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ABSTRACT

Game engines are effective in generating and visualizing digi-
tal twins of urban environment in real time. However, current
game engines are not built to handle the influx of real time
data streams from a diverse array of IoT devices, nor can they
render a real-time dynamic mesh streamed from a scanning
device such as a Light Detection and Ranging (LIDAR) sys-
tem. In this paper, a combination of pre-processing and post-
processing techniques are considered in variably processed
batches of point-cloud data. Additionally, we propose a quan-
titative error analysis for points generated on our experimen-
tal aerial mapping platform, as well as an analysis for the
accuracy improvement after post-processing. Experimental
results show that the proposed rendering algorithm and post-
processing could enable a game engine to efficiently generate
a highly accurate digital twin of urban environment.

Index Terms— LIDAR, point cloud, rendering, surface
reconstruction, digital twin

1. INTRODUCTION

The development of digital twins call for real-time visualiza-
tion of heterogeneous data, especially live streaming data [1].
Visualization plays a critical role in the development of dig-
ital twins. Game engines are often used to render large, de-
tailed, 3D environments, the same kind that geospatial ex-
perts seek to replicate [2]. The coordinate system within any
game engine can be used to replicate 3D localization of ob-
jects and terrain, while taking advantage of their optimization
and portability. Both interactable and performant, game en-
gines seem to be the perfect candidate to visualize and interact
with the geographic environment, and thus are a near perfect
candidate to visualize urban environment [3]. Industry clearly
agrees on the aspect. For example, both Google and Mapbox
have built APIs and SDKs in order to bring their infrastructure
and frameworks into the Unity game engine [4, 5].
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But, game engines are just not built with IoT devices in
mind, which predominantly power the data pipeline of any
smart city. Game engines are simply not built to handle live
streaming data from unsupported objects, nor are they built to
render dynamically changing meshes defined by live stream-
ing data. For example, LIDARs are very desirable instru-
ments for real-time three-dimensional mapping because they
provide high-resolution ranging and depth information by il-
luminating the object/environment with laser light and mea-
suring the reflection with a sensor component. Most previous
work seek to localize an object through deducing their own
location through LIDAR data [6, 7]. Other work uses a com-
bination of telemetry sensors and LIDAR data to achieve the
same purpose [8]. While these work great for object detection
or short term scans, they do not support collaborative scans,
where multiple scans can be stitched together automatically
through the geographical significance of their vertices in any
three-dimensional environment.

Using game engines for visualization of real GIS data is
uncommon. The work in [9] makes a notable step towards the
normalization of game engine mapping by developing an ap-
plication for 3D viewing of real data inside the game engine,
Virtools. They specifically note that their choice of a game
engine for 3D viewing is because of their “powerful render
engines that allow the visualisation of complex, highly de-
tailed landscapes in 3D in real-time”. These render engines
are desirable for allowing us to process and render data in
real-time, with acceptable performance

In this paper, we describe both a framework used to con-
nect IoT devices to game engines through the use of low
level networking and point cloud pre-processing and post-
processing techniques for surface reconstruction, along with
experimental results verifying our theoretical findings. This
enables both a data feed and data visualization of urban en-
vironment in a game engine, a desirable framework for the
development of digital twin of urban environment. Specifi-
cally, a GPS is used for absolute localization, and telemetry
sensors for precise movements to store scans with respect to
geographical coordinates. Our algorithm also allows for the
reconstruction of an environment to be observed in real-time.
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Fig. 1. High Level Diagram Network Diagram

This is not an uncommon feature for mapping technologies
[10], but the implementation of our live maps on such a large
scale inside a game engine has proven to be very intuitive in
our testing.

2. PROBLEM STATEMENT

Game engines have pros and cons for smart city mapping ap-
plications. Game engines are development environment that
are created solely for the purpose of making video games.
Abstracting that, they are development environments contain-
ing tools that make it easy to manipulate a virtual environ-
ment. The virtual environment is often malleable, being able
to switch between parameters such as a 2D or 3D coordi-
nate system. Game engines are usually built with a specific
premise in mind: multiplayer games between clients. De-
velopers will build the networking modules used for multi-
player interaction assuming that all clients connecting to the
network are on a heavily audited and approved system that is
able to run the game produced by that engine. In other words,
the game engine’s networking modules will only support ma-
chines that are running other instances of that engine. This
causes an issue when attempting to use a game engine for
modeling urban environment, which requires streamed data
from a variety of different sources as well as the ability to
render this data in as close to real time as possible.

Another issue underlying game engines, is that they are
built to render objects fetched from secondary memory peri-
odically, such as when a new level or map is loaded into RAM
in order for the player to interact with it in game. In all cases,
this object comes in the form of a 3D mesh. In a smart city ap-
plication, real world object data will need to be streamed into
the engine. In this case, the mesh used to represent the object
will not be known in advance, but will be built procedurally
as the information is streamed into the engine. Game engines
are currently not optimized to handle this operation, as this

feature would never need to be present in a traditional game.
Thus, it is the case that the underlying data structures support-
ing mesh generation, do not lend themselves to the scenario
of a live, constantly mutating mesh.

While research has been conducted on the different ren-
dering methods available inside of current game engines, no
research has revealed whether or not a game engine can han-
dle live streaming data from IoT devices. Most often, meshes
begin as raw point cloud data, coming from a scanning device
such as a LIDAR, which we will be using in our experiment
to generate point clouds data.

3. DATA ACQUISITION AND PRE-PROCESSING

As shown in Figure 1, the data that is used to generate a
scan is interpreted as a collection of the geographical data
from a drone and the relative data from a LIDAR carried by
the drone. The drone is responsible for recording the offset
of each scan, which is the vertical, horizontal and orienta-
tion components difference from the user-defined geograph-
ical zeroing point. The LIDAR detects all objects within
range and records their relative position to the drone. Fig-
ure 2 shows the collected LIDAR data by using a drone in an
indoor environment. The offset of the drone and the relative
data are processed every frame such that the offset is added
to each relative point to give each point geographical signif-
icance, a process described in Equation (2). This allows us
to take multiple scans that will align automatically if parts of
them overlap. It is worth noting that the offset of the drone
also includes the orientation of the drone, so all recorded data
will always be placed on the same plane the drone is on when
a certain scan is recorded. The data supplied from the LIDAR
in the form of a point cloud is processed in a Unity environ-
ment where rendering takes place by using some rendering
method.

We consider X , Y , and Z to be the Cartesian components
for the three dimensional LIDAR data relative to the drone.
For a given point, n, the components of roll, pitch, and yaw
are κn, ρn, and ψn, respectively. The distance measured by
the lidar is returned as dn. For each point, κn and ρn are
usually the same as κn−1 and ρn−1 and only vary once the
LIDAR redefines as new scan with the new telemetry data,
which results in κn and ρn being updated. ψn will never be
the same as ψn−1, as well as dn This is because the LIDAR
will scan many points, returning a different ψn and dn for
each point before the κn and ρn are updated. The Cartesian
components Xn, Yn, and Zn of point n can be computed asXn

Yn
Zn

 =

 dnsin(ψn) ∗ cos(κn)
dncos(ψn) ∗ cos(ρn)

dn
√

(sin(κn)sin(ψn))2 + (sin(ρn)cos(ψn))2

(1)

It is worth noting that the above components Xn, Yn, and
Zn are derived by assuming the drone rolls along the Y-axis,
pitches along the X-axis, and yaws along the Z-axis.
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Fig. 2. Drone rotation in an indoor environment

We considerD to be the three-dimensional position of the
drone in meters, and can add geographical significance to any
point by adding the X , Y , and Z components of D (i.e., Dx,
Dy , and Dz), to the relative components of any point: Xn,
Yn, and Zn, i.e., Gx

Gy
Gz

 =

 Xn

Yn
Zn

 +

 Dx

Dy

Dz

 (2)

This will allow us to produce the geographic set of coordi-
nates, Gx, Gy , and Gz . This is important because sometimes,
when there are no objects to represent the global location of
the drone, we need to place vertices for our point cloud with
respect to the global origin, rather than relative to the location
of the drone at a certain time.

4. POST-PROCESSING

Given the nature of the real-time mapping process, there
are many different sources for physical error. Using raw
data is comprehensive enough to form a rough image, but
not a particularly accurate or intuitive one. Some form of
post-processing may further reduces noise and improve ac-
curacy. Post-processing also needs to be performed in real-
time to keep up with the rest of the application’s processes
[11, 12, 13, 14].

4.1. Position Filtering

Depending on network conditions, the position of the drone
can be updated at inconsistent frequencies in the virtual en-
vironment. This can lead to scans being reported at incorrect
locations, which results in an inaccurate scan. We use a linear
Kalman filter to process the noisy, Gaussian data into more
accurate telemetry data in real-time, at the same frequency
that the telemetry (200Hz) data is fed into the filter. [15]

4.2. Scan Reconstruction

While the next steps for post-processing occur at a lower fre-
quency than most of the other functions of the system, they

still produce meaningful results that are displayed while a
scan is being recorded. Using a variety of techniques, data
is processed during the scan to replace the raw data simulta-
neously to that data being recorded. The happens at a lower
frequency than the data is recorded so the post-processing al-
gorithm can build more meaningful associations with the sur-
rounding data.

4.2.1. Outlier removal

If the average Euclidean distance e, between a pointD and its
nearest neighbors is greater than the threshold of outliers Ω,
i.e.,

∑ω
e=1De/ω > Ω, where ω is a hyperparameter that rep-

resents the number of neighbour points that are being used to
calculate the average distance. The point should be removed
from the scan if the inequality holds.

4.2.2. Computation of Normals

The Poisson surface reconstruction algorithm needs each
point’s normal vector pointed inside the surface. Usually, the
unoriented normals can be oriented by constructing a Rieman-
nian graph over the points, decide an initial orientation, and
draw a minimum spanning tree over the graph.[16] To reduce
the time that is required to orient the normals, we utilize the
drone’s positional data and the LiDar data to complete the
task, rather than a contextual approach. The acquisition of
the point cloud must be from the surface of an object to the
LiDAR device, so we can add an additional vector to each
point called the orientation vector

−→
W = P − D where P is

the position of the point and D is the position of the drone.
Then we can orient the normals as

−−→
OV =


−→
V , if

−→
V ·

−→
W

‖
−→
W‖

> 0

−
−→
V , if

−→
V ·

−→
W

‖
−→
W‖

< 0
(3)

With the additional information from the camera, the normals
can be oriented in linear complexity. On a point set with
10,000 points, the time reduced from 4 hours to 20 seconds.

4.2.3. WLOP Simplification

The collected data points will have various sources of noise
and inconsistency. To remove more of the errors in the point
cloud, Weighted Locally Optimal Projection (WLOP) simpli-
fication was used. The simplification algorithm projects an
point-set Q onto the data point-set P , such that the sum of
weighted distances to points of P is minimized, while main-
taining the distances among the points in Q. Formulaically,
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the desired point-set Q needs to satisfy Q = G(Q) where

G(C) = arg min
X
{E1(X,P,C) + E2(X,C)}

E1(X,P,C) =
∑
i∈I

∑
j∈J
‖xi − pj‖θ(‖ci − pj‖)

E2(X,C) =
∑
i′∈I

λi′
∑

i∈I\{i′}

η(‖xi′ − ci‖)θ(‖ci′ − ci‖)

The term E1 keeps the points from getting too far from the
original sample P , and the term E2 keeps the points from
getting too close to each other. The result usually is a smooth,
evenly distributed point cloud that is much simpler to work
with.

4.2.4. Surface Reconstruction

The processed point cloud will be visually recognizable as the
recorded object; however, it would be resource-demanding to
load the entire point cloud, especially for big objects or ob-
jects with many details. To solve this issue, surface recon-
struction is considered. The desired output should represent
the point cloud well with less points and surfaces than the
original point cloud. Furthermore, the constructed surface
should be “denser” in more detailed areas. These criteria can
be satisfied using Poisson Surface Reconstruction. The Pois-
son Surface Reconstruction method intakes a point-set P and
each point’s normal vector: p.n, p ∈ P . The reconstruction
algorithm assumes that the point-set is taken from the surface
of a solid and the normals points to the inside of the solid tan-
gent to the surface. The reconstruction method then solves for
an approximate indicator function of the inferred solid with
gradient that best matches with the normals. To convert the
indicator function (which is a scalar function) into meshes, an
adaptive marching cubes was used to iso-contour the gradient
of the indicator function.

5. LIDAR DATA ACCURACY ANALYSIS

To further characterize the errors introduced during the afore-
mentioned drone-positioning process, Figure 3 provides a vi-
sual representation of all possible sources of error relative to
the orientation of the drone, presented from three different
views of the drone: top view, rear view, and side view, re-
spectively. The drone has lateral error on all three axes, as
well rotational error on all three axes. In addition to this, it
has rotational error from the LiDAR, and distance error from
the LiDAR’s laser. All of these are defined relative to the air-
frame of the drone and are listed in Table I [17].σtxσty

σtz

 =

σx wx cos(θ)
σy wy sin(θ)
σz wz rz

 1
d
σd

 (4)

Fig. 3. Error Components

Table 1. Comprehensive Sources of Positional Error
GPS Error σx, σy
Barometer Error σz
Drone Orientation ρ (pitch), κ (roll), ψ (yaw)
Orientation Error σρ (pitch), σκ (roll), σψ (yaw)
The angle of LiDAR θ
LiDAR Angle Error σθ
LiDAR Range Error σd

where

wx sin(θ) sin(σθ) + sin(θ) sin(σφ) + cos(θ) sin(σφ) (5)
wy cos(θ) sin(σθ) + cos(θ) sin(σφ) + sin(θ) sin(σκ) (6)

wz

√
(sin(θ)sin(σκ))2 + (cos(θ)sin(σρ))2 (7)

rz
√

(sin(θ)sin(κ))2 + (cos(θ)sin(ρ))2 (8)

Equations (4)-(8) can be described as a breakdown of the
significance of certain error sources under certain circum-
stances. As such, many of the sources of error are amplified
or reduced depending on the recorded angle of the scanned
point. One linear source of error is distance, as all sources of
error except σx, σy , σz , and σd are increased by the distance
of the scanned point. The quantification for σtz is slightly
different because the effects of pitch and roll both manipulate
the vertical position of a scanned point, while the yaw of the
drone, when compensated for in pre-processing, does not.

6. EXPERIMENTAL EVALUATION

The physical setup of our aerial mapping platform consists
of a modified DJI M100 equipped with a RPLiDAR A2 for
recording 2D scans and a Raspberry Pi micro controller for
all necessary networking functions, as shown in Figure 4. A

4
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Table 2. Average Distance to Plane of Best fit
Before Processing After Processing

Average Distance 2.86 1.73
Point Count 4760 531

generalized diagram of how all the components of the drone
relate to each other can be seen in Figure 1.

Fig. 4. Experimental mapping drone used for results

The combination of geographic localization and relative
mapping results in a powerful application that can be used
to update current geographic databases easily, or construct a
new one from scratch. This is due to all scans containing data
relating to their real world coordinates, which makes them
very easy to locate in a 3D environment.

Fig. 5. Building and nearby field for reference

When we take the real world environment in Figure 5
from Google Earth, and scan it in two separate sessions, as
shown in Figure 6, the result is still a single large scan, with
a seamless border between the two. This test was limited
in range due to networking limitations, but could easily be
improved by using a dedicated antenna aboard the drone to
transmit the data back to the host machine instead of a micro-
controller over WiFi. However, the results still show that the
system is capable of putting scans in their respective location
within a virtual environment with no further operator input
other than the initial altitude zeroing. This makes it a highly
efficient system for recording and rending large scale scans of
real world environments, a useful tool for either updating or
creating mapping databases.

Our post-processing method is capable of turning nearly
incomprehensible scans represented as point clouds into
much more tangible polygons. Figure 7 and Figure 8 show

Fig. 6. The building and the field are scanned separately, but
are combined automatically in a 3D environment

Fig. 7. Raw point cloud data

a scan of an indoor environment before and after post-
processing. Our method is capable of turning sparse vertices
into solid planes that much more accurately portray the area
scanned.

For point clouds with greater density that are already com-
prehensible, our method is still helpful for improving accu-
racy along uniformly-defined surfaces. Using this method
on such surfaces reduces the error produced by the many
possible error components from airborne LIDAR scanning.
The system will inherently produce a jagged surface with the
raw point cloud, but possesses enough data density that post-
processing can fit the data much more accurately to the actual
plane or uniform surface that the points were scanned on. As
shown in Table 2, the average distance from a point to the
plane of best fit is reduced by about 40% after processing.
The graphical representation of the plane fitting can be seen
in Figure 9.

Our results were recorded with a two-dimensional LI-
DAR. The quality and density of the scan could be improved
greatly by using a three-dimensional LIDAR, especially since
the horizontal configuration of the LIDAR makes it difficult
to scan the ground or other horizontal surfaces. However, the
concept and functionality can be applied to most hardware.

7. CONCLUSIONS

In this paper, we have proposed both pre-processing and
post-processing techniques for rendering real time dynamic
meshes in a game engine and surface reconstruction. Experi-
mental means to improve accuracy of LiDAR data recorded
by airborne platforms were studied. Experimental results
show fast, accurate 3D scans that could be further optimized
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Fig. 8. Post-processed data with surface reconstruction

Fig. 9. Planes of best fit over a cropped portion of raw (left)
and over a cropped portion of processed data (right), respec-
tively

to allow for real-time post-processing. This paper brings to
light a fundamental issue underlying the implementation of
mesh rendering in game engines, specifically for dynamic
meshes that change according to a real time stream.
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