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Abstract. With the advancement of the trusted execution environment
(TEE) technologies, hardware-supported secure computing becomes
increasingly popular due to its efficiency. During the protocol execution,
typically, the players need to contact a third-party server for remote
attestation, ensuring the validity of the involved trusted hardware com-
ponent, such as Intel SGX, as well as the integrity of the computation
result. When the hardware manufacturer is not fully trusted, sensitive
information may be leaked to the third-party server through backdoors,
steganography, and kleptography, etc. In this work, we introduce a new
security notion called semi-trusted hardware model, where the adversary
is allowed to passively or maliciously corrupt the hardware. Therefore,
she can learn the input of the hardware component and might also tam-
per its output. We then show how to utilize such semi-trusted hardwares
for correlated randomness teleportation. When the semi-trusted hardware
is instantiated by Intel SGX, to generate 10k random OT’s, our protocol
is 24X and 450X faster than the EMP-IKNP-ROT in the LAN and WAN
setting, respectively. When SGX is used to teleport Garbled circuits, the
resulting two-party computation protocol is 5.3-5.7X and 43-47X faster
than the EMP-SH2PC in the LAN and WAN setting, respectively, for
the AES-128, SHA-256, and SHA-512 evaluation. We also show how to
achieve malicious security with little overhead.
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1 Introduction

In secure multi-party computation (MPC), two or more players want to collec-
tively compute a function and receive its output without revealing their inputs
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to the other players. In the past decades, MPC has gradually transitioned from
theory to practice, and it has been widely used in many security critical real-
world applications, such as private set intersection and secure auction. In spite
of its success, MPC is still not efficient for complicated real-time tasks due to
its computational overhead and high communication cost. Meanwhile, recent
development of trusted execution environment (TEE) technologies, such as Intel
SGX and ARM TrustZone, enables a new approach for privacy-preserving com-
putation. Hardware-supported secure computing can greatly accelerate an MPC
process by avoiding expensive cryptographic operations. However, this kind of
construction introduces additional hardware setup assumptions that require new
trust roots, e.g., Intel. Recent exposure of Intel source code [5] raises a secu-
rity concern on possible backdoors contained in its design. When the hardware
manufacturer is not fully trusted, sensitive information may be leaked through
backdoors, steganography and kleptography, etc. For instance, Intel SGX uses
the remote attestation mechanism to ensure the validity of the enclave exe-
cution environment and the integrity of the computation result. More specifi-
cally, Intel’s (anonymous) attestation is based on an anonymous group signature
scheme called Intel Enhanced Privacy ID (EPID) [11]. To verify that an outcome
is computed by a pre-agreed program in a genuine SGX, Quoting Enclave (QE)
will produce a quote by signing the report with the group signature. The users
then need to contact the remote Intel Attestation Service (IAS) (or some other
alternative servers) for verification. If Intel is malicious, sensitive information
may be leaked from the SGX component to the IAS through the signatures,
using for example kleptography techniques. (Currently, Intel SGX uses 4096-
bit RSA signatures.) That means the input of SGX might be revealed to the
adversary.

When the hardware provider is not allied with the MPC participants, is it
possible to still use potentially malicious leaky hardware components to accel-
erate MPC executions with privacy assurance? In this work, we answer this
question affirmatively.

New Model. We introduce a new semi-trusted hardware model, where the
adversary A is allowed to passively or maliciously corrupt the hardware ideal
functionality FHW. FHW is parameterized with a probabilistic polynomial time
(PPT) interactive Turing machine (ITM) M, which specifies its functionality.
When the hardware functionality FHW is passively corrupted, the adversary A
can learn all the incoming messages received by FHW; when FHW is maliciously
corrupted, in addition to leaning the incoming messages, the adversary A can
replace the original M with an arbitrary ITM M∗; namely, A can fully control
the execution of FHW.

We note that the existing remote attestation model [18], tamper-proof hard-
ware token models [9,12], and server-aided model [15] are different from our
model. When hardware is fully trusted, unlike the remote attestation model, our
FHW does not sign its output. Moreover, the existing model does not address
hardware leakage as well as malicious corruptions.
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Our Constructions. We show semi-trusted hardware can still be used to sig-
nificantly improve the efficiency of an MPC protocol by reducing the commu-
nication. The main idea is to use semi-trusted hardware for those MPC com-
putation that does not depend on the actual protocol inputs; thus no sensitive
information is leaked to the hardware components. We propose a new notion
called correlated randomness teleportation, where the sender can teleport a large
amount of correlated randomness to the receiver with little communication. Take
random OT (ROT) generation as an example, assume the Receiver uses an SGX-
enabled machine, while there is no special hardware requirement to the Sender.
During the ROT protocol, the Sender only needs to send a random seed k1 to
the Receiver’s SGX enclave via a secure channel, and the Receiver also sends a
random seed k2 to the enclave locally. Both parties can then generate polynomi-
ally many ROT copies without any further communication. Namely, for a ROT
copy, the Sender locally computes R0

ctr ← PRFk1(ctr, 0) and R1
ctr ← PRFk1(ctr, 1)

from the seed k1 using some pseudo-random function PRF, where ctr is the
counter; meanwhile, the SGX generates the ROT choice bit bctr from the seed
k2 using some pseudo-random number generator PRG, and then it computes
Rbctr

ctr ← PRFk1(ctr, bctr). The SGX locally outputs {Rbctr
ctr }ctr to the Receiver.

Garbled circuit (GC) can also be viewed as a type of correlated randomness.
With our technique, the communication between the 2PC players can also be dra-
matically reduced. We assume the GC Evaluator uses an SGX-enabled machine,
while there is no special hardware requirement to the GC Garbler. Note that, the
main cost of a GC-based 2PC protocol is the transmission of the garbled tables
of the entire circuit. Analogously, during the GC protocol, the Garbler sends a
random seed k1 to the Evaluator’s SGX enclave via a secure channel. The SGX
can then internally generate the garbled tables and locally outputs them to the
Evaluator without network communication. The only communication needed is
for transmitting the input labels from the Garbler to the Evaluator. The overall
communication is linear to the input size and independent of the circuit size.

Remark. We would like to emphasize that naively using the secure hardware
components, such as SGX, and a simulatable private garbling scheme in a black-
box fashion to prepare GC in an offline phase won’t result in a simulatable 2PC
protocol. This is because the simulator cannot extract the malicious Evaluator’s
input in the offline phase, yet it needs to learn the MPC output (from the ideal
functionality) to invoke the GC simulator (cf. Definition 2) to produce the (fake)
GC tables in the real/hybrid world. The protocol should invoke the secure hard-
ware component at the right moment along with the 2PC protocol execution.

Efficiency. We mainly compare the performance of our protocols with the well-
known EMP-toolkit maintained by Wang et al. [20]. Table 1 shows the perfor-
mance comparison between the passively secure IKNP OT extension protocol [8]
implemented in EMP-toolkit [20] and our silent ROT protocol (semi-honest
security). We perform the experiments on an SGX-enabled Dell OptiPlex 7080
equipped with an Intel Core 8700 CPU @ 3.20 GHz with 32 GB RAM. In the
LAN setting (Bandwidth: 1Gbps, Delay: 1ms), our silent ROT protocol is 22-
39X faster w.r.t. the sender’s running time and 9-14X faster w.r.t. the receiver’s
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Table 1. Performance comparison of the ROT protocols. Result obtained from Dell
OptiPlex 7080 (Intel Core 8700 CPU @ 3.20 GHz, 32 GB RAM, OS: Ubuntu 18.04
LTS). LAN: 1 Gbps bandwidth, 0.1 ms delay. WAN: 100 Mbps bandwidth, 25ms delay.

# ROT Network Sender’s running time (in ms) Receiver’s running time (in ms)

EMP-IKNP-ROT [20] Our ROT EMP-IKNP-ROT [20] Our ROT

1 × 104 LAN 2.889 0.074 3.908 0.162

WAN 26.331 0.079 76.358 0.169

1 × 105 LAN 17.790 0.780 19.355 1.575

WAN 150.502 0.795 200.030 1.477

1 × 106 LAN 154.373 6.182 150.621 15.910

WAN 1451.043 6.402 1495.294 16.032

1 × 107 LAN 1507.961 51.616 1451.562 103.937

WAN 13859.934 51.280 13963.502 103.435

1 × 108 LAN 15030.832 505.289 14470.057 995.987

WAN 138028.607 501.757 137034.187 980.795

Table 2. Performance comparison of the generation, transmission and evaluation pro-
cess of the garbled circuit in the semi-honest setting 2PC protocol. Result obtained
from the same experiment environment as in Table 1. It shows the running time (in
ms) for evaluating AES-128, SHA-256, and SHA-512 circuits 1000 times, respectively.

Circuit Network EMP-SH2PC [20] time (in ms) Our 2PC protocol time (in ms)

Garbler Comm. Evaluator Garbler Comm. Evaluator (SGX+PC)

AES-128 LAN 246.557 1742.094 229.339 10.171 ≈0 243.730 + 174.916

WAN 265.919 18335.009 234.264 9.875 ≈0 255.275 + 177.637

SHA-256 LAN 829.398 6135.087 776.880 26.310 ≈0 805.893 + 583.828

WAN 839.626 64433.208 777.284 28.981 ≈0 804.904 + 581.166

SHA-512 LAN 2434.915 15745.170 2388.890 52.110 ≈0 2061.712 + 1549.076

WAN 2303.479 163362.579 2418.025 52.373 ≈0 2072.215 + 1551.586

Table 3. Performance comparison of the computation process of the malicious setting
2PC protocol. Result obtained from the same experiment environment as in Table 1.
It shows the running time (in ms) for evaluating AES-128, SHA-256, and SHA-512
circuits once, respectively.

Circuit Network EMP-AG2PC [20] running time (in ms) Ours (in ms)

Garb. offline Garb. online Eval. offline Eval. online Garbler Evaluator

AES-128 LAN 94.744 5.185 92.055 5.193 3.100 6.311

WAN 1345.708 53.440 1240.956 53.385 30.124 61.457

SHA-256 LAN 210.676 6.303 201.701 6.272 10.373 15.633

WAN 2299.404 52.474 2196.297 52.440 47.756 86.059

SHA-512 LAN 435.581 9.634 423.302 9.593 25.756 34.944

WAN 4095.115 56.471 4044.428 56.426 70.139 112.336

running time than the EMP-IKNP-ROT [20]. In the WAN setting (Bandwidth:
100 Mbps, Delay: 25 ms), our silent ROT protocol is 189-333X faster w.r.t. the
sender’s running time and 93-451X faster w.r.t. the receiver’s running time than
the EMP-IKNP-ROT.



Correlated Randomness Teleportation via Semi-trusted Hardware 703

Table 2 shows the performance comparison between EMP-SH2PC [20] and
our semi-honest setting silent 2PC protocol. (EMP-SH2PC provides an efficient
semi-honest 2PC implementation based on Yao’s GC protocol with half-gates [22]
optimization.) We perform the experiments on this same machine as above. We
test the garbling time, the garbled tables transmission time, and the evaluation
time separately, as for the Garbler in our protocol, the garbling time is the time
to generate input wire labels. We omit the time of transmitting seeds and wire
labels in both protocols. Since in our protocol, the garbling process is performed
in the SGX enclave at the evaluator side, we split the evaluator running time
of our protocol into two parts: (i) the SGX running time and (ii) normal mode
CPU running time. The garbler running time is the time to generate the input
wire labels. We take the AES-128, SHA-256, and SHA-512 circuit evaluation as
benchmarks. In the LAN setting, our silent 2PC protocol is 5.3-5.7X faster than
the EMP-SH2PC [20]. In the WAN setting, our silent 2PC protocol is 43-47X
faster than the EMP-SH2PC.

Table 3 shows the performance comparison between EMP-AG2PC [20] and
our malicious setting silent 2PC protocol. (EMP-AG2PC implements an efficient
maliciously secure two-party computation protocol, authenticated garbling [21].)
We perform the experiments on this same machine as above. We take the AES-
128, SHA-256, and SHA-512 circuit evaluations as benchmarks, and the results
are the average of 100 tests. All the one-time expenses are omitted, e.g., creat-
ing enclave in our protocol and initialize Fpre in EMP-AG2PC. EMP-AG2PC
consists of three computing phases: (i) function independent offline phase, (ii)
function dependent offline phase and (iii) online phase. (i) and (ii) are collec-
tively called offline phase. In the LAN setting, our silent 2PC protocol is 17-32X
faster w.r.t. the garbler’s running time and 12-15X faster w.r.t. the evaluator’s
running time than the EMP-AG2PC [20]. In the WAN setting, our silent PC
protocol is 46-59X faster w.r.t. the garbler’s running time and 21-36X faster
w.r.t. the evaluator’s running time than the EMP-AG2PC.

2 Preliminaries

Notation. Throughout this paper, we use the following notations and terminolo-
gies. Let λ ∈ N be the security parameter. We abbreviate probabilistic polynomial
time as PPT, and interactive Turing machine as ITM. Let poly(·) and negl(·)
be a polynomially-bounded function and negligible function, respectively. We
assume each party has a unique PID. For readability, we refer Pi as the PID for
the party Pi. Suppose f(x1, x2) = y is a function (circuit). Denote f.n1 and f.n2

as the input size of x1 and x2, respectively. Let f.n = f.n1 + f.n2. Denote f.m
as the size of the output y and f.N as the overall wire number in f . For notation
simplicity, we also use n1, n2, n,m,N to represent f.n1, f.n2, f.n, f.m, f.N when
there will be no ambiguity.

Garbling Scheme. As defined in [3], a garbling scheme GC consists of the
following PPT algorithms (Gb,En,Ev,De).
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– Gb(1λ, f) is the garbling algorithm that takes input as the security parameter
λ ∈ N and a circuit f , and it returns a garbled circuit F , encoding information
e, and decoding information d.

– En(e, x) is the encoding algorithm that takes input as the encoding informa-
tion e and an input x, and it returns a garbled input X.

– Ev(F,X) is the evaluation algorithm that takes input as the garbled circuit
F and the garbled input X, and it returns a garbled output Y .

– De(d, Y ) is the decoding algorithm that takes input as the decoding informa-
tion d and the garbled output Y , and it returns the output y.

A garbling scheme GC := (Gb,En,Ev,De) is called projective if e consists of
2f.n wire labels. For the i-th input bit, we denote the corresponding wire labels
as (X0

i ,X1
i ). Let e := {(X0

i ,X1
i )}i∈[n]; the encoding algorithm En(e, x) simply

outputs X
x[i]
i , i ∈ [n], where x[i] is the i-th bit of x.

Analogously, a garbling scheme is called output-projective if d consists of
2 labels for each output bits, which can be denoted as (Z0

i , Z1
i ). Let d :=

{(Z0
i , Z1

i )}i∈[m]; the decoding algorithm De(d, Y ) outputs y[i], i ∈ [m], where
y[i] is the i-th bit of y s.t. Z

y[i]
i = Yi.

In this work, we assume the garbling scheme GC is both projective and
output-projective.

Definition 1 (Correctness [3]). We say a garbling scheme (Gb,En,Ev,De) is
correct if for all functions f and input x:

Pr[(F, e, d) ← Gb(1λ, f) : De(d,Ev(F,En(e, x))) = f(x)] = 1 .

Definition 2 (Simulatable Privacy [3]). We say a garbling scheme
(Gb,En,Ev,De) is simulatable private if for all functions f and input x, there
exists a PPT simulator Sim such that for all PPT adversary A the following
holds:

Pr

⎡
⎣

(F0, e0, d0) ← Gb(1λ, f);X0 ← En(e, x);
(F1,X1, d1) ← Sim(1λ, f(x), Φ(f));
b ← {0, 1}; b∗ ← A(Fb,Xb, db) : b = b∗

⎤
⎦ = negl(λ) .

where Φ is the side-information function.

Yao’s GC Optimizations and Our Choice. Throughout the past decades,
several optimization techniques have been proposed to improve the efficiency of
Yao’s garbled circuit (GC). In this section, we examine a few Yao’s GC optimiza-
tions and analyze their suitability for our work to achieve the best performance,
the concrete performance analysis is taken from the work of Zahur et al. [22].

In the classical garbling scheme, the GC generator needs to invoke the hash
function H 4 times for each gate to create a garbled table consists of 4 cipher-
texts. The GC evaluator also needs to invoke H up to 4 times for each gate to
decrypt all these ciphertexts and obtains an output wire label.

Beaver et al. [2] introduced a technique called point-and-permute. By append-
ing a select bit to each wire label, one can easily determine the places of the
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Fig. 1. Functionality Ff
2pc

corresponding ciphertexts. Therefore, for a garbled table, the GC evaluator can
decide which ciphertext to decrypt according to the select bit and only invoke H
once. Nevertheless, each garbled table still contains 4 ciphertexts, and it takes 4
H invocations to generate. We adopt this technique in our design, as it greatly
reduces the GC evaluator’s computational cost, and it is compatible with other
optimizations.

Naor et al. [17] introduced a garbled row-reduction technique known as GRR3
to reduce the garbled table size. The main idea is to fix 1 of the 4 ciphertexts,
e.g., the top one, in each garbled table to be 0, and thus can be eliminated. In
our construction, the memory of the enclave is limited, and this technique can
reduce memory usage of GC generation.

Kolesnikov et al. [14] introduced the free-XOR technique. This technique
allows us to garble and evaluate XOR gates for free. To do this, the offset between
each wire’s 0-label and 1-label in the entire circuit is fixed to Δ. Therefore,
one can generate or evaluate an XOR gate via a simple XOR operation. This
technique can greatly improve the performance of our scheme.

We note that, in a conventional 2PC setting, the other optimization tech-
niques, such as GRR2 [19] and half-gates [22], may be helpful to further
improve scheme performance. However, GRR2 is not compatible with free-XOR.
Although half-gates is compatible with the aforementioned three optimizations,
it is not ideal for our construction. The reason is that the main benefit of half-
gates is to reduce the non-XOR gate garbled table size to 2, but it needs 2 H
invocations to evaluate. Whereas, in our design, the GC size is not the bottle-
neck of our overall performance, because the GC table is transmitted between
the SGX enclave and the host locally. While, without half-gates, each non-XOR
gate garbled table only needs 1 H invocation to evaluate.
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Fig. 2. The semi-trusted hardware functionality FHW[M]

3 Security Model

Simulation-Based Security. Our security model follows the simulation
paradigm, which lays down a solid foundation for designing and analyzing proto-
cols secure against attacks in an arbitrary network execution environment (there-
fore it is also known as network aware security model). Roughly speaking, in a
simulation-based security model, protocols are carried out over multiple inter-
connected machines; to capture attacks, a network adversary A is introduced,
which is allowed to corrupt some machines (i.e., have the full control of all phys-
ical parts of some machines); in addition, A is allowed to partially control the
communication tapes of all uncorrupted machines, that is, it sees all the messages
sent from and to the uncorrupted machines and controls the sequence in which
they are delivered. Then, a protocol ρ is a secure implementation of a function-
ality F , if it satisfies that for every network adversary A attacking an execution
of ρ, there is another adversary S—known as the simulator—attacking the ideal
process that uses F (by corrupting the same set of machines), such that, the
executions of ρ with A and that of F with S makes no difference to any network
execution environment.

The Ideal World Execution. In the ideal world, P1 and P2 only communicate
with an ideal functionality Ff

2pc during the execution. As depicted in Fig. 1,
party Pi ∈ P sends (Compute, sid, xi) to the functionality Ff

2pc, and Ff
2pc sends

a notification (ComputeNotify, sid, xi, Pi) to the adversary S if Pi is corrupted;
Otherwise, Ff

2pc leaks the input size (ComputeNotify, sid, |xi|, Pi) to S. When
both parties’ inputs are received, Ff

2pc computes y ← f(x1, x2). It then sends
(Compute, sid, y) to P2 if the adversary S allows. For corruption handling, if
the adversary S corrupts party Pi ∈ P, Ff

2pc adds Pi to the set of corrupted
parties, Pc, and leaks Pi’s input xi to S if it is already defined.
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Fig. 3. Description of MROT

The Real World Execution. The real/hybrid world protocol Π uses a semi-
trusted hardware components, which are modeled as the ideal functionality FHW.
Later, we will discuss how FHW is instantiated by Intel SGX in practice. For
notation simplicity, we define FHW as a template, and specify the required func-
tionalities in the description of a PPT Turing machine M. We use FHW[MGC] in
our semi-honest/malicious setting protocol ΠGC

2pc.

3.1 Semi-trusted Hardware Model

We introduce a new notion, called semi-trusted hardware model. Unlike the
conventional trusted hardware model, the semi-trusted hardware functionality
FHW[M] shown in Fig. 2 can be corrupted by the adversary A. The functionality
FHW[M] is parameterized with a PPT ITM M and a Boolean flag corrupted to
indicate whether the hardware is corrupted. The parties P1 and P2 can invoke
FHW[M] to compute (y1, y2) ← M(x1, x2) by sending the input x1 and x2 respec-
tively to FHW.

However, the adversary A is allowed to corrupt FHW via the (Corrupt,
sid,M∗) command. When A is a semi-honest adversary, it sets M∗ = ∅. In exe-
cution, if FHW is corrupted, it will leak each party’s input to A. When A is a
malicious adversary, M∗ can be arbitrarily defined by A (not necessarily PPT),
and FHW computes (y1, y2) ← M∗(x1, x2) instead. After the computation, FHW

sends the output y1 to the party P1 and y2 to the party P2.

4 Correlated Randomness Teleportation

Correlated randomness is widely used in the MPC offline protocols to achieve
better online efficiency. In practice, correlated randomness can be generated and
distributed by a trusted server. However, this approach still needs huge commu-
nication between the trusted server and the players to deliver those correlated
random copies. In this section, we show it is possible to utilize a semi-trusted
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Fig. 4. The semi-honest/malicious setting ΠROT in the FHW[MROT]-hybrid model

hardware to teleport correlated randomness with little (O(λ)) communication.
Take two-party computation as an example. Without loss of generality, suppose
FHW is located at P2’s side with fast local connections, e.g., FHW is instantiated
with P2’s SGX. In the following, we provide Random OT teleportation and GC
teleportation protocols to illustrate our idea.

4.1 Random OT Teleportation

Description of MROT. We now define the Turing machine MROT for FHW

in Fig. 3. We use [S] (or [M]) labels to indicate instructions only included in
the machine used in the semi-honest (or malicious) setting protocol. Unlabeled
instructions are performed in both settings.

When P1 sends 〈�1, k1〉 and P2 sends 〈�2, k2〉, MROT parses their inputs to
obtain the ROT seeds k1, k2 and the number of ROT to be generated �1, �2,
and it asserts P1 and P2 send the same number �1 = �2. Subsequently, MROT

use k2 to generate the ROT select bits by (b1, . . . , b�1) ← PRG(k2). Then, MROT

computes Rbi
i ← PRFk1(i, bi), for i ∈ [�1]. In the semi-honest setting, MROT can

simply returns the ROT copies {Rbi
i }i∈[�1] to P2.

In the malicious setting, in addition to generate the ROT copies, MROT

needs to produce some verification messages. More specifically, after generat-
ing a ROT copy Rbi

i , MROT also generates Rbi⊕1
i ← PRFk1(i, bi ⊕ 1), and it sets
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σbi⊕1
i := H(Rbi⊕1

i ) as the verification message. In the end, MROT returns the
ROT messages {Rbi

i }i∈[�1] and the verification messages {σbi⊕1
i }i∈[�1] to P2.

Description of ΠROT. We depict our semi-honest/malicious setting protocol in
Fig. 4, where � is the number of ROT copies P1 and P2 want to generate. We use
[S] (or [M]) labels to indicate instructions only included in the semi-honest (or
malicious) setting protocol. Other instructions not labeled should be included in
both settings.
The Semi-honest Setting. In the semi-honest setting protocol, the party
P2 first picks a random k2 ← {0, 1}λ as its ROT seed, and it uses this seed
to generate (b1, . . . , b�) ← PRG(k2) as the ROT select bits. Then, P2 sends
(Run, sid, 〈�, k2〉) to FHW[MROT]. The party P1 also picks a random k1 ← {0, 1}λ

as its ROT seed, and it uses this seed to generate R0
i ← PRFk1(i, 0) and

R1
i ← PRFk1(i, 1), for i ∈ [�]. Subsequently, P1 sends (Run, sid, 〈�, k1〉) to

FHW[MROT], and it returns (Compute, sid, {R0
i , R

1
i }i∈[�]) to the environment

Z. After that, P2 receives the ROT copies {Rbi
i }i∈[�] from FHW[MROT].

The Malicious Setting. In the malicious setting protocol, the party P2 first
picks a random k2 ← {0, 1}λ as its ROT seed, and it uses this seed to generate
(b1, . . . , b�) ← PRG(k2) as the ROT select bits. Then, P2 sends (Run, sid, 〈�, k2〉)
to FHW[MROT]. The party P1 also picks a random k1 ← {0, 1}λ as its ROT
seed. For i ∈ [�], P1 generates R0

i ← PRFk1(i, 0) and R1
i ← PRFk1(i, 1), and

it sets σ0
i := H(R0

i ) and σ1
i := H(R1

i ). Subsequently, it sets a hash value of
all these hash values τ := H({σ0

i , σ1
i }i∈[�]). P1 then sends (Run, sid, 〈�, k1〉) to

FHW[MROT] and sends τ to P2, and it returns (Compute, sid, {R0
i , R

1
i }i∈[�]) to

the environment Z. After that, P2 receives the ROT copies {Rbi
i }i∈[�] and hash

values {σ̂bi⊕1
i }i∈[�] from FHW[MROT] and τ from P2. For i ∈ [�], P2 sets σ̂bi

i :=
H(Rbi

i ). At last, P2 sets τ̂ := H({σ̂0
i , σ̂1

i }i∈[�]) and asserts τ̂ = τ to check these
hash values.

Security. When SGX is malicious, it may produce incorrect Rbi
i . To check the

correctness of Rbi
i at a low communication cost while preventing P1 from learn-

ing bi, we let P1 and SGX collaboratively generate verification messages. More
specifically, SGX will send hash values of R0

i and R1
i to P2 (since P2 can generate

H(Rbi
i ) by itself, only H(Rbi⊕1

i ) is needed). Meanwhile, P1 computes and sends
τ = H({H(Rbi

i ),H(Rbi⊕1
i )}i∈[�]) to P2. This hash value τ can be used to verify

the validity of SGX’s outputs later. Due to space limitation, the full proof can
be found in the full version.

4.2 GC Teleportation with Applications to Silent 2PC

Description of MGC. We now define the Turing machine MGC for FHW that will
be used for our 2PC protocol in the semi-honest/malicious adversarial setting
(cf. Fig. 5). We use [S] (or [M]) labels to indicate instructions only included in
the machine used in the semi-honest (or malicious) setting protocol. Unlabeled
instructions are performed in both settings.
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Fig. 5. Description of MGC

When P1 sends 〈k, f1〉 and P2 sends 〈f2, {x0
2,i}i∈[f2.n2]〉, MGC parses their

inputs to obtain the GC seed k, the circuit to be computed and P2’s secret-
shared input x0

2. M
GC asserts P1 and P2 send the same circuit f1 = f2, and use

f1 to generate a function f∗(x1, (x0
2, x

1
2)) = f1(x1, x

0
2 ⊕ x1

2). M
GC then generates

the garbled circuit by (F, e, d) ← Gb(1λ, f∗; k), and it parses the encoding infor-
mation e = {(X0

i ,X1
i )}i∈[f∗.n] to get the input wire labels. In the semi-honest

setting, MGC can simply returns (F, d) and the wire label of x0
2 to P2.

In the malicious setting, in addition to generate the GC copy, MGC needs to
produce some verification messages. More specifically, after parsing the encoding
information, MGC sets σ0

i := H(X0
i+f∗.n1

) and σ1
i := H(X1

i+f∗.n1
), for i ∈ [f∗.n2].

These hash values {σ0
i , σ1

i }i∈[f∗.n2] can help P2 to verify that it receives the
correct input wire labels from P1 in the subsequent execution. In the end, MGC

returns (F, d, {X
x0
2,i

i+f∗.n1
}i∈[f2.n2], {σ0

i , σ1
i }i∈[f∗.n2]) to P2.

Instantiation of MGC. In practice, MGC can be instantiated by just running an
SGX enclave on the P2 side. P1 will remotely interact with P2’s SGX enclave
via a secure channel established by remote attestation. As introduced in Sect. 2,
we adopt three GC optimizations, respectively are point-and-permute, GRR3
and free-XOR. For the point-and-permute, we set the least significant bits of the
wire labels as the select bits, and arrange the garbled table according to these
bits. For the GRR3 optimization, we set the 0-label of the output wire as the
first row of the garbled table, and XOR each row with this 0-label, then the
first row becomes an all 0 string and thus can be eliminated. And the free-XOR
optimization is implemented as described.
Description of ΠGC

2pc. We depict our semi-honest/malicious setting protocol
in Fig. 6, where f is the function that P1 and P2 want to jointly compute, as
described in Sect. 2, n1, n2 and n are the input size of P1, the input size of
P2 and the overall input size, respectively. In addition, we define a modified
function f∗(x1, (x0

2, x
1
2)) = f(x1, x

0
2 ⊕ x1

2), in which x0
2 and x1

2 are the additive
secret shares of P2’s original input x2. This idea of splitting P2’s inputs is from
the work of Mohassel et al. [16], in their setting, there are two garblers and
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Fig. 6. The semi-honest/malicious setting protocol ΠGC
2pc in the FHW[MGC]-hybrid model

one evaluator, and the evaluator secret-shares its inputs and sends shares to the
garblers. We use [S] (or [M]) labels to indicate instructions only included in the
semi-honest (or malicious) setting protocol. Other instruction not labeled should
be included in both the semi-honest setting protocol and the malicious setting
protocol.

The Semi-honest Setting. In the semi-honest setting protocol, the party
P2 first secret shares its input x2,i as x2,i = x0

2,i ⊕ x1
2,i, and it sends

(Run, sid, 〈f, {x0
2,i}i∈[n2]〉) to FHW[MGC] and {x1

2,i}i∈[n2] to P1. After receiving
the secret shares of P2’s inputs {x1

2,i}i∈[n2], P1 picks a random k ← {0, 1}λ as
the seed of GC, it generates a GC with this seed by (F, e, d) ← Gb(1λ, f∗; k)
and it parses the input wire labels by e = {(X0

i ,X1
i )}i∈[n∗]. Then, P1 sends

(Run, sid, 〈k, f〉) to FHW[MGC], and it sends the input wire labels of its own

inputs {Zi = X
x1,i
i }i∈[n1] and P2’s input shares {Zi+n1+n2 = X

x1
2,i

i+n1+n2
}i∈[n2]

to P2. Subsequently, P2 receives the garbled tables F , the decoding information
d and the input wire labels of {x0

2,i}i∈[n2] from FHW[MGC], and it receives P1’s
input wire labels and the input wire labels of {x1

2,i}i∈[n2], it evaluates the garbled
circuit by Y ← GC.Ev(F, (Z1, . . . , Zn1+2n2)), and decodes the output value by
y ← GC.De(d, Y ).
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The Malicious Setting. In the malicious setting protocol, the party
P2 first secret shares its input x2,i as x2,i = x0

2,i ⊕ x1
2,i, and it sends

(Run, sid, 〈f, {x0
2,i}i∈[n2]〉) to FHW[MGC] and {x1

2,i}i∈[n2] to P1. After receiving the
secret shares of P2’s inputs {x1

2,i}i∈[n2], P1 picks a random k ← {0, 1}λ as the seed
of GC, it generates a GC with this seed by (F, e, d) ← Gb(1λ, f∗; k) and it parses
the input wire labels by e = {(X0

i ,X1
i )}i∈[n∗]. Then, P1 computes the hash values

of all P2’s input wire labels, σ0
i := H(X0

i+n1
) and σ1

i := H(X1
i+n1

), for i ∈ [n∗
2],

in addition, it computes another hash value of these all hash values and the gar-
bled circuit by τ = H(F, d, {σ0

i , σ1
i }i∈[n∗

2 ]
). After that, P1 sends (Run, sid, 〈k, f〉)

to FHW[MGC], and it sends the hash value τ , the input wire labels of its own

inputs {Zi = X
x1,i
i }i∈[n1] and P2’s input shares {Zi+n1+n2 = X

x1
2,i

i+n1+n2
}i∈[n2]

to P2. Subsequently, P2 receives the garbled tables F , the decoding information
d, the input wire labels of {x0

2,i}i∈[n2] and the hash values of all its input wire
labels {σ̂0

i , σ̂1
i }i∈[n∗

2 ]
from FHW[MGC], and it receives τ , P1’s input wire labels

and the input wire labels of {x1
2,i}i∈[n2]. Then, P2 checks the message sent by

FHW[MGC] with the hash value τ , and it verifies that FHW[MGC] and P1 sends
the correct input wire labels using the hash values from FHW[MGC]. At last, P2

evaluates the garbled circuit by Y ← GC.Ev(F, (Z1, . . . , Zn1+2n2)), and decodes
the output value by y ← GC.De(d, Y ).

5 Security

In this section, we first examine why our schemes are secure at the high level, and
then formally state the security of our semi-honest/malicious setting protocol
ΠGC

2pc in Theorem 1/Theorem 2, respectively, where we restrict the adversary
A to only corrupt one of the following entities (i) the semi-trusted hardware
functionality, (ii) player P1 and (iii) player P2.

In our protocols, P2’s input x2 is secretly shared as x2 = x0
2 ⊕ x1

2, and P2

sends x0
2 to FHW[MGC] and x1

2 to P1. FHW[MGC] and P1 will not be corrupted
simultaneously, so the adversary can not learn P2’s input value.

In the semi-honest setting, the view of FHW[MGC] is the MPC function f , a
random input share of x2 and the seed of the garbled circuit, f is already known
to the environment Z and the adversary A; therefore, no additional information
would be leaked to the adversary A. Since FHW[MGC] could only be passively
corrupted, the correctness of the garbled circuit and the wire labels of P2’s secret
shared input are preserved. The input privacy of protocol ΠGC

2pc is guaranteed by
the simulatable privacy property of the underlying garbling scheme GC. In the
malicious setting, FHW[MGC], P1, and P2 may be maliciously corrupted. The
main design principle is as follows. In P2’s point of view, either FHW[MGC] or
P1 could be corrupted. Note that our protocol does not provide accountability,
i.e., when the protocol abort, we are not required to identify which party is
guilty. Thus, P2 can use messages generated by FHW[MGC] and messages sent
by P1 to carry out a mutual verification, and it aborts if any inconsistency is
detected. More specifically, the wire labels of P2’s secret shared input x0

2 and x1
2
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are checked using hash values σ0
i := H(X0

i+n1
) and σ1

i := H(X1
i+n1

) generated
by FHW[MGC]. The correctness of the garbled circuit and the hash values are
ensured by another hash value τ = H(F, d, {σ0

i , σ1
i }i∈[n∗

2 ]
).

Theorem 1. If GC := (Gb,En,Ev,De) is a secure simulatable private garbling
scheme, protocol ΠGC

2pc (semi-honest setting) described in Fig. 6 securely realizes
Ff

2pc as described in Fig. 1 in the FHW[MGC]-hybrid model against any PPT semi-
honest adversaries who can corrupt one of the following entities: (i) FHW[MGC],
(ii) P1, or (iii) P2 with static corruption.

Theorem 2. If H : {0, 1}∗ �→ {0, 1}λ is a collision resistant hash function, and
GC := (Gb,En,Ev,De) is a secure simulatable private garbling scheme, protocol
ΠGC

2pc (malicious setting) described in Fig. 6 securely realizes Ff
2pc as described

in Fig. 1 in the FHW[MGC]-hybrid model against any PPT malicious adversaries
who can corrupt one of the following entities: (i) FHW[MGC], (ii) P1, or (iii) P2

with static corruption.

The proofs are provided in Appendix A.1.

6 Implementation and Benchmarks

Our protocol is implemented in C++ using Intel SGX SDK on Linux. We use
AES-NI for the PRF algorithm. We perform the experiments on an SGX-enabled
Dell OptiPlex 7080 equipped with an Intel Core 8700 CPU @ 3.20 GHz with 32.0
GB RAM, running Ubuntu 18.04 LTS. We evaluate all protocols in two simulated
network settings: (i) a LAN setting with 1 Gbps bandwidth and 0.1 ms delay
and (ii) a WAN setting with 100 Mbps bandwidth and 25 ms delay.

To test the performance of our semi-honest ROT generation protocol, we
compared our protocol with the implementation of the IKNP OT extension
protocol [8] in EMP-OT [20]. Table 1 shows the performance comparison for
generating 104 to 108 copies of ROT, where the result is the average of 10 tests.

Table 4. Details of the benchmark Bristol Fashion circuit

Circuit # wire # gate # AND gate # P1’s input # P2’s input # output

AES-128 36919 36663 6400 128 128 128

SHA-256 135841 135073 22573 256 256 256

SHA-512 351153 349617 57947 512 512 512

To test the performance of the 2PC protocols, our benchmarks use three
Bristol Fashion format circuits [1], and the details are provided in Table 4.
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For the semi-honest setting protocol, we compared our protocol with EMP-
SH2PC [20] (EMP-SH2PC provides an efficient semi-honest 2PC implementa-
tion based on Yao’s GC protocol with half-gates [22] optimization); for the mali-
cious setting protocol, we compared our protocol with EMP-AG2PC [20] (EMP-
AG2PC implements an efficient maliciously secure two-party computation pro-
tocol, authenticated garbling [21]). Table 2 shows the performance comparison
for evaluating the aforementioned benchmark circuits for 1000 times using the
semi-honest setting protocols, and the results are the average of 10 tests. Table 3
shows the performance comparison for evaluating the benchmark circuits once
using the malicious version, and the results are the average of 100 tests.

7 Related Work

As mentioned above, there are several hardware models proposed in the litera-
ture, such as the remote attestation model [18] and the tamper-proof hardware
token models [9,12]. However, the existing model does not address hardware
leakage as well as malicious corruptions. Mohassel et al. [15] proposed a scheme
that enables efficient secure computation on mobile phones. Their protocol is
constructed in a Server-Aided setting, where a semi-honest (covert) server who
does not collude with protocol players is used to accelerate computation. How-
ever, their objective is to save computation, while our goal is to reduce commu-
nication. Moreover, in our model, the hardware can be maliciously corrupted.
Järvinen et al. [10] used hardware token to reduce the cost of the OT process
in standard GC protocols. In their protocol, a sender generates a garbled circuit
and it uses hardware tokens, e.g. One-Time Memory (OTM) tokens, to store
the GC encoding information, the garbled circuit and the hardware tokens are
collectively called One-Time Program (OTP), which is a non-interactive version
of GC protocol. In our work, we also remove the OT process, but to keep sen-
sitive information away from the enclave, we secret-share P2’s input and sends
the shares to P1 and SGX. A similar idea can be found in Mohassel et al. [16].
Kolesnikov [13] used hardware tokens to construct an efficient OT protocol.
This work considers the client-server setting where the server is the sender and
the client is the receiver. The server can deploy a hardware token in the client
side, and the client can obtain messages by querying the token. Our work pro-
vides a more efficient malicious setting protocol, instead of the cut-and-choose
technique.

There have been some Intel SGX-based MPC solutions. Gupta et al. [7]
proposed protocols using Intel SGX for SFE problem which is secure in the
semi-honest model, and show how to improve their protocol’s security.. The naive
solution is to let the players enter their inputs to the enclave, and they reduce
the data leakage problem by using SGX to convert plaintexts to ciphertexts (e.g.
wire labels) and vice versa, but the enclave still knows the input values. They
notice the problem that the players need to trust hardware supplier when using
Intel SGX, but don’t give a feasible solution. Felsen et al. [6] proposed an Intel
SGX-based secure function evaluation (SFE) approach in which private inputs
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are sent to enclave. In their protocol, only the inputs and the outputs need to
be transferred, the communication complexity of their protocol is optimal up to
an additive constant. They evaluate the Boolean circuit representation of the
function in enclave to provide security with regards to software side-channel
attacks. Choi et al. [4] consider the possibility of SGX being compromised and
want to protect the most sensitive data in any case. They propose a hybrid
SFE-SGX protocol which consists of calculation in SGX enclave and standard
cryptographic techniques. The function to be evaluated is partitioned into several
round functions, in the odd rounds, the computation is executed in the enclave
and the player Bob (the remote party) only provide less sensitive inputs, in
the even rounds, a scheme based on garbled circuit is used and Bob provides
more sensitive data. These works focus on the efficiency of the Intel SGX-based
solutions, and the main security concern is the side-channel attack problem.
Providing private information to enclave is an inevitable step of their protocols;
therefore, private information may be leaked in our setting.

8 Conclusion

In this work, we investigate the problem where the trusted hardware manu-
facturer is not fully trusted, and the hardware components may leak sensitive
information to the remote servers. In our model, the adversary is allowed to
passively or maliciously corrupt the hardware component. We present several
correlated randomness teleportation protocols, such as ROT and GC generation
with applications to silent MPC, where the communication only depends on the
input size regardless the circuit size. The resulting protocols are significantly
faster than the EMP-IKNP-ROT, EMP-SH2PC and EMP-AG2PC.
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A Appendix

A.1 Security Proof of Our Main Theorems

Due to space limitation, we only provide the security proof for malicious setting.

Proof. To prove Theorem 2, we construct a simulator S such that no non-uniform
PPT environment Z can distinguish between (i) the real execution exec

FHW[MGC]

ΠGC
2pc,A,Z

where the parties P := {P1, P2} run protocol ΠGC
2pc in the FHW[MGC]-hybrid

model and the corrupted parties are controlled by a dummy adversary A who
simply forwards messages from/to Z, and (ii) the ideal execution execFf

2pc,S,Z
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where the parties P1 and P2 interact with functionality Ff
2pc in the ideal world,

and corrupted parties are controlled by the simulator S. We consider following
cases.

Case 1: FHW[MGC] is corrupted; P1 and P2 are honest.

Simulator. The simulator S internally runs A, forwarding messages to/from the
environment Z. S simulates the interface of FHW[MGC] as well as honest parties
P1 and P2. In addition, the simulator S simulates the following interactions with
A.

– Upon receiving (ComputeNotify, sid, |x2|, P2) for an honest party P2 from
the external Ff

2pc, the simulator S picks random x0
2,i ← {0, 1}, for i ∈ [n2],

and it sends (Run, sid, 〈f, {x0
2,i}i∈[n2]〉) to FHW[MGC] on behave of P2.

– Upon receiving (ComputeNotify, sid, |x1|, P1) for an honest party P1 from
the external Ff

2pc, the simulator S picks random k ← {0, 1}λ, and it sends
(Run, sid, 〈k, f〉) to FHW[MGC] on behave of P1. S then generate (F, e, d) ←
Gb(1λ, f∗; k) and parse e = {(X0

i ,X1
i )}i∈[n∗]. Subsequently, for i ∈ [n∗

2], S sets
σ0

i := H(X0
i+n1

) and σ1
i := H(X1

i+n1
), and it sets τ = H(F, d, {σ0

i , σ1
i }i∈[n∗

2 ]
).

S then sends τ to the simulated party P2 on behave of P1.
– Upon receiving (Run, sid, Qi) from the party Pi ∈ P via the interface of

FHW[MGC], S acts as FHW[MGC] to send (RunNotify, sid, Qi, Pi) to A. S
then simulates the FHW[MGC] functionality as defined.

– When the simulated party P2 receives (F̂ , d̂, {X
x0
2,i

i+n1
}i∈[n2], {σ̂0

i , σ̂1
i }i∈[n∗

2 ]
)

from FHW[MGC] and receives τ from the simulated P1, P2 computes τ̂ =
H(F̂ , d̂, {σ̂0

0,i, σ̂
1
0,i}i∈[n∗

2 ]
) and asserts τ̂ = τ . Thereafter, S fetches the internal

GC label information (F, e, d) from the simulated P1. For i ∈ [n2], S acts as

P2 to assert Zi+n1 = X
x0
2,i

i+n1
.

– Upon receiving (Output, sid, P2) from the external Ff
2pc, the simulator S

returns (Deliver, sid, P2) if and only if all the checks are valid.

Indistinguishability. Assume the communication between P1 and P2 is via
the secure channel functionality FSC, the views of A and Z in exec

FHW[MGC]

ΠGC
2pc,A,Z

and execFf
2pc,S,Z are identical except the scenario where the real-world output

y is different from the ideal-world output y′. This happens when the malicious
FHW[MGC] provides inconsistent information, yet she manages to pass all the
hash validations. It means that the adversary provides at least one different
hash preimage that would hashes to the same value as the original preimage.
Therefore, the simulator and the adversary can jointly outputs two messages
m1 
= m2 such that H(m1) = H(m2). Assume H is a collision resistant crypto-
graphic hash function, the views of A and Z in exec

FHW[MGC]

ΠGC
2pc,A,Z and execFf

2pc,S,Z
are indistinguishable.

Case 2: P1 is corrupted; P2 and FHW[MGC] are honest.
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Simulator. The simulator S internally runs A, forwarding messages to/from
the environment Z. S simulates the interface of FHW[MGC] as well as honest P2.
In addition, the simulator S simulates the following interactions with A.

– Upon receiving (ComputeNotify, sid, |x2|, P2) from the external Ff
2pc, the

simulator S picks random x0
2,i ← {0, 1}, for i ∈ [n2], and it sends

(Run, sid, 〈f, {x0
2,i}i∈[n2]〉) to FHW[MGC] on behave of P2. For i ∈ [n2] S sends

random x̂1
2,i ← {0, 1} to P1 on behave of P2.

– Upon receiving (Run, sid, 〈k, f〉) from P1 and (Run, sid, 〈f, {x0
2,i}i∈[n2]〉) from

P2, S acts as FHW[MGC] to set f∗(x1, (x0
2, x

1
2)) = f1(x1, x

0
2 ⊕ x1

2) and gen-
erate the garbled circuit by (F, e, d) ← Gb(1λ, f∗; k). S then parse e =

{(X0
i ,X1

i )}i∈[n1+2n2] and sends (F, d, {X
x0
2,i

i+n1
}i∈[n2], {σ0

i , σ1
i }i∈[n∗

2 ]
) to the sim-

ulated party P2 on behave of FHW[MGC].
– When the simulated party P2 receives {Zi}i∈[n1], {Zi+n1+n2}i∈[n2] and τ from

P1, S acts as P2 to compute τ̂ = H(F, d, {σ0
i , σ1

i }i∈[n∗
2 ]

) and assert τ̂ = τ .
Thereafter, S fetches the internal GC label information (F, e, d) from the sim-

ulated FHW[MGC]. For i ∈ [n2], S acts as P2 to assert Zi+n1+n2 = X
x1
2,i

i+n1+n2
.

In addition, S uses the internal GC label information (F, e, d) and {Zi}i∈[n1]

to extract P1’s input x∗
1, and it sends (Compute, sid, x∗

1) to the external Ff
2pc

on behave of P1.
– Upon receiving (Output, sid, P2) from the external Ff

2pc, the simulator S
returns (Deliver, sid, P2) if and only if all the checks are valid and A allows
P2 to finish the protocol execution and obtains y.

Indistinguishability. The indistinguishability is proven through a series of
hybrid worlds H0, . . . ,H2.
Hybrid H0: It is the real protocol execution exec

FHW[MGC]

ΠGC
2pc,A,Z .

Hybrid H1: H1 is the same as H0 except that in H1, P2 sends random
{x̂1

2,i}i∈[n2] to P1, instead of {x1
2,i := x0

2,i ⊕ x2,i}i∈[n2].

Claim. H1 and H0 are perfectly indistinguishable.

Proof. Since {x0
2,i}i∈[n2] are random bits picked by P2, the distribution of

{x̂1
2,i}i∈[n2] and {x1

2,i}i∈[n2] are identical. Therefore, H1 and H0 are perfectly
indistinguishable.

Hybrid H2: H2 is the same as H1 except that in H2, P2 fetches the internal
GC label information (F, e, d) from the simulated FHW[MGC], and it checks if

Zi+n1+n2 = X
x1
2,i

i+n1+n2
; otherwise, S aborts.

Claim. If H is a collision resistant cryptographic hash function, H2 and H1 are
indistinguishable.
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Proof. The difference between H1 and H2 is that in H1, P2 only checks

H(Zi+n1+n2); whereas, in H2, P2 directly checks if Zi+n1+n2 = X
x1
2,i

i+n1+n2
. It

is easy to see when H is a collision resistant cryptographic hash function, H2

and H1 are indistinguishable.

The adversary’s view of H2 is identical to the simulated view execFf
2pc,S,Z .

Therefore, it is perfectly indistinguishable.

Case 3: P2 is corrupted; P1 and FHW[MGC] are honest.

Simulator. The simulator S internally runs A, forwarding messages to/from
the environment Z. S simulates the interface of FHW[MGC] as well as honest P1.
In addition, the simulator S simulates the following interactions with A.

– Upon receiving (ComputeNotify, sid, |x1|, P1) from the external Ff
2pc and

receiving {x1
2,i}i∈[n2] from P2, the simulator S picks random k ← {0, 1}λ, and

it sends (Run, sid, 〈k, f〉) to FHW[MGC] on behave of P1.
– Upon receiving (Run, sid, 〈k, f〉) from P1 and (Run, sid, 〈f, {x0

2,i}i∈[n2]〉) from
P2, S computes P2’s input x∗

2,i := x0
2,i ⊕ x1

2,i, for i ∈ [n2]. After that, it sends
(Compute, sid, x∗

2) to the external Ff
2pc on behave of P2.

– Upon receiving (Compute, sid, y) from the external Ff
2pc for P2, the simulator

S sets f∗(x1, (x0
2, x

1
2)) = f1(x1, x

0
2⊕x1

2) and uses the GC simulator to generate
(F ′,X ′, d′) ← Sim(1λ, y, Φ(f∗)). S then uses X ′ as the wire labels to generate
{Zi}i∈[n1+2n2] as Zi := X ′

i. S picks 2n2 random numbers Ẑi ← {0, 1}λ. For

i ∈ [n2], S sets σ
x0
2,i

i := H(Zi+n1), σ
x0
2,i⊕1

i := H(Ẑi), σ
x1
2,i

i+n2
:= H(Zi+n1+n2

and σ
x1
2,i⊕1

i+n2
:= H(Ẑi+n2). Subsequently, S sets τ = H(F ′, d′, {σ0

i , σ1
i }i∈[n∗

2 ]
).

At last, S sends {Zi+n1}i∈[n2] as the wire label of x0
2, (F ′, d′) as the GC tables

and decode information and {σ0
i , σ1

i }i∈[n∗
2 ]

as the hash values of P2’s wire
labels to P2 on behave of FHW[MGC], and it sends {Zi}i∈[n1], {Zi+n1+n2}i∈[n2]

and τ to P2 on behave of P1.

Indistinguishability. The indistinguishability is proven through a series of
hybrid worlds H0, . . . ,H2.
Hybrid H0: It is the real protocol execution exec

FHW[MGC]

ΠGC
2pc,A,Z .

Hybrid H1: H1 is the same as H0 except that H1 generates different hash values

by σ
x0
2,i⊕1

i := H(Ẑi) and σ
x1
2,i⊕1

i+n2
:= H(Ẑi+n2), for i ∈ [n2], where {Ẑi}i∈[2n2] are

random values.

Claim. If H is a collision resistant cryptographic hash function, H1 and H0 are
indistinguishable.

Proof. The difference between H0 and H1 is that in H0, σ
x0
2,i⊕1

i := H(X
x0
2,i⊕1

i+n1
)

and σ
x1
2,i⊕1

i+n2
:= H(X

x1
2,i⊕1

i+n1+n2
); whereas, in H1, σ

x0
2,i⊕1

i := H(Ẑi) and σ
x1
2,i⊕1

i+n2
:=

H(Ẑi+n2). It is easy to see when H is a collision resistant cryptographic hash
function, H1 and H0 are indistinguishable.
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Hybrid H2: H2 is the same as H1 except that H2 generates (F ′,X ′, d′) ←
Sim(1λ, y, Φ(f∗)), and then it uses X ′ as the wire labels to generate
{Zi}i∈[n1+2n2]. FHW[MGC] also sends (F ′, d′) as the GC tables and decoding
information to P2.

Claim. If GC is simulatable private with adversarial distinguishing advantage
Advprv.sim,Φ,Sim

GC (A, λ), then H1 and H0 are indistinguishable with distinguishing
advantage Advprv.sim,Φ,Sim

GC (A, λ).

Proof. By the requirement of simulatable privacy in Definition 2, (F ′,X ′, d′) ←
Sim(1λ, y, Φ(f∗)) should be indistinguishable from the real one except for the
adversarial distinguishing advantage Advprv.sim,Φ,Sim

GC (A, λ).

The adversary’s view of H2 is identical to the simulated view execFf
2pc,S,Z .

Therefore, if GC is simulatable private, the views of A and Z in exec
FHW[MGC]

ΠGC
2pc,A,Z

and execFf
2pc,S,Z are indistinguishable with distinguishing advantage

Advprv.sim,Φ,Sim
GC (A, λ) = negl(λ) .
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