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A central tenet of theoretical cryptography is the study of the minimal assumptions re-
quired to implement a given cryptographic primitive. One such primitive is the one-time
memory (OTM), introduced by Goldwasser, Kalai, and Rothblum [CRYPTO 2008], which
is a classical functionality modeled after a non-interactive 1-out-of-2 oblivious transfer, and
which is complete for one-time classical and quantum programs. It is known that secure
OTMs do not exist in the standard model in both the classical and quantum settings. Here,
we propose a scheme for using quantum information, together with the assumption of state-
less (i.e., reusable) hardware tokens, to build statistically secure OTMs. Via the semidefinite
programming-based quantum games framework of Gutoski and Watrous [STOC 2007], we
prove security for a malicious receiver making at most 0.114n adaptive queries to the to-
ken (for n the key size), in the quantum universal composability framework, but leave open
the question of security against a polynomial amount of queries. Compared to alternative
schemes derived from the literature on quantum money, our scheme is technologically simple
since it is of the “prepare-and-measure” type. We also give two impossibility results showing
certain assumptions in our scheme cannot be relaxed.

1 Introduction
Theoretical cryptography centers around building cryptographic primitives secure against adversarial
attacks. In order to allow a broader set of such primitives to be implemented, one often considers
restricting the power of the adversary. For example, one can limit the computing power of adversaries to
be polynomial bounded [Yao82; BM82], restrict the storage of adversaries to be bounded or noisy [Mau92;
CM97; Dam+05], or make trusted setups available to honest players [Kil88; BFM88; Can01; Can+02;
IPS08; PR08; LPV09; MPR09; MPR10; MR11; KMQ11; Kra+14], to name a few. One well-known
trusted setup is tamper-proof hardware [Kat07; GKR08], which is assumed to provide a specific input-
output functionality, and which can only be accessed in a “black box” fashion. The hardware can
maintain a state (i.e., is stateful) and possibly carry out complex functionality, but presumably may
be di�cult or expensive to implement or manufacture. This leads to an interesting research direction:
Building cryptography primitives using the simplest (and hence easiest and cheapest to manufacture)
hardware.

In this respect, two distinct simplified notions of hardware have captured considerable interest. The
first is the notion of a one-time memory (OTM) [GKR08], which is arguably the simplest possible notion
of stateful hardware. An OTM, modeled after a non-interactive 1-out-of-2 oblivious transfer, behaves
as follows: first, a player (called the sender) embeds two values s0 and s1 into the OTM, and then
gives the OTM to another player (called the receiver). The receiver can now read his choice of precisely
one of s0 or s1; after this “use” of the OTM, however, the unread bit is lost forever. Interestingly,
OTMs are complete for implementing one-time use programs (OTPs): given access to OTMs, one can

Anne Broadbent: abroadbe@uottawa.ca
Sevag Gharibian: sevag.gharibian@upb.de
Hong-Sheng Zhou: hszhou@vcu.edu

Accepted in Quantum 2021-02-09, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:1

81
0.

05
22

6v
3 

 [q
ua

nt
-p

h]
  1

 A
pr

 2
02

1

https://quantum-journal.org/?s=Towards%20Quantum%20One-Time%20Memories%20from%20Stateless%20Hardware&reason=title-click
https://quantum-journal.org/?s=Towards%20Quantum%20One-Time%20Memories%20from%20Stateless%20Hardware&reason=title-click
mailto:abroadbe@uottawa.ca
mailto:sevag.gharibian@upb.de
mailto:hszhou@vcu.edu


implement statistically secure OTPs for any e�ciently computable program in the universal composabil-
ity (UC) framework [Goy+10]. (OTPs, in turn, have applications in software protection and one-time
proofs [GKR08].) In the quantum UC model, OTMs enable quantum one-time programs [BGS13]. (This
situation is analogous to the case of oblivious transfer being complete for two-party secure function eval-
uation [Kil88; IPS08].) Unfortunately, OTMs are inherently stateful, and thus represent a very strong
cryptographic assumption — any physical implementation of such a device must somehow maintain
internal knowledge between activations, i.e., it must completely “self-destruct” after a single use.

This brings us to a second important simplified notion of hardware known as a stateless token [CGS08],
which keeps no record of previous interactions. On the positive side, such hardware is presumably easier
to implement. On the negative side, an adversary can run an experiment with stateless hardware as many
times as desired, and each time the hardware is essentially “reset”. (Despite this, stateless hardware has
been useful in achieving computationally secure multi-party computation [CGS08; Goy+10; Cho+14],
and statistically secure commitments [DS13].) It thus seems impossible for stateless tokens to be helpful
in implementing any sort of “self-destruct” mechanism. Indeed, classically stateful tokens are trivially
more powerful than stateless ones, as observed in, e.g., [Goy+10]. This raises the question:

Can quantum information, together with a classical stateless token, be used to simulate “self

destruction” of a hardware token?

In particular, a natural question along these lines is whether quantum information can help implement
an OTM. Unfortunately, it is known that quantum information alone cannot implement an OTM (or,
more generally, any one-time program) [BGS13]; see also Section 4 below. We thus ask the question:
What are the minimal cryptographic assumptions required in a quantum world to implement an OTM?

Contributions and summary of techniques. We propose what is, to our knowledge, the first
prepare-and-measure quantum protocol that constructs OTMs from stateless hardware tokens. For this
protocol, we are able to rigorously prove information theoretic security against an adversary making
a linear (in n, the security parameter) number of adaptive queries to the token. While we conjecture
that security holds also for polynomially many queries, note that already in this setting of linearly
many adaptive queries, our protocol achieves something impossible classically (i.e., classically, obtaining
security against a linear number of queries is impossible). We also show stand-alone security against a
malicious sender.

Historical Note. We proposed the concept that quantum information could provide a “stateless to
stateful” transformation in a preliminary version of this work [BGZ15]; however, that work claimed
security against a polynomial number of token queries, obtained via a reduction from the interactive to the
non-interactive setting. We thank an anonymous referee for catching a subtle, but important bug which
appears to rule out the proof approach of [BGZ15]. The current paper hence employs a di↵erent proof
approach, which models interaction with the token as a “quantum game” via semidefinite programming
(further details below). Since our original paper was posted, recent work [Chu+19] has shown an alternate
quantum “stateful to stateless” transformation via quantum money constructions [BDS18]. Specifically,
in [Chu+19], security against a polynomial number of queries is achieved, albeit with respect to a new
definition of “OTMs relative to an oracle” (while the security results of the present paper are with
respect to the well-established simulation-based definition of [Goy+10; Kat07]). Furthermore, [Chu+19]
directly applies known quantum money constructions, which require di�cult-to-prepare highly entangled
states. Our focus here, in contrast, is to take a “first-principles” approach and build a technologically
simple-to-implement scheme which requires no entanglement, but rather the preparation of just one of
four single qubit states, |0Í, |1Í, |+Í, |≠Í. Indeed, the two works are arguably complementary in that the
former focuses primarily on applications of “stateful” single-use tokens, while our focus is on the most
technologically simple way to implement such “stateful” tokens.

Construction. Our construction is inspired by Wiesner’s conjugate coding [Wie83]: the quantum
portion of the protocols consists in n quantum states chosen uniformly at random from {|0Í, |1Í, |+Í, |≠Í}
(note this encoding is independent of the classical bits of the OTM functionality). We then couple this
n-qubit quantum state, |ÂÍ (the quantum key) with a classical stateless hardware token, which takes as
inputs a choice bit b, together with an n-bit string y. If b = 0, the hardware token verifies that the bits
of y that correspond to rectilinear (|0Í or |1Í, i.e., Z basis) encoded qubits of |ÂÍ are consistent with
the measurement of |ÂÍ in the computational basis, in which case the bit s0 is returned. If b = 1, the
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hardware token verifies that the bits of y that correspond to diagonal (|+Í or |≠Í, i.e., X basis) encoded
qubits of |ÂÍ are consistent with the measurement of |ÂÍ in the diagonal basis, in which case the bit s1
is returned.1 The honest use of the OTM is thus intuitive: for choice bit b = 0, the user measures each
qubit of the quantum key in the rectilinear basis to obtain an n-bit string y, and inputs (b, y) into the
hardware token. If b = 1, the same process is applied, but with measurements in the diagonal basis.

Assumption. Crucially, we assume the hardware token accepts classical input only (alternatively and
equivalently, the token immediately measures its quantum input in the standard basis), i.e., it cannot
be queried in superposition. Although this may seem a strong assumption, in Section 4.1 we show that
any token which can be queried in superposition in a reversible way, cannot be used to construct a
secure OTM (with respect to our setting in which the adversary is allowed to apply arbitrary quantum
operations). Similar classical-input hardware has previously been considered in, e.g., [Unr13; BGS13].

Security and intuition. Stand-alone security against a malicious sender is relatively straightforward
to establish, since the protocol consists in a single message from the sender to the receiver, and since
stand-alone security only requires simulation of the local view of the adversary.

The intuition underlying security against a malicious receiver is clear: in order for a receiver to extract
a bit sb as encoded in the OTM, she must perform a complete measurement of the qubits of |ÂÍ in order
to obtain a classical key for sb (since, otherwise, she would likely fail the test as imposed by the hardware
token). But such a measurement would invalidate the receiver’s chance of extracting the bit s1≠b! This is
exactly the “self-destruct”-like property we require in order to implement an OTM. This intuitive notion
of security was present in Wiesner’s proposal for quantum money [Wie83], and is often given a physical
explanation in terms of the no-cloning theorem [WZ82] or Heisenberg uncertainty relation [Hei27].

Formally, we work in the statistical (i.e., information-theoretic) setting of the quantum Universal

Composability (UC) framework [Unr10], which allows us to make strong security statements that address
the composability of our protocol within others. As a proof technique, we describe a simulator, such that
for any “quantum environment” wishing to interact with the OTM, the environment statistically cannot
tell whether it is interacting with the ideal OTM functionality or the real OTM instance provided by
our scheme. The security of this simulator requires a statement of the following form: Given access to a
(randomly chosen) “quantum key” |ÂkÍ and corresponding stateless token Vk, it is highly unlikely for an
adversary to successfully extract keys for both the secret bits s0 and s1 held by Vk. We are able to show
this statement for any adversary which makes a linear number of queries, by which we mean an adversary
making m queries succeeds with probability at most O(22m≠0.228n) (for n the number of quantum key
bits in |ÂkÍ). In other words, if the adversary makes at most m = cn queries with c < 0.114, then its
probability of cheating successfully is exponentially small in n. We conjecture, however, that a similar
statement holds for any m œ poly(n), i.e., that the protocol is secure against polynomially many queries.

To show security against linearly many queries, we exploit the semidefinite programming-based quan-
tum games framework of Gutoski and Watrous (GW) [GW07] to model interaction with the token.
Intuitively, GW is useful for our setting, since it is general enough to model multiple rounds of adaptive
queries to the token, even when the receiver holds quantum “side information” in the form of |ÂÍ. We
describe this technique in Sections 2.1 and 3.4, and provide full details in Appendix C. Summarizing, we
show the following.

Main Theorem (informal). There exists a protocol �, which together with a classical stateless token
and the ability to randomly prepare single qubits in one of four pure states, implements the OTM
functionality with statistical security in the UC framework against a corrupted receiver making at most cn
queries for any c < 0.114.

As stated above, we conjecture that our protocol is actually secure against polynomially many adaptive
queries. However, we are unable to show this claim using our present proof techniques, and hence leave
this question open. Related to this, we make the following comments: (1) As far as we are aware, the
Main Theorem above is the only known formal proof of any type of security for conjugate coding in
the interactive setting with �(1) queries. Moreover, as stated earlier, classical security against �(1)
queries is trivially impossible. (2) Our proof introduces the GW semidefinite programming framework
from quantum interactive proofs to the study of conjugate coding-based schemes. This framework allows

1We note that a simple modification using a classical one-time pad could be used to make both the quantum state and
hardware token independent of s0 and s1: the token would output one of two uniformly random bits r0 and r1, which could
each be used to decrypt a single bit, s0 or s1.
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handling multiple challenges in a unified fashion: arbitrary quantum operations by the user, classical
queries to the token, and the highly non-trivial assumption of quantum side information for the user (the
“quantum key” state sent to the user.)

Towards security against polynomially many queries. Regarding the prospects of proving security against
polynomially many adaptive queries, we generally believe it requires a significant new insight into how to
design a “good” feasible solution to the primal semidefinite program (SDP) obtained via GW. However,
in addition to our proof for linear security (Theorem C.5), in Appendix D we attempt to give evidence
towards our conjecture for polynomial security. Namely, Appendix D.1 first simplifies the SDPs obtained
from GW, and derives the corresponding dual SDPs. We remark these derivations apply for any instan-
tiation of the GW framework, i.e. they are not specific to our setting, and hence may prove useful
elsewhere. In Appendix D.2, we then give a feasible solution Y (Equation (128)) to the dual SDP. While
Y is simple to state, it is somewhat involved to analyze. A heuristic analysis suggests Y ’s dual objective
function value has roughly the behavior needed to show security, i.e. the value scales as m/

Ô
2n, for m

queries and n key bits. If Y were to be the optimal solution to the dual SDP, this would strongly suggest
the optimal cheating probability is essentially m/

Ô
2n. However, we explicitly show Y is not optimal,

and so m/
Ô

2n is only a lower bound on the optimal cheating probability2. Nevertheless, we conjecture
that while Y is not optimal, it is approximately optimal (see Conjecture D.2 for a precise statement);
this would imply the desired polynomial security claim. Unfortunately, the only techniques we are aware
of to show such approximate optimality involve deriving a better primal SDP solution, which appears
challenging.

Further Related work. Our work contributes to the growing list of functionalities achievable with
quantum information, yet unachievable classically. This includes: unconditionally secure key expansion
[BB84], physically uncloneable money [Wie83; MVW13; Pas+12], a reduction from oblivious transfer
to bit commitment [Ben+92; Dam+09] and to other primitives such as “cut-and choose” functional-
ity [Feh+13], and revocable time-release quantum encryption [Unr14]. Importantly, these protocols all
make use of the technique of conjugate coding [Wie83], which is also an important technique used in
protocols for OT in the bounded quantum storage and noisy quantum storage models [Dam+05; WST08]
(see [BS16] for a survey).

A number of proof techniques have been developed in the context of conjugate coding, including
entropic uncertainty relations [WW10]. In the context of QKD, another technique is the use of de
Finetti reductions [Ren08] (which exploit the symmetry of the scheme in order to simplify the analysis).
Recently, semidefinite programming (SDP) approaches have been applied to analyze security of conjugate
coding [MVW13] for quantum money, in the setting of one round of interaction with a “stateful” bank.
SDPs are also the technical tool we adopt for our proof (Section 3.4 and Appendix C), though here
we require the more advanced quantum games SDP framework of Gutoski and Watrous [GW07] to
deal with multiple adaptive interactions with stateless tokens. Reference [Pas+12] has also made use of
Gavinsky’s [Gav12] quantum retrieval games framework.

Continuing with proof techniques, somewhat similar to [Pas+12], Aaronson and Christiano [AC12]
have studied quantum money schemes in which one interacts with a verifier. They introduce an “inner
product adversary method” to lower bound the number of queries required to break their scheme.

We remark that [Pas+12] and [MVW13] have studied schemes based on conjugate coding similar
to ours, but in the context of quantum money. In contrast to our setting, the schemes of [Pas+12]
and [MVW13] (for example) involve dynamically chosen random challenges from a verifier to the holder
of a “quantum banknote”, whereas in our work here the “challenges” are fixed (i.e., measure all qubits
in the Z or X basis to obtain secret bit s0 or s1, respectively), and the verifier is replaced by a stateless
token. Thus, [MVW13], for example, may be viewed as using a “stateful” verifier, whereas our focus
here is on a “stateless” verifier (i.e., a token).

Also, we note that prior work has achieved oblivious transfer using quantum information, together
with some assumption (e.g., bit commitment [Ben+92] or bounded quantum storage [Dam+05]). These
protocols typically use an interaction phase similar to the “commit-and-open” protocol of [Ben+92];
because we are working in the non-interactive setting, these techniques appear to be inapplicable.

2Indeed, an attack in the Breidbart basis breaks our scheme with probability 2≠0.228n, as observed by David Mestel; see
Section D.2.

4



Finally, Liu [Liu14a; Liu14b; Liu15] has given stand-alone secure OTMs using quantum information
in the isolated-qubit model. Liu’s approach is nice in that it avoids the use of trusted setups. In return,
however, Liu must use the isolated-qubit model, which restricts the adversary to perform only single-
qubit operations (no entangling gates are permitted); this restriction is, in some sense, necessary if one
wants to avoid trusted setups, as a secure OTM in the plain quantum model cannot exist (see Section 4).
In contrast, in the current work we allow unbounded and unrestricted quantum adversaries, but as a
result require a trusted setup. In addition, we remark the security notion of OTMs of [Liu14a; Liu14b;
Liu15] is weaker than the simulation-based notion studied in this paper, and it remains an interesting
open question whether the type of OTM in [Liu14a; Liu14b; Liu15] is secure under composition (in the
current work, the UC framework gives us security under composition for free).

Significance. Our results show a strong separation between the classical and quantum settings, since
classically, stateless tokens cannot be used to securely implement OTMs. To the best of our knowledge,
our work is the first to combine conjugate coding with stateless hardware tokens. Moreover, while our
protocol shares similarities with prior work in the setting of quantum money, building OTMs appears to
be a new focus here 3.

Our protocol has a simple implementation, fitting into the single-qubit prepare-and-measure paradigm,
which is widely used as the “benchmark” for a “physically feasible” quantum protocol (in this model, one
needs only the ability to prepares single-qubit states |0Í, |1Í, |+Í, |≠Í, and to perform single-qubit projec-
tive measurements. In particular, no entangled states are required, and in principle no quantum memory
is required, since qubits can be measured one-by-one as they arrive). In addition, from a theoretical
cryptographic perspective, our protocol is attractive in that its implementation requires an assumption
of a stateless hardware token, which is conceivably easier and cheaper to manufacture (e.g. analogous to
an RFID tag) than a stateful token.

In terms of security guarantees, we allow arbitrary operations on behalf of a malicious quantum
receiver in our protocol (i.e., all operations allowed by quantum mechanics), with the adversary restricted
in that the stateless token is assumed only usable as a black box. The security we obtain is statistical,
with the only computational assumption being on the number of queries made to the token (recall we
show security for a linear number of queries, and conjecture security for polynomially many queries).
Finally, our security analysis is in the quantum UC framework against a corrupted receiver; this means
our protocol can be easily composed with many others; for example, combining our results with [BGS13]’s
protocol immediately yields UC-secure quantum OTPs against a dishonest receiver.

We close by remarking that our scheme is “tight” with respect to two impossibility results, both of
which assume the adversary has black-box access to both the token and its inverse operation4. First,
the assumption that the token be queried only in the computational basis cannot be relaxed: Section 4.1
shows that if the token can be queried in superposition, then an adversary in our setting can easily
break any OTM scheme. Second, our scheme has the property that corresponding to each secret bit si

held by the token, there are exponentially many valid keys one can input to the token to extract si. In
Section 4.2, we show that for any “measure-and-access” OTM (i.e., an OTM in which one measures a
given quantum key and uses the classical measurement result to access a token to extract data, of which
our protocol is an example5), a polynomial number of keys implies the ability to break the scheme with
inverse polynomial probability (more generally, � keys allows probability at least 1/�2 of breaking the
scheme).

Open Questions. While our work shows the fundamental advantage that quantum information yields
in a stateful to stateless reduction, it does leave a number of open questions:

1. Security against polynomially many queries. Can our security proof be strengthened to show
information theoretic security against a polynomial number of queries to the token? We conjecture

3We remark, however, that a reminiscent concept of single usage of quantum “tickets” in the context of quantum money
is very briefly mentioned in Appendix S.4.1 of [Pas+12].

4This is common in the oracle model of quantum computation, where a function f : {0, 1}n ‘æ {0, 1} is implemented via
the (self-inverse) unitary mapping Uf |xÍ|yÍ = |xÍ|y ü f(x)Í.

5The term “measure-and-access” here is not to be confused with “prepare-and-measure”. We define the former in
Section 4.2 to mean a protocol in which one measures a given quantum resource state to extract a classical key, which is
then used for a desired purpose. “Prepare and measure”, in contrast, is referring to the fact that our scheme is easy to
implement; the preparer of the token just needs to prepare single-qubit states, and an honest user simply measures them.
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this to be the case, but finding a formal proof has been elusive. (See discussion under “Towards
security against polynomially many adaptive queries” above for details.)

2. Composable security against a malicious sender. While we show composable security against a
malicious receiver, our protocol can achieve standalone security against a malicious sender. Could
an adaptation of our protocol ensure composable security against a malicious sender as well?6

3. Non-reversible token. Our impossibility result for quantum one-time memories with quantum

queries (Section 4) assumes the adversary has access to reversible tokens; can a similar impossibility
result be shown for non-reversible tokens? In Section 4, we briefly discuss why it may be di�cult
to extend the techniques of our impossibility results straightforwardly when the adversary does not
have access to the inverse of the token.

4. Imperfect devices. While our prepare-and-measure scheme is technologically simple, it is still virtu-
ally unrealizable with current technology, due to the requirement of perfect quantum measurements.
We leave open the question of tolerance to a small amount of noise.

Organization. We begin in Section 2 with preliminaries, including the ideal functionalities for an OTM
and stateless token, background on quantum channels, semidefinite programming, and the Gutoski-
Watrous framework for quantum games. In Section 3, we give our construction for an OTM based on a
stateless hardware token; the proof ideas for security are also provided. In Section 4, we discuss “tightness”
of our construction by showing two impossibility results for “relaxations” of our scheme. In the Appendix,
we include the description of classical UC and quantum UC (Appendix A); Appendix B establishes
notation required in the definition of stand-alone security against a malicious sender. Appendix C gives
our formal security proof against a linear number of queries to the token; these results are used to finish
the security proof in Section 3. Appendix D gives a simplification of the GW SDP, derives its dual,
and gives a dual feasible solution which we conjecture to be approximately optimal (formally stated in
Conjecture D.2). Finally, the security proof for a lemma in Section 4 can be found in Appendix E.

2 Preliminaries
Notation. Two binary distributions X and Y are indistinguishable, denoted X ¥ Y, if

|Pr(Xn = 1) ≠ Pr(Yn = 1)| Æ negl(n). (1)

We define single-qubit |0Í+ = |0Í and |1Í+ = |1Í, so that {|0Í+, |1Í+} form the rectilinear basis. We
define |0Í◊ = 1

Ô
2 (|0Í + |1Í) and |1Í◊ = 1

Ô
2 (|0Í ≠ |1Í), so that {|0Í◊, |1Í◊} form the diagonal basis. For

strings x = x1, x2, . . . xn œ {0, 1}n and ◊ = ◊1, ◊2, . . . , ◊n œ {+, ◊}n, define |xÍ◊ =
on

i=1 |xiÍ◊i . The
Hadamard gate in quantum information is H = (1 1; 1 ≠ 1)/

Ô
2. It maps H|0Í+ = |0Í◊, H|1Í+ = |1Í◊,

H|0Í◊ = |0Í+, and H|1Í◊ = |1Í+. For X a finite dimensional complex Hilbert space, L(X ), Herm(X ),
Pos(X ), and D(X ) denote the sets of linear, Hermitian, positive semidefinite, and density operators
acting on X , respectively. The notation A ≤ B means A ≠ B is positive semidefinite.

Quantum universal composition (UC) framework. We consider simulation-based security in this
paper. In particular, we prove the security of our construction against a malicious receiver in the quantum
universal composition (UC) framework [Unr10]. Please see Appendix A for a brief description of the
classical UC [Can01] and the quantum UC [Unr10]. In the next two paragraphs, we introduce two
relevant ideal functionalities of one-time memory and of stateless hardware token.

One-time memory (OTM). The one-time memory (OTM) functionality FOTM involves two parties, the
sender and the receiver, and consists of two phases, “Create” and “Execute”. Please see Functionality 1
below for details; for the sake of simplicity, we have omitted the session/party identifiers as they should
be implicitly clear from the context. We sometimes refer to this functionality FOTM as an OTM token.

Stateless hardware. The original work of Katz [Kat07] introduces the ideal functionality Fwrap to
model stateful tokens in the UC-framework. In the ideal model, a party that wants to create a token,

6We note that this would require a di�erent protocol, since in our current construction, a cheating sender could program
the token to abort based on the user’s input.
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Functionality 1 Ideal functionality FOTM.

1. Create: Upon input (s0, s1) from the sender, with s0, s1 œ {0, 1}, send create to the receiver and
store (s0, s1).

2. Execute: Upon input b œ {0, 1} from the receiver, send sb to receiver. Delete any trace of this
instance.

sends a Turing machine to Fwrap. Fwrap will then run the machine (keeping the state), when the designated
party will ask for it. The same functionality can be adapted to model stateless tokens. It is su�cient
that the functionality does not keep the state between two executions. A simplified version of the Fwrap

functionality as shown in [CGS08] (that is very similar to the Fwrap of [Kat07]) is described below. Note
that, again for the sake of simplicity, we have omitted the session/party identifiers as they should be
implicitly clear from the context.

Functionality 2 Ideal functionality Fwrap.
The functionality is parameterized by a polynomial p(·), and an implicit security parameter n.

1. Create: Upon input (create, M) from the sender, where M is a Turing machine, send create to the
receiver and store M .

2. Execute: Upon input (run, msg) from the receiver, execute M(msg) for at most p(n) steps, and
let out be the response. Let out := ‹ if M does not halt in p(n) steps. Send out to the receiver.

Although the environment and adversary are unbounded, we specify that stateless hardware can be
queried only a polynomial number of times. This is necessary; otherwise the hardware token model
is vacuous (with unbounded queries, the entire input-output behavior of stateless hardware can be
extracted).

Quantum channels. We now review quantum channels. A basic background in quantum information
is assumed, see e.g. [NC00] for a standard reference. A linear map � : L(X ) ‘æ L(Y) is a quantum

channel if � is trace-preserving and completely positive (TPCP). Such maps take density operators to
density operators. A useful representation of linear maps (or “superoperators”) � : L(X ) ‘æ L(Y) is
the Choi-Jamio lkowski representation, J(�) œ L(Y ¢ X ). The latter is defined (with respect to some
choice of orthonormal basis {|iÍ} for X ) as J(�) =

q
i,j �(|iÍÈj|)¢ |iÍÈj|. The following properties of J(�)

hold [Cho75; Jam72]: (1) � is completely positive if and only if J(�) ≤ 0, and (2) � is trace-preserving
if and only if TrY(J(�)) = IX . In a nutshell, the Gutoski-Watrous (GW) framework generalizes this
definition to interacting strategies [GW07].

Semidefinite programs. We give a brief overview of semidefinite programs (SDPs) from the perspec-
tive of quantum information, as done e.g., in the notes of Watrous [Wat11] or [MVW13]. For further
details, a standard text on convex optimization is Boyd and Vandenberghe [BV04].

Given any 3-tuple (A, B, �) for operators A œ Herm(X ) and B œ Herm(Y), and Hermiticity-preseving
linear map � : L(X ) ‘æ L(Y), one can state a primal and dual semidefinite program:

Primal problem (P)

sup Tr(AX)
s.t. �(X) = B,

X œ Pos(X ),

Dual problem (D)

inf Tr(BY )
s.t. �ú(Y ) ≤ A

Y œ Herm(Y),

where �ú denotes the adjoint of �, which is the unique map satisfying Tr(A†�(B)) = Tr((�ú(A))†B)
for all A œ L(Y) and B œ L(X ). Not all SDPs have feasible solutions (i.e. a solution satisfying all
constraints); in this case, we label the optimal values as ≠Œ for P and Œ for D, respectively. Note also
that the SDP we derive in Equation (66) will for simplicity not be written in precisely the form above,
but can without loss of generality be made so.
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Figure 1: A general interaction between two quantum parties.

2.1 The Gutoski-Watrous framework for quantum games
We now recall the Gutoski-Watrous (GW) framework for quantum games [GW07], which can be used to
model quantum interactions between spatially separated parties. The setup most relevant to our protocol
here is depicted in Figure 1. Here, we imagine one party, A, prepares an initial state fl0 œ D(X1 ¢ W0).
Register X1 is then sent to the second party (W0 is kept as private memory), B, who applies some
quantum channel �i : L(X1) ‘æ L(Y1 ¢ Z1). B keeps register Z1 as private memory, and sends Y1 back
to A, who applies channel �1 : L(W0 ¢ Y1) ‘æ L(X2 ¢ W1), and sends X2 to B. The protocol continues
for m messages back and forth, until the final operation �m : L(Wm ¢ Ym) ‘æ C, in which A performs
a two-outcome measurement (specifically, a POVM � = {�0, �1}, meaning �0, �1 ≤ 0, �0 + �1 = I)
in order to decide whether to reject (�0) or accept (�1). As done in [GW07], we may assume without
loss of generality7 that all channels are given by linear isometries8 Ak, i.e. �k(X) = AkXA†

k. Reference
[GW07] refers to (�1, . . . , �m) as a strategy and (fl0, �1, . . . , �m) as a co-strategy. In our setting, the
former is “non-measuring”, meaning it makes no final measurement after �m is applied, whereas the
latter is “measuring”, since we will apply a final measurement on space Wm (not depicted in Figure 1).

Intuitively, since our protocol (Section 3.1) will begin with the token sending the user a quantum key
|xÍ◊, we will later model the token as a measuring co-strategy, and the user of the token as a strategy.
The advantage to doing so is that the GW framework allows one to (recursively) characterize any such
strategy (resp., co-strategy) via a set of linear (in)equalities and positive semi-definite constraints. (In
this sense, the GW framework generalizes the Choi-Jamio lkowski representation for channels to a “Choi-
Jamio lkowski” representation for strategies/co-strategies.) To state these constraints, we first write down
the Choi-Jamio lkowski (CJ) representation of a strategy (resp., measuring co-strategy) from [GW07].

CJ representation of (non-measuring) strategy. The CJ representation of a strategy (A1, . . . , Am)
is given by matrix [GW07]

TrZm(vec(A) vec(A)†), (2)
where A œ L(X1 ¢ · · · ¢ Xm, Y1 ¢ · · · ¢ Ym ¢ Zm) is defined as the product of the isometries Ai,

A := (IY1¢···¢Ym≠1 ¢ Am) · · · (A1 ¢ IX2¢···¢Xm), (3)

and the vec : L(S, T ) ‘æ T ¢ S mapping is the linear extension of the map |iÍÈj| ‘æ |iÍ|jÍ defined on all
standard basis states |iÍ, |jÍ.

CJ representation of (measuring) co-strategy. Let � := {�0, �1} denote a POVM with reject
and accept measurement operators �0 and �1, respectively. A measuring strategy which ends with a
measurement with respect to POVM � replaces, for �a œ �, Equation (2) with [GW07]

Qa := TrZm((�a ¢ IY1¢···¢Ym) vec(A) vec(A)†) (4)

= TrZm(vec((


�a ¢ IY1¢···¢Ym)A) vec((


�a ¢ IY1¢···¢Ym)A)†) (5)
=: TrZm(vec(Ba) vec(Ba)†). (6)

To convert this to a co-strategy, one takes the transpose of the operators defined above (with respect to
the standard basis). (Note: In our use of the GW framework in Section C.1, all operators we derive will
be symmetric with respect to the standard basis, and hence taking this transpose will be unnecessary.)

7This is due to the Stinespring dilation theorem.
8A linear isometry A œ L(S, T ) satisfies A

†
A = IS , generalizing the notion of unitary maps to non-square matrices.
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Optimization characterization over strategies and co-strategies. With CJ representations for
strategies and co-strategies in hand, one can formulate [GW07] the optimal probability with which a
strategy can force a corresponding co-strategy to output a desired result as follows. Fix any Qa from
a measuring co-strategy {Q0, Q1}, as in Equation (6). Then, Corollary 7 and Theorem 9 of [GW07]
show that the maximum probability with which a (non-measuring) strategy can force the co-strategy to
output result a is given by

min: p (7)
subject to: Qa ∞ pRm (8)

Rk = Pk ¢ IYk for 1 Æ k Æ m (9)
TrXk (Pk) = Rk≠1 for 1 Æ k Æ m (10)
R0 = 1 (11)
Rk œ Pos(Y1,...,k ¢ X1,...,k) for 1 Æ k Æ m (12)
Pk œ Pos(Y1,...,k≠1 ¢ X1,...,k) for 1 Æ k Æ m (13)
p œ [0, 1] (14)

Intuition. The minimum p denotes the optimal “success” probability, meaning the optimal probability
of forcing the co-strategy to output a (Theorem 9 of [GW07]). The variables above, in addition to p,
are {Ri} and {Pi}, where the optimization is happening over all m-round co-strategies Rm satisfying
Equation (8). How do we enforce that Rm encodes such an m-round co-strategy? This is given by the
(recursive) Equations (9)-(13). Specifically, Corollary 7 of [GW07] states that Rm is a valid m-round
co-strategy if and only if all of the following hold: (1) Rm ≤ 0, (2) Rm = Pm ¢ IYm for Pm ≤ 0 and Ym

the last incoming message register to the co-strategy, (3) TrXm(Pm) is a valid m ≠ 1 round co-strategy
(this is the recursive part of the definition). An intuitive sense as to why conditions (2) and (3) should
hold is as follows: For any m-round co-strategy Rm, let Rm≠1 denote Rm restricted to the first m ≠ 1
rounds. Then, to operationally obtain Rm≠1 from Rm, the co-strategy first ignores the last incoming
message in register Ym. This is formalized via a partial trace over Ym, which (once pushed through the
CJ formalism9) translates into the ¢IYk term in Equation (9). Since the co-strategy is now ignoring
the last incoming message Ym, any measurement it makes after m ≠ 1 rounds is independent of the last
outgoing message Xm. Thus, we can trace out Xm as well, obtaining a co-strategy Rm≠1 on just the first
m ≠ 1 rounds; this is captured by Equation (10).

3 Feasibility of Quantum OTMs using Stateless Hardware
In this section, we present a quantum construction for one-time memories by using stateless hardware
(Section 3.1). We also state our main theorem (Theorem 3.1). In Section 3.3, we describe the Simulator
and prove Theorem 3.1 using the technical results of Appendix C. The intuition and techniques behind
the proofs in Appendix C are sketched in Section 3.4.

3.1 Construction
We now present the OTM protocol � in the Fwrap hybrid model, between a sender Ps and a receiver Pr.
Here the security parameter is n.

Upon receiving input (s0, s1) from the environment where s0, s1 œ {0, 1}, sender Ps acts as follows:

• The sender chooses uniformly random x œR {0, 1}n and ◊ œR {+, ◊}n, and prepares |xÍ◊. Based
on tuple (s0, s1, x, ◊), the sender then prepares the program M as in Program 1.

• The sender sends |xÍ◊ to the receiver.

• The sender sends (create, M) to functionality Fwrap, and the functionality sends create to notify
the receiver.

9Recall that the CJ representation of the trace map is the identity matrix (up to scaling).
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Program 1 Program for hardware token
Hardcoded values: s0, s1 œ {0, 1}, x œ {0, 1}n, and ◊ œ {+, ◊}n

Inputs: y œ {0, 1}n and b œ {0, 1}, where y is a claimed measured value for the quantum register, and b
the evaluator’s choice bit

1. If b = 0, check that the ◊ = + positions return the correct bits in y according to x. If Accept, output
s0. Otherwise output ‹.

2. If b = 1, check that the ◊ = ◊ positions return the correct bits in y according to x. If Accept, output
s1. Otherwise output ‹.

The receiver Pr operates as follows:
Upon input b from the environment, and |xÍ◊ from the receiver, and create notification from Fwrap,

• If b = 0, measure |xÍ◊ in the computational basis to get string y. Input (run, (y, b)) into Fwrap.

• If b = 1, apply H¢n to |xÍ◊, then measure in the computational basis to get string y. Input
(run, (y, b)) into Fwrap.

Return the output of Fwrap to the environment.
It is easy to see that the output of Fwrap is sb for both b = 0 and b = 1.

Note again that the hardware token, as defined in Program 1, accepts only classical input (i.e., it cannot
be queried in superposition). As mentioned earlier, relaxing this assumption yields impossibility of a
secure OTM implementation (assuming the receiver also has access to the token’s inverse operation), as
shown in Section 4.

3.2 Stand-Alone Security Against a Malicious Sender
We note that in protocol � of Section 3.1, once the sender prepares and sends the token, she is no longer
involved (and in particular, the sender does not receive any further communication from the receiver).
We call such a protocol a one-way protocol. Because of this simple structure, and because the ideal
functionality Fwrap also does not return any message to the sender, we can easily establish stand-alone
security against a malicious sender (see details in Appendix B).

3.3 UC-Security against a corrupt receiver
Our main theorem, which establishes security against a corrupt receiver is now stated as follows.

Theorem 3.1. Construction � above quantum-UC-realizes FOTM in the Fwrap hybrid model with statistical
security against an actively-corrupted receiver making at most cn number of adaptive queries to the token,
for any fixed constant c < 0.114.

To prove Theorem 3.1, we must construct and analyze an appropriate simulator, which we now do.

3.3.1 The simulator
In order to prove Theorem 3.1, for an adversary A that corrupts the receiver, we build a simulator
S (having access to the OTM functionality FOTM), such that for any unbounded environment Z, the
executions in the real model and that in simulation are statistically indistinguishable. Our simulator S
is given below:

The simulator emulates an internal copy of the adversary A who corrupts the receiver. The sim-
ulator emulates the communication between A and the external environment Z by forwarding the
communication messages between A and Z.
The simulator S needs to emulate the whole view for the adversary A. First, the simulator picks
dummy inputs s̃0 = 0 and s̃1 = 0, and randomly chooses x œ {0, 1}n, and ◊ œ {+, ◊}n, and generates
program M̃ . Then the simulator plays the role of the sender to send |xÍ◊ to the adversary A (who
controls the corrupted receiver). The simulator also emulates Fwrap to notify A by sending create to
indicate that the hardware is ready for queries.
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For each query (run, (b, y)) to Fwrap from the adversary A, the simulator evaluates program M̃ (that
is created based on s̃0, s̃1, x, ◊) as in the construction, and then acts as follows:

1. If this is a rejecting input, output ‹.

2. If this is the first accepting input, call the external FOTM with input b, and learn the output sb

from FOTM. Output sb.

3. If this is a subsequent accepting input, output sb (as above).

3.3.2 Analysis
We now show that the simulation and the real model execution are statistically indistinguishable. There
are two cases in an execution of the simulation which we must consider:

Case 1: In all its queries to Fwrap, the accepting inputs of A have the same choice bit b. In this case,
the simulation is perfectly indistinguishable.
Case 2: In its queries to Fwrap, A produces accepting inputs for both b = 0 and b = 1. In this case, it
is possible that the simulation fails (the environment can distinguish the real model from the ideal
model), since the simulator is only able to retrieve a single bit from the external OTM functionality
FOTM (either corresponding to b = 0 or b = 1).

Thus, whereas in Case 1 the simulator behaves perfectly, in Case 2 it is in trouble. Fortunately, in
Theorem 3.2 we show that the probability that Case 2 occurs is exponentially small in n, the number
of qubits comprising |xÍ◊, provided the number of queries to the token is at most cn for any c < 0.114.
Specifically, we show that for an arbitrary m-query strategy (i.e., any quantum strategy allowed by
quantum mechanics, whether e�ciently implementable or not, which queries the token at most m times),
the probability of Case 2 occurring is at most O(22m≠0.228n). This concludes the proof.

3.4 Security analysis for the token: Intuition
Our simulation proof showing statistical security of our Quantum OTM construction of Section 3.1
relies crucially on Theorem 3.2, stated below. As the proof of this theorem uses quantum information
theoretic and semidefinite programming techniques (as opposed to cryptographic techniques), let us
introduce notation in line with the formal analysis of Appendix C.

With respect to the construction of Section 3.1, let us replace each two-tuple (x, ◊) œ {0, 1}n◊{+, ◊}n

by a single string z œ {0, 1}2n, which we denote the secret key. Bits 2i and 2i + 1 of z specify the basis
and value of conjugate coding qubit i for i œ {1, . . . , n} (i.e., z2i = ◊i and z2i+1 = xi). Also, rename the
“quantum key” (or conjugate coding key) |ÂzÍ := |xÍ◊ œ (C2)¢n. Thus, the protocol begins by having
the sender pick a secret key z œ {0, 1}2n uniformly at random, and preparing a joint state

|ÂÍ = 1
2n

ÿ

zœ|0,1Í2n

|ÂzÍR|zÍT . (15)

The first register, R, is sent to the receiver, while the second register, T , is kept by the token. (Thus,
the token knows the secret key z, and hence also which |ÂzÍ the receiver possesses.) The mixed state
describing the receiver’s state of knowledge at this point is given by

flR := 1
22n

ÿ

zœ{0,1}
2n

|ÂzÍÈÂz|. (16)

Theorem 3.2. Given a single copy of flR, and the ability to make m (adaptive) queries to the hardware
token, the probability that an unbounded quantum adversary can force the token to output both bits s0 and
s1 scales as O(22m≠0.228n).

Thus, the probability of an unbounded adversary (i.e., with the ability to apply the most general maps
allowed in quantum mechanics, trace-preserving completely positive (TPCP) maps, which are not neces-
sarily e�ciently implementable) to successfully cheat using m = cn for c < 0.114 queries is exponentially
small in the quantum key size, n. The proof of Theorem 3.2 is in Appendix C. Its intuition can be
sketched as follows.
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Proof intuition. The challenge in analyzing security of the protocol is the fact that the receiver (a.k.a.
the user) is not only given adaptive query access to the token, but also a copy of the quantum “resource
state” flR, which it may arbitrarily tamper with (in any manner allowed by quantum mechanics) while
making queries. Luckily, the GW framework [GW07] (Section 2.1)) is general enough to model such
“queries with quantum side information”. The framework outputs an SDP, � (Equation (17)), the opti-
mal value of which will encode the optimal cheating probability for a cheating user of our protocol. Giving
a feasible solution for � will hence su�ce to upper bound this cheating probability, yielding Theorem 3.2.

Coherently modeling quantum queries to the token. To model the interaction between the token and
user, we first recall that all queries to the token must be classical by assumption. To model this process
coherently in the GW framework, we hence imagine (solely for the purposes of the security analysis) that
the token behaves as follows:

1. It first sends state flR to the user.

2. When it receives as ith query a quantum state fli from the user, it sends response string ri to the
user, and “copies” fli via transversal CNOT gates to a private memory register Wi, along with ri.
It does not access fli again throughout the protocol, and only accesses ri again in Step 3. For clarity,
the token runs a classical circuit, and in the formal setup of Appendix C (see Remark (C.2)), the
token conditions each response ri solely on the current incoming message, fli.

3. After all rounds of communication, the token “measures” its stored responses (r1, . . . , rm) in the
Z-basis to decide whether to accept (user successfully cheated10) or reject (user failed to cheat).

The “copying” phase of Step 2 accomplishes two tasks: First, since the token will never read the “copies”
of fli again, the principle of deferred measurement [NC00] implies the transversal CNOT gates e↵ectively
simulate measuring fli in the standard basis. In other words, without loss of generality the user is reduced
to feeding a classical string Ây to the token. Second, we would like the entire security analysis to be done
in a unified fashion in a single framework, the GW framework. To this end, we want the token itself
to “decide” at the end of the protocol whether the user has successfully cheated (i.e. extracted both
secret bits). Storing all responses ri in Step 2 allows us to simulate such a final measurement in Step
3. We reiterate that, crucially, once the token “copies” fli and ri to Wi, it (1) never accesses (i.e. reads
or writes to) fli again and (2) only accesses ri again in the final standard basis measurement of Step 3.
Together, these ensure all responses ri are independent, as required for a stateless token. A more formal
justification is in Remark C.2 of Appendix C.

Formalization in GW framework. To place the discussion thus far into the formal GW framework, we
return to Figure 1. The bottom “row” of Figure 1 will depict the token’s actions, and the top row the
user’s actions. As outlined above, the protocol begins by imagining the token sends initial state fl0 = flR

to the user via register X1. The user then applies an arbitrary sequence of TPCP maps �i to its private
memory (modeled by register Zi in round i), each time sending a query Âyi (which is, as discussed above a
classical string without loss of generality) to the token via register Yi. Given any such query Âyi in round
i, the token applies its own TPCP map �i to determine how to respond to the query. In our protocol,
the �i correspond to coherently applying a classical circuit, i.e. a sequence of unitary gates mapping
the standard basis to itself. Specifically, their action is fully determined by Program 1, and in principle
all �i are identical since the token is stateless (i.e., the action of the token in round i is una↵ected by
previous rounds {1, . . . , i ≠ 1}). (We use the term “in principle”, as recall from above that in the security
analysis we model each �i as classically copying (Âyi, ri) to a distinct private register Wi.) Finally, after
receiving the mth query Âym in register Ym, we imagine the token makes a measurement (not depicted
in Fig. 1) based on the query responses (r1, . . . , rm) it returned; if the user managed to extract both s0
and s1 via queries, then the token “accepts”; otherwise it “rejects”. (Again, we are using the fact that
in our security analysis, the token keeps a history of all its responses ri, solely for the sake of this final
measurement.)

10We model the token as “accepting” when the user successfully cheats, so that a feasible solution to the semidefinite
program � of Equation (17) correctly upper bounds the probability of said cheating. Formally, in the GW framework
(Section 2.1), we will let �1 denote this accepting measurement for the token; see Appendix C.
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With this high-level setup in place, the output of the GW framework is a semidefinite program11,
denoted � (see Appendix C for further details):

min: p (17)
subject to: Q1 ∞ Rm+1 (18)

Rk = Pk ¢ IYk for 1 Æ k Æ m + 1 (19)
TrXk (Pk) = Rk≠1 for 1 Æ k Æ m + 1 (20)
R0 = p (21)
Rk œ Pos(Y1,...,k ¢ X1,...,k) for 1 Æ k Æ m + 1 (22)
Pk œ Pos(Y1,...,k≠1 ¢ X1,...,k) for 1 Æ k Æ m + 1 (23)

Above, Q1 encodes the actions of the token, i.e. the co-strategy in the bottom row of Figure 1. The
variable p denotes an upper bound on the optimal cheating probability (i.e., the probability with which
both s0 and s1 are extracted), subject to linear constraints (Equations (19)-(23)) which enforce that
operator Rm+1 encodes a valid co-strategy (see Section 2.1). Theorem 9 of [GW07] now says that the
minimum p above encodes precisely the optimal cheating probability for a user which is constrained only
by the laws of quantum mechanics. Since � is a minimization problem, to upper bound the cheating
probability it hence su�ces to give a feasible solution (p, R1, . . . , Rm+1, P1, . . . , Pm+1) for �, which will
be our approach.

Intuition for Q1 and an upper bound on p. It remains to give intuition as to how one derives Q1
in �, and how an upper bound on the optimal p is obtained. Without loss of generality, one may assume
that each of the token’s TPCP maps �i are given by isometries Ai : Yi ¢ Wi≠1 ‘æ Xi+1 ¢ Wi, meaning
A†

i Ai = IYi¢Wi≠1 (due to the Stinespring dilation theorem). (We omit the first isometry which prepares
state fl0 in our discussion here for simplicity.) Let us denote their sequential application by a single
operator A := Am · · · A1 (note: to make the product well-defined, in Equation (3) of Appendix C, one
uses tensor products with identity matrices appropriately). Then, the Choi-Jamio lkowski representation
of A is given by [GW07] (see Section 2.1)

TrZm(vec(A) vec(A)†), (24)

where we trace out the token’s private memory register Zm. (The operator vec(·) reshapes matrix A
into a vector; its precise definition is given in Section 2.1.) However, since in our security analysis, we
imagine the token also makes a final measurement via some POVM � = {�0, �1}, whereupon obtaining
outcome �1 the token “accepts”, and upon outcome �0 the token rejects, we require a slightly more
complicated setup. Letting B1 := �1A, we define Q1 as [GW07]

Q1 = TrZm(vec(B1) vec(B1)†). (25)

The full derivation of Q1 in our setting takes a few steps (App. C). Here, we state a slightly simplified
version of Q1 for exposition with intuition:

Q1 = 1
4n

ÿ

“successful”r

|rmÍÈrm|
Xm+1

¢ · · · ¢ |r1ÍÈr1|
X2

¢ (26)

Q

cca
ÿ

messages Ây and keys z
consistent with r

|ÂymÍÈÂym|
Ym

¢ · · · ¢ |Ây1ÍÈÂy1|
Y1

¢ |ÂzÍÈÂz|
X1

R

ddb . (27)

Above, recall each string ri denotes the response of the token given the ith query Âyi from the user; hence,
the corresponding projectors in Q1 act on spaces X2 through Xm+1. We say r is “successful” if it encodes
the user successfully extracting both secret bits from the token. Each string Âyi œ {0, 1}n+1 denotes the

11Note the optimization in Equation (17) di�ers from that in Equation (7). This is because, technically, Equation (17)
is not yet an SDP due to the quadratic constraint Qa ∞ pRm. It is, however, easily seen to be equivalent to the SDP in
Equation (7). We thank Jamie Sikora for pointing this out to us.
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ith query sent from the user to the token, where each Âyi = bi ¶ yi in the notation of Program 1, i.e.
bi œ {0, 1} is the choice bit for each query. Each such message is passed via register Yi. The states |ÂzÍ
and strings z are defined as in the beginning of Section 3.4; recall z œ {0, 1}2n and |ÂzÍ œ (C2)¢n denote
the secret key and corresponding quantum key, respectively. The inner summation is over all messages
Ây and keys z such that the token correctly returns response ri given both Âyi and z.

Upper bounding p. To now upper bound p, we give a feasible solution Rm+1 satisfying the constraints
of �. Note that giving even a solution which attains p = 1 for all n and m is non-trivial — such a solution
is given in Lemma C.3 of Appendix C.1. Here, we give a solution which attains p œ O(22m≠0.228n), as
claimed in Theorem 3.2 (and formally proven in Theorem C.5 of Appendix C.1). Namely, we set

Rm+1 = 1
N

ÿ

“successful” r

|rmÍÈrm|
Xm+1

¢ · · · ¢ |r1ÍÈr1|
X2

¢ IY1¢···¢Ym ¢ 1
2n

IX1 , (28)

where intuitively N is the total number of strings r corresponding to successful cheating, and recall n is
the key size. This satisfies constraint (19) of � due to the identity term IY1¢···¢Ym . The renormalization
factor of (N2n)≠1 above ensures that tracing out all Xi registers yields R0 = 1 in constraint (21) of
�. We are thus reduced to choosing the minimum p such that constraint (18) is satisfied. Note that
setting p = 1 will not work for large enough m for this choice of Rm+1. To see why, observe we have
chosen Rm+1 to align with the block-diagonal structure of Q1 on registers X2, . . . , Xm. Since registers
Y1 ¢ · · · ¢ Ym and X1 of Rm+1 are proportional to the identity matrix, it thus su�ces to characterize
the largest eigenvalue of Q1, ⁄max(Q1). This is done by Lemma C.4 of Appendix C.1, which says

⁄max(Q1) = 2
4n

3
1 + 1Ô

2

4n

. (29)

Combining this bound on ⁄max(Q1) with the parameters of Rm+1 above now yields the desired claim
that p œ O(22m≠0.228n). For (say) m Ø n this bound is vacuous, and thus does not su�ce to show even
the trivial bound p Æ 1 for all m, as stated. (See Lemma C.3 for a feasible solution attaining p Æ 1 for
all m.) However, for m < 0.114n queries, the bound is fruitful, yielding the probability that a user of
the token successfully cheats and thus that the simulation fails is exponentially small in the key size, n.
Simplifications of the GW SDP, the derivation of its dual SDP, and a conjectured approximately optimal
dual feasible solution are given in Appendix D.

4 Impossibility Results
We now discuss “tightness” of our protocol with respect to impossibility results. To begin, it is easy
to argue that OTMs cannot exist in the plain model (i.e., without additional assumptions) in both the
classical and quantum settings: in the classical setting, impossibility holds, since software can always
be copied. Quantumly, this follows by a simple rewinding argument [BGS13]. Here, we give two simple
no-go results for the quantum setting which support the idea that our scheme is “tight” in terms of the
minimality of the assumptions it uses. Both results assume the token is reversible, meaning the receiver
can run both the token and its inverse operation. The results can be stated as:

1. A stateless token which can be queried in superposition cannot be used to securely construct an
OTM (Section 4.1).

2. For measure and access schemes such as ours, in order for a stateless token to allow statistical
security, it must have an exponential number of keys per secret bit (Section 4.2).

Note that if, on the other hand, the receiver is not given access to the token’s inverse operation, it
is unlikely for a straightforward adaption of our no-go techniques to go through. This is because, in
the most general case where the token is an arbitrary unitary U , which the receiver may apply as a
black box, simulating U≠1 = U† appears di�cult. For example, Theorem 3 of Quintino, Dong, Shimbo,
Soeda, and Murao [Qui+19] shows that any exact implementation of U† (even with an adaptive protocol)
which (1) succeeds with probability p > 0 and (2) where p is independent of the choice of U , requires
k Ø d ≠ 1 uses of U . In our setting, d is exponential in the number of qubits, and thus so is k. Indeed,
inverting arbitrary U would entail, as a special case, inverting arbitrary classical permutations, which
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appears di�cult. For example, Fe↵erman and Kimmel [FK18] use precisely this idea (i.e. an in-place
permutation oracle, to which one does not have access to the inverse) to prove an oracle separation
between two quantum generalizations of NP, Quantum-Classical Merlin Arthur and Quantum Merlin
Arthur. We stress, however, that the works of [Qui+19; FK18] are for rather general unitaries U ,
whereas here we have a very specific choice of U (i.e. the token’s implementation). For such a specialized
U , it remains possible that a no-go theorem could still hold, even without black-box access to U†.

4.1 Impossibility: Tokens which can be queried in superposition
In our construction, we require that all queries to the token be classical strings, i.e., no querying in
superposition is allowed. It is easy to argue via a standard rewinding argument that relaxing this
requirement yields impossibility of a secure OTM, as long as access to the token’s adjoint (inverse)
operation is given, as we now show. Specifically, let M be a quantum OTM implemented using a
hardware token. Since the token access is assumed to be reversible, we may model it as an oracle12 Of

realizing a function f : {0, 1}n ‘æ {0, 1}m in the standard way, i.e., for all y œ {0, 1}n and b œ {0, 1}m,
Of |yÍ|bÍ = |yÍ|büf(y)Í. Now, suppose our OTM stores two secret bits s0 and s1, and provides the receiver
with an initial state |ÂÍ œ A ¢ B ¢ C, where A, B, and C are the algorithm’s workspace, query (i.e.,
input to Of ), and answer (i.e., Of ’s answers) registers, respectively. By definition, an honest receiver
must be able to access precisely one of s0 or s1 with certainty, given |ÂÍ. Thus, for any i œ {0, 1},
there exists a quantum query algorithm Ai = UmOf · · · Of U2Of U1 for unitaries Ui œ U(A ¢ B ¢ C)
such that Ai|ÂÍ = |ÂÕÍAB |siÍC . For any choice of i, however, this implies a malicious receiver can now
classically copy si to an external register, and then “rewind” by applying A†

i to |ÂÕÍAB |siÍC to recover
|ÂÍ. Applying AiÕ for iÕ ”= i to |ÂÍ now yields the second bit iÕ with certainty as well. We conclude that
a quantum OTM which allows superposition queries to a reversible stateless token is insecure.

Remark 4.1. Above, we assumed the OTM outputs si with certainty. The argument generalizes to
OTMs that output si with probability at least 1 ≠ ‘ for small ‘ > 0; for this, the Gentle Measurement
Lemma [Win99] can be used to show that both bits can be recovered with non-negligible probability.

Remark 4.2. Our argument crucially relies on the fact that the receiver has superposition access to the
A†

i operation. In certain models (e.g., software), such access is unavoidable. However, we do not rule out
the possibility that non-reversible superposition access to a token would allow for quantum OTMs.

4.2 Impossibility: Tokens with a bounded number of keys
We observed superposition queries to the token prevent an OTM from being secure. One can also ask
how simple a hardware token with classical queries can be, while still allowing a secure OTM. Below, we
consider such a strengthening in which the token is forced to have a bounded number of keys.

To formalize this, we define the notion of a “measure-and-access (MA)” OTM, i.e., an OTM in which
given an initial state |ÂÍ, an honest receiver applies a prescribed measurement to |ÂÍ, and feeds the
resulting classical string (i.e., key) y into the token Of to obtain si. Our construction is an example
of a MA memory in which each bit si has an exponential number of valid keys y such that f(y) = si.
Can the construction can be strengthened such that each si has a bounded number (e.g., a polynomial
number) of keys? We now show that such a strengthening would preclude security, assuming the token
is reversible.

For clarity, implicitly in our proof below, we model the oracle Of as having three possible outputs:
0, 1, or 2, where 2 is output whenever Of is fed an invalid key y. This is required for the notion of
having “few” keys to make sense (i.e., there are 2n candidate keys, and only two secret bits, each of
which is supposed to have a bounded number of keys). Note that our construction indeed fits into this
framework.

Lemma 4.3. Let M be an MA memory with oracle Of , such that Of cannot be queried in superposition.
If a secret bit si has at most � keys yi such that f(yi) = si, then given a single copy of |ÂÍ, one can
extract both s0 and s1 from M with probability at least 1/�2.

12This formalization models Of as a classical function f which can be queried in superposition, since the aim of this
paper is to consider “easy-to-manufacture” tokens. However, our impossibility arguments in Section 4 trivially extend to the
case when the token is modelled by an arbitrary unitary Uf .
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We conclude that if a secret bit bi has (say) at most polynomially many keys, then any measure-and-
access OTM can be broken with at least inverse polynomial probability. The proof is given in Appendix E.
In this sense, at least in the paradigm of measure-and-access memories, our construction is essentially
tight — in order to bound the adversary’s success probability of obtaining both secret bits by an inverse
exponential, we require each secret bit to have exponentially many valid keys. Note that, as in the setting
of superposition queries, the above proof can be generalized to the setting in which the OTM returns the
correct bit si with probability at least 1 ≠ ‘ for small ‘ > 0. Finally, the question of whether a similar
statement to Lemma 4.3 holds for a non-reversible token remains open.
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A Universal Composition (UC) Framework
We consider simulation-based security. The Universal Composability (UC) framework was proposed by
Canetti [Can01], culminating a long sequence of simulation-based security definitions (c.f. [GMW87;
GL91; MR92; Bea91; Can00]); please see also [PW01; PS04; Can+07; LPV09; MR11] for alterna-
tive/extended frameworks. Recently Unruh [Unr10] extend the UC framework to the quantum setting.
Next, we provide a high-level description of the original classical UC model by Canetti [Can01], and then
the quantum UC model by Unruh [Unr10].

A.1 Classical UC Model ([Can01])
Machines. The basic entities involved in the UC model are players P1, . . . , Pk where k is polynomial
of security parameter n, an adversary A, and an environment Z. Each entity is modeled as a interactive
Turing machine (ITM), where Z could have an additional non-uniform string as advice. Each Pi has
identity i assigned to it, while A and Z have special identities idA := adv and idZ := env.

Protocol Execution. A protocol specifies the programs for each Pi, which we denote as fi = (fi1, . . . , fik).
The execution of a protocol is coordinated by the environment Z. It starts by preparing inputs to all
players, who then run their respective programs on the inputs and exchange messages of the form
(idsender, idreceiver, msg). A can corrupt an arbitrary set of players and control them later on. In par-
ticular, A can instruct a corrupted player sending messages to another player and also read messages
that are sent to the corrupted players. During the course of execution, the environment Z also interacts
with A in an arbitrary way. In the end, Z receives outputs from all the other players and generates one
bit output. We use EXEC[Z, A, fi] to denote the distribution of the environment Z’s (single-bit) output
when executing protocol fi with A and the Pi’s.

Ideal Functionality and Dummy Protocol. Ideal functionality F is a trusted party, modeled by
an ITM again, that perfectly implements the desired multi-party computational task. We consider an
“dummy protocol”, denoted P F , where each party has direct communication with F, who accomplishes
the desired task according to the messages received from the players. The execution of P F with environ-
ment Z and an adversary, usually called the simulator S, is defined analogous as above, in particular,
S monitors the communication between corrupted parties and the ideal functionality F. Similarly, we
denote Z’s output distribution as EXEC[Z, S, P F ].
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Definition A.1 (Classical UC-secure Emulation). We say fi (classically) UC-emulates fiÕ if for any
adversary A, there exists a simulator S such that for all environments Z,

EXEC[Z, A, fi] ¥ EXEC[Z, S, fiÕ] (30)

We here consider that A and Z are computationally unbounded, and we call it statistical UC-security. We
require the running time S is polynomial in that of A. We call this property Polynomial Simulation.

Let F be a well-formed two party functionality. We say fi (classically) UC-realizes F if for all adversary
A, there exists a simulator S such that for all environments Z, EXEC[Z, A, fi] ¥ EXEC[Z, S, P F ]. We
also write EXEC[Z, A, fi] ¥ EXEC[Z, S, F ] if the context is clear.

UC-secure protocols admit a general composition property, demonstrated in the following universal
composition theorem.

Theorem A.2 (UC Composition Theorem [Can01]). Let fi, fiÕ and ‡ be n-party protocols. Assume that
fi UC-emulates fiÕ. Then ‡fi UC-emulates ‡fiÕ .

A.2 Quantum UC Model ([Unr10])
Now, we give a high-level description of quantum UC model by Unruh [Unr10].

Quantum Machine. In the quantum UC model, all players are modeled as quantum machines. A
quantum machine is a sequence of quantum circuits {Mn}nœN, for each security parameter n. Mn is a
completely positive trace preserving operator on space Hstate ¢ Hclass ¢ Hquant, where Hstate represents
the internal workspace of Mn and Hclass and Hquant represent the spaces for communication, where for
convenience we divide the messages into classical and quantum parts. We allow a non-uniform quantum
advice13 to the machine of the environment Z, while all other machines are uniformly generated.

Protocol Execution. In contrast to the communication policy in classical UC model, we consider a
network N which contains the space HN := Hclass ¢ Hquant ¢i Hstate

i . Namely, each machine maintains
individual internal state space, but the communication space is shared among all . We assume Hclass

contains the message (idsender, idreceiver, msg) which specifies the sender and receiver of the current mes-
sage, and the receiver then processes the quantum state on Hquant. Note that this communication model
implicitly ensures authentication. In a protocol execution, Z is activated first, and at each round, one
player applies the operation defined by its machine Mn on Hclass ¢ Hquant ¢ Hstate. In the end Z
generates a one-bit output. Denote EXEC[Z, A, �] the output distribution of Z.

Ideal Functionality. All functionalities we consider in this work are classical, i.e., the inputs and
outputs are classical, and its program can be implemented by an e�cient classical Turing machine. Here
in the quantum UC model, the ideal functionality F is still modeled as a quantum machine for consistency,
but it only applies classical operations. Namely, it measures any input message in the computational
basis to get a classical bit-string, and implements the operations specified by the classical computational
task.

We consider an “dummy protocol”, denoted P F , where each party has direct communication with F,
who accomplishes the desired task according to the messages received from the players. The execution of
P F with environment Z and an adversary, usually called the simulator S, is defined analogous as above,
in particular, S monitors the communication between corrupted parties and the ideal functionality F.
Similarly, we denote Z’s output distribution as EXEC[Z, S, P F ]. For simplicity, we also write it as
EXEC[Z, S, F ].
Definition A.3 (Quantum UC-secure Emulation). We say � quantum-UC-emulates �Õ if for any
quantum adversary A, there exists a (quantum) simulator S such that for all quantum environments Z,

EXEC[Z, A, �] ¥ EXEC[Z, S, �Õ] (31)

We consider here that A and Z are computationally unbounded, we call it (quantum) statistical UC-security.
We require the running time S is polynomial in that of A. We call this property Polynomial Simulation.

13Unruh’s model only allows classical advice, but we tend to take the most general model. It is easy to justify that almost
all results remain unchanged, including the composition theorem. See [HSS11, Section 5] for more discussion.
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Similarly, (quantum) computational UC-security can be defined. Let F be a well-formed two party
functionality. We say � quantum-UC-realizes F if for all quantum adversary A, there exists a
(quantum) simulator S such that for all quantum environments Z, EXEC[Z, A, �] ¥ EXEC[Z, S, P F ].

Quantum UC-secure protocols also admit general composition:

Theorem A.4 (Quantum UC Composition Theorem [Unr10, Theorem 11]). Let �, �Õ and � be quantum-
polynomial-time protocols. Assume that � quantum UC-emulates �Õ. Then �� quantum UC-emulates
��Õ .

Remark A.5. Out of the two protocol parties (the sender and the receiver), we consider security only in
the case of the receiver being a corrupted party. Note that we are only interested in cases where the same
party is corrupted with respect to all composed protocol. Furthermore, we only consider static corruption.

B Stand-Alone Security in the case of a Malicious Sender
In order to define stand-alone security against a malicious sender (Definition B.2), in our context, we
closely follow definitions given in prior work [DNS10], which we now recall. (Note that, instead of
considering the approximate case for security, we are able to use the exact one.)

Definition B.1. An n-step quantum two-party protocol with oracle calls, denoted �O = (A , B, O, n)
consists of:

1. input space A0 and B0 for parties A and B respectively.

2. memory spaces A1, . . . An and B1, . . . Bn for A and B, respectively.

3. An n-tuple of quantum operations (A1, . . . An) for A , Ai : L(Ai≠1) ‘æ L(Ai), (1 Æ i Æ n).

4. An n-tuple of quantum operations (B1, . . . Bn) for B, Bi : L(Bi≠1) ‘æ L(Bi), (1 Æ i Æ n).

5. Memory spaces A1, . . . , An and B1, . . . , Bn can be written as Ai = Ai
O ¢ Ai

Õ and Bi = Bi
O ¢ Bi

Õ,
(1 Æ i Æ n) and O = (O1, . . . , On) is an n-tuple of quantum operations: Oi : L(AO

i ¢ BO

i ) ‘æ
L(AO

i ¢ BO

i ), (1 Æ i Æ n).

If �O = (A , B, O, n) is an n-turn two-party protocol, then the final state of the interaction upon
input flin œ D(A0 ¢ B0 ¢ R) where R is a system of dimension dim A0 dim B0, is:

[A •ú B](flin) = (1L(AÕ
n¢BÕ

n¢R) ¢On)(An ¢Bn ¢1R) . . . (1L(AÕ
1¢BÕ

1¢R) ¢O1)(A1 ¢B1 ¢1R)(flin) . (32)

As in [DNS10], we specify that an oracle O can be a communication oracle or an ideal functionality
oracle.

An adversary Ã for an honest party A in �O = (A , B, O, n) is an n-tuple of quantum operations
matching the input and outputs spaces of A . A simulator for Ã is a sequence of quantum operations
(Si)n

i=1 where Si has the same input-output spaces as the maps of Ã at step i. In addition, S has access
to the ideal functionality for the protocol �.

Definition B.2. An n-step quantum two-party protocol with oracle calls, �O = (A , B, O, n) is statisti-
cally stand-alone secure against a corrupt A if for every adversary Ã there exists a simulator S such
that for every input flin,

TrBn¢R(Ã •ú B) = TrBn¢R(S •ú B) . (33)

We note that Definition B.2 is weaker than some other definitions for active security used in the literature,
e.g., [DNS12], because we ask only that the local view of the adversary be simulated.

Given the simple structure of our protocol and ideal functionality, the construction and proof of the
simulator is straightforward as shown below.

Theorem B.3. Protocol � is statistically stand-alone secure against a corrupt sender.
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Proof. Since � consists in a single message from the sender to the receiver (together with a call to the
ideal functionality for the token), we have that A = (A1). Furthermore, since the ideal functionality Fwrap

does not return anything to the sender, there is no need for our simulator S to call an ideal functionality.
We thus build S that runs A on the input in register A0. When A calls the Fwrap ideal functionality,

the simulator does nothing. Since � is a one-way protocol, and since the ideal functionality also does not
allow communication from the receiver to the sender,

TrBn¢R(Ã •ú B) = A (TrB0¢R(flin)) = S(TrB0¢R(flin)) . (34)

This concludes the proof.

C Security Analysis for the Token
We now provide the technical result (Theorem 3.2) that is used to prove security of our Quantum OTM
construction of Section 3.1 against a linear number of queries. The statement below is informal; as
outlined in Section 3.4, to make it formal, in Section C.1 we model the user’s interaction with the token
via the Gutoski-Watrous (GW) framework for quantum games [GW07]. The resulting formal statement
we desire, which immediately yields the informal claim below, is given in Theorem C.5.

Theorem C.1 (Informal). For any stateless hardware token implemented as in Program 1, i.e., using an
n-qubit conjugate coding state |xÍ◊, and for any user of the token (restricted only by the laws of quantum
mechanics, meaning using any trace-preserving completely positive maps desired, regardless of e�ciency
of their implementation) making m queries to the token, the probability the user successfully queries the
token to extract both secret bits s0 and s1 is at most O(22m≠0.228n).

Thus, we are able to prove that if the user makes at most m = cn queries with c < 0.114, then the user’s
probability of cheating successfully is exponentially small in n.

C.1 Security against a linear number of token queries: Primal SDP
To show security of our hardware token implementation (Program 1) against a linear number of queries,
we now model a user’s interaction with the token as an interactive game between two parties using the
GW framework of Section 2.1. As outlined in Section 3.4, we shall treat the token as the co-strategy

and the user as the strategy. An overview of how all operators introduced below fit together is given in
Figure 3, which may be periodically referred to as the reader progresses through this section.

Basics of our model. We proceed as follows. As depicted in Figure 1, the token (co-strategy) begins
by preparing state fl0 œ L(X1 ¢ W0), and sending message X1 (which contains flR from Equation (15)
to the user. The user then makes m queries, each via a distinct register Yi for i œ {1, . . . , m}. For each
query made, we model the token as returning two strings: (1) a symbol in set � =

)
0, 1, 0, 1

*
where 0

and 1 denote successful 0- and 1-queries, respectively, and 0 and 1 denote unsuccessful 0- and 1-queries,
respectively, and (2) a bit b which is set to 0 for a failed query, or secret bit bi for a successful ith query.
Formally, the size of each register Xi for i Ø 2 is hence three qubits. We will deviate from Figure 1 in one
respect — we assume the token also returns the response to the final query, m, via a register Ym+1; this
does not a↵ect the success or failure of the user (as the latter makes no further queries at this point), but
helps streamline the analysis. After this last response is sent out, the token measures the string s œ �m

of responses it sent back to the user, and “accepts” if and only if s contains at least one 0 and one 1.
This will be spelled out formally below once we defined the isometries Ai for the protocol.

Before doing so, let us introduce the terminology used in this section for discussing the secret key
held by the token. Namely, recall in Program 1 that the token keeps secret key data x œ {0, 1}n and
◊ œ {+, ◊}n. Here, we shall replace these by a single string z œ {0, 1}2n, such that bits 2i and 2i + 1 of
z specify the basis and value of conjugate coding qubit i, for i œ {1, . . . , n} (i.e. z2i = ◊i and z2i+1 = xi).
We shall call z the secret key. For consistency, we shall rename the quantum key |xÍ◊ from Program 1
by |ÂzÍ œ (C2)¢n, i.e. |xÍ◊ = |ÂzÍ. Next, in Program 1 the token takes inputs b œ {0, 1} and y œ {0, 1}n,
for b the choice bit and y the claimed measured value. In this section, we shall simply concatenate these
as one string Ây = b ¶ y œ {0, 1}n+1 (we henceforth write Ây = by for brevity), the first bit of which is

19



⇢0

�1

 1

�2

 2

�m

 m

X1

W0

Y1 X2

Z1

Ym

Zm

z

ContentsRegister
W1,1 z

ContentsRegister

W1,2 ey1, r(ey1, z)
Wm,1 z

ContentsRegister

Wm,2 ey1, r(ey1, z)

Wm,m eym, r(eym, z)

...

Figure 2: A reproduction of Figure 1 with additional details regarding the token’s private memory contents (bottom

row, horizontal arrows pointing to the right) in each round. For example, in round k = 0, W0 contains the secret key,

z. In round k = 1, W1,1 contains z and W1,2 contains Ây1 and r(Ây1, z). Here, r(Âyk, z) œ � denotes whether the token

accepted or rejected query string Âyk assuming secret key z. Note the secret key z is passed along from round to round

(otherwise, the token cannot correctly decide its response in a round k given query string Âyk).

the choice bit. We shall refer to Ây as a query string. With these definitions in hand, for each secret key
z œ {0, 1}2n, we define a partition A0(z), A1(z), A0(z), A1(z) of {0, 1}n+1, which correspond to the sets
of query strings Ây which cause the token to return response 0, 1, 0, or 1, respectively.

Defining the isometries Ak. Recall from Section 2.1 that the GW model begins by capturing the
actions of a co-strategy as a sequence of linear isometries, Ak. To define these Ak, we first construct
operators �k(z) : Yk ‘æ Xk+1 ¢ Wk,k+1 (i.e. which map an incoming message in Yk to the token to an
outgoing message in Xk+1 and private data to store in Wk,k+1) for k œ {1, . . . , m} as follows:

�k(z) =
ÿ

ÂyœA0(z)

|00ÍXk+1 |Ây0ÍWk,k+1ÈÂy|Yk + (35)

ÿ

ÂyœA1(z)

|10ÍXk+1 |Ây1ÍWk,k+1ÈÂy|Yk + (36)

ÿ

ÂyœA0(z)

|0s0ÍXk+1 |Ây0ÍWk,k+1ÈÂy|Yk + (37)

ÿ

ÂyœA1(z)

|1s1ÍXk+1 |Ây1ÍWk,k+1ÈÂy|Yk . (38)

The intuition is as follows. In round k, we model the token as (coherently) making the following classical
computation: Upon input |ÂyÍYk from the user (which consists of a choice bit b and candidate key y), the
token sends its response in Xk+1 to the user (the first symbol of which denotes accept/reject via a symbol
from �, and the second symbol of which is the corresponding secret bit s, which is set to 0 by default for
failed queries), and classically copies (i.e. via transversal CNOT gates) both the input Ây and response
from � into Wk (the private memory of the token). Recall from Section 3.4 that coherently keeping this
local copy of Ây, which is never accessed again, simulates a measurement of Yk in the standard basis (by
the principle of deferred measurement [NC00]). The response from � is also locally stored in Wk, solely
for the token to be able to decide at the end of the protocol whether the user successfully extracted both
secret bits. (More details on this below after the isometries Ak are defined.)

Before finally defining isometries Ak, let us further elaborate on how the token’s private memory
spaces Wk is modelled (illustrated in Figure 2).

• W0 contains the secret key z œ {0, 1}2n of the token (i.e. the token knows what the secret key is).

• Each Wk register for k > 0 is split into k + 1 parts:

– Wk,1 contains a copy of z (this allows us to pass forward z from one round of interaction to
the next, i.e. the token should know the secret key in all rounds), and
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Operator Description

�k(z) 1. Sends back token’s response to user’s kth query Âyk, conditioned on key z
2. Copies all data sent above to token’s private register
3. Forwards token’s existing private memory contents to next round

Ak “Bootstraps” �k(z) by summing over all possible keys z
Note A0 also has special role of sending quantum key |ÂzÍ to user

A The operator obtained by taking the product of all Ak

B1 The operator A projected down onto the space of all “accepting” strategies, i.e.
where the token’s private memory in the last round, Wm, contains |0Í and |1Í
in some W Õ

i and W Õ

j for i ”= j, respectively

Q1 The operator B1 is reshaped into a column vector via vec() mapping, then the token’s
private memory in the last round, Wm, is traced out.

Figure 3: An overview of how all operators in our instantiation of the GW framework fit together.

– Wk,r for r Ø 2 contains a copy in the standard basis of the user’s (r ≠1)st query string (string
Ây), as well as the token’s response from � for said query.

Note that an additional technical reason for storing Ây above is that it ensures �k(z)†�k(z) = I, so that
each Ai defined shortly is an isometry. We remark that while the size of W grows with m in our security
analysis here, the actual token does not have growing memory requirements, since it stores nothing other
than the secret key z in its private memory (i.e. registers Wk,r for r Ø 2 exist only for our security
analysis, not the actual implementation of the token).

We are now ready to define isometries Ak for round k of the token’s actions, where 1 < k Æ m:

A0 = 1
2n

ÿ

zœ{0,1}
2n

|ÂzÍX1 |zÍW0,1 (39)

A1 =
ÿ

zœ{0,1}
2n

�1(z)Y1,X2,W1,2 ¢ |zÍW1,1Èz|W0,1 (40)

Ak =
ÿ

zœ{0,1}
2n

�k(z)Yk,Xk+1,Wk,k+1 ¢ |zÍWk,1Èz|Wk≠1,1

kp

r=2
IWk,r,Wk≠1,r (41)

Here, A0 : C ‘æ X1 ¢ W0, and Ak : Yk ¢ Wk≠1 ‘æ Xk+1 ¢ Wk for 1 Æ k Æ m. The intuition is as follows:

• A0 captures the token choosing an initial secret key z uniformly at random and preparing corre-
sponding quantum key |ÂzÍ, which it sends to the user in register X1.

• Each Ai for 1 Æ k Æ m consists of terms �k(z) and |zÍÈz|. The latter simply copies forward the
secret key z from round i ≠ 1 to i from private register Wk≠1,1 to Wk,1 , ensuring the token always
knows z. Recall the term �k(z), defined in Equation (35), captures the token reading a message Ây
from the user in Yk, measuring it in the standard basis (simulated by copying string Ây to a private
register Wk,k+1), returning an appropriate response to the user in register Xk+1, and storing a copy
of the kth response from � to the user in the private register Wk,k+1.
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Remark C.2. It is in the definition of the Ai above that it is now formally clear that, although in our
analysis the token stores additional data in its private register W (in addition to the private key, z), the
token’s response on incoming kth message Ây depends solely on register Wk,1, which contains only the
secret key, z. (This is most easily seen through Equation 35, where the only “bra” vector is ÈÂy|Yk , meaning
the corresponding response |00ÍXk+1 depends only on Ây and the string z (since the term 0 depends on the
summation criterion Ây œ A0(z), which depends on z). Thus, the e�ective interactive behavior of the token
is indeed stateless, as desired.

Combining isometries Ai to get A. Having defined isometries Ai, their product now yields operator
A from Equation (3) (where we reorder the X and W registers to clarify that incoming message Yk results
in outgoing message Xk+1):

A = 1
2n

ÿ

zœ{0,1}
2n

ÿ

Ây1,...,Âymœ{0,1}
n+1

|Ây1r(Ây1, z)ÍWm,2 ¢ · · · ¢ |Âymr(Âym, z)ÍWm,m+1¢ (42)

|r(Âym, z)s
r(Âym,z)ÍXm+1ÈÂym|Ym ¢ |r(Âym≠1, z)s

r(Âym≠1,z)ÍXmÈÂym≠1|Ym≠1 ¢ · · · ¢ (43)

|r(Ây1, z)s
r(Ây1,z)ÍX2ÈÂy1|Y1 ¢ |ÂzÍX1 ¢ |zÍWm,1 , (44)

where r(Ây, z) œ � denotes whether the token accepted or rejected query string Ây assuming secret key z,
and s

r(Ây,z) œ {0, 1} is the secret bit returned by the token corresponding to response r(Ây, z) œ � (recall

we set s
r(Ây,z) = 0 if r(Ây, z) œ

)
0, 1

*
).

Defining operator Q1. In order to next define operator Q1 from Equation (6), we model what it means
for a cheating user of the token to “succeed”. As mentioned earlier, this is formalized by having the
token make a final measurement on its private memory after the protocol concludes, in order to determine
whether the user has successfully extracted both secret bits via queries. Formally, for convenience, let
W Õ denote the tensor product of the registers in Wm,k for 2 Æ k Æ m + 1, which hold the values from �
(i.e., the responses r(Âyk≠1, z)). Then, a successful user makes at least one correct 0-query and at least
one correct 1-query (where a j-query refers to a query for choice bit j).

We define the “accepting” measurement operator �1, corresponding to a successful user, as follows.
�1 maps W Õ to itself, and is a projector onto the set of strings with some i ”= j such that W Õ

i is set to |0Í
and W Õ

j is set to |1Í. In other words, �1 projects onto set

T := {t œ �m | t contains at least one 0 and one 1}. (45)

To use this definition of �1 to write down B1, we require further terminology. Define for any t œ T and
fixed key z œ {0, 1}2n, the set of all consistent sequences of query strings Âyi œ {0, 1}n+1 as:

Yt =
Ó

(Ây, z) œ {0, 1}m(n+1) ◊ {0, 1}2n | r(Âyi, z) = ti for Âyi the ith block of (n + 1) bits in Ây
Ô

. (46)

(For example, the second block of (n + 1) bits of 0n+11n+1 is 1n+1.) In words, Yt is the set of all strings
Ây1Ây2 · · · Âymz such that the response of the token on query i, r(Âyi, z) œ �, is consistent with ti. Using this,

define relation R ™ �m ◊ {0, 1}m(n+1) ◊ {0, 1}2n such that

(t, Ây, z) œ R if and only if [t œ T and (Ây, z) œ Yt] . (47)

In words, a triple (t, Ây, z) œ R if for a secret key z and query string Ây, t œ T ™ �m encodes the correct
set of m responses from the token (where recall T is the set of all “successful” response strings).

Recall from Equation (6) that to define Q1, we required B1, which in turn required �1 and A. With
the latter two in hand, we can now define B1 = (

Ô
�1 ¢ I)A = (�1 ¢ I)A as (where recall ti = r(Âyi, z))

B1 = 1
2n

ÿ

(t,Ây,z)œR

|Ây1t1ÍWm,2 ¢ · · · ¢ |ÂymtmÍWm,m+1¢ (48)

|tmstmÍXm+1ÈÂym|Ym ¢ |tm≠1stm≠1ÍXmÈÂym≠1|Ym≠1 ¢ · · · ¢ |t1st1ÍX2ÈÂy1|Y1¢ (49)
|ÂzÍX1 ¢ |zÍWm,1 . (50)
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By definition of the vec mapping (Section 2.1),

vec(B1) = 1
2n

ÿ

(t,Ây,z)œR

|Ây1t1ÍWm,2 ¢ · · · ¢ |ÂymtmÍWm,m+1¢ (51)

|tmstmÍXm+1 |ÂymÍYm ¢ |tm≠1stm≠1ÍXm |Âym≠1ÍYm≠1 ¢ · · · ¢ |t1st1ÍX2 |Ây1ÍY1¢ (52)
|zÍWm,1 ¢ |ÂzÍX1 . (53)

Finally, Q1 = TrWm(vec(B1) vec(B1)ú) equals

Q1 = 1
22n

ÿ

(t,Ây,z)œR

|tmstmÍÈtmstm |
Xm+1

¢ |ÂymÍÈÂym|
Ym

¢ · · · ¢ (54)

|t1st1ÍÈt1st1 |
X2

¢ |Ây1ÍÈÂy1|
Y1

¢ |ÂzÍÈÂz|
X1

. (55)

Note that we have crucially used the fact that queries to the token are classical strings. Namely, since the
token implicitly measures its input in the standard basis (modelled by copying each string Âyi to register
Wi), the partial trace over Wm annihilates all cross terms in vec(B1) vec(B1)ú. Thus, Q1 is conveniently
simplified to a mixture over (t, Ây, z) œ R, which is further block-diagonal with respect to all registers
other than X1.

For convenience, we permute subsystems to rewrite:

Q1 = 1
4n

ÿ

tœT

|tmstmÍÈtmstm |
Xm+1

¢ · · · ¢ |t1st1ÍÈt1st1 |
X2

¢ (56)

Q

a
ÿ

(Ây,z)œYt

|ÂymÍÈÂym|
Ym

¢ · · · ¢ |Ây1ÍÈÂy1|
Y1

¢ |ÂzÍÈÂz|
X1

R

b . (57)

The SDP. Having set up all required operators for the GW framework, Equation (7) of Section 2.1
now yields the optimal probability with which a cheating user can succeed; we reproduce Equation (7)
below for convenience. Note the subsystem ordering of Q1 below is not that of Equation (57), but rather
Q1 œ Pos(Y1,...,m ¢ X1,...,m+1) below; we have omitted explicitly including the permutation e↵ecting this
reordering to avoid clutter. Also, to account for the slight asymmetry in our protocol (the token sends
out m + 1 messages Xi, whereas the user only sends m messages Yi), we add a dummy space Ym+1 = C
which models an empty (m + 1)st message from the user to the token.

min: p (58)
subject to: Q1 ∞ pRm+1 (59)

Rk = Pk ¢ IYk for 1 Æ k Æ m + 1 (60)
TrXk (Pk) = Rk≠1 for 1 Æ k Æ m + 1 (61)
R0 = 1 (62)
Rk œ Pos(Y1,...,k ¢ X1,...,k) for 1 Æ k Æ m + 1 (63)
Pk œ Pos(Y1,...,k≠1 ¢ X1,...,k) for 1 Æ k Æ m + 1 (64)
p œ [0, 1] (65)

In the analysis below, we shall sometimes analyze the optimization above, which we shall denote �Õ.
However, note that technically it is not yet an SDP due to the quadratic constraint Q1 ∞ pRm+1. It is,
however, easily seen to be equivalent to the following bona fide SDP �:

min: p (66)
subject to: Q1 ∞ Rm+1 (67)

Rk = Pk ¢ IYk for 1 Æ k Æ m + 1 (68)
TrXk (Pk) = Rk≠1 for 1 Æ k Æ m + 1 (69)
R0 = p (70)
Rk œ Pos(Y1,...,k ¢ X1,...,k) for 1 Æ k Æ m + 1 (71)
Pk œ Pos(Y1,...,k≠1 ¢ X1,...,k) for 1 Æ k Æ m + 1 (72)
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Above and henceforth, we use terminology T1···k to denote the space T1 ¢ · · · ¢ Tk.

Warmup: A “trivial” solution. We mentioned in Section 3.4 that obtaining a solution to � which
obtains the trivial bound p Æ 1 is not trivial. (Sometimes with SDPs, a scaled identity operator gives a
feasible solution obtaining the desired trivial bound on the objective value; this unfortunately does not
work here.) Let us hence warm up by demonstrating a solution attaining the trivial bound p Æ 1.

Lemma C.3. The SDP � has a feasible solution with p = 1.

Proof. Recall from Equation (57) that

Q1 = 1
4n

ÿ

(t,Ây,z)œR

|t, sÍÈt, s|
Xm+1···2

¢
!
|ÂymÍÈÂym|

Ym
¢ · · · ¢ |Ây1ÍÈÂy1|

Y1

"
¢ |ÂzÍÈÂz|

X1
, (73)

where t œ T ™ �m and s œ {0, 1}m are the resulting query responses and secret bits, respectively. (Recall
from Equation (57) that, formally, we should write st, as each s depends on t; to save clutter and
space below, however, we drop the subscript.) Observe that any fixed Ây œ {0, 1}m(n+1) and z œ {0, 1}2n

determine a unique query response string t œ �m (which may or may not be in T ); denote this as t(Ây, z).
Therefore,

Q1 = 1
4n

ÿ

Ây,z

s.t. t(Ây,z)œT

|t(Ây, z), sÍÈt(Ây, z), s|
Xm+1···2

¢
!
|ÂymÍÈÂym|

Ym
¢ · · · ¢ |Ây1ÍÈÂy1|

Y1

"
¢ |ÂzÍÈÂz|

X1
, (74)

for T ™ �m defined as in Equation (45). Let us drop the constraint that t(Ây, z) œ T , i.e. choose

Rm+1 = 1
4n

ÿ

Ây,z

|t(Ây, z), sÍÈt(Ây, z), s|
Xm+1···2

¢
!
|ÂymÍÈÂym|

Ym
¢ · · · ¢ |Ây1ÍÈÂy1|

Y1

"
¢ |ÂzÍÈÂz|

X1
. (75)

Clearly, Q1 ∞ p · Rm+1 for p = 1, since we added positive semidefinite terms to Q1 to get Rm+1. Thus, if
Rm+1 satisfies the remaining primal constraints, then it has objective function value p = 1.

To see that Rm+1 satisfies the constraints, clearly Rm+1 has I in register Ym+1 (recall Ym+1 = C, so
this just means Ym+1 is trivially set to 1). Let us now trace out Xm+1; we require that register Ym≠1
now also contains the identity. For this, TrXm+1(Rm+1) equals:

1
4n

ÿ

Âym,...,Ây1

ÿ

z

|tm≠1(Ây, z)sm≠1ÍÈtm≠1(Ây, z)sm≠1|
Xm···2

¢
!
|ÂymÍÈÂym|

Ym
¢ · · · ¢ |Ây1ÍÈÂy1|

Y1

"
¢ |ÂzÍÈÂz|

X1
,

(76)
where for brevity we use tm≠1(Ây, z)sm≠1 to denote the first m ≠ 1 queries. But since we discarded the
mth symbol of t(Ây, z), registers Ym and X1 are now independent. Thus, bringing in the sum over Âym,

TrXm+1(Rm+1) = 1
4n

ÿ

Âym≠1,...,Ây1

ÿ

z

|tm≠1(Ây, z)sm≠1ÍÈtm≠1(Ây, z)sm≠1|
Xm···2

¢ (77)

1
IYm ¢ |Âym≠1ÍÈÂym≠1|

Ym≠1
¢ · · · ¢ |Ây1ÍÈÂy1|

Y1

2
¢ |ÂzÍÈÂz|

X1
. (78)

In a similar fashion, tracing out registers Xm···2 will yield operator

1
4n

IYm+1···1 ¢
ÿ

z

|ÂzÍÈÂz|
X1

. (79)

Finally, tracing out X1 yields IYm···1 , since there are 4n possible quantum key states |ÂzÍ. Hence, Rm+1
is a feasible solution.
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An upper bound on the cheating probability. We now give a feasible solution to SDP � which
yields the claimed security against a linear number of queries. Its proof of correctness relies on Lemma C.4,
which we state and prove first.

Lemma C.4. For Q1 in Equation (57), ⁄max(Q1) = 2
4n

1
1 + 1

Ô
2

2n
.

Proof. The factor of 4≠n in the claimed value for ⁄max(Q1) comes from the 4≠n appearing in Equation (57);
we henceforth thus ignore this 4≠n term in this proof by redefining Q1 as 4nQ1. We shall also ignore
the bi terms in Q1, as they shall play no role in the analysis. Now, since Q1 is block-diagonal (with
respect to the standard basis) on registers X2,. . . ,Xm+1, Y1,. . . ,Ym, it su�ces to characterize the largest
eigenvalue of any block. We shall say that any fixed t œ T and Ây œ {0, 1}m(n+1) defines the (t, Ây)-block of
Q1. (Formally, the (t, Ây)-block of Q1 is given by �

t,ÂyQ1�
t,Ây, where �

t,Ây = |tÍÈt|
Xm+1···2

¢ |ÂyÍÈÂy|
Y

.)

Lower bound. We first show lower bound ⁄max(Q1) Ø 2
4n (1 + 1

Ô
2 )n. To do so, we demonstrate an

explicit t, Ây such that the (t, Ây)-block has eigenvalue 2
4n (1 + 1

Ô
2 )n. Set t = 0m≠11 (note t œ T ) and

Ây = Ây1 . . . Âym for Ây1 = Ây2 = · · · = Âym≠1 and Âym≠1 ”= Âym (note Âyi œ {0, 1}n+1), where the first bit of
each of Ây1, . . . , Âym≠1 is 0, and the first bit of Âym is 1. In words, we are modelling m ≠ 1 successful (and
identical) 0-queries in the Z-basis, followed by a single successful 1-query in the X-basis. The question
now is: Given t and Ây, how many |ÂzÍ œ (C2)¢n exist such that (t, Ây, z) œ R?

To answer this, observe that the token enforces the following set of rules. Fix any i œ {1, . . . , m}, and
let |Âyi(j)Í and |Âz(j)Í denote the jth qubits of Âyi and Âz, respectively. Then we have rules (where H
denotes the 2 ◊ 2 Hadamard matrix, and b denotes the complement of bit b):

1. If ti = 0, then ’j œ {1, . . . , n}, either |Âz(j)Í = |Âyi(j)Í or |Âz(j)Í œ {|+Í, |≠Í}.

2. If ti = 1, then ’j œ {1, . . . , n}, either |Âz(j)Í = H|Âyi(j)Í or |Âz(j)Í œ {|0Í, |1Í}.

3. If ti = 0, then ÷j œ {1, . . . , n} such that |Âz(j)Í = |Âyi(j)Í.

4. If ti = 1, then ÷j œ {1, . . . , n} such that |Âz(j)Í = H|Âyi(j)Í.

Recall now that we set t1 = 0 and tm = 1, i.e. the first query was a successful Z-basis query and the
last query was a successful X-basis query. Applying rules 1 and 2 above thus yields that for all indices
k, |Âz(k)Í œ {|Ây1(k)Í, H|Âym(k)Í}. Moreover, since Ây1 = Ây2 = · · · = Âym≠1, it follows that for all k, both
assignments for |Âz(k)Í are consistent with t. We conclude that the (t, Ây)-block of Q1 has the following
operator in register X1:

‡ =
np

k=1
(|Ây1(k)ÍÈÂy1(k)| + H|Âym(k)ÍÈÂym(k)|H) . (80)

But for any b, c œ {0, 1}, ⁄max(|bÍÈb|+H|cÍÈc|H) = 1+ 1
Ô

2 (see, e.g., [MVW13]). Thus, ⁄max(‡) = (1+ 1
Ô

2 )n,
as claimed.

Upper bound. We next show a matching upper bound of ⁄max(Q1) Æ 2
4n (1 + 1

Ô
2 )n among all (t, Ây)-

blocks. For any t œ T , there exist indices i ”= j such that Âyi and Âyj are a successful 0- and 1-query,
respectively. Without loss of generality, assume i = 1 and j = m. Then, as in the previous case, rules 1
and 2 imply that:

’k œ {1, . . . , n}, |Âz(k)Í œ {|Ây1(k)Í, H|Âym(k)Í}. (81)

Consider now any Âyi for 1 < i < m, and suppose without loss of generality that Âyi is a 0-query, i.e. its
first bit is set to 0. There are two cases to analyze:

• (Case 1: ti = 0) In this case, both query 1 and query i are successful 0-queries; thus, they must
agree on all secret key bits which were encoded in the Z basis. It follows from Rule 1 that for any
bit k on which Ây1 and Âyi disagree, the secret key must have encoded bit k in the X-basis. In other
words, |Âz(k)Í = H|Âym(k)Í in Equation (81) (i.e. one of the two possibilities is eliminated). (If
Ây1 = Âyi, on the other hand, no such additional constraint exists.)
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• (Case 2: ti = 0) In this case, query i is an unsuccessful 0-query. By Rule 3, there exists a bit k on
which Ây1 and Âyk disagree, and whose corresponding secret key bit was encoded in the Z basis. In
other words, |Âz(k)Í = |Ây1(k)Í in Equation (81) (i.e., one of the two possibilities is eliminated).

The analysis for Âyi being a 1-query is analogous. We conclude that for any (t, Ây)-block of Q1, the operator
in register X1 is of the form of ‡ from Equation (80), except that the some of the indices k may contain an
operator consisting of only 1 summand (e.g. |Ây1(k)ÍÈÂy1(k)| instead of |Ây1(k)ÍÈÂy1(k)|+H|Âym(k)ÍÈÂym(k)|H).
Since the omitted summands are all positive semidefinite, however, we conclude the eigenvalue on any
(t, Ây)-block is at most the eigenvalue of ‡ from Equation (80), i.e., at most ⁄max(Q1) Æ 2

4n (1 + 1
Ô

2 )n, as
claimed.

We can now prove the main result of this section.

Theorem C.5. The SDP � has a feasible solution with p œ O(22m≠0.228n).

Proof. As Q1 in Equation (57) is block-diagonal in registers X2, . . . , Xm+1, consider solution (for T from
Equation (45))

Rm+1 = 1
|T |

ÿ

tœT

|tmstmÍÈtmstm |
Xm+1

¢ · · · ¢ |t1st1ÍÈt1st1 |
X2

¢ IY1,...,m ¢ 1
2n

IX1 . (82)

(Aside: Recall that X1 is an n-qubit register above, hence the 2n renormalization factor.) Note that

|�m| = 4m (83)
{t œ �m | t does not contain a 0} = 3m (84)
{t œ �m | t does not contain a 1} = 3m (85)

{t œ �m | t does not contain a 0 or a 1} = 2m. (86)

Thus, by the inclusion-exclusion principle, |T | = 4m ≠ 2 · 3m + 2m.
In order for Rm+1 to be feasible, we must pick p such that Q1 ∞ pRm+1. Since Q1 is block-diagonal on

registers X2 · · · Xm+1, it su�ces to identify its block with the largest eigenvalue. In fact, each corresponding
block for Rm+1 has eigenvalue (|T | 2n)≠1. Thus, we must choose p such that

⁄max(Q1) Æ p

|T | 2n
, (87)

or equivalently, due to the 4≠n factor in Q1,

p Ø |T |
2n

⁄max (4nQ1) . (88)

By Lemma C.4, ⁄max(Q1) = 2
4n

1
1 + 1

Ô
2

2n
. Thus, we can set

p = |T |
2n≠1

3
1 + 1Ô

2

4n

¥ |T | · 2(≠0.228)n+1, (89)

and since |T | œ �(4m), the cheating probability satisfies p œ O(22m≠0.228n).

D Simplifying the Gutoski-Watrous SDP and its dual
D.1 Streamlining the primal and dual
We now simplify the general SDP (Equation (66) from the Gutoski-Watrous (GW) framework (note this
simplification is independent of our particular application of the framework for OTMs, i.e. independent
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of Q1), and derive its dual SDP. For convenience, we begin by reproducing the following definitions,
including the SDP � of Equation (66).

min: p (90)
subject to: Q1 ∞ Rm+1 (91)

Rk = Pk ¢ IYk for 1 Æ k Æ m + 1 (92)
TrXk (Pk) = Rk≠1 for 1 Æ k Æ m + 1 (93)
R0 = p (94)
Rk œ Pos(Y1,...,k ¢ X1,...,k) for 1 Æ k Æ m + 1 (95)
Pk œ Pos(Y1,...,k≠1 ¢ X1,...,k) for 1 Æ k Æ m + 1 (96)

(t, Ây, z) œ R if and only if [t œ T and (Ây, z) œ Yt] (97)

Q1 = 1
4n

ÿ

tœT

|tmstmÍÈtmstm |
Xm+1

¢ · · · ¢ |t1st1ÍÈt1st1 |
X2

¢ (98)

Q

a
ÿ

(Ây,z)œYt

|ÂymÍÈÂym|
Ym

¢ · · · ¢ |Ây1ÍÈÂy1|
Y1

¢ |ÂzÍÈÂz|
X1

R

b . (99)

Guiding example: m = 3. We explicitly run through the construction for the first non-trivial case,
m = 3 queries. The construction then generalizes straightforwardly to all m Ø 2. To begin, using the
fact that R4 = P4 (since Y4 = C, due to the fact that we assumed message m + 1 from the user to the
token is empty), � can be written:

min: Tr(P1) (100)
subject to: Q1 ≠ P4 ∞ 0 (101)

≠ P3 ¢ IY3 + TrX4(P4) ∞ 0 (102)
≠ P2 ¢ IY2 + TrX3(P3) ∞ 0 (103)
≠ P1 ¢ IY1 + TrX2(P2) ∞ 0 (104)

Above, we relaxed the equalities to inequalities14, which intuitively makes it easier to guess feasible
solutions to �. We also omitted the positive semidefinite constraints on all Pi, since15 P4 ≤ Q1 ≤ 0
implies Pi ≤ 0 for all i. We now follow the standard Lagrange approach for deriving the dual SDP (see,
e.g. [BV04]). Labelling equations (101),(102),(103),(104) with dual variables Y1, . . . , Y4, respectively, the
primal variables in the Lagrange dual function can be isolated as follows:

Primal variable Factor
P4 ≠Y1 + Y2 ¢ IX4

P3 ≠TrY3(Y2) + Y3 ¢ IX3

P2 ≠TrY2(Y3) + Y4 ¢ IX2

P1 IX1 ≠ TrY1(Y4)

14This is without loss of generality, as we briefly justify. Clearly, any feasible solution for equality constraints is also
feasible for inequality constraints. For the converse direction, suppose a feasible solution for the inequality constraints
satisfies Pi ¢ IYi+1 ≠ TrXi+1 (Pi+1) = �i ≤ 0 for non-zero �i; pick the smallest such i satisfying this condition. Then,
redefining P

Õ
i+1 := Pi+1 + |„ÍÈ„|Xi+1

¢ �i ≤ 0 for arbitrary unit vector |„Í satisfies Pi ¢ IYi+1 ≠ TrXi+1 (P
Õ
i+1) = 0, as

desired. Note we can recurse this trick now from constraint i to i + 1, since if Pi+1 ¢ IYi+2 ≠ TrXi+2 (Pi+2) ≤ 0, then
P

Õ
i+1 ¢ IYi+2 ≠ TrXi+2 (Pi+2) ≤ 0 (similarly for constraint Q1 ∞ Pm+1). Thus, we obtain a new feasible solution for which

all inequality constraints (except Q1 ∞ Pm+1) hold with equality. Moreover, this process does not alter the assignment for
P1 (i.e. we never define P

Õ
1); thus the objective function value remains unchanged.

15In our particular setting, it is clear that Q1 ≤ 0. However, more generally in the GW framework, the operators {Qa}
defining a measuring co-strategy all satisfy Qa ≤ 0.

27



For clarity and as an example, this says the term P4(≠Y1 + Y2 ¢ IX4) appears in the dual function. This
yields dual SDP:

max: Tr(Y1Q1) (105)
subject to: ≠ Y1 + Y2 ¢ IX4 = 0 (106)

≠ TrY3(Y2) + Y3 ¢ IX3 = 0 (107)
≠ TrY2(Y3) + Y4 ¢ IX2 = 0 (108)
IX1 ≠ TrY1(Y4) = 0 (109)
Y1, Y2, Y3, Y4 ≤ 0 (110)

Now we make the following simplifications: (1) Replace Y1 with Y2 ¢ IX4 (follows from Equation (106)),
(2) drop the constraints Y3, Y4 ≤ 0 (since they are implied by Y2 ≤ 0), and (3) relax the equalities to
inequalities (which follows similar to the argument for the primal, except here we also require that we
are maximizing with respect to Y2 below). Hence, we obtain:

max: Tr(Y2TrX4(Q1)) (111)
subject to: ≠ TrY3(Y2) + Y3 ¢ IX3 ≤ 0 (112)

≠ TrY2(Y3) + Y4 ¢ IX2 ≤ 0 (113)
IX1 ≠ TrY1(Y4) ≤ 0 (114)
Y2 ≤ 0 (115)

Note the Y2 ≤ 0 cannot be removed. Intuitively, this is because the constraint IX1 ≠ TrY1(Y4) ≤ 0 alone
does not imply Y4 ≤ 0. Rather, it is the constraint Y2 ≤ 0 which forces Y4 ≤ 0 here. Indeed, a sanity
check in CVX for Matlab reveals removing the Y2 ≤ 0 incorrectly yields an unbounded SDP.

We now repeat the process by taking the dual of the dual to arrive at a simplified primal as follows.
(Note that the inequalities above now go in the other direction, since we are starting from the dual SDP.)
Labelling the constraints above R1, . . . , R4, we have factor table:

Dual variable Factor
Y2 TrX4(Q1) ≠ R1 ¢ IY3 + R4
Y3 TrX3(R1) ≠ R2 ¢ IY2

Y4 TrX2(R2) ≠ R3 ¢ IY1

This yields primal SDP (after omitting the redundant constraints R1, R2, R3, R4 ≤ 0):

min: Tr(R3) (116)
subject to:TrX4(Q1) ≠ R1 ¢ IY3 ∞ 0 (117)

TrX3(R1) ≠ R2 ¢ IY2 ∞ 0 (118)
TrX2(R2) ≠ R3 ¢ IY1 ∞ 0 (119)

Taking the dual of the primal now yields the previous dual; so it seems we are done. Relabelling variables
for the primal and dual, we obtain the final m = 3 primal and dual SDPs, respectively:

min: Tr(P1)
subject to: TrX4(Q1) ≠ P3 ¢ IY3 ∞ 0

TrX3(P3) ≠ P2 ¢ IY2 ∞ 0
TrX2(P2) ≠ P1 ¢ IY1 ∞ 0

max: ÈY1, TrX4(Q1)Í
subject to: ≠ TrY3(Y1) + Y2 ¢ IX3 ≤ 0

≠ TrY2(Y2) + Y3 ¢ IX2 ≤ 0
≠ TrY1(Y3) + IX1 ≤ 0
Y1 ≤ 0

General case. The derivation above straightforwardly extends to the case of arbitrary m Ø 2, yielding
primal and dual SDPs:
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Primal SDP

min: Tr(P1) (120)
s.t. TrXm+1(Q1) ≠ Pm ¢ IYm ∞ 0 (121)

TrXi+1(Pi+1) ≠ Pi ¢ IYi ∞ 0 ’i œ {1, . . . , m ≠ 1} (122)
(123)

Dual SDP

max: ÈY1, TrXm+1(Q1)Í (124)
s.t. ≠ TrYm≠i+1(Yi) + Yi+1 ¢ IXm≠i+1 ≤ 0 ’i œ {1, . . . , m} (125)

Y1 ≤ 0 (126)

where note for uniformity in stating the dual constraints, we define Ym+1 := 1 in the dual SDP.

D.2 An approximately optimal dual solution?
We now give a simple feasible solution Y := {Yi} to the dual SDP, whose objective function value appears
to scale roughly as one might expect, if security were to hold for our OTM construction. While we can
explicitly prove Y is not dual optimal (thus, it only yields a lower bound on the best cheating probability),
we conjecture it is roughly optimal up to multiplicative factors (stated precisely in Conjecture D.2), which
would in turn imply security against subexponentially many queries to the token, as desired.

A candidate dual solution. Recall that each Yi register encodes a message from the receiver to the
token, consisting of n + 1 qubits. Let d := 2n+1 denote the dimension of this space. Define solution
Y := {Y1, . . . , Ym} via:

Yi = 1
dm≠i+1 IY1···m,X1···m . (127)

Note that Y1 ≤ 0 trivially, and that Equation (125) holds with equality for all i œ {1, . . . , m}. Thus, Y
is a dual feasible solution. Moreover, it obtains objective function value

— := Tr(Q1)
dm

= |R|
4ndm

, (128)

where recall we defined relation R in Equation (47) via

(t, Ây, z) œ R if and only if [t œ T and (Ây, z) œ Yt] . (129)

The cardinality of R. To analyze —, we require an expression for |R|, given as follows.

Lemma D.1.

|R| =
1

2m(n+1)+n
2 nÿ

–=0

3
n

–

4 5
1 ≠

3
1 ≠ 1

2–+1

4m

≠
3

1 ≠ 1
2n≠–+1

4m

+
3

1 ≠ 1
2–+1 ≠ 1

2n≠–+1

4m6

(130)

Proof. Recall again from Equation (47) that R is defined via

(t, Ây, z) œ R if and only if [t œ T and (Ây, z) œ Yt] , (131)

where T is the set of successful query responses. For any quantum key |ÂzÍ, let – denote the number of
qubits in |ÂzÍ which are encoded in the Z basis. Note that fixing – partitions R into n + 1 sets; let R–

denote the set in this partition corresponding to – Z-bits. We analyze each R– independently first.
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Computing |R–| for fixed –. Fix any 0 Æ – Æ n, and any secret key z œ {0, 1}2n with precisely –
bits in the Z-basis; denote the resulting subset of R– by R–,z. We now ask: Conditioned on secret key z
and token response t œ � =

)
0, 1, 0, 1

*
, how many query strings Ây are consistent with t?

• Case 1: t = 0. Since we have to get precisely all – bits correctly (i.e. those in the Z basis), and we
can get up to n ≠ – bits in the X basis incorrect, we have 2n≠– choices for Ây. (Note that the choice
bit for Ây is forced to be 0 since t = 0.)

• Case 2: t = 1. This is analogous to t = 0, except now we can get the – Z-bits incorrect and the
X-bits must be correct. Thus, there are 2– strings Ây.

• Case 3: t = 0. Since the X bits can be anything, and there is precisely one correct setting to the Z
basis bits, we have 2n≠–(2– ≠ 1) = 2n ≠ 2n≠– choices for Ây.

• Case 4: t = 1. Analogous to the t = 0 case, we have 2–(2n≠– ≠ 1) = 2n ≠ 2– strings Ây.
As a sanity check, note that summing the four values obtained above yields precisely d = 2n+1 strings Ây,
which is the dimension of each register Yi, as desired.

To now obtain an expression for |R–,z|, recall that any set of m queries is successful if it contains
at least one successful 0-query and one successful 1-query. Thus, using the inclusion-exclusion formula
(intuition to follow):

|R–,z| = 2m(n+1) ≠
mÿ

a=0

3
m

a

4
(2–)a

C
m≠aÿ

b=0

3
m ≠ a

b

4 !
2n ≠ 2n≠–

"b (2n ≠ 2–)m≠a≠b

D
(132)

≠
mÿ

a=0

3
m

a

4
(2n≠–)a

C
m≠aÿ

b=0

3
m ≠ a

b

4 !
2n ≠ 2n≠–

"b (2n ≠ 2–)m≠a≠b

D
(133)

+
mÿ

b=0

3
m

b

4 !
2n ≠ 2n≠–

"b (2n ≠ 2–)m≠b . (134)

Above, the first term is the set of all query strings on m messages. The negative terms count the number
of query strings with no successful 0-queries and no successful 1-queries, respectively. For the former,
for example, we first choose a positions in which to put the successful 1-queries, and then distribute
0- and 1-queries among the remaining m ≠ a positions. The final, positive, term, counts the number
of query strings with neither a successful 0- nor a successful 1-query. Inverting the binomial expansion
(a + b)k =

qk
l=0

!k
l

"
albk≠l, we can next write:

|R–,z| = 2m(n+1) ≠
mÿ

a=0

3
m

a

4
(2–)a

#
(2n ≠ 2n≠–) + (2n ≠ 2–)

$m≠a (135)

≠
mÿ

a=0

3
m

a

4
(2n≠–)a

#
(2n ≠ 2n≠–) + (2n ≠ 2–)

$m≠a (136)

+
#
(2n ≠ 2n≠–) + (2n ≠ 2–)

$m
. (137)

Applying the binomial expansion again yields

|R–,z| = 2m(n+1) ≠
#
2– + (2n ≠ 2n≠–) + (2n ≠ 2–)

$m (138)
≠

#
2n≠– + (2n ≠ 2n≠–) + (2n ≠ 2–)

$m (139)
+

#
(2n ≠ 2n≠–) + (2n ≠ 2–)

$m
. (140)

Collecting like terms and factoring out 2m(n+1) yields

|R–,z| =
1

2m(n+1)
2 5

1 ≠
3

1 ≠ 1
2–+1

4m

≠
3

1 ≠ 1
2n≠–+1

4m

+
3

1 ≠ 1
2–+1 ≠ 1

2n≠–+1

4m6
. (141)

Recall this was for any fixed secret key z. But for any fixed 0 Æ – Æ n, there are precisely
!n

–

"
2–2n≠– =!n

–

"
2n choices of z with – qubits encoded in the Z-basis. Thus,

|R–| =
3

n

–

4 1
2m(n+1)+n

2 5
1 ≠

3
1 ≠ 1

2–+1

4m

≠
3

1 ≠ 1
2n≠–+1

4m

+
3

1 ≠ 1
2–+1 ≠ 1

2n≠–+1

4m6
. (142)
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The final expression. The claim follows since the sets R– partition R, and so |R| =
qn

–=0 |R–|.

Using Lemma D.1 to heuristically bound —. Recall that our goal is to understand the dual value —
from Equation (128) obtained by our dual solution, which in turn gives us a lower bound on the optimal
cheating probability. So let us get a sense of how |R| might scale asymptotically by deriving a heuristic
approximation. To begin, applying the Hölder inequality to |R| in Lemma D.1 yields

|R| Æ
1

2m(n+1)+2n
2

· max
–

5
1 ≠

3
1 ≠ 1

2–+1

4m

≠
3

1 ≠ 1
2n≠–+1

4m

+
3

1 ≠ 1
2–+1 ≠ 1

2n≠–+1

4m6
(143)

We shall assume16 the maximum is attained for – = n/2. For this choice of –, recalling that for large x,

3
1 ≠ 1

x

4m

¥ e≠
m
x , (144)

in the large n limit the term in the square brackets above is approximately
Ë
1 ≠ 2e

≠
m

2n/2+1 + e
≠

m

2n/2
È

.

Hence, we may bound

|R| Æ
1

2m(n+1)+2n
2 Ë

1 ≠ 2e
≠

m

2n/2+1 + e
≠

m

2n/2
È

(145)

Æ
1

2m(n+1)
2

4n
Ë
1 ≠ e

≠
m

2n/2
È

(146)

¥ dm4n m

2n/2 , (147)

for m π n, and where in the last line we used d = 2n+1. Plugging this into Equation (128), we get
precisely the type of behavior we want:

— = |R|
4ndm

. m

2n/2 . (148)

Thus, for polynomial m, the objective function value obtained by our dual solution from Equation (127)is
exponentially small in the number of key bits, n (under the heuristic approximations made in this
derivation).

The dual solution is not optimal. Naturally, this raises the question of whether our dual solution
Y from Equation (127) is optimal. If it were, then a matching primal solution can in principle be found
(it is easy to see that Slater’s constraint qualification holds for the primal and dual, and so strong duality
holds), and thus the optimal cheating probability would be approximately that given in Equation (148).

Unfortunately, Y is provably not dual optimal. Specifically, for m = 2 and n = 1 (2 queries, 1 key
bit), the primal optimal value is ¥ 0.85 and for m = 3, n = 1, it is17 1 (both numerical values calculated
via CVX in Matlab). However, evaluating |R| in Lemma D.1 for these values of m and n yields — = 0.25
and — = 0.46875, respectively.

Moreover, the heuristic and loose upper bound on the objective function value of Y from Equa-
tion (148) is asymptotically not optimal18, since the naive cheating strategy in which an adversary in-
dependently measures each qubit of |ÂzÍ in basis

)
cos fi

8 |0Í + sin fi
8 |1Í, ≠ sin fi

8 |0Í + cos fi
8 |1Í

*
successfully

obtains classical key x œ {0, 1}n (see Program 1) with probability (cos2 fi
8 )n ¥ 2≠0.228n.

Thus, the dual solution Y of Equation (127) is not optimal. However, as the heuristic derivation of
— from Equation (148) rather naturally led to the desired type of bound on the cheating probability, we
conjecture that Y is approximately optimal, in the following sense.

16This assumption appears to hold in numerical calculations over various values of –.
17With m = 3 and n = 1, it is trivial to break the OTM construction. Namely, first measure the quantum key |ÂzÍ in the

standard basis and make an honest 0-query to extract the first secret bit. Then, since |ÂzÍ is only 1 qubit, we can use brute
force to make two 1-queries to the token with the only two possible candidate keys in the X-basis, 0, or 1.

18We thank David Mestel for bringing this to our attention.
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Conjecture D.2. The optimal values for the primal and dual SDPs of Section D.1 are, up to multiplicative
scaling by some function f(m, n) œ O(mc2(1/2≠‘)n) for constants c > 0 and 0 < ‘ < 1/2, equal to
— = |R|

4ndm .

If Conjecture D.2 holds, then our protocol would be secure in the sense that the optimal cheating
probability would scale as poly(m)/2�(n).

E Proof of Lemma 4.3
Proof. Observe first that an honest receiver Alice wishing to extract si acts as follows. She applies a
unitary Ui œ U(A ¢ B) to get state

|„1Í := Ui|ÂÍAB |0ÍC . (149)

She then measures B in the computational basis and postselects on result y œ {0, 1}n, obtaining state

|„2Í := |„yÍA|yÍB |0ÍC . (150)

She now treats y as a “key” for si, i.e., she applies Of to B ¢ C to obtain her desired bit si, i.e.,

|„3Í := |„yÍA|yÍB |siÍC . (151)

A malicious receiver Bob wishing to extract s0 and s1 now acts similarly to the rewinding strategy for
superposition queries. Suppose without loss of generality that s0 has at most � keys. Then, Bob first
applies U0 to prepare |„1Í from Equation (149), which we can express as

|„1Í =
ÿ

yœ{0,1}
n

–y|ÂyÍA|yÍB |0ÍC . (152)

for
q

y |–y|2 = 1. Since measuring B next would allow us to retrieve s0 in register C with certainty, we
have that all y appearing in the expansion above satisfy f(y) = s0. Moreover, since s0 has at most �
keys, there exists a key yÕ such that |–yÕ |2 Ø 1/�. Bob now measures B in the computational basis to
obtain |„2Í from Equation (150), obtaining yÕ with probability at least 1/�. Feeding yÕ into Of yields s0.
Having obtained yÕ, we have that |È„1|„2Í|2 Ø 1/�, implying

---ÈÂ|U†

0 |„yÕÍ|yÕÍ
---
2

Ø 1/�, (153)

i.e., Bob now applies U†

0 to recover a state with “large” overlap with initial state |ÂÍ.
To next recover s1, define |ÂgoodÍ := U1|ÂÍ and |ÂapproxÍ := U1U†

0 |„yÕÍ|yÕÍ. Bob applies U1 to obtain

|ÂapproxÍ = —1|ÂgoodÍ + —2|Â‹

goodÍ, (154)

where
q

i |—i|2 = 1, ÈÂgood|Â‹

goodÍ = 0, and |—1|2 Ø 1/�. Define �good :=
q

yœ{0,1}
n s.t. f(y)=s1

|yÍÈy|.
Then, the probability that measuring B in the computational basis now yields a valid key for s1 is

ÈÂapprox|�good|ÂapproxÍ Ø |—1|2 Ø 1
� , (155)

where we have used the fact that �good|ÂgoodÍ = |ÂgoodÍ (since an honest receiver can extract s1 with
certainty). We conclude that Bob can extract both s0 and s1 with probability at least 1/�2.
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2008, pp. 1–127. doi: 10.1142/S0219749908003256.

[Unr10] Dominique Unruh. “Universally Composable Quantum Multi-party Computation”. In: EU-
ROCRYPT 2010. Ed. by Henri Gilbert. Vol. 6110. LNCS. Springer, May 2010, pp. 486–505.
doi: 10.1007/978-3-642-13190-5˙25.

[Unr13] Dominique Unruh. “Everlasting Multi-party Computation”. In: CRYPTO 2013, Part II.
Ed. by Ran Canetti and Juan A. Garay. Vol. 8043. LNCS. Springer, Aug. 2013, pp. 380–397.
doi: 10.1007/978-3-642-40084-1˙22.

[Unr14] Dominique Unruh. “Revocable Quantum Timed-Release Encryption”. In: EUROCRYPT 2014.
Ed. by Phong Q. Nguyen and Elisabeth Oswald. Vol. 8441. LNCS. Springer, May 2014,
pp. 129–146. doi: 10.1007/978-3-642-55220-5˙8.

[Wat11] John Watrous. Lecture 7: Semidefinite programming. Latest version available at: https:
//cs.uwaterloo.ca/˜watrous/TQI-notes/. 2011.

[Wie83] Stephen Wiesner. “Conjugate coding”. In: ACM SIGACT News 15.1 (1983). Original article
written circa 1970., pp. 78–88. doi: 10.1145/1008908.1008920.

[Win99] Andreas Winter. “Coding theorem and strong converse for quantum channels”. In: IEEE
Transactions on Information Theory 45 (1999), pp. 2481–2485. doi: 10.1109/18.796385.

[WST08] Stephanie Wehner, Christian Scha�ner, and Barbara M. Terhal. “Cryptography from Noisy
Storage”. In: Physical Review Letters 100.22 (June 2008), p. 220502. doi: 10.1103/Phys-
RevLett.100.220502.

[WW10] Stephanie Wehner and Andreas Winter. “Entropic uncertainty relations—a survey”. In: New
J. Phys. 12.2 (2010), p. 025009. issn: 1367-2630. doi: 10.1088/1367-2630/12/2/025009.

[WZ82] William K. Wootters and Wojciech H. Zurek. “A single quantum cannot be cloned”. In:
Nature 299.5886 (1982), pp. 802–803. doi: 10.1038/299802a0.

[Yao82] Andrew Chi-Chih Yao. “Theory and Applications of Trapdoor Functions”. In: 23rd FOCS.
IEEE Computer Society Press, Nov. 1982, pp. 80–91. doi: 10.1109/SFCS.1982.45.

36

https://doi.org/10.1073/pnas.1203552109
https://doi.org/10.1007/978-3-540-85174-5_15
https://doi.org/10.1145/1007352.1007394
https://doi.org/10.1109/SECPRI.2001.924298
https://doi.org/10.1103/PhysRevLett.123.210502
https://doi.org/10.1103/PhysRevLett.123.210502
https://doi.org/10.1142/S0219749908003256
https://doi.org/10.1007/978-3-642-13190-5_25
https://doi.org/10.1007/978-3-642-40084-1_22
https://doi.org/10.1007/978-3-642-55220-5_8
https://cs.uwaterloo.ca/~watrous/TQI-notes/
https://cs.uwaterloo.ca/~watrous/TQI-notes/
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1109/18.796385
https://doi.org/10.1103/PhysRevLett.100.220502
https://doi.org/10.1103/PhysRevLett.100.220502
https://doi.org/10.1088/1367-2630/12/2/025009
https://doi.org/10.1038/299802a0
https://doi.org/10.1109/SFCS.1982.45

	1 Introduction
	2 Preliminaries
	2.1 The Gutoski-Watrous framework for quantum games

	3 Feasibility of Quantum OTMs using Stateless Hardware
	3.1 Construction
	3.2 Stand-Alone Security Against a Malicious Sender
	3.3 UC-Security against a corrupt receiver
	3.3.1 The simulator
	3.3.2 Analysis

	3.4 Security analysis for the token: Intuition

	4 Impossibility Results
	4.1 Impossibility: Tokens which can be queried in superposition
	4.2 Impossibility: Tokens with a bounded number of keys

	A Universal Composition (UC) Framework
	A.1 Classical UC Model (FOCS:Canetti01)
	A.2 Quantum UC Model (EC:Unruh10)

	B Stand-Alone Security in the case of a Malicious Sender
	C Security Analysis for the Token
	C.1 Security against a linear number of token queries: Primal SDP

	D Simplifying the Gutoski-Watrous SDP and its dual
	D.1 Streamlining the primal and dual
	D.2 An approximately optimal dual solution?

	E Proof of Lemma 4.3

