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Abstract. With the advancement of the trusted execution environment
(TEE) technologies, hardware-supported secure computing becomes
increasingly popular due to its efficiency. During the protocol execution,
typically, the players need to contact a third-party server for remote
attestation, ensuring the validity of the involved trusted hardware com-
ponent, such as Intel SGX, as well as the integrity of the computation
result. When the hardware manufacturer is not fully trusted, sensitive
information may be leaked to the third-party server through backdoors,
steganography, and kleptography, etc. In this work, we introduce a new
security notion called semi-trusted hardware model, where the adversary
is allowed to passively or maliciously corrupt the hardware. Therefore,
she can learn the input of the hardware component and might also tam-
per its output. We then show how to utilize such semi-trusted hardwares
for correlated randomness teleportation. When the semi-trusted hardware
is instantiated by Intel SGX, to generate 10k random OT’s, our protocol
is 24X and 450X faster than the EMP-IKNP-ROT in the LAN and WAN
setting, respectively. When SGX is used to teleport Garbled circuits, the
resulting two-party computation protocol is 5.3-5.7X and 43-47X faster
than the EMP-SH2PC in the LAN and WAN setting, respectively, for
the AES-128, SHA-256, and SHA-512 evaluation. We also show how to
achieve malicious security with little overhead.
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1 Introduction

In secure multi-party computation (MPC), two or more players want to collec-
tively compute a function and receive its output without revealing their inputs
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to the other players. In the past decades, MPC has gradually transitioned from
theory to practice, and it has been widely used in many security critical real-
world applications, such as private set intersection and secure auction. In spite
of its success, MPC is still not efficient for complicated real-time tasks due to
its computational overhead and high communication cost. Meanwhile, recent
development of trusted execution environment (TEE) technologies, such as Intel
SGX and ARM TrustZone, enables a new approach for privacy-preserving com-
putation. Hardware-supported secure computing can greatly accelerate an MPC
process by avoiding expensive cryptographic operations. However, this kind of
construction introduces additional hardware setup assumptions that require new
trust roots, e.g., Intel. Recent exposure of Intel source code [5] raises a secu-
rity concern on possible backdoors contained in its design. When the hardware
manufacturer is not fully trusted, sensitive information may be leaked through
backdoors, steganography and kleptography, etc. For instance, Intel SGX uses
the remote attestation mechanism to ensure the validity of the enclave exe-
cution environment and the integrity of the computation result. More specifi-
cally, Intel’s (anonymous) attestation is based on an anonymous group signature
scheme called Intel Enhanced Privacy ID (EPID) [11]. To verify that an outcome
is computed by a pre-agreed program in a genuine SGX, Quoting Enclave (QE)
will produce a quote by signing the report with the group signature. The users
then need to contact the remote Intel Attestation Service (IAS) (or some other
alternative servers) for verification. If Intel is malicious, sensitive information
may be leaked from the SGX component to the IAS through the signatures,
using for example kleptography techniques. (Currently, Intel SGX uses 4096-
bit RSA signatures.) That means the input of SGX might be revealed to the
adversary.

When the hardware provider is not allied with the MPC participants, is it
possible to still use potentially malicious leaky hardware components to accel-
erate MPC executions with privacy assurance? In this work, we answer this
question affirmatively.

New Model. We introduce a new semi-trusted hardware model, where the
adversary A is allowed to passively or maliciously corrupt the hardware ideal
functionality Fyw. Fpw is parameterized with a probabilistic polynomial time
(PPT) interactive Turing machine (ITM) M, which specifies its functionality.
When the hardware functionality Fyw is passively corrupted, the adversary A
can learn all the incoming messages received by Fyw; when Fw is maliciously
corrupted, in addition to leaning the incoming messages, the adversary A can
replace the original M with an arbitrary ITM M*; namely, A can fully control
the execution of Fywy.

We note that the existing remote attestation model [18], tamper-proof hard-
ware token models [9,12], and server-aided model [15] are different from our
model. When hardware is fully trusted, unlike the remote attestation model, our
Fuw does not sign its output. Moreover, the existing model does not address
hardware leakage as well as malicious corruptions.
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Our Constructions. We show semi-trusted hardware can still be used to sig-
nificantly improve the efficiency of an MPC protocol by reducing the commu-
nication. The main idea is to use semi-trusted hardware for those MPC com-
putation that does not depend on the actual protocol inputs; thus no sensitive
information is leaked to the hardware components. We propose a new notion
called correlated randomness teleportation, where the sender can teleport a large
amount of correlated randomness to the receiver with little communication. Take
random OT (ROT) generation as an example, assume the Receiver uses an SGX-
enabled machine, while there is no special hardware requirement to the Sender.
During the ROT protocol, the Sender only needs to send a random seed ki to
the Receiver’s SGX enclave via a secure channel, and the Receiver also sends a
random seed ks to the enclave locally. Both parties can then generate polynomi-
ally many ROT copies without any further communication. Namely, for a ROT
copy, the Sender locally computes RS, < PRFy, (ctr,0) and RY, < PRFy, (ctr, 1)
from the seed k; using some pseudo-random function PRF, where ctr is the
counter; meanwhile, the SGX generates the ROT choice bit b, from the seed
ko using some pseudo-random number generator PRG, and then it computes
Rbe — PRFy, (ctr, beer). The SGX locally outputs {R%" }«t to the Receiver.
Garbled circuit (GC) can also be viewed as a type of correlated randomness.
With our technique, the communication between the 2PC players can also be dra-
matically reduced. We assume the GC Evaluator uses an SGX-enabled machine,
while there is no special hardware requirement to the GC Garbler. Note that, the
main cost of a GC-based 2PC protocol is the transmission of the garbled tables
of the entire circuit. Analogously, during the GC protocol, the Garbler sends a
random seed k; to the Evaluator’s SGX enclave via a secure channel. The SGX
can then internally generate the garbled tables and locally outputs them to the
Evaluator without network communication. The only communication needed is
for transmitting the input labels from the Garbler to the Evaluator. The overall
communication is linear to the input size and independent of the circuit size.

Remark. We would like to emphasize that naively using the secure hardware
components, such as SGX, and a simulatable private garbling scheme in a black-
box fashion to prepare GC in an offline phase won’t result in a simulatable 2PC
protocol. This is because the simulator cannot extract the malicious Evaluator’s
input in the offline phase, yet it needs to learn the MPC output (from the ideal
functionality) to invoke the GC simulator (cf. Definition 2) to produce the (fake)
GC tables in the real/hybrid world. The protocol should invoke the secure hard-
ware component at the right moment along with the 2PC protocol execution.

Efficiency. We mainly compare the performance of our protocols with the well-
known EMP-toolkit maintained by Wang et al. [20]. Table 1 shows the perfor-
mance comparison between the passively secure IKNP OT extension protocol [8]
implemented in EMP-toolkit [20] and our silent ROT protocol (semi-honest
security). We perform the experiments on an SGX-enabled Dell OptiPlex 7080
equipped with an Intel Core 8700 CPU @ 3.20 GHz with 32 GB RAM. In the
LAN setting (Bandwidth: 1Gbps, Delay: 1ms), our silent ROT protocol is 22-
39X faster w.r.t. the sender’s running time and 9-14X faster w.r.t. the receiver’s
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Table 1. Performance comparison of the ROT protocols. Result obtained from Dell
OptiPlex 7080 (Intel Core 8700 CPU @ 3.20 GHz, 32 GB RAM, OS: Ubuntu 18.04
LTS). LAN: 1 Gbps bandwidth, 0.1 ms delay. WAN: 100 Mbps bandwidth, 25 ms delay.

# ROT | Network | Sender’s running time (in ms) Receiver’s running time (in ms)
EMP-IKNP-ROT [20] | Our ROT | EMP-IKNP-ROT [20] | Our ROT

1 x 10* | LAN 2.889 0.074 3.908 0.162
WAN 26.331 0.079 76.358 0.169

1 x 10° | LAN 17.790 0.780 19.355 1.575
WAN 150.502 0.795 200.030 1.477

1 x 105 | LAN 154.373 6.182 150.621 15.910
WAN 1451.043 6.402 1495.294 16.032

1 x 107 | LAN 1507.961 51.616 1451.562 103.937
WAN 13859.934 51.280 13963.502 103.435

1 x 108 | LAN 15030.832 505.289 14470.057 995.987
WAN 138028.607 501.757 137034.187 980.795

Table 2. Performance comparison of the generation, transmission and evaluation pro-
cess of the garbled circuit in the semi-honest setting 2PC protocol. Result obtained
from the same experiment environment as in Table 1. It shows the running time (in
ms) for evaluating AES-128, SHA-256, and SHA-512 circuits 1000 times, respectively.

Circuit Network | EMP-SH2PC [20] time (in ms) | Our 2PC protocol time (in ms)

Garbler Comm. Evaluator | Garbler | Comm. | Evaluator (SGX+PC)
AES-128 | LAN 246.557 1742.094 229.339 10.171 | =0 243.730 + 174.916
WAN 265.919 18335.009 | 234.264 | 9.875 ~0 255.275 + 177.637
SHA-256 | LAN 829.398 | 6135.087 776.880 | 26.310 | R0 805.893 4 583.828
WAN 839.626 | 64433.208 777.284 | 28.981 | =0 804.904 + 581.166
SHA-512 | LAN 2434.915 | 15745.170 | 2388.890 | 52.110 | =0 2061.712 4 1549.076
WAN 2303.479 | 163362.579 | 2418.025 | 52.373 | =<0 2072.215 + 1551.586

Table 3. Performance comparison of the computation process of the malicious setting
2PC protocol. Result obtained from the same experiment environment as in Table 1.
It shows the running time (in ms) for evaluating AES-128, SHA-256, and SHA-512
circuits once, respectively.

Circuit Network | EMP-AG2PC [20] running time (in ms) Ours (in ms)
Garb. offline | Garb. online | Eval. offline | Eval. online | Garbler | Evaluator
AES-128 | LAN 94.744 5.185 92.055 5.193 3.100 | 6.311
WAN 1345.708 53.440 1240.956 53.385 30.124 | 61.457
SHA-256 | LAN 210.676 6.303 201.701 6.272 10.373 | 15.633
WAN 2299.404 52.474 2196.297 52.440 47.756 | 86.059
SHA-512 | LAN 435.581 9.634 423.302 9.593 25.756 | 34.944
WAN 4095.115 56.471 4044.428 56.426 70.139 | 112.336

running time than the EMP-IKNP-ROT [20]. In the WAN setting (Bandwidth:
100 Mbps, Delay: 25 ms), our silent ROT protocol is 189-333X faster w.r.t. the

sender’s running time and 93-451X faster w.r.t. the receiver’s running time than
the EMP-IKNP-ROT.
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Table 2 shows the performance comparison between EMP-SH2PC [20] and
our semi-honest setting silent 2PC protocol. (EMP-SH2PC provides an efficient
semi-honest 2PC implementation based on Yao’s GC protocol with half-gates [22]
optimization.) We perform the experiments on this same machine as above. We
test the garbling time, the garbled tables transmission time, and the evaluation
time separately, as for the Garbler in our protocol, the garbling time is the time
to generate input wire labels. We omit the time of transmitting seeds and wire
labels in both protocols. Since in our protocol, the garbling process is performed
in the SGX enclave at the evaluator side, we split the evaluator running time
of our protocol into two parts: (i) the SGX running time and (ii) normal mode
CPU running time. The garbler running time is the time to generate the input
wire labels. We take the AES-128, SHA-256, and SHA-512 circuit evaluation as
benchmarks. In the LAN setting, our silent 2PC protocol is 5.3-5.7X faster than
the EMP-SH2PC [20]. In the WAN setting, our silent 2PC protocol is 43-47X
faster than the EMP-SH2PC.

Table 3 shows the performance comparison between EMP-AG2PC [20] and
our malicious setting silent 2PC protocol. (EMP-AG2PC implements an efficient
maliciously secure two-party computation protocol, authenticated garbling [21].)
We perform the experiments on this same machine as above. We take the AES-
128, SHA-256, and SHA-512 circuit evaluations as benchmarks, and the results
are the average of 100 tests. All the one-time expenses are omitted, e.g., creat-
ing enclave in our protocol and initialize .. in EMP-AG2PC. EMP-AG2PC
consists of three computing phases: (i) function independent offline phase, (ii)
function dependent offline phase and (iii) online phase. (i) and (ii) are collec-
tively called offline phase. In the LAN setting, our silent 2PC protocol is 17-32X
faster w.r.t. the garbler’s running time and 12-15X faster w.r.t. the evaluator’s
running time than the EMP-AG2PC [20]. In the WAN setting, our silent PC
protocol is 46-59X faster w.r.t. the garbler’s running time and 21-36X faster
w.r.t. the evaluator’s running time than the EMP-AG2PC.

2 Preliminaries

Notation. Throughout this paper, we use the following notations and terminolo-
gies. Let A € N be the security parameter. We abbreviate probabilistic polynomial
time as PPT, and interactive Turing machine as ITM. Let poly(-) and negl(-)
be a polynomially-bounded function and negligible function, respectively. We
assume each party has a unique PID. For readability, we refer P; as the PID for
the party P;. Suppose f(z1,22) =y is a function (circuit). Denote f.ny and f.no
as the input size of x; and xs, respectively. Let f.n = f.ny + f.ns. Denote f.m
as the size of the output y and f.N as the overall wire number in f. For notation
simplicity, we also use ny,ng,n, m, N to represent f.ny, f.ng, f.n, f.m, f.N when
there will be no ambiguity.

Garbling Scheme. As defined in [3], a garbling scheme GC consists of the
following PPT algorithms (Gb, En, Ev, De).
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Gb(1?, f) is the garbling algorithm that takes input as the security parameter

A € Nand a circuit f, and it returns a garbled circuit F', encoding information

e, and decoding information d.

— En(e, x) is the encoding algorithm that takes input as the encoding informa-
tion e and an input x, and it returns a garbled input X.

— Ev(F, X) is the evaluation algorithm that takes input as the garbled circuit

F and the garbled input X, and it returns a garbled output Y.

De(d,Y) is the decoding algorithm that takes input as the decoding informa-

tion d and the garbled output Y, and it returns the output y.

A garbling scheme GC := (Gb, En, Ev, De) is called projective if e consists of
2f.n wire labels. For the i-th input bit, we denote the corresponding wire labels
as (X?,X}). Let e := {(X?, X})}iepn); the encoding algorithm En(e, z) simply
outputs Xix[i],i € [n], where z[i] is the i-th bit of x.

Analogously, a garbling scheme is called output-projective if d consists of
2 labels for each output bits, which can be denoted as (Z?,Z}). Let d =
{(Z2,Z})}icpm); the decoding algorithm De(d,Y) outputs y[i],i € [m], where
yli] is the i-th bit of y s.t. Z{ym =Y.

In this work, we assume the garbling scheme GC is both projective and
output-projective.

Definition 1 (Correctness [3]). We say a garbling scheme (Gb, En, Ev, De) is
correct if for all functions f and input x:

Pr[(F,e,d) «— Gb(l/\,f) : De(d, Ev(F,En(e,x))) = f(z)] =1.

Definition 2 (Simulatable Privacy [3]). We say a garbling scheme
(Gb, En, Ev, De) is simulatable private if for all functions f and input z, there
exists a PPT simulator Sim such that for all PPT adversary A the following
holds:
(F()»eOv dO) — Gb(lAv f)a XO — En(e,x);
Pr | (F1, X1,d1) < Sim(1%, f (), 2(f)); = negl(}) .
b—{0,1};0* — A(Fy, Xp,dp) : b=b*

where @ is the side-information function.

Yao’s GC Optimizations and Our Choice. Throughout the past decades,
several optimization techniques have been proposed to improve the efficiency of
Yao’s garbled circuit (GC). In this section, we examine a few Yao’s GC optimiza-
tions and analyze their suitability for our work to achieve the best performance,
the concrete performance analysis is taken from the work of Zahur et al. [22].

In the classical garbling scheme, the GC generator needs to invoke the hash
function H 4 times for each gate to create a garbled table consists of 4 cipher-
texts. The GC evaluator also needs to invoke H up to 4 times for each gate to
decrypt all these ciphertexts and obtains an output wire label.

Beaver et al. [2] introduced a technique called point-and-permute. By append-
ing a select bit to each wire label, one can easily determine the places of the
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f—| Functionality ]_—2pr N

It interacts with players P := {P;, P} and the adversary S. Let P. be the set of corrupted parties.
Initially, set P. = 0.

Compute:

- Upon receiving (COMPUTE, sid, z;) from party P; € P:
e If P; € P., send a notification (CompuTENOTIFY, sid, z;, P;) to S;
Otherwise, send a notification (CoMPUTENOTIFY, sid, |z;|, P;) to S;
e If it has received x1 from P; and x5 from Ps:
» Compute y < f(z1,z2);
e Send (Ourrur,sid, Py) to adversary S:
» Upon receiving (DELIVER, sid, P») from S, it sends (CoMPUTE, sid, y) to Pa;

Corruption handling:
- Upon receiving (CORRUPT, sid, P;) from the adversary S, if P; € P:

e Set P, :=P.U{P;};
e Send (INpuT,sid, z;, P;) to S if x; is already defined;

Fig. 1. Functionality .7:2fpc

corresponding ciphertexts. Therefore, for a garbled table, the GC evaluator can
decide which ciphertext to decrypt according to the select bit and only invoke H
once. Nevertheless, each garbled table still contains 4 ciphertexts, and it takes 4
H invocations to generate. We adopt this technique in our design, as it greatly
reduces the GC evaluator’s computational cost, and it is compatible with other
optimizations.

Naor et al. [17] introduced a garbled row-reduction technique known as GRR3
to reduce the garbled table size. The main idea is to fix 1 of the 4 ciphertexts,
e.g., the top one, in each garbled table to be 0, and thus can be eliminated. In
our construction, the memory of the enclave is limited, and this technique can
reduce memory usage of GC generation.

Kolesnikov et al. [14] introduced the free-XOR technique. This technique
allows us to garble and evaluate XOR gates for free. To do this, the offset between
each wire’s 0-label and 1-label in the entire circuit is fixed to A. Therefore,
one can generate or evaluate an XOR gate via a simple XOR operation. This
technique can greatly improve the performance of our scheme.

We note that, in a conventional 2PC setting, the other optimization tech-
niques, such as GRR2 [19] and half-gates [22], may be helpful to further
improve scheme performance. However, GRR2 is not compatible with free-XOR.
Although half-gates is compatible with the aforementioned three optimizations,
it is not ideal for our construction. The reason is that the main benefit of half-
gates is to reduce the non-XOR gate garbled table size to 2, but it needs 2 H
invocations to evaluate. Whereas, in our design, the GC size is not the bottle-
neck of our overall performance, because the GC table is transmitted between
the SGX enclave and the host locally. While, without half-gates, each non-XOR
gate garbled table only needs 1 H invocation to evaluate.
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,—(Semi-trusted Hardware Functionality Fuw [MU N

It interacts with players P := {P;, P>} and the adversary A. It is parameterized with a PPT ITM M and
a Boolean flag corrupted.
Initially, set corrupted := false.

- Upon receiving (CorrupT, sid, M*) from .A:
e Set corrupted := true;
e If M* # (, replace M := M*;
- Upon receiving (RuN, sid, z;) from party P; € P:
e If corrupted = true:
» Send leakage message (RUNNoOTIFY, sid, z;, P;) to A;
e If corrupted = false:
« Send notification message (RUNNOTIFY, sid, P;) to A;
e When (RuN,sid, 1) and (RuN, sid, z2) are both received:
« Run (y1,y2) + M(z1,z2);
« For i € {1,2}, send (Run,sid, y;) to P;;

Fig. 2. The semi-trusted hardware functionality Fiw [M]

3 Security Model

Simulation-Based Security. Our security model follows the simulation
paradigm, which lays down a solid foundation for designing and analyzing proto-
cols secure against attacks in an arbitrary network execution environment (there-
fore it is also known as network aware security model). Roughly speaking, in a
simulation-based security model, protocols are carried out over multiple inter-
connected machines; to capture attacks, a network adversary A is introduced,
which is allowed to corrupt some machines (i.e., have the full control of all phys-
ical parts of some machines); in addition, A is allowed to partially control the
communication tapes of all uncorrupted machines, that is, it sees all the messages
sent from and to the uncorrupted machines and controls the sequence in which
they are delivered. Then, a protocol p is a secure implementation of a function-
ality JF, if it satisfies that for every network adversary A attacking an execution
of p, there is another adversary S—known as the simulator—attacking the ideal
process that uses F (by corrupting the same set of machines), such that, the
executions of p with A4 and that of F with § makes no difference to any network
execution environment.

The Ideal World Execution. In the ideal world, P; and P, only communicate

with an ideal functionality .7-"2];6 during the execution. As depicted in Fig.1,
party P; € P sends (COMPUTE, sid, ;) to the functionality .7-'2fpc7 and fzfpc sends
a notification (COMPUTENOTIFY, sid, x;, P;) to the adversary S if P; is corrupted;

Otherwise, ]—"2pr leaks the input size (COMPUTENOTIFY, sid, |x;|, P;) to S. When

both parties’ inputs are received, .7-'2fpc computes y « f(x1,22). It then sends
(COMPUTE, sid, y) to P» if the adversary S allows. For corruption handling, if
the adversary S corrupts party P; € P, fopc adds P; to the set of corrupted
parties, P., and leaks P;’s input z; to S if it is already defined.
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f—(Description of MROTJ N

MROT(wl, T2) :

Parse z1 = (1, k1) and x2 = ({2, ka);
Assert 1 = {o;
Generate (b1, ...,be;) < PRG(k2);

For ¢ € [61]:/
e Generate R?l < PRFyg, (i, bi);
e [M] Generate Rsi@l < PRFy, (,b; @ 1);
e [M] Set UfiEBl = H(Rlzi’@l);

— [S] Return y1 := 0 and yo := {R?i’}ig[gl];

- [M] Return g1 := 0 and y2 := ({R?i}ie[zl]a{U?iﬂal}ie[zl]);

Fig. 3. Description of MROT

The Real World Execution. The real/hybrid world protocol IT uses a semi-
trusted hardware components, which are modeled as the ideal functionality Fiw.
Later, we will discuss how Fyw is instantiated by Intel SGX in practice. For
notation simplicity, we define Fyw as a template, and specify the required func-
tionalities in the description of a PPT Turing machine M. We use Fiw[M®¢] in

our semi-honest/malicious setting protocol Hsz%-

3.1 Semi-trusted Hardware Model

We introduce a new notion, called semi-trusted hardware model. Unlike the
conventional trusted hardware model, the semi-trusted hardware functionality
Fuw[M] shown in Fig. 2 can be corrupted by the adversary A. The functionality
Fuw[M] is parameterized with a PPT ITM M and a Boolean flag corrupted to
indicate whether the hardware is corrupted. The parties P; and P, can invoke
Fuw|[M] to compute (y1,y2) < M(z1,22) by sending the input x; and x5 respec-
tively to ]:HVV~

However, the adversary A is allowed to corrupt Fyw via the (CORRUPT,
sid, M*) command. When A is a semi-honest adversary, it sets M* = (). In exe-
cution, if Fyw is corrupted, it will leak each party’s input to A. When A is a
malicious adversary, M* can be arbitrarily defined by A (not necessarily PPT),
and Fuw computes (y1,y2) «— M*(z1,22) instead. After the computation, Fyw
sends the output y; to the party P; and y» to the party Ps.

4 Correlated Randomness Teleportation

Correlated randomness is widely used in the MPC offline protocols to achieve
better online efficiency. In practice, correlated randomness can be generated and
distributed by a trusted server. However, this approach still needs huge commu-
nication between the trusted server and the players to deliver those correlated
random copies. In this section, we show it is possible to utilize a semi-trusted
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f—{ Protocol I1roT N

Protocol description:

- Upon receiving (COMPUTE, sid, z2 := ) from the environment Z, the party Ps:
e Pick random ko < {0,1}%;
e Generate (b1, ...,be) <+ PRG(k2);
e Send (Run,sid, (¢, k2)) to Fuw[MROT];
- Upon receiving (COMPUTE, sid, z1 := £) from the environment Z, the party Pi:
e Pick random k; <+ {0,1}%;
e For i € [{]:
« Generate RY PRF, (7,0) and R} + PRFy, (7, 1);
« [M] Set 02 := H(R?) and o} := H(R});
[M] Set 7 := H({o?, 0} }ici):
[S] Send (Run,sid, (£, k1)) to Faw[MRT];
[M] Send (Run,sid, (¢, klc? to Fuw| MROT and send 7 to Pa;
Return (COMPUTE sid, {R R} i Yiele)) to the environment Z;

- [S] Upon receiving (Run, sid, {R “Yicle)), the party Pa:

e Return (COMPUTE, sid, {R }ze 1) to the envlronment Z;
- [M] Upon receiving (Run, sid, ({Rl ‘Yiel {a }ze 1)) from Fuw[MROT] and receiving
from Pi, the party Ps:
e For i € [{], set 6b’ = H(R s
Set 7 1= H({O’,L ,0; }16 1{])

.
® Assert T =T;
L]

Return (COMPUTE, sid, {R "}icle)) to the environment Z;

Fig. 4. The semi-honest/malicious setting ITroT in the EI\V[MROT]-hybrid model

hardware to teleport correlated randomness with little (O(X)) communication.
Take two-party computation as an example. Without loss of generality, suppose
Fuw is located at P»’s side with fast local connections, e.g., Fyw is instantiated
with Py’s SGX. In the following, we provide Random OT teleportation and GC
teleportation protocols to illustrate our idea.

4.1 Random OT Teleportation

Description of MROT, We now define the Turing machine MROT for Fyw
in Fig.3. We use [S] (or [M]) labels to indicate instructions only included in
the machine used in the semi-honest (or malicious) setting protocol. Unlabeled
instructions are performed in both settings.

When P; sends (¢1,k;) and P, sends (fa, ko), MROT parses their inputs to
obtain the ROT seeds ki, ks and the number of ROT to be generated /1, /s,
and it asserts P, and P, send the same number ¢; = /5. Subsequently, MROT
use ko to generate the ROT select bits by (by, ..., bs, ) < PRG(ks). Then, MROT
computes R < PRFy, (i,b;), for i € [¢1]. In the semi-honest setting, MROT can
simply returns the ROT copies {R?i}ie[gl] to Ps.

In the malicious setting, in addition to generate the ROT copies,
needs to produce some verification messages. More specifically, after generat-
ing a ROT copy R?Z MROT also generates Ri—”"@l — PRFg, (4,b; ® 1), and it sets

M ROT
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ol = MROT

H(RY®') as the verification message. In the end, returns the

ROT messages {R." };c|s,] and the verification messages {07 }ic(,) to Po.

Description of ITrot. We depict our semi-honest/malicious setting protocol in
Fig. 4, where / is the number of ROT copies P, and P> want to generate. We use
[S] (or [M]) labels to indicate instructions only included in the semi-honest (or
malicious) setting protocol. Other instructions not labeled should be included in
both settings.

The Semi-honest Setting. In the semi-honest setting protocol, the party
P, first picks a random ko « {0,1}* as its ROT seed, and it uses this seed
to generate (by,...,b;) <« PRG(kz) as the ROT select bits. Then, P, sends
(Run, sid, (¢, k) to Fraw[MROT]. The party P; also picks a random k; « {0,1}*
as its ROT seed, and it uses this seed to generate R «+ PRFy,(i,0) and
R} < PRFy,(i,1), for i € [f]. Subsequently, P, sends (Run,sid, (¢, k1)) to
Fuw[MFOT], and it returns (COMPUTE, sid, {R?, R} };c(q) to the environment
Z. After that, P, receives the ROT copies {R;’i}ie[@] from Frw[MROT].

The Malicious Setting. In the malicious setting protocol, the party P, first
picks a random kg « {0,1}* as its ROT seed, and it uses this seed to generate
(b1,...,bs) «— PRG(k2) as the ROT select bits. Then, P, sends (Run,sid, (¢, k3))
to Faw[MROT]. The party P also picks a random k; « {0,1}* as its ROT
seed. For i € [{], P, generates RY « PRFy, (i,0) and R} « PRFy,(i,1), and
it sets 0f := H(RY) and o} := H(R}). Subsequently, it sets a hash value of
all these hash values 7 := H({0?, 0} }ic7). P1 then sends (Run,sid, (¢, k1)) to
Fuw[MROT] and sends 7 to P,, and it returns (COMPUTE, sid, { RY, R} };c(¢) to
the environment Z. After that, P, receives the ROT copies {R?i}iem and hash
values {65”@1}1-6[4] from Frw[MROT] and 7 from Py. For i € [{], Py sets 67 :=
H(RY). At last, P sets 7 := H({6?,6}}iciq) and asserts 7 = T to check these
hash values.

Security. When SGX is malicious, it may produce incorrect Rf". To check the
correctness of R?i at a low communication cost while preventing P; from learn-
ing b;, we let P, and SGX collaboratively generate verification messages. More
specifically, SGX will send hash values of RY and R} to P, (since P, can generate
H(R") by itself, only H(RY®') is needed). Meanwhile, P, computes and sends
= H({H(RY), H(R;’i@l)}ie[g]) to P,. This hash value 7 can be used to verify
the validity of SGX’s outputs later. Due to space limitation, the full proof can
be found in the full version.

4.2 GC Teleportation with Applications to Silent 2PC

Description of M®¢. We now define the Turing machine MS for Fyw that will
be used for our 2PC protocol in the semi-honest/malicious adversarial setting
(cf. Fig.5). We use [S] (or [M]) labels to indicate instructions only included in
the machine used in the semi-honest (or malicious) setting protocol. Unlabeled
instructions are performed in both settings.
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r—(Description of MGC} ,

MCC (21, x2) :

- Parse z1 = (k, f1) and 22 = (f2, {23 ;}ic(fy.n0) )
— Assert f1 = fa;

~ Set f*(x1, (25, 23)) = fi(z1, 25 ® x3);

— Generate (F,e,d) < Gb(1*, f*; k);

- Parse e = {(X?, X)) }ie(r*.n)

- [M] For i € [f*.na], set 0 := H(X, ;« ) and o} := H(X]| s«
0

o )i

- [S] Return yq := @ and y2 := (F,d, {Xt+f* ,LI}LE[fz 712])§

- [M] Return y7 := 0 and yo := (F,d, {X7+7‘* 711}76 [f2.m2] {o’ o }ze f*. 7l2l)

Fig. 5. Description of M®¢

When P; sends (k, f1) and P, sends <f2,{x8)i}ie[f2_n2]>, MEC parses their
inputs to obtain the GC seed k, the circuit to be computed and P»’s secret-
shared input :C2 MGC asserts P; and P, send the same circuit f1 = f2, and use
f1 to generate a function f*(z1, (29, 23)) = fi(x1, 23 © x3). MSC then generates
the garbled circuit by (F,e,d) « Gb(1*, f*; k), and it parses the encoding infor-
mation e = {(X?, X})}ie[f*.n] to get the input wire labels. In the semi-honest
setting, MC¢ can simply returns (F,d) and the wire label of 29 to Ps.

In the malicious setting, in addition to generate the GC copy, M®C needs to
produce some verification messages. More Speciﬁcally, after parsing the encoding
information, M®C sets 0 := H(X), ;. , )and o} := H(X}, ;. , ), fori € [f*.ny].
These hash values {J?,ail}ie[f*_nz] can help P, to verify that it receives the
correct input Wire labels from P; in the subsequent execution. In the end, M€

121

returns (F,d, {X,+f* nl}ie[fQ.ng]v {a?,a}}iemm]) to Ps.

Instantiation of MCC. In practice, M®C can be instantiated by just running an
SGX enclave on the P, side. P; will remotely interact with P»’s SGX enclave
via a secure channel established by remote attestation. As introduced in Sect. 2,
we adopt three GC optimizations, respectively are point-and-permute, GRR3
and free-XOR. For the point-and-permute, we set the least significant bits of the
wire labels as the select bits, and arrange the garbled table according to these
bits. For the GRR3 optimization, we set the 0-label of the output wire as the
first row of the garbled table, and XOR each row with this 0-label, then the
first row becomes an all 0 string and thus can be eliminated. And the free-XOR
optimization is implemented as described.

Description of Hch We depict our semi-honest/malicious setting protocol
in Fig.6, where f is the function that P, and P>, want to jointly compute, as
described in Sect. 2, ny, no and n are the input size of P;, the input size of
P, and the overall input size, respectively. In addition, we define a modified
function f*(z1, (23,23)) = f(x1,29 ® 1), in which 29 and z} are the additive
secret shares of P,’s original input 5. This idea of splitting P,’s inputs is from
the work of Mohassel et al. [16], in their setting, there are two garblers and
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,—' Protocol Hzpc N

We deﬁne fr (rl (arz,:c2)) = f(z1,23 @ x3), both 2§ and x} are Py’s inputs, so n} = ni,nj =
2n2,n _71 +n2

- Upon receiving (COMPUTE, sid, z2 := (22,1, ..., $2=7L2)) from Z, the party Ps:
e For i € [n2], pick random rgL < {0,1}, and set 3:2 s =2, @ 12 .
e Send (Run,sid, (f, {:c2 itieng])) to Frw[MC] and {a:2 iticlng) to Pr;
- Upon receiving (COMPUTE, 5|d z1 = (T1,1,..., ,1,ny)) from the environment Z and
{:UZ,L}IE [ng] from P, Pi:
e Pick random k «+ {0,1}*;
Generate (F,e,d) < Gb(1*, f*; k);
Parse ¢ = {(X0. X1 bic o
[M] For i € [n3], set o2 := H(XL+,L1) and o} = H(XL1+,L1)
[M] Send 7 := H(F,d,{c?, 0} Yicm ) to Po;
Send (Run, sid, (k, f)) to Fuw[M], and send
1 i
{Zi = X; 7" emy) {Zitngtna = X7fnl+n2}7e [ng) to Pz;
29
~ Upon receiving (Run, sid, (F',d,{Zitn; = X7+ﬂ1}7€ [ny])) (and [ M] {69, Al}LE [n3] %)) from
Fuw[ME€], and receiving {Z; Yicing) {Z7+711+712}LE [no] (and [M] 7) from Pi, party Ps:

o IM] Set 7 := H(F,d, {69,;,64.: }icng)
e [M] Assert 7 = T;

29 o}
[M] For i € [n2], assert &, 2t = H(Zi4n,) and ‘TL+1;2 = H(Zitnq+ns);
e Evaluate Y <+ GC.Ev(F, (Z1,..., Zp*));
Decode y < GC.De(d, Y);

Return (COoMPUTE, sid, y) to the environment Z;
| S

Fig. 6. The semi-honest/malicious setting protocol 15 in the Fiw[M®“]-hybrid model

one evaluator, and the evaluator secret-shares its inputs and sends shares to the
garblers. We use [S] (or [M]) labels to indicate instructions only included in the
semi-honest (or malicious) setting protocol. Other instruction not labeled should
be included in both the semi-honest setting protocol and the malicious setting
protocol.

The Semi-honest Setting. In the semi-honest setting protocol, the party
P, first secret shares its input xs; as z3; = :E%i @ xii, and it sends
(Run,sid, (f, {29 ;}ieno])) to Fuw[ME] and {3 ;}icin,) to Pi. After receiving
the secret shares of Py’s inputs {23 ;}ic(n,), P1 picks a random k < {0,1}* as
the seed of GC, it generates a GC with this seed by (F,e,d) «— Gb(1*, f*; k)
and it parses the input wire labels by e = {(X?, X}')}ic(n+)- Then, Py sends
(Run,sid, (k, f)) to Faw[M®], and it sends the input wire labels of its own

1
inputs {Z; = X;""},c(n,) and Pp’s input shares {Ziyn,+n, = Xy i n, bicine]
to P». Subsequently, P» receives the garbled tables F', the decoding information
d and the input wire labels of {z9;}ic[n,] from Fraw[MCC], and it receives P;’s
input wire labels and the input wire labels of {23 ; };c[n,], it evaluates the garbled
circuit by Y « GC.Ev(F, (Z1,...,Zn,+2n,)), and decodes the output value by
y <« GC.De(d,Y).
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The Malicious Setting. In the malicious setting protocol, the party
P, first secret shares its input xzp,; as xp; = 9, ® xzy,, and it sends
(Run,sid, (f, {29 ; }icina))) to Frw [MEC] and {2} ;Yicn,) to Pr. After receiving the
secret shares of Py’s inputs {xii}ie[nz], Py picks arandom k « {0,1}* as the seed
of GC, it generates a GC with this seed by (F,e,d) « Gb(1*, f*; k) and it parses
the input wire labels by e = {(X?, X}) }ic[n+)- Then, Py computes the hash values
of all Py’s input wire labels, 0? := H(X?,,, ) and o} := H(X},,, ), for i € [n3],
in addition, it computes another hash value of these all hash values and the gar-
bled circuit by 7 = H(F,d,{o?, J}}ie[ng]). After that, P; sends (Run,sid, (k, f))
to .7-'HW[MGC], and it sends the hash value 7, the input wire labels of its own

1

inputs {Z; = X; "' }ie(ny) and Py’s input shares {Zijpn,+n, = Xf_i‘,il+n2}ie[n2}
to P,. Subsequently, P, receives the garbled tables F', the decoding information
d, the input wire labels of {95871‘}1'6[7@] and the hash values of all its input wire
labels {67, 6} }icnz) from Fruw|[M®C], and it receives 7, P;’s input wire labels
and the input wire labels of {x%7i}ie[7lz]. Then, P, checks the message sent by
Faw[MCC] with the hash value 7, and it verifies that Frw[M®C] and P; sends
the correct input wire labels using the hash values from fHW[MGC]. At last, P
evaluates the garbled circuit by Y « GC.Ev(F, (Z1,..., Zn,+on,)), and decodes
the output value by y «— GC.De(d,Y).

5 Security

In this section, we first examine why our schemes are secure at the high level, and
then formally state the security of our semi-honest/malicious setting protocol
1155 in Theorem 1/Theorem 2, respectively, where we restrict the adversary
A to only corrupt one of the following entities (i) the semi-trusted hardware
functionality, (ii) player P; and (iii) player Ps.

In our protocols, P»’s input xo is secretly shared as xo = :Ug &) x%, and Ps
sends 9 to .7:HW[MGC] and z3 to P;. }'HW[MGC] and P; will not be corrupted
simultaneously, so the adversary can not learn Py’s input value.

In the semi-honest setting, the view of Fyw[MC¢] is the MPC function f, a
random input share of x5 and the seed of the garbled circuit, f is already known
to the environment Z and the adversary A; therefore, no additional information
would be leaked to the adversary A. Since Faw[M®C] could only be passively
corrupted, the correctness of the garbled circuit and the wire labels of P»’s secret
shared input are preserved. The input privacy of protocol HszCc is guaranteed by
the simulatable privacy property of the underlying garbling scheme GC. In the
malicious setting, Fyw[M®¢], P;, and P, may be maliciously corrupted. The
main design principle is as follows. In P’s point of view, either .7:HW[|\/|GC} or
Py could be corrupted. Note that our protocol does not provide accountability,
i.e., when the protocol abort, we are not required to identify which party is
guilty. Thus, P, can use messages generated by Fiw[M®¢] and messages sent
by P, to carry out a mutual verification, and it aborts if any inconsistency is
detected. More specifically, the wire labels of P»’s secret shared input x9 and z}
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i O n,) and of == H(X}, ) generated
by Fuaw[MCC]. The correctness of the garbled circuit and the hash values are
ensured by another hash value 7 = H(F,d,{o?, Uil}ie[n;])-

are checked using hash values ¢ := H(X?

Theorem 1. If GC := (Gb,En, Ev,De) is a secure simulatable private garbling
scheme, protocol IISS (semi-honest setting) described in Fig. 6 securely realizes

2pc
.7:2fpc as described in Fig. 1 in the Fuw|[MCC]-hybrid model against any PPT semi-
honest adversaries who can corrupt one of the following entities: (i) fHW'[MGC],

(i) Py, or (iii) Py with static corruption.

Theorem 2. If H : {0,1}* + {0,1}* is a collision resistant hash function, and
GC := (Gb, En, Ev, De) is a secure simulatable private garbling scheme, protocol
HszCc (malicious setting) described in Fig. 6 securely realizes f2fpc as described
in Fig. 1 in the Fiuw [MCC]-hybrid model against any PPT malicious adversaries
who can corrupt one of the following entities: (i) Faw[MCC], (i) Py, or (iii) Py
with static corruption.

The proofs are provided in Appendix A.1.

6 Implementation and Benchmarks

Our protocol is implemented in C++ using Intel SGX SDK on Linux. We use
AES-NI for the PRF algorithm. We perform the experiments on an SGX-enabled
Dell OptiPlex 7080 equipped with an Intel Core 8700 CPU @ 3.20 GHz with 32.0
GB RAM, running Ubuntu 18.04 LTS. We evaluate all protocols in two simulated
network settings: (i) a LAN setting with 1 Gbps bandwidth and 0.1 ms delay
and (ii) a WAN setting with 100 Mbps bandwidth and 25 ms delay.

To test the performance of our semi-honest ROT generation protocol, we
compared our protocol with the implementation of the IKNP OT extension
protocol [8] in EMP-OT [20]. Table 1 shows the performance comparison for
generating 10% to 108 copies of ROT, where the result is the average of 10 tests.

Table 4. Details of the benchmark Bristol Fashion circuit

Circuit | # wire | # gate | # AND gate | # Pi’s input | # P»’s input | # output
AFES-128 | 36919 | 36663 | 6400 128 128 128
SHA-256 | 135841 | 135073 | 22573 256 256 256
SHA-512 | 351153 | 349617 | 57947 512 512 512

To test the performance of the 2PC protocols, our benchmarks use three
Bristol Fashion format circuits [1], and the details are provided in Table 4.
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For the semi-honest setting protocol, we compared our protocol with EMP-
SH2PC [20] (EMP-SH2PC provides an efficient semi-honest 2PC implementa-
tion based on Yao’s GC protocol with half-gates [22] optimization); for the mali-
cious setting protocol, we compared our protocol with EMP-AG2PC [20] (EMP-
AG2PC implements an efficient maliciously secure two-party computation pro-
tocol, authenticated garbling [21]). Table 2 shows the performance comparison
for evaluating the aforementioned benchmark circuits for 1000 times using the
semi-honest setting protocols, and the results are the average of 10 tests. Table 3
shows the performance comparison for evaluating the benchmark circuits once
using the malicious version, and the results are the average of 100 tests.

7 Related Work

As mentioned above, there are several hardware models proposed in the litera-
ture, such as the remote attestation model [18] and the tamper-proof hardware
token models [9,12]. However, the existing model does not address hardware
leakage as well as malicious corruptions. Mohassel et al. [15] proposed a scheme
that enables efficient secure computation on mobile phones. Their protocol is
constructed in a Server-Aided setting, where a semi-honest (covert) server who
does not collude with protocol players is used to accelerate computation. How-
ever, their objective is to save computation, while our goal is to reduce commu-
nication. Moreover, in our model, the hardware can be maliciously corrupted.
Jarvinen et al. [10] used hardware token to reduce the cost of the OT process
in standard GC protocols. In their protocol, a sender generates a garbled circuit
and it uses hardware tokens, e.g. One-Time Memory (OTM) tokens, to store
the GC encoding information, the garbled circuit and the hardware tokens are
collectively called One-Time Program (OTP), which is a non-interactive version
of GC protocol. In our work, we also remove the OT process, but to keep sen-
sitive information away from the enclave, we secret-share P5’s input and sends
the shares to P; and SGX. A similar idea can be found in Mohassel et al. [16].
Kolesnikov [13] used hardware tokens to construct an efficient OT protocol.
This work considers the client-server setting where the server is the sender and
the client is the receiver. The server can deploy a hardware token in the client
side, and the client can obtain messages by querying the token. Our work pro-
vides a more efficient malicious setting protocol, instead of the cut-and-choose
technique.

There have been some Intel SGX-based MPC solutions. Gupta et al. [7]
proposed protocols using Intel SGX for SFE problem which is secure in the
semi-honest model, and show how to improve their protocol’s security.. The naive
solution is to let the players enter their inputs to the enclave, and they reduce
the data leakage problem by using SGX to convert plaintexts to ciphertexts (e.g.
wire labels) and vice versa, but the enclave still knows the input values. They
notice the problem that the players need to trust hardware supplier when using
Intel SGX, but don’t give a feasible solution. Felsen et al. [6] proposed an Intel
SGX-based secure function evaluation (SFE) approach in which private inputs
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are sent to enclave. In their protocol, only the inputs and the outputs need to
be transferred, the communication complexity of their protocol is optimal up to
an additive constant. They evaluate the Boolean circuit representation of the
function in enclave to provide security with regards to software side-channel
attacks. Choi et al. [4] consider the possibility of SGX being compromised and
want to protect the most sensitive data in any case. They propose a hybrid
SFE-SGX protocol which consists of calculation in SGX enclave and standard
cryptographic techniques. The function to be evaluated is partitioned into several
round functions, in the odd rounds, the computation is executed in the enclave
and the player Bob (the remote party) only provide less sensitive inputs, in
the even rounds, a scheme based on garbled circuit is used and Bob provides
more sensitive data. These works focus on the efficiency of the Intel SGX-based
solutions, and the main security concern is the side-channel attack problem.
Providing private information to enclave is an inevitable step of their protocols;
therefore, private information may be leaked in our setting.

8 Conclusion

In this work, we investigate the problem where the trusted hardware manu-
facturer is not fully trusted, and the hardware components may leak sensitive
information to the remote servers. In our model, the adversary is allowed to
passively or maliciously corrupt the hardware component. We present several
correlated randomness teleportation protocols, such as ROT and GC generation
with applications to silent MPC, where the communication only depends on the

input size regardless the circuit size. The resulting protocols are significantly
faster than the EMP-IKNP-ROT, EMP-SH2PC and EMP-AG2PC.
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A Appendix

A.1 Security Proof of Our Main Theorems
Due to space limitation, we only provide the security proof for malicious setting.

Proof. To prove Theorem 2, we construct a simulator S such that no non-uniform

1A GC
PPT environment Z can distinguish between (i) the real execution EXEC?Z?C‘ [XI Z}
A,
where the parties P := {P;, P,} run protocol II$C in the Fiw[M®]-hybrid
2pc

model and the corrupted parties are controlled by a dummy adversary A who

simply forwards messages from/to Z, and (ii) the ideal execution EXEC .

S 2



716 Y. Lu et al.

where the parties P; and P, interact with functionality .7-"2pr in the ideal world,
and corrupted parties are controlled by the simulator S. We consider following
cases.

Case 1: Fgw[M®] is corrupted; P; and P, are honest.

Simulator. The simulator S internally runs A, forwarding messages to/from the
environment Z. S simulates the interface of Fiw[M®C] as well as honest parties
P, and P,. In addition, the simulator S simulates the following interactions with

A.

— Upon receiving (COMPUTENOTIFY, sid, | 23|, P;) for an honest party P, from
the external ,7-"2pr, the simulator S picks random z9 ; — {0,1}, for i € [ng],
and it sends (Run, sid, (f, {29 ;}ic[n,])) to Fuw[ME] on behave of P.

— Upon receiving (COMPUTENOTIFY, sid, |z1|, P1) for an honest party P; from
the external fzfpc, the simulator S picks random k « {0,1}*, and it sends

(Run,sid, (k, f)) to Faw[M®“] on behave of P;. S then generate (F,e,d) «—
Gb(1*, f*; k) and parse e = {(X?, X}')};¢[n+]. Subsequently, for i € [n3], S sets
o) == H(X},, ) and of == H(X},, ), and it sets 7 = H(F,d, {07, 0] }ic[nz))-
S then sends 7 to the simulated party P> on behave of P;.

— Upon receiving (Run,sid, @;) from the party P, € P via the interface of
Faw[MCC], S acts as Fgw[M®] to send (RUNNOTIFY,sid, Q;, P;) to A. S

then simulates the Fiw[M®C] functionality as defined.
L g0
— When the simulated party P, receives (F,d, {Xij;zl}ie[n,z],{&?,&}}ie[n;])
from ]-'HW[MGC] and receives 7 from the simulated P;, P, computes 7 =

H(F, d, {&871-, &é,i}ie[n;]) and asserts 7 = 7. Thereafter, S fetches the internal
GC label information (F,e,d) from the simulated P;. For i € [ns], S acts as
29 .
P, to assert Zin, = X, [ .
— Upon receiving (OUTPUT,sid, P;) from the external .7:2pr, the simulator S
returns (DELIVER, sid, P») if and only if all the checks are valid.

Indistinguishability. Assume the communication between P, and P, is via

Firw [ME]

$C,AZ

and EXEC,s o - are identical except the scenario where the real-world output
2pcr©

the secure channel functionality Fgc, the views of A and Z in EXEC

y is different from the ideal-world output 3. This happens when the malicious
fH\V[MGC] provides inconsistent information, yet she manages to pass all the
hash validations. It means that the adversary provides at least one different
hash preimage that would hashes to the same value as the original preimage.
Therefore, the simulator and the adversary can jointly outputs two messages
my # meg such that H(mq) = H(msg). Assume H is a collision resistant crypto-

Faw[MEC]
115, A, 2 and EXEC]_-ZJ;C,

graphic hash function, the views of A and Z in EXEC 5.2

are indistinguishable.

Case 2: P, is corrupted; P, and fHW[MGC] are honest.
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Simulator. The simulator S internally runs 4, forwarding messages to/from
the environment Z. S simulates the interface of Fiw[M®C] as well as honest Ps.
In addition, the simulator S simulates the following interactions with A.

— Upon receiving (COMPUTENOTIFY, sid, |z2|, P2) from the external .7-"2’;6, the
simulator S picks random z9; «— {0,1}, for i € [ng], and it sends
(Run,sid, (f, {29 ;}ie[ns))) to Fuw[ME] on behave of P;. For i € [ng] S sends
random 23 ; — {0,1} to P1 on behave of P;.

— Upon receiving (Run,sid, (k, f)) from P; and (Run,sid, (f, {x(z),i}ie[m]» from
Py, S acts as Faw([M®C] to set f*(z1, (29, 23)) = fi(z1,29 @ 21) and gen-
erate the garbled circuit by (F,e,d) « Gb(1*, f*;k). S then parse e =

{(X107 Xz'l)}ie[n1+2n2] and sends (F7 d, {Xlx-i;u }ie[n2]7 {U?, Uz‘l}ie[ng]) to the sim-
ulated party P on behave of fHW[I\/IGC].
~ When the simulated party P receives {Z;}icin,]s { Zitni+ns fie[n,) and 7 from
P1, S acts as P, to compute 7 = H(F,d,{0},0] }ienz)) and assert 7 = 7.
Thereafter, S fetches the internal GC label information (F) e, d) from the sim-
xél

ulated Fiw[MCC]. For i € [ng], S acts as Py to assert Ziyn, 1n, = D, ST
In addition, S uses the internal GC label information (F)e,d) and {Z; }ic[n,)
to extract Pi’s input z7, and it sends (COMPUTE, sid, #]) to the external fzfpc
on behave of P;.

— Upon receiving (OUTPUT, sid, P;) from the external fzfpc, the simulator S
returns (DELIVER, sid, P) if and only if all the checks are valid and A allows
P; to finish the protocol execution and obtains y.

Indistinguishability. The indistinguishability is proven through a series of
hybrid worlds H, ..., Hs.

IGC
Hybrid Ho: It is the real protocol execution EXECT M)

nge,AZ "

Hybrid Hi: H; is the same as Hy except that in H;, P> sends random
{:%%,i}ie[ng] to P, instead of {:r%Z = x%i ® T2 }icn,-

Claim. H, and Hy are perfectly indistinguishable.

Proof. Since {I%Z—}ie[nz] are random bits picked by P,, the distribution of
{23 ;}ieins) and {25 ;}icin,) are identical. Therefore, H; and Ho are perfectly
indistinguishable.

Hybrid Hs: H, is the same as H; except that in Hs, P, fetches the internal
GC label information (F,e,d) from the simulated Fyw[M®C], and it checks if
1

T2 . .
Zitni+ns = Xi{n 1n,s Otherwise, S aborts.

Claim. If H is a collision resistant cryptographic hash function, Hs and H; are
indistinguishable.
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Proof. The difference between H; and Hy is that in Hy, P» only checks

H(Z;4n,+n,); whereas, in Ha, Py directly checks if Z;yn,4n, = Xj_i721+n2. It
is easy to see when H is a collision resistant cryptographic hash function, Hs
and H; are indistinguishable.

The adversary’s view of Hs is identical to the simulated view EXEC sz
2pc?

Therefore, it is perfectly indistinguishable.
Case 3: P, is corrupted; P; and fHW[MGC] are honest.

Simulator. The simulator S internally runs A, forwarding messages to/from
the environment Z. S simulates the interface of ]—'HW[I\/IGC] as well as honest P;.
In addition, the simulator S simulates the following interactions with .A.

— Upon receiving (COMPUTENOTIFY, sid, |x1|, P1) from the external féfpc and
receiving {x%,i}ie[nz] from Py, the simulator S picks random & « {0,1}*, and
it sends (Run,sid, (k, f)) to Faw[M®¢] on behave of P;.

— Upon receiving (Run,sid, (k, f)) from Py and (Run,sid, (f, {9 ;}ic[n,])) from
Py, 8 computes Py’s input x% ; := Z @ xh ;, for i € [ng]. After that, it sends
(COMPUTE, sid, 23) to the external ‘7:2pc on behave of P;.

— Upon receiving (COMPUTE, sid, y) from the external .7-"2fpc for Py, the simulator
S sets f*(z1, (29, x%)) = f1(x1, 23®xl) and uses the GC simulator to generate
(F', X', d'") « Sim(1* ,y, &(f*)). S then uses X' as the wire labels to generate
{Zi}icin+2n,) 38 Z = X!. S picks 2n2 random numbers Z; < {0,1}*. For

i € [ng], S sets 0, == H(Ziyn,), af“ = H(Zy), fj;tz = H(Zifn, 1n,
and U:j’;?l = H(Zan). Subsequently, S sets 7 = H(F',d',{c?, a}}ie[n;]).

At last, S sends {Zn, }ic[n,] as the wire label of 29, (F”,d’) as the GC tables
and decode information and {J?,J}}ie[n;] as the hash values of P»’s wire
labels to P, on behave of Fw[M¢C], and it sends {Z;}ic(ni], { Zitny+ns bicna)
and 7 to P, on behave of Pj.

Indistinguishability. The indistinguishability is proven through a series of

hybrid worlds Hy, ..., Hs.

Hybrid Hy: It is the real protocol execution EXEC?E;:CZ} A Z}

Hybrld H1: H; is the same as Hg except that H; generates different hash values
by O';Dz O H(Z ) and fjnjﬂ = H(Zan), for i € [ng], where {Zi}ie[ZnQ] are
random Valueb.

Claim. If H is a collision resistant cryptographic hash function, H; and H, are
indistinguishable.

. . . x5, 01 z3 Bl
Proof. The difference between Ho and H; is that in Ho, 0;*" " == H(X; 7))
1 1 0 1
z3 ;@1 z5 ;@1 . z3,;®1 5 5,01
and o, = H(X; [, ,,,); whereas, in Hy, o, = H(Z;) and 0,7, =~ =

H(Zitn,)- It is easy to see when H is a collision resistant cryptographic hash
function, H; and Hy are indistinguishable.
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Hybrid Hs: Hs is the same as H; except that Hs generates (F', X', d') «
Sim(1%,y,®(f*)), and then it uses X’ as the wire labels to generate
{Zi}icpn+2ns)- Faw[MCC] also sends (F’,d’) as the GC tables and decoding
information to Ps.

Claim. If GC is simulatable private with adversarial distinguishing advantage
Advar‘C"S"“’QS’S'm(.A7 A), then H; and Hy are indistinguishable with distinguishing
advantage AdvES™®Sm( 4 )).

Proof. By the requirement of simulatable privacy in Definition 2, (F’, X', d’) «
Sim(1*,y,®(f*)) should be indistinguishable from the real one except for the
adversarial distinguishing advantage Adv'DGré"c"m’("b’s'm(,,47 A).

Therefore, if GC is simulatable private, the views of A and Z in EXEC 1SC Az
2pciv

and EXEC s g 5 are indistinguishable with distinguishing advantage
3perS

AdvRES™ S (A XY = negl()) .
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