2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) | 978-1-7281-7638-3/20/$31.00 ©2021 IEEE | DOI: 10.1109/ICAIIC51459.2021.9415243

978-1-7281-7638-3/21/$31.00 2021 IEEE

Extensive Huffman-tree-based Neural Network for
the Imbalanced Dataset and Its Application in
Accent Recognition

Jeremy Merrill', Yu Liang', Dalei Wu!
Department of Computer Science and Engineering, University of Tennessee at Chattanooga, USA
Email: nrz855@mocs.utc.edu; {yu-liang, dalei-wu} @utc.edu

Abstract—To classify the data-set featured with a large number
of heavily imbalanced classes, this paper proposed an Extensive
Huffman-Tree Neural Network (EHTNN), which fabricates mul-
tiple component neural network-enabled classifiers (e.g., CNN
or SVM) using an extensive Huffman tree. Any given node in
EHTNN can have arbitrary number of children. Compared with
the Binary Huffman-Tree Neural Network (BHTNN), EHTNN
may have smaller tree height, involve fewer neural networks,
and demonstrate more flexibility on handling data imbalance.
Using a 16-class exponentially imbalanced audio data-set as the
benchmark, the proposed EHTNN was strictly assessed based
on the comparisons with alternative methods such as BHTNN
and single-layer CNN. The experimental results demonstrated
promising results about EHTNN in terms of Gini index, Entropy
value, and the accuracy derived from hierarchical multiclass
confusion matrix.

Index Terms—Imbalanced classification, extensive Huffman
tree neural network, CNN, audio signal, spectrogram, accent
recognition

I. INTRODUCTION

A long-standing issue for audio classification is low accu-
racy due to an imbalanced data set. This paper is the result
of efforts to discover a better solution to audio classification
of voice accent on a skewed data set. A skew data set is a
data set in which the training or validation data is skewed
towards a particular class or set of classes, sometimes on
an exponential level [1]. Skewed data sets can produce too
many negative examples vs positive examples, causing the
classifier to incorrectly predict a class for a given piece of
data. Skewed data sets do not perform as well as a balanced
data set. Likewise, a multi-class classification problem makes
the prediction accuracy even worse. Skewed data can even alter
the ability of the classifier’s training by insufficiently providing
enough data during training to accurately fit the model. A
few concepts related to oversampling or undersampling have
been utilized to help circumvent this issue [2]. Random re-
sampling or random selective sampling also has drawbacks.
This technique could also affect the classifier’s ability to train
and fit the model appropriately as oversampling less frequent
classes doesn’t provide enough data variation to build a model
that is trained diverse enough to recognize slight variations in
data. Moreover, random undersampling can limit the capacity
of the model to fit on a diverse dataset in the same sense
of undersampling. Lastly, sampling does not account for the
likelihood of an input data belonging to a skewed class.
Sampling indicates the classes are equally weighted to the
classifier [2].

310

In this paper, we will explore a Huffman-tree-based ap-
proach to classification by breaking down a large multi-class
problem into several smaller problems. The remainder of this
paper is divided into sections. Section II will discuss related
work to machine learning for audio classification. Section
IIT will describe the canonical Huffman-Tree Neural Network
(HTNN). Section IV will pronounce our contribution toward
the Extensive Huffman Tree Neural Network (EHTNN). The
results and comparison of each model is given in section V,
and a conclusion with potential future work will be denoted
in Section VI

II. MACHINE LEARNING ENABLED AUDIO
CLASSIFICATION

The topic of audio classification using machine learning
is not a new concept. Plenty of research within the artificial
intelligence (Al) field of computer science has been performed.
Many researchers have discovered multiple neural network
techniques that can be used in order to train an Al machine
to accurately classify snippets of audio based on music genre,
what instrument is playing, or what words an individual is
speaking. Most of these audio classification techniques use a
specific type of neural network called a Convolution Neural
Network (CNN). This machine learning method is mostly used
to identify features of a two-dimensional image. Audio can
be used as the input to a CNN whenever it is converted
into a spectrogram using a mathematical signal processing
technique called Fourier Transform. This converts the audio
signal into a frequency vs time graph that highlights the
dominant frequency at any given time within an audio snippet.
This process is shown in Figure 1.

This paper will cover the practical use of using CNNs to
correctly classify an audio recording of a human speaking
words into a microphone by nationality through identifying
frequency features of the person’s accent. While this technique
isn’t much different than music genre classification, this paper
will extend on the concept by exploring how to increase
the classification accuracy of the network where there are a
higher than usual number of categorical classes. Having a high
number of classes reduces the ability for a single CNN to
accurately classify an input. Additionally, the data set being
used is unbalanced on an exponential scale. We will explore
a technique for increasing accuracy of the model, reducing
the time complexity, and minimizing the entropy and impurity
(Gini) index.

Authorized licensed use limited to: UTC Library. Downloaded on October 01,2021 at 17:02:44 UTC from IEEE Xplore. Restrictions apply.

ICAIIC 2021

Spectrogram

MP3 File 256 % 256

Convertto Input to CNN
WAV a3 Image

Fig. 1. Diagram illustrating audio files as CNN input (1s sample of WAV).

Using machine learning to analyze audio is not a new
concept. Several different types of neural networks exist that
are used to process audio depending on the goal of the model.
In practice, many audio classifications are transformed into im-
ages during the data pre-processing stage of the neural network
[3]. The 2D visual representation of the audio is produced by
a Fourier transform which generates a frequency vs time plot.
This image is useful for classification and sequential analysis
because a Fourier transform highlights dominant frequencies at
any given moment throughout the duration of the audio sample
[3]. A Fourier transform (often referred to as a spectrogram)
is then fed into an image based neural network model.

A. Data Preparation for Accent Recognition

Many datasets are available for this type of work. For
this paper, the “common-voice” dataset was retrieved from
Kaggle. This dataset contains hundreds of thousands of mp3
files containing words spoken by many different people. On
average, each mp3 file is only a few seconds long. A quick
sample of a few of the files reveals the person is either
speaking a sentence or multiple random words, some with
a brief pause in between. The dataset is accompanied by
a meta data file that contains a record for each mp3 file
— indicating the corresponding filename, words spoken, and
some demographics about the person speaking (gender, age,
and accent) [4]. To simplify the training process, a subset of
the data was used in order to speed up the training and to
prevent the learning engine from exceeding system resources.
The first twenty-five thousand records in the training dataset
that contained a value for the accent field were used.

To further prepare the data, each audio file was sampled
for 1 second to create the same spatial resolution for the
spectrogram. The audio recordings provided in the data set
are not of equal length and the resolution mismatch would
cause false positives in the neural network’s convolution and
max-pooling layers.

Each spectrogram image for the model input was prepared
using the ImageDataGenerator class within the Keras APL
This class simplifies the import of training and validation
data into a tensor data type as well as loading the correct
classification labels for each piece of data. Additionally, the
spectrograms were resized to a square image (which is ideal
for CNNs) and converted to grayscale to eliminate color
differences on the dataset.

B. Support Vector Machine Enabled Audio Classification

Support Vector Machines (SVM) are occasionally used to
classify images in a machine learning model where a finite
feature can be chosen [3][5]. The SVM can be used to classify
images using more than one feature; however, additional
features are computationally more expensive quadratically [5].

For this paper, we chose CNN over SVM as the model for
these reasons. However, SVMs are most applicable to binary
classification models where the neural network must classify
an image input between one class or another [5]. SVMs can
be used to classify images into multiple classes; however, they
must be implemented in a chained manner [5].

C. Comvolutional Neural Network Enabled Audio Classifica-
tion

Convolutional Neural Networks (CNN) are also used for
classification by using filters to identify multiple features
within the image that are similar to other images within the
same class [6]. Each image from the input is trained by
convoluting a subset of pixels from the image with a kernel
matrix, resulting in a convoluted matrix. Weights are then
applied to the parameters of the network during training as the
network is identifying important features and enhancing the
prediction accuracy of the network [6]. The convolutional layer
is followed by a pooling layer that extracts the most important
features from the convolution and reduces the feature dimen-
sions [6]. Finally, an activation function is used to determine
which neurons of the neural network are important to the
classification. Recent studies have concluded that the Rectified
Linear Unit (ReLU) function is best for CNNs because it
does not activate all neurons at once [6]. ReLLU is also been
shown to have better performance than other functions, such
as sigmoid [6].

III. BINARY HUFFMAN TREE NEURAL NETWORK

As a remedy to the skew data set, a binary Huffman tree
neural network was proposed in [7] as a refined method
to increase classification and prediction accuracy. However,
due to the computational limitations of SVM-based neural
networks for data with multiple features, we are proposing
a CNN-based Huffman Tree Neural Network.

Algorithm 1: Construction of binary Huffman tree
Result: The binary Huffman tree for BFTNN

1 initialization: L = {{accent;, frequency;)}", ;

2 while (| L |> 1) do

3 Sort all the accents in L in descending order of the
frequencies;

4 Insert first two accents with smallest frequency
into the tree;

5 Combine the above two accents into a joint one;

6 end

A. Huffman Tree Architecture and Numerical Analysis

The Huffman tree increases accuracy by predicting if inputs
are classified as the highest frequently occurring class first,
followed by another classification of the next higher occurring
class, and so on [7][8][9]. As a result, this technique requires
a numerical analysis to be performed on the data set. The
analysis will determine how to initially configure the Huffman
tree. Each class is listed in descending order with the frequency
of occurrence within the dataset. Such an analysis is given in
Table L.

311
Authorized licensed use limited to: UTC Library. Downloaded on October 01,2021 at 17:02:44 UTC from IEEE Xplore. Restrictions apply.

TABLE I
FREQUENCY OF COMMON VOICE ACCENTS

Code Accent Frequency
a us 11974
b england 5751
c india 1806
d australia 1677
e canada 1486
f scotland 565
g africa 445
h newzealand 422
i ireland 364
] philippines 125
k wales 104
1 bermuda 80
m malaysia 75
n singapore 50
o hongkong 42
p southatlantic 34

Fig. 2. Binary Huffman Tree Neural Network (BHTNN) for the Common
Voice Accents

Huffman coding defines the algorithm and procedure in
order to build a visual binary tree that represents the frequency
table. Starting with the classes of the lowest frequency, create
two tree nodes. Create a parent node with the sum of the
frequencies of the child nodes. As you move up the table, if the
next class’s frequency exceeds the total of the recently created
parent node, a new tree should be created and then combined
with the current tree with a new parent node [7][8][9]. Figure
2 shows the resulting binary Huffman Tree derived from the
Common Voice Accents data set. The tree nodes represent
binary neural network classifier.

B. BHTNN Based on Support Vector Machines

Since SVMs are binary classification networks; they must
be chained together when implementing a multi-class output

Conv2D Conv2D
16 32

Input 3x3filters 3x3filters 3x3filters 3x3filters 3x3filters

Laver ReLu RelU Relu RelU RelU

ConvaD Conv2D Conv2D
64 64 64

Dropout I Dense [Dense
- lat
a5

16 k
Retuf [sftmx

256x256 + + + + +
Images

MaxPool MaxPool MaxPool MaxPool MaxPool
2x2 2x2 2 x2 X2

Fig. 3. Illustration of CNN Model

[5]. Such a method can be achieved by implementing a Binary
Huffman Tree Neural Network (BHTNN) with multiple indi-
vidually trained SVM networks. Using a binary tree allows the
machine learning engineer to create multiple SVM networks in
a one-against-all or one-against-one dataset. Eventually, each
class will be represented within the decision tree [5]. Using a
BHTNN tree will increase the classification accuracy because
the most commonly occurring class will be the first neural
network in the model in a one-against-all implementation
[7]. Using the Huffman encoding algorithm, a binary tree is
developed with all childless nodes representing a class and
all parent nodes referring to an individually trained neural
network [7].

C. BHTNN Based on CNN

Each decision point within the BHTNN is a separately
trained CNN. Each network is configured for binary classifi-
cation as a one-against-all, some-against-all, or a one-against-
one data-set. At the top of the tree, the first classification is
a one-against-all. Mid-way through the tree, there are a few
some-against-some networks. It should be noted that these
networks are no more than three classes-against-all. In this
case, the network is predicting if an input is any of the two
or three classes vs everything else. Accuracy suffers slightly
in the some-against-all and the some-against-some networks.
The one-against-one networks are simpler than the others as
they are only predicting between two classes.

The model is created on a Python Anaconda interpreter
using TensorFlow’s Keras API library for machine learning.
The CNN contains five convolution layers each followed
by a max-pooling layer. These convolution and max-pooling
layers highlight and pinpoint the identifiable features of each
input. The model is then followed up by a dropout layer that
randomly eliminates some of the input units to prevent over-
fitting. The dropout factor is set to 0.5 due to the vast nature of
multiple features within the data on spectrograms. The model
then passes through a flatten layer and two dense layers. The
final dense layer’s output size is one since the loss objective
function is binary-crossentropy (indicating a yes or no which
is illustrated by the 1 or O on the tree path in Figure 2). Up
to forty training epochs were performed for each network. For
the first two CNNs, a steps-per-epoch value was specified to
prevent over-fitting due to the high number of training data for
the two most frequent classes. The dropout factor was reduced
to 0.2 to compensate for the reduced training steps. The CNN
at each decision point in the BHTNN is illustrated in Figure
3

A few other model callbacks were used to further prevent
over-fitting. An early stopping callback was established to stop

312
Authorized licensed use limited to: UTC Library. Downloaded on October 01,2021 at 17:02:44 UTC from IEEE Xplore. Restrictions apply.

the training if the validation accuracy had not increased after
fifteen epochs. Also, the Reducel.LRonPlateau function was
utilized — which reduces the learning rate of the optimizer
function if the validation accuracy does not increase after
five epochs. Finally, a model checkpoint was used to save
the parameter weights of the epoch that yields the highest
validation accuracy. These peak accuracy values are given in
the results section.

D. Binary Huffman Tree Neural Network

Huffman encoding is typically used as a lossless compres-
sion algorithm by indicating frequently used values first with
less frequently used value later. The bit-storage technique is
optimized by using less bits for commonly occurring values
and more bits for less commonly occurring values. Visually,
this would represent a higher position in a binary tree, and
a lower position in a binary tree respectively. The bit length
indicates how many branches to travel in the tree in order
to find a particular value. More bits results in a higher time
complexity for the worst case scenario [7].

This paper explores a machine learning model that will
increase the accuracy of a traditional CNN in order to achieve
a better performing model. These models are typically ideal
for image classification; however, when CNNs have a higher
number of output classes, the prediction accuracy of the
tree decreases [6]. This technique will extend the CNN by
encompassing multiple CNNs in a Huffman Tree Architecture
(HTA). The goal of this method is to improve accuracy
of a multi-class CNN by implementing a HTA with binary
CNNs. This will improve the classification accuracy of an
exponentially unbalanced dataset (as compared to a flat multi-
class categorical cross-entropy CNN). HTAs within neural
networks have been used before, but with SVMs [8][9]. Since
SVMs are not computationally efficient for multiple features
within an input image, this paper will explore a CNN-based
HTA, an extensive CNN-based HTA with a reduced height,
and an improved CNN-based HTA, utilizing entropy and
impurity (Gini) index calculations to re-arrange nodes for
better accuracy.

IV. EXTENSIVE HUFFMAN TREE NEURAL NETWORK

For a given n-class classification problem, Binary Huffman
tree neural network (BHTNN) always consists of (at most)
(n—1) component binary classification neural networks, there-
fore BHTNN lacks of flexibility in architecture configuration.
In the worst case (the height of the tree is n — 1), a decision
may be made by passing through n — 1 neural networks.
As a remedy, we propose an Extensive Huffman-Tree Neural
Network (EHTNN):

« Each non-leaf EHTNN node has an arbitrary number of
(two or more than two) sub-trees. As a result, a lesser
number of component neural networks (binary or multi-
class) are needed. The height of the resulting EHTNN
can be reduced as well.

« The EHTNN is improved according to specific measure-
ment metrics such as entropy or Gini index.

Different from BHTNN (constructed using Algorithm 1),
EHTNN fabricates multiple neural networks (or nodes) to-
gether using an extensive Huffman tree, whose construction
is described by Algorithm 2.

Algorithm 2: Construction of extensive Huffman tree
Result: The extensive Huffman tree for EHTNN

1 initialization: L = {{accent;, frequency;)}!" ;

2 while (| L |[> 1) do

_ ’ ’ .
3 Sort acc.ents L= {(accentl.,freq.uencyi)};il in
ascending order of the frequencies;
4 Compute the maximal k such that

std({frequencylf}{.‘:l) < ax frequency ;

5 I* frequency| is the smallest frequency */;
6 /* std stands for standard deviation */;

7 Insert first k (k > 2) accents with smallest
frequency into the tree;

8 Combine the above k accents into a joint one;

9 end

In order to select the appropriate numbers of classes to move
to the canonical CNN portion of the EHTNN, algorithm 2
is considered. The goal of the algorithm is to find the ideal
number k of classes that will result in the standard deviation
of k classes being lower than some arbitrary fraction, o of the
frequency of the smallest class.

Accuracy of each decision point in the tree is one metric
to consider when determining the overall effectiveness of a
BHTNN with an unbalanced data-set. However, there is a
concern for point-of-no-return if an inaccurate decision is
made at a higher point in the tree for an input that belongs
to another class. Further learning on an input data that does
not belong to either class in a BHTNN can negatively affect
the overall performance of each neural network in the tree.
The EHTNN is a concept to combine a multi-class CNN
with a Huffman tree to converge the benefits of both models.
Referring back to the frequencies given from the numerical
analysis in Table I, the unbalance of the data becomes less
apparent as we move down the table. This is the point in
which we stop the Huffman tree and convert to a multi-class
CNN to handle the remaining classes that are more balanced
to each other as compared to the more frequently occurring
classes at the top of the table. For our analysis, the splitting
point will be after the fifth class in the table, resulting in a tree
as illustrated in Figure 4. Additionally, reducing the height of
the tree also decreases the time complexity and training efforts
for the entire EHTNN.

A. Measurement Metrics of the EHTNN

Decision-tree-based neural networks can be measured for
efficiency using multiple parameters. Two major factors are the
entropy value and the impurity (Gini) index. By applying these
concepts to the EHTNN, we can improve the configuration
of tree network through minimizing the Gini index and the
entropy.

313
Authorized licensed use limited to: UTC Library. Downloaded on October 01,2021 at 17:02:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. A sample Extensive Huffman Tree Neural Network (EHTNN) of the
Common Voice Accents

a) Entropy: The information entropy value is a statistical
measurement of the uncertainty in an outcome. Values are
between zero and one. The goal of the decision tree is to
arrange the decisions in the tree to minimize the entropy
value. Our EHTNN is rearranged by swapping the location
of the US and England classes. The entropy value is then
re-computed to determine the improvement of the decision
tree arrangement. The entropy formula is given by equation
3 where p; represents the probability of the class within its
respective network. Each class within the tree has a computed
entropy and it is weighted by multiplying by the frequency
of each class within the dataset, given by equation 1. The
weighted entropy values are summed to determine the final
weighted entropy of the tree [10]:

WH =) Wi * Hon, (1)

where the weight w,, of m-th component classifier is defined
as

frequency,,
mE o 2
2. frequency;
and the Entropy of m-th component classifier is
H =~ pjlog pj. (3)
J

where p; is the probability of class j.

b) Gini Index: The Gini index is a measurement that
indicates a level of dataset contamination or impurity. Similar
to information entropy, the Gini index is a value between zero
and one and a higher value indicates more data contamination.
As a result, the goal of a decision tree is to reduce the
value of the Gini index. A lower measurement value would
signify the purity of the dataset. As a continuation of the

TABLE II
CONFUSION MATRIX ABOUT THE FIRST COMPONENT CLASSIFIER FOR US
vS NOTUS IN EHTNN (BASED ON 67% ACCURACY)

Actual Class
uS NotUS
Predicted | US 8022 | 3952
Class NotUS | 4299 | 8727
TABLE III

CONFUSION MATRIX ABOUT THE SECOND COMPONENT CLASSIFIER FOR
ENGLAND VS NOTENGLAND IN EHTNN (BASED ON 72% ACCURACY)

Actual Class

England | NotEngland
Predicted | England 4130 1621
Class NotEngland | 2051 5224

information entropy arrangement, this paper will apply a
weighted Gini index (given by equation 4 to measure the
impurity of extensive Huffman tree:

WG =) Wi * G 4)

where the weight w,, of m-th component classifier is defined
as Equation 2 and the corresponding Gini-index is defined as

Gn=1-)1} 5)
J

In equation 5, p; is the probability of class j.

c) Hierarchical Multiclass Confusion Matrix: As ad-
dressed above, EHTNN consists of multiple neural network
classifiers organized in a hierarchical architecture. The ac-
curacy of m-th component classifier can be measured using
micro-averaged Fl-score. Precision and Recall, which are
defined as:

Accuracyy, = Precisiony,, = Recall,, = —Zi My , (6)

Dizj Mij

where M indicates the multiclass confusion matrix for com-
ponent classifier m. The confusion matrices for the first two
component classifiers of EHTNN are given in tables II and III.
Equation 6 illustrates that when we calculating the metrics
globally, all the measures (accuracy, precision, recall, and
micro-average Fl-score) become equal. Following equation
7, we have a global accuracy value of EHTNN that can be
formulated as the weighted sum of the component classifiers.:

WA = Z W % Accuracy,. @)
m

Matthews correlation coefficient (MCC) or phi coefficient
was not discussed in this work because it is only applicable
for a completely binary classification Huffman tree. Therefore,
it is not applicable for EHTNN.

V. EXPERIMENTAL RESULTS

In order to establish a baseline, the same CNN model was
trained in categorical mode; however, the loss function was
changed to categorical-crossentropy with the number of output
layers on the final dense layer set to sixteen (the total number

314
Authorized licensed use limited to: UTC Library. Downloaded on October 01,2021 at 17:02:44 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
RESULTS FROM EACH CNN IN THE HTA

Codes CNN Accuracy
a US/notUS 0.6718
b England/notEngland 0.718
Australia or Canada/not 0.65625
de Australia/Canada 0.52821
c India/notIndia 0.625
Scotland, NZ, or Ireland/not 0.675
f Scotland/notScotland 0.57971
hi Ireland/NZ 0.6842
g Africa/notAfrica 0.60784
Philippines or Wales/not 0.59259
jk Philippines/Wales 0.71429
Malaysia or Singapore/not 0.6923
mn Malaysia/Singapore 0.625
1 Bermuda/notBermuda 0.667
op HongKong/SouthAtlantic 0.667

of unique classes in [4]). This is the control model to make an
improvement comparison to the BHTNN and EHTNN models.
After several epochs, the learning converged on 45% accuracy.
In comparison, the BHTNN and EHTNN both yielded (on
average) a 65% accuracy. By the accuracy values alone, it
can be observed that the Huffman-tree based models provide
a better classification prediction for spectrograms. The valida-
tion accuracy of each CNN is given in Table IV.

As indicated, each CNN and class are not equally weighted
to others, so the overall accuracy of the BHTNN and EHTNN
cannot be computed by a mean. We can compute the total
accuracy of each model by using a weighted mean. The
formula for a weighted arithmetic mean is given in Equation
7.

Applying formulas 1, 4, and 7, we obtain the results for
each method as indicated in table V.

TABLE V
RESULTS FROM EACH HTNN METHOD
Method Accuracy Entropy Gini
Flat CNN 47% 0.65 0.72
Binary HTNN 66% 0.99 0.49
EHTNN (a = 1.0) 66% 0.96 0.53
EHTNN (a =0.5) 70% 0.89 0.48

As indicated in the results above, the accuracy remains
steady at 66% for both the BHTNN and the EHTNN, but
rose slightly to 70% for the improved EHTNN. The entropy
decreased from 0.96-0.99 to 0.89 on the improved EHTNN
while the Gini index fell from 0.72 on the flat CNN to 0.48
for the improved EHTNN. When the EHTNN is improved
for lower entropy and Gini index values, the accuracy of the
model increases [10][11].

VI. CONCLUSION AND FUTURE WORK

The work of this paper yielded a higher accuracy value
for the prediction model by using an HTNN. As stated, the
Huffman tree is not a new concept for machine learning
models. It was previously used with an SVM-based model.
Due to the limitation of SVM-based decision trees, this paper
explored increasing model prediction accuracy when a high
number of output classes are present and the input must be

trained on multiple features. The CNN-based HTNNs yielded
an accuracy increase of roughly twenty percent to twenty-five
percent (20%-25%). While the entropy value and Gini indices
decreased with a HTNN vs canonocial, the rearranged EHTNN
lowered these values for improved accuracy. Even though a
lower entropy and Gini index are ideal in a machine learning
model, the higher values are an acceptable trade-off for higher
accuracy.

Future work can be explored to further develop and optimize
the EHTNN by utilizing more data preparation. Expanding on
the audio processing functionality before generating a spec-
trogram can decrease the overfitting potential of the model.
The spectrograms produced by the Python matplotlib library
were adequate for use in the model; however more analysis
can be performed to detect a higher audio amplitude so the
data sample isn’t a brief moment of silence.

Additionally, more work is needed to further arrange a
decision tree based on the lowest values for entropy and the
Gini index. An ideal implementation would be to compute the
entropy and Gini index for each possible arrangement of the
decision tree and train the networks as such. Further research
and studies can be conducted to re-arrange the decision tree
after initial training to keep the accuracy high while keeping
the entropy and Gini index low as the tree predicts and obtains
more data throughout the lifecycle of the tree.

ACKNOWLEDGEMENT

This work was jointly sponsored by National Science Foun-
dation (NSF) grant numbers 1924278, 1761839 and 1647175.

REFERENCES

[1] J. Cervantes, F. Garcia-Lamont, A. Loépez, L. Rodriguez, J. S.
Ruiz Castilla, and A. Trueba, “Pso-based method for svm classification
on skewed data-sets,” in Advanced Intelligent Computing Theories
and Applications, D.-S. Huang and K. Han, Eds. = Cham: Springer
International Publishing, 2015, pp. 79-86.

[2] M. Koziarski, “Radial-based undersampling for imbalanced data classi-
fication,” Pattern Recognition, vol. 102, p. 107262, 2020.

[3] M. Esmaeilpour, P. Cardinal, and A. Lameiras Koerich, “A robust
approach for securing audio classification against adversarial attacks,”
IEEE Transactions on Information Forensics and Security, vol. 15, pp.
2147-2159, 2020.

[4] Mozilla, “Common voice.”
https://doi.org/10.1145/3342555

[5] R. Archibald and G. Fann, “Feature selection and classification of
hyperspectral images with support vector machines,” IEEE Geoscience
and Remote Sensing Letters, vol. 4, no. 4, pp. 674-677, 2007.

[6] Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and M. Chen, “Med-
ical image classification with convolutional neural network,” in 2014
13th International Conference on Control Automation Robotics Vision
(ICARCV), 2014, pp. 844-848.

[71 A. Moffat, “Huffman coding,” ACM Comput. Surv., vol. 52, no. 4,
Aug. 2019. [Online]. Available: https://doi.org/10.1145/3342555

[8] F. Wu, W. Hu, and Y. Sun, “A novel multi-class fault diagnosis approach
based on support vector machine of particle swarm optimization and
huffman tree,” in 2015 IEEE International Conference on Industrial
Engineering and Engineering Management (IEEM), 2015, pp. 825-829.

[91 G. Zhang, “Support vector machines with huffman tree architecture
for multiclass classification,” in Progress in Pattern Recognition, Image
Analysis and Applications, A. Sanfeliu and M. L. Cortés, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 24-33.

[10] D. Pomorski and C. Desrousseaux, “Improving performance of dis-
tributed detection networks: An entropy-based optimization,” Signal
Processing, vol. 81, no. 12, pp. 2479 — 2491, 2001.

[11] D. Bertsimas and J. Dunn, “Optimal classification trees,” Mach
Learn, vol. 106, pp. 1039 — 1082, 2017. [Online]. Available:
https://doi.org/10.1007/s10994-017-5633-9

Kaggle, 2017. [Online]. Available:

315
Authorized licensed use limited to: UTC Library. Downloaded on October 01,2021 at 17:02:44 UTC from IEEE Xplore. Restrictions apply.

