier’s running time,
and proof size, respectively. The
complexity is measured by the num-
ber of multiplication gates. Our work
and BCCGP are 128bit security; lib-
SNARK and SCI are 80-bit secu-
rity; Ligero and zk-STARK are 60-
bit security. Our system is tested on
a SGX-equipped processor (i7-8700
@ 3.2 GHz and 16 GB RAM, sin-
gle thread) and Hikey 960 TrustZone
development board. All the other sys-
tems were tested on a server with 32
AMD cores @ 3.2 GHz and 512 GB
RAM, and the data was reported by
[3]. For libSNARK, the hollow marks
(libSNARK*) in verifier time and
proof size measure only count the post
processing phase; while solid marks
also count CRS generation time. For
our SGX based scheme, the prover’s
running time includes network time for
Intel IAS verification; SGX-A (TZ-A)
stands for arithmetic circuit over ring
Z264 , and SGX-B (TZ-B) stands for
Boolean circuit (NAND gates) w.r.t.
SGX and TrustZone platforms.

Although our NIZK proof system
support RAM model computer pro-
gram, we implemented circuit evalua-
tion as Lua script to facilitate compar-
ison. We emphasize that the reported
time is tested using Lua scripts. If the
circuit is written in native C, the per-
formance is approximate 10 times bet-
ter on both SGX and TrustZone plat-
forms. The complexity is measured by
the number of multiplication gates. We provide ‘SGX-A’ and ‘TZ-A’ as the
benchmark for arithmetic circuit over ring Z264 for SGX and TrustZone, respec-
tively; ‘SGX-B’ and ‘TZ-B’ as the benchmark for Boolean circuit, using SIMD
to implement NAND gates. The measure of the enclave is assumed to be pre-
computed and announce by Intel, so it is not counted into the verifier’s running

446 B. Zhang et al.

time; moreover, the problem instance consists of the Lua script and its hash;
otherwise, the verifier can also compute the hash at a small cost. As shown in
[13], SHA256 can be performed at 2.1–3.5GB/s on most platforms.

7 Related Work

Universal NIZK. Now we briefly describe several different practical approaches
for universal NIZK (i.e., can be applied to general computations and languages
in NP). We note that our description here are based on a large body of exist-
ing results, and unfortunately we cannot cover the entire body research in this
line. We mainly compare the performance related properties, including prover
scalability, verifier scalability, setup/initialization scalability, and communica-
tion scalability. Additionally, we also compare the underlying setup assumptions
and computational assumptions. We note that, in the existing approaches, each
setup only support one language instance. Meanwhile, our scriptable NIZK can
support multiple language instances in a single setup.

There are multiple approaches to scalable NIZK. The first approach is based
on homomorphic public-key cryptography, by Ishai et al. [23] and Groth [20].
Then Gennaro et al. [15] introduced an extremely efficient instantiation, based on
Quadratic Span Programs, which later been implemented in Pinocchio [33]; see
also [4,5,11,26]. Note that, this technique has been used in Zcash. We note that,
the homomorphic public-key cryptography based approach can be combined with
other techniques to improve the performance. For example, Valiant, [40] sug-
gested to reduce prover space consumption via knowledge extraction assump-
tions; This combined method can inherit most of the properties from the under-
lying proof system. We note that our scriptable NIZK system is more efficient.

The second approach is based on the hardness of the DLP, originally proposed
by Groth [21] and then implemented in [7,10]. [10] Note that, the communication
complexity in the DLP approach is logarithmic. However, the verifier complexity
in this approach is not scalable. The third approach is based on efficient Inter-
active Proofs (IP) [19,35]. The line of realizations can be found in [42] and [41].
Note that, the verifier in this approach is not scalable. The fourth approach is
via the so-called “MPC in the head”, originally suggested by Ishai et al. [24] and
then implemented in ZKBoo [17], and in Ligero [1]. “MPC in the head” based
systems have a non-scalable verifier; in addition, communication complexity is
non-scalable. A recent proposal called STARK [3], attempts to simultaneously
minimize proof size and verifier computation. However, their proof sizes are not
small.

In [22,29], an updatable and universal reference string is used. The main goals
of this approach is to address risks surrounding setups and many other security
challenges in practice. It does not improve the efficiency. Another method to
achieve universal setup is using universal circuit [27,39]. In [4,5], a TinyRAM
architecture is used to describe universal computations as simple programs. A
universal circuit is built based on a specific universal language (i.e., a set of
tuples, where each tuple consists of a TinyRAM program, an input string, and

Succinct Scriptable NIZK via Trusted Hardware 447

a time-bound to run the program). Unfortunately, this approach incur a large
overhead on the prover computation.

Trusted Hardware. Many previous works have proposed using trusted hard-
ware to build cryptographic algorithms and systems, including protection
of cryptographic keys [30], functional encryption [14], digital rights manage-
ment [37], map-reduce jobs [12,31], machine learning [32], data analytics [36],
and protecting unmodified Windows applications [2].

8 Conclusion

In this work, we introduce a new notion called succinct script NIZK proof system.
We formally model this notion in the UC framework. We then propose a generic
scriptable NIZK solution based on trusted hardware. We also instantiated our
scheme in both Intel SGX and Arm TrustZone. To the best of our knowledge,
the proposed succinct scriptable NIZK is better than all the existing succinct
NIZK proof systems w.r.t. the prover running time (1000 times faster for Lua
script, 10000 times faster for Native C), the verifier’s running time (10 times
faster), and the proof size (10 times smaller). Most importantly, our NIZK proof
system can be readily deployed and used by any developers without the need of
cryptographic background.

Acknowledgement. Bingsheng Zhang is supported by the Key (Keygrant) Project
of Chinese Ministry of Education. (No. 2020KJ010201) and the National Natural Sci-
ence Foundation of China (Grant No. 62072401). Hong-Sheng Zhou and Phuc Thai
are supported by NSF grant CNS-1801470, a Google Faculty Research Award and a
research gift from Ergo Platform. Yajin Zhou and Kui Ren are also supported by the
Open Project Program of Key Laboratory of Blockchain and Cyberspace Governance
of Zhejiang Province. Yajin Zhou is the corresponding author.

A SGX implementation

As we mentioned in Sect. 6, our SGX-based prototype is implemented in C++
using the Intel(R) SGX SDK v2.5 for Linux. Our implementation is built on
top of [34], and we added OpenSSL lib functions for common cryptographic
primitives, such as SHA256, ECDSA, etc. Since system call is not allowed in
enclave, we also simulated a simple file system to support the Lua interpreter.
The size of the compiled enclave binary is approximately 3.2 MB.

Up on execution, the prover first creates an instance of the Lua script engine
enclave in the SGX and transfers the target information of QE into the Lua
script engine enclave, which will be used later to generate the report for QE. The
prover then produces his proof by calling specific function interface of the enclave,
VerifySign, taking the script C and the public input Inputpub as the arguments
of the function. In our prototype, the script C and statement Inputpub are pre-
loaded into the simulated filesystem. After loading Inputpriv from the prover and
putting it into the simulated filesystem, the enclave invokes the Lua interpreter

448 B. Zhang et al.

Table 2. QuoteBody structure

uint16 t version;

uint16 t sign type;

sgx epid id t epid group id;

sgx isv svn t qe svn;

sgx isv svn t pce svn;

uint32 t xeid;

sgx basename t basename;

sgx cpu svn t cpu svn;

sgx mise select t misc select;

uint8 t reserved1[28];

sgx attributes t attributes;

sgx measurement t mr enclave;

uint8 t reserved2[32];

sgx measurement t mr signer;

uint8 t reserved3[96];

sgx prod id t isv prod id;

sgx isv svn t isv svn;

uint8 t reserved4[60];

sgx report data t report data;

to process the script y ← C(Inputpub, Inputpriv), where the script can access the
statement and witness through Lua file operations. Note that Lua heap size need
to be predefined while compiling the Lua script engine enclave, such as 32 MB,
which restrict the class of script it can support.

After the script execution, the enclave hashes h := hash(C, Inputpub, Inputpriv)
and then put (tag, h) in to the REPORTDATA field of the report structure, and
generate the report r(tag, h) for QE to sign. The prover will then fetch the
report r(tag, h) and send it together with signature revocation list (which can be
obtained from the Intel IAS and SPID (which is assigned by the Intel IAS when
user registers to the Intel IAS) to the QE. The QE will verify the report using
its report key and compute an non-revoked proof for the signature revocation
list, generating a quote consisting of the ReportBody field of the report, the non-
revoke proof and some other necessary information. The prover then will send
the quote to the Intel IAS server for attestation verification report.

Reducing Proof Size. Naively, the prover can send the entire signed attesta-
tion verification report as the NIZK proof. The proof size is 731 Bytes (IAS
report size) + 256 Bytes (the signature size). To reduce proof size, we observe
that Intel’s signature is signed on top of the hash of the attestation verifica-
tion report, so the prover does not need to give the entire report as a part of
the proof as far as the verifier can reproduce the hash of the report. However,

Succinct Scriptable NIZK via Trusted Hardware 449

the verifier is interested in some field of in the isvEnclaveQuoteBody, such as
REPORTDATA. Notice that SHA256 uses Merkle-Damg̊ard structure, i.e., the
final hash digest is calculated by iteratively calling a compression function over
trunks of the signing document. Therefore, the prover can give the partial hash
digest of the first part of the signing report, including ID, timestamp, version,
isvEnclaveQuoteStatus. The isvEnclaveQuoteBody structure is shown in Table 2.
The verifier is only interested in the five fields marked in grey background, and
they can be reconstructed from the public input of the verifier. Moreover, cur-
rently, all the reserved fields must be 0. Moreover, the verifier also wants to
check isvEnclaveQuoteStatus = OK; nevertheless, we observe that the attestation
verification report whose isvEnclaveQuoteStatus = OK has a fixed length n. Oth-
erwise, the length of the attestation verification report is different from n. Based
on that observation, we can regard the length n as another public input of the
verifier. Then when the verifier receives a proof, he/she can check whether the
isvEnclaveQuoteStatus field of the associated attestation verification report is OK
by putting the length n into the end of the report as the total hashed length.
then if the isvEnclaveQuoteStatus field is not OK, the report hash is not aligned
probably, resulting a wrong hash digest.

We let the prover give the partial hash digest until misc select field. Denote
the partial hash digest of the report as ph. The prover needs to provide the
attributes field, denoted as attr, which is 16 Bytes2. The proof is (ph, attr, σ). The
verifier can use reconstruct the hash of the report and then check the validity
of the signature. The proof size is now reduced to 41 Bytes + 256 Bytes (the
signature size), which is 297 Bytes.

References

1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-
linear arguments without a trusted setup. In: ACM CCS 2017, pp. 2087–2104
(2017)

2. Baumann, A., Peinado, M., Hunt, G.: Shielding applications from an untrusted
cloud with haven. ACM Trans. Comput. Syst. (TOCS) 33(3), 8 (2015)

3. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018). https://eprint.iacr.org/2018/046

4. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

5. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von neumann architecture. In: USENIX Security 2014, pp. 781–796
(2014)

6. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: 20th ACM STOC, pp. 103–112 (2019)

2 In fact, there are 56 bits reserved area, whose default value is 0 in the attributes
field. Hence, the size can be further reduced by 56 bits.

https://eprint.iacr.org/2018/046
https://doi.org/10.1007/978-3-642-40084-1_6

450 B. Zhang et al.

7. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

8. Brickell, E., Li, J.:Enhanced privacy id from bilinear pairing for hardware authen-
tication and attestation. In: 2010 IEEE Second International Conference on Social
Computing, pp. 768–775 (2010)

9. Van Bulck, jJ., et al.: Foreshadow: extracting the keys to the intel sgx kingdom
with transient out-of-order execution. In: USENIX Security Symposium (2018)

10. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, pp. 315–334 (2018)

11. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 28

12. Dinh, T.T.A., Saxena, P., Chang, E.C., Ooi, B.C., Zhang, C.: M2R: enabling
stronger privacy in MapReduce computation. In: USENIX Security 2015, pp. 447–
462 (2015)

13. ECRYPT. ebacs: Ecrypt benchmarking of cryptographic systems (2018). https://
bench.cr.yp.to/results-hash.html, Accessed 11 May 2019

14. Fisch, B., Vinayagamurthy, D., Boneh, D., Gorbunov, S.: IRON: functional encryp-
tion using intel SGX. In: ACM CCS 2017, pp. 765–782 (2017)

15. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

16. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: 43rd ACM STOC, pp. 99–108 (2011)

17. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: Faster zero-knowledge for boolean
circuits. Cryptology ePrint Archive, Report 2016/163 (2016). http://eprint.iacr.
org/2016/163

18. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptol. 7(1), 1–32 (1994). https://doi.org/10.1007/BF00195207

19. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: 40th ACM STOC, pp. 113–122 (2015)

20. Groth, J.: Fully anonymous group signatures without random oracles. In: Kuro-
sawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-76900-2 10

21. Groth, J.: Efficient zero-knowledge arguments from two-tiered homomorphic com-
mitments. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
431–448. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 23

22. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 698–728. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 24

23. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short
pcps. In: Twenty-Second Annual IEEE Conference on Computational Complex-
ity (CCC’07), pp. 278–291 (2007)

https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-45611-8_28
https://bench.cr.yp.to/results-hash.html
https://bench.cr.yp.to/results-hash.html
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
http://eprint.iacr.org/2016/163
http://eprint.iacr.org/2016/163
https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/978-3-540-76900-2_10
https://doi.org/10.1007/978-3-642-25385-0_23
https://doi.org/10.1007/978-3-642-25385-0_23
https://doi.org/10.1007/978-3-319-96878-0_24

Succinct Scriptable NIZK via Trusted Hardware 451

24. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: 39th ACM STOC, pp. 21–30 (2007)

25. Johnson, S.P., Scarlata, V.R., Rozas, C.V., Brickell, E., McKeen, F.; Intel sgx: epid
provisioning and attestation services. Intel (2016)

26. SCIPR Lab. libsnark: a c++ library for zksnark proofs (2019)
27. Lipmaa, H., Mohassel, P., Sadeghian, S.: Valiant’s universal circuit: Improvements,

implementation, and applications. Cryptology ePrint Archive, Report 2016/017
(2016). https://eprint.iacr.org/2016/017

28. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: ARMageddon: cache
attacks on mobile devices. In: USENIX Security 2016, pp. 549–564 (2016)

29. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge snarks
from linear-size universal and updateable structured reference strings. IACR Cryp-
tology ePrint Arch. 2019, 99 (2019)

30. McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: an exe-
cution infrastructure for tcb minimization. In: ACM SIGOPS Operating Systems
Review, vol. 42, pp. 315–328. ACM (2008)

31. Ohrimenko, O., Costa, M., Fournet, C., Gkantsidis, C., Kohlweiss, M., Sharma,
D.: Observing and preventing leakage in MapReduce. In: ACM CCS 2015, pp.
1570–1581 (2015)

32. Ohrimenko, O., et al.: Oblivious multi-party machine learning on trusted proces-
sors. In: USENIX Security 2016, pp. 619–636 (2016)

33. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252
(2013)

34. Pires, R., Gavril, D., Felber, P., Onica, E., Pasin, M.: A lightweight mapreduce
framework for secure processing with sgx. In: Proceedings of the 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, CCGrid 2017,
pp. 1100–1107 (2017)

35. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs
for delegating computation. In: 48th ACM STOC, pp. 49–62 (2019)

36. Schuster, F., et al.: VC3: trustworthy data analytics in the cloud using SGX. In:
2015 IEEE Symposium on Security and Privacy, pp. 38–54 (2015)

37. Suh, G.E., Clarke, D., Gassend, B., Van Dijk, M., Devadas, S.: Aegis: architecture
for tamper-evident and tamper-resistant processing. In: ACM International Con-
ference on Supercomputing 25th Anniversary Volume, pp. 357–368. ACM (2014)

38. Tramer, F., Zhang, F., Lin, H., Hubaux, J., Juels, A., Shi, E.: Sealed-glass proofs:
using transparent enclaves to prove and sell knowledge. In: Euro S&P 2017, pp.
19–34 (2017)

39. Valiant, L.G.: Universal circuits (preliminary report). In: Proceedings of the Eighth
Annual ACM Symposium on Theory of Computing, STOC 1976, pp. 196–203
(1976)

40. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 1

41. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient
zkSNARKs without trusted setup. In: 2018 IEEE Symposium on Security and
Privacy, pp. 926–943 (2018)

42. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: ver-
ifying arbitrary SQL queries over dynamic outsourced databases. In: 2017 IEEE
Symposium on Security and Privacy, pp. 863–880 (2017)

https://eprint.iacr.org/2016/017
https://doi.org/10.1007/978-3-540-78524-8_1

	Succinct Scriptable NIZK via Trusted Hardware
	1 Introduction
	2 Preliminaries
	3 Security Definition
	4 Our Succinct Scriptable NIZK Construction
	5 OHWQ Instantiations
	6 Implementation and Evaluations
	7 Related Work
	8 Conclusion
	A SGX implementation
	References

