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PHARMACOKINETIC MODELS FOR
ACTIVE LEARNING OF

DIFFERENTIAL EQUATIONS

Abstract: We present adaptable activities for models of drug movement
in the human body – pharmacokinetics – that motivate the learning of or-
dinary differential equations with an interdisciplinary topic. Specifically, we
model aspirin, caffeine, and digoxin. We discuss the pedagogy of guiding stu-
dents to understand, develop, and analyze models, progressing in complexity
to a system of differential equations. We investigate the effects of parameter
values that distinguish various health levels, and dosing that may have toxic
effects. Our assignments include modeling in a student centered, active, and
increasingly inquiry-oriented setting through which the mathematics and bi-
ology inform and reinforce each other. We include supplemental information
regarding inquiry methods, student learning outcomes, a student’s commen-
tary about our activities, and support through mathematical communities
such as POGIL and SIMIODE.

Keywords: differential equations, mathematical modeling, SIMIODE,
pharmacokinetics, drug models, real-world context, active learning, inquiry-
based learning, POGIL

1 OVERVIEW AND RATIONALE

We discuss a sequence of three scaffolded assignments that guide stu-
dents to a modeling-first approach to learning differential equations with
an increasing level of inquiry-learning and mathematical complexity.
All activities engage students in an interplay between mathematics and
pharmacokinetics, “the science of the kinetics of drug absorption, distri-
bution, and elimination (ie[sic], metabolism and excretion)” [22, p. 4].
A different drug is used in each model: AspirinTM, caffeine, and digoxin.
The familiarity of most students with the first two drugs enables them
to draw from previous experience and understanding. Digoxin is derived
from foxglove, or digitalis plants, and is commonly used to treat heart
failure, but can have toxic effects [7]. This drug allows for richer analy-
ses and interconnections with a system of ordinary differential equations
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that represents the concentrations of drugs in two theoretical compart-
ments of the body for two sets of parameter values, one of which is for an
individual with less functional kidneys. We investigate the toxic levels
for such a patient.

These models are appropriate for a course in elementary differential
equations or in a calculus-based modeling course. The first two models
involve accessible differential equations; these and portions of the third
model could be implemented in a first-semester calculus course.

Our modules offer active pedagogy that can be effective for both
students and faculty. In this paper, we offer some portions of our as-
signments, mixed with direct discussion of other portions of the models
and analyses. We present the primary modeling portions of the student
worksheet for the first drug model on bodily absorption of AspirinTM.
We describe the second drug model on bodily elimination of caffeine,
and discuss balancing mathematical content with the pharamacokinetic
content. For digoxin, we state some analysis and provide some portions
of the student activities. We use labels such as “Activity D3.2” for the
second activity for the third drug.

Our class modules are designed in a manner that weaves SIMIODE
and POGIL. SIMIODE, or “Systemic Initiative for Modeling Investiga-
tions and Opportunities with Differential Equations” [27], focuses on a
modeling-first approach to differential equations, and has a wealth of
modeling scenarioss. Process-oriented guided inquiry-learning [17], or
POGIL, provides a structure for crafting and implementing materials to
facilitate active learning, although the content can be reframed in other
styles. For more about the POGIL style, including important metacog-
nitive student activities, see [2] and our appendices. We include specific
student learning outcomes and metacognitive assessment, a student’s
commentary about the activities and the pedagogy, and we relate to
multiple mathematical communities and professional organizations.

Our focus in learning differential equations in these activities is on the
meaning and formulation of models involving differential equations, the
interplay with another discipline, and the development of understanding
of how parameters may affect the solution to a given system. Within
these activities, we address the process of solving differential equations
through the use of technology. In other activities in our differential
equations course, students learn some solution techniques for differential
equations.

Each instructor must modify activities to her or his style of teaching.
“[T]here is a spectrum of [active learning] methods, techniques, and
environments in which students can be effectively engaged in the process
of learning. Through identification of a wide array of such techniques,
mathematics faculty and departments can select those that best fit their
needs and that can be adapted for their local context” [5]. Some possible
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modifications include a focus on other aspects of differential equations,
a greater focus on biology, or inclusion of data from which students can
determine parameter values. We indicate several variations throughout
our discussion.

In working through all three modules, our students engage in devel-
oping communication skills and transferring their mathematical skills
into vocabulary from a discipline that was unfamiliar – pharmacokinet-
ics.

2 ASPIRIN ABSORPTION

2.1 Student Module

Activity D1.1: First Thoughts on Modeling Drug Absorption
(D1.1.1) Typically when a drug is administered to an individual, the
amount of the drug in mg, A(t), in the body changes over time in min-
utes. Write an equation that corresponds to a constant release of the
drug from a tablet into the body over time. dA

dt =
(D1.1.2) Identify the following for your equation, or write “none”: inde-
pendent variable(s); dependent variable(s); constant(s); parameter(s).
(D1.1.3) For a drug that is released into the body at a constant rate,
would you expect the amount of drug in the body to increase, stay the
same, or decrease with time, at least for a while? What value would you
expect for the initial amount of drug in the body?
Activity D1.2: A General Model
(D1.2.1) One general model of drug amount is given by Eqn D1.1 : dA

dt =

k. Use your mathematical background: dA
dt represents the

of the amount of drug in the body over time, in units of .
(D1.2.2) Eqn D1.1 is referred to as a zero-order reaction in pharmacoki-
netics [22]. Classify this equation using mathematical terms. Determine
a general solution.
Activity D1.3: ASA Model and Specific ASA Situation. ASA
stands for acetylsalicylic acid, which can be used to treat pain and some
other conditions. It is the primary ingredient in Bayer®AspirinTM.
A patient swallows a tablet that contains 325 mg of ASA. A specific
model of drug amount in this case is given in [22], Eqn D1.2 : A(t) =
0.86t− 0.04.
(D1.3.1) Is this a zero-order reaction?
(D1.3.2) The tablet takes awhile to dissolve. What are the smallest and
largest amounts of ASA in the body? At what times do these occur?
Determine a realistic time interval for Eqn D1.2, and graph the resulting
realistic A(t).
(D1.3.3) Give the differential equation form (like Eqn D1.1) and provide
a realistic initial condition. Create a “phase plane”, which in the context
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of our differential equation, is a graph with A(t) on the horizontal axis
and the rate of change of the drug amount dA

dt on the vertical axis.

2.2 Comments to Our Reader and Variations

The phase planes for this model and for the next, shown in Figure
1, clearly reveal the meaning of, and distinction between, zero-order
and first-order reactions in a single compartment. Differential equations
analysis adds to the description in the pharmacokinetic sources [21,22].
The phase plane for the system in our third model is quite different and
more interesting.

Phase	Planes	
	
	
	
	
	
		

k	

dA/dt	dA/dt	

A	 A	

Zero-Order	
Reac5on	

First-Order	
Elimina5on	

Figure 1. Phase Planes for Zero-Order and First-Order Reactions.

The specific aspirin situation would be more accurately modeled with
a piecewise defined function to account for the time for the tablet to
release medication into the body. We chose to have students discuss the
realistic time interval for which the given model might apply. Another
assignment style could have students derive the model for the specific
situation rather than beginning with a given solution.

Other substances follow zero-order kinetics in a single compartment
model, including blood alcohol; see [22, Ch. 4 Learning Questions]. Al-
cohol can also incorporate different parameters based upon the sex of
the drinker and whether or not food is consumed. The slides from [14]
discuss blood alcohol kinetics without differential equations, and [26] has
information about alcohol using pre-college mathematics.

3 CAFFEINE ELIMINATION, FOR OUR READER

3.1 Basics

The activity to model a single dose of caffeine is parallel to that of
the aspirin activity in structure, but yields a different model. The fo-
cus changes to the concentration of the drug, C(t), as it is eliminated
from the body at a rate that is proportional to the concentration of
the drug in the body; this proportionality indicates a first-order reac-
tion in pharmacokinetics [22]. Students translate the following claim
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into a simplifying assumption and a boundary condition: “Caffeine is
rapidly and almost completely absorbed in humans.” Aspirin and caf-
feine are different, as we assume the amount of caffeine consumed equals
the amount of caffeine in the blood at t=0. Students argue about body
weight being considered constant. However, “[t]he plasma volume in
the healthy state is relatively constant because water lost through the
kidney is rapidly replaced with fluid absorbed from the gastrointestinal
tract.” [22, p. 81] The diuretic effect is negligible. For this and other
information on caffeine, also see [11]. Our students noticed that the
model indicates caffeine is never completely eliminated from the body,
but Aspirin is.

3.2 Deciding on Details

The quote above is an example of a complexity that mathematicians
must deal with in pharmacokinetics or other applied areas. We must de-
cide how much detail of the “other” discipline to include. Concentration
is usually defined as mass per unit volume. In a pharmacokinetic model,
the “apparent volume of distribution” represents the “space” that the
drug occupies in the body. Is this concept, incredibly important for a
pharmacy student, a distraction for the mathematics student – or fac-
ulty – who is already delving into vocabulary in another field? “Volume
of distribution is a direct measure of the extent of distribution. It rarely,
however, corresponds to a real volume. ... Drugs distribute to various
tissues and fluids in the body. Furthermore, binding to tissue compo-
nents may be so great that the volume of distribution is many times the
total body size.” [21] Generally, this volume is equivalently described as
a percent of body weight. “[C]affeine binds reversibly to plasma pro-
teins, and protein-bound caffeine accounts for about 10 to 30 percent
of the total plasma pool.” [12] Plasma generally accounts for 4.5% of a
person’s body weight. [22, p. 80] “The distribution volume [of caffeine]
within the body is 0.7 L/kg [of body weight]” [12]. From these, we could
express drug concentration in terms of mg/L and convert using a per-
son’s weight and volume of plasma. Instead, we can use mg of substance
per kg of body weight as an equivalent and often more convenient way
to represent concentration. In our implementations, we reveal the detail
for caffeine to the student as an aside, and we use known parameter
values without explanation for the volumes of distribution needed in the
digoxin module. Now, let’s return to the caffeine model.

3.3 Specifics, Half-Life, and Variations

Caffeine is a drug that can be used to enhance safety and performance
in military situations, among other uses. Consider the following specific
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situation for caffeine [12]: A healthy adult male soldier is administered
a form of caffeine that is estimated to yield an initial concentration of 4
mg/(kg BW), meaning four milligrams of caffeine per kilogram of body
weight.
Students state the initial first-order reaction model for the specific situ-
ation, as much as possible, including initial conditions, graph the phase
plane, and state a solution. Additional information allows the student
to solve for the model parameter. The half-life of a drug, t1/2, is the
time it takes for one half of the amount of the drug to be eliminated.
A reasonable half life for caffeine for the specific caffeine situation is 3.0
hours. “[T]he average half-life of caffeine in the blood of adult men given
280 mg (4 mg/kg BW) is between 2.5 and 4.5 hours...” [12] Few of our
mathematics students have encountered a half-life outside of the more
usual radioactive decay examples.

Students write the initial value problem: dC
dt = −k C(t), C(0) = C0.

Students can plot solutions for multiple values of the half-life to examine
the sensitivity of the model to a parameter value. Here, they consider
the amount by which the solution changes with a small change in the
half-life.

For a non-military application, we might consider a truck driver in-
stead of a soldier, or a student studying for an exam, though without
seeming to promote caffeine dosing. Students can engage in compar-
ing caffeine content in popular drinks and snacks, or in some over-the-
counter drugs, using a chart like [3]. (Some faculty might be sensitive to
students who avoid stimulants for personal or religious reasons.) Which
beverage has the most? and what is meant by that? This highlights
the difference between amount of drug, as with the Aspirin activity,
and concentration. For instance, 2 ounces of Starbucks®Espresso has
150 mg caffeine and 20 ounces of Dunkin’ Donuts®Coffee with Turbo
Shot has 398 mg. A creative alternative assignment could have the stu-
dents outline computations for a mobile app to track caffeine usage, as
with Caffeine ZoneTM [19, 20]. The focus could be monitoring caffeine
for healthy levels and could raise awareness of adverse affects, such as
interruption of sleep cycles, with overuse of caffeine. Here, one must
include the body weight of the subject, though we would avoid having
the student reveal his or her own weight.

Other substances can be used in the activities. See [22, Ch. 4 Learn-
ing Questions] for antibiotics that follow first-order kinetics in a single
compartment model.
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4 DIGOXIN

4.1 Comments to Our Reader

The last activity set that we present has a more interesting model and
analyses because this drug behaves differently in parts of the body,
though we can still model some parts together for simplification. For
digoxin, we consider first-order kinetics in two compartments, imple-
mented from [22]. We later remark that the drug levels here are high
and even toxic, given recent considerations in [7]. In the following sub-
sections, we show a mix of some student tasks interspersed with answers,
as well as analyses for our readers without the student tasks explicitly
stated.

4.2 Student Tasks with Answers

In our previous models, the entire human body was treated as a single
unit through which the drug moved. Sometimes, it is useful to think
of how drugs distribute in different parts of the body, though we still
simplify by combining some. Two main compartments of interest are the
“tissue compartment” (like fat and muscle where proteins might bind to
the drug), and the “plasma compartment.”
Activity D3.1: Modeling Drug Transfer and Elimination
(D3.1.1) Draw a diagram with two rectangles, each labeled to represent
the drug concentration in the theoretical compartments. Include arrows
on the diagram, and label each with an appropriate rate constant to
indicate first-order drug reactions (that is, in which the transfers of the
drug occur at rates proportional to the concentration) as follows. *From
the plasma compartment, the drug can move out of the body entirely,
with proportionality constant k10, and *the drug can move into the
tissue compartment, with proportionality constant k12. *From the tissue
compartment, the drug can move back into the plasma compartment
with proportionality constant k21.
Answer: See Figure 2.

(D3.1.2) Write a system of differential equations relating the rates of
change of the concentrations of the drug in the plasma, Cp, and in the
tissues, Ct. Keep in mind all constants are positive.

dCp

dt
= ( )Cp + ( )Ct

dCt

dt
=

(1)
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Figure 2. Diagram for Digoxin.

Answer:

dCp

dt
= −(k12 + k10) Cp(t) + k21 Ct(t)

dCt

dt
= k21 Cp(t)− k12 Ct(t)

(2)

Activity D3.2: Types of Patients and Model Parameter Values
The way a drug interacts with the body is highly affected by certain
health conditions. Kidneys are responsible for a great deal of drug elim-
ination, so a person with renal failure has a lower rate of overall elimi-
nation. A person without conditions that require special consideration
has “normal parameters” and a person with reduced kidney function has
“renal failure parameters.” A great deal of research that is beyond the
scope of our assignments is needed to properly treat different patients,
so we use published results. According to [22], Table 1 gives some phar-
macokinetic parameters of digoxin, a drug used to treat congestive heart
failure. Here, h−1 means “per hour” and “per kg” means “per kg of
body weight.”

Parameter Unit Set A Set B
k10 h−1 0.04 0.18
k12 h−1 0.45 1.02
k21 h−1 0.11 0.15
Vp per kg L/kg 0.73 0.78

Table 1. Parameter Sets of Digoxin for Subjects with Different Renal Func-

tions.

Which set of parameters, A or B, in Table 1 should be used to treat
a patient with renal failure? Explain, and briefly mention specific pa-
rameters.
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Answer: Parameter set A is for a patient with reduced renal function.
Someone with less functional kidneys would experience a slower rate k10
of elimination of the drug from the body.

Activity D3.3: A Specific Model
Consider the following pharmacokinetic model for a specific patient.

dCp

dt
= −1.20 Cp(t) + 0.15 Ct(t)

dCt

dt
= 1.02 Cp(t)− 0.15 Ct(t)

(3)

(D3.3.1) Determine the values for the parameters k10, k12, k21 in (3) to
represent a two compartment model as in Activity 1 for digoxin.
Answer: This represents parameter set B for the subject with functional
kidneys.
(D3.3.2) The concentration of the drug in each of the two compartments
depends upon time, and they are interdependent upon each other. Find
an expression for dCt

dCp
, and interpret this as a rate of change. We will

visualize this on the phase plane in the next task.

Answer:
−(k12+k10) Cp(t)+k21 Ct(t)

k21 Cp(t)−k12 Ct(t)
=
−1.20 Cp+0.15 Ct

1.02 Cp−0.15 Ct
represents the rate

of change of the concentration of digoxin in the tissues as a function of
the concentration in the plasma compartment.
(D3.3.3) A drug administered intravenously as a “bolus dose”, meaning
over a short period of time, distributes so quickly throughout the plasma
that it is modeled as being instantaneous. The “volume of the plasma
compartment” is Vp and is considered to be constant for the time interval
of interest. The initial amount of the drug given in the intraveneous
bolus dose is D0. Recall that a concentration can be expressed as an
amount per unit volume. State initial conditions in general. State the
conditions specifically for (3) to treat a 70-kg patient with an initial dose
of 3.6 micrograms (mcg) of digoxin per kg of body weight.
Answer:

Cp(0) =
D0

Vp
= 4.61mcg/L, Ct(0) = 0. (4)

4.3 Analysis for Our Reader for Activity D3.4

Here, we replace the student instructions with some of the resulting
analysis through which the students are guided. Note the great in-
terplay between equations, graphics, mathematical interpretations, and
pharmacokinetics.

The Cp-nullcline is Ct = (k12 + k10)/k21Cp, and the Ct-nullcline is
Ct = k12/k21Cp. Digoxin has a net transfer out of the plasma compart-
ment when C ′p(t) < 0 ⇔ Ct < (k12 + k10)/k21Cp; we never cross the
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Cp-nullcline for our parameter sets. Drug is transferring into the tissue
compartment when the ratio of tissue concentration to plasma concen-
tration, Ct/Cp, exceeds the ratio k21/k12, which is the rate at which drug
transfers from the tissue compartment to the plasma compartment, di-
vided by the rate at which drug transfers from the plasma compartment
to the tissue compartment. Note that one could lead with this sort of
description to have students develop the differential equation model in
(1), as an alternative to using the diagram approach.

0 1 2 3 4 5

0

1

2

3

4

5

Cp

C
t

0.2 0.3 0.4 0.5 0.6

3.0

3.1

3.2

3.3

3.4

Cp

C
t

Cp nullcline

Ct nullcline

Figure 3. Normal Parameters: Phase Portrait (left), Focus on Maximal

Tissue Concentration (right).

Figure 3 shows the phase portrait for the specific digoxin situation in
(3, 4) with dCt

dt ploted against
dCp

dt . On the left graph, we see unscaled

vectors of dCt

dCp
in a direction field, nullclines differentiated as dashed and

dot-dashed, a point to mark the initial value, and a solution curve as
a parametric function {Cp(t), Ct(t)}. Because the concentration in the
plasma is always decreasing, we move on the parametric curve from right
to left as time increases. More specifically, our solution begins on the
lower right of the phase portraits, progresses up and to the left until
the time of maximum tissue concentration, and then the curve shifts
down. The slopes of the Cp-nullcline, Ct = 8.0Cp, and the Ct-nullcline,
Ct = 6.8Cp, are visualized in Figure 3.

On the right graph in Figure 3, we see a zoomed-in version that
helps distinguish the nullclines, with a point to mark the maximal tissue
concentration. The scaled direction vectors on the right graph indi-
cate where the rate of change of tissue concentration with respect to
plasma concentration is greater. The solution curve appears smooth on
the zoomed-in graph, even though the turn appears quite sharp on the
zoomed-out graph; dCt

dCp
is well-defined.

The highest point on the trajectory in each view indicates the max-
imum tissue concentration. This occurs when the rate of change of the
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tissue concentration is zero, i.e., where the parametric curve crosses the
Ct-nullcline. This transition separates the distribution phase, with a
rapid decline of drug from the plasma compartment and a rapid in-
crease into the tissue compartment, from the elimination phase with a
slower decline from the plasma compartment. The nullclines divide the
phase portrait into regions; vectors are similar within a region but differ
across regions. For instance, vectors point down and to the left between
the two nullclines in Figure 3, as both plasma concentration and tissue
concentration decrease, corresponding to negative values of

dCp

dt and dCt

dt
in the elimination phase.

The system is mathematically tractable for solution via an eigensys-
tem, decoupling, or Laplace Transforms. Our students practice solution
techniques in other assignments and use a computer algebra system in
this activity to allow them to focus on the pharmacokinetic content. Our
students will have seen vector fields for systems of differential equations,
but not nullclines.

In the next section, we provide the scaffolded assignment in which
the students develop further analyses.

4.4 Student Tasks with Answers

Activity D3.5: Meaning of the Solutions in Time
(D3.5.1) Solve the initial value problem for our specific digoxin situation
(3, 4). Consider the magnitude of the coefficients within the resulting
exponential functions; let α represent the value with the larger magni-
tude, and β the smaller.
Answers: The digoxin levels are described by (5) with α = −1.3297, β =
−0.02031.

Cp(t) = 4.1582e−1.3297t + 0.4571e−0.02031t

Ct(t) = −3.5953e−1.3297t + 3.5953e−0.02031t
(5)

(D3.5.2) Graph the concentration (also known as the “level”) of drug in
the plasma for 24 hours after the intraveneous bolus dose. The graph
of Cp(t) is called the “drug plasma level-time curve.” Graph the drug
tissue level-time curve on the same set of axes. Describe the behaviors
of the different concentrations in calculus terms. Label the maximum
on the drug tissue level-time curve with a large dot. From the graph,
estimate the time at which maximum tissue concentration occurs, the
maximum value of tissue concentration, and the corresponding concen-
tration in the plasma. Record and label the values with appropriate
units. Indicate the distribution phase and the elimination phase on each
curve and consider the coefficients within the bi-exponential solutions.
Why is the distribution phase also referred to as the alpha phase?
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Figure 4. Drug Level-Time Curves with Normal Parameters.

Answers and comments: Figure 4 shows the drug level-time curves
and points to mark maximal tissue concentration and the correspond-
ing plasma concentration. At first, the drug distributes quickly to the
tissues, so the tissue concentration increases rapidly during the alpha
phase. Tissue concentration has its greatest value of 3.32 mcg/L at t=3.2
hours, with corresponding plasma concentration 0.49 mcg/L. After this
time, the tissue concentration decreases, which marks the elimination
phase. Our students often estimate the maximal tissue concentration
to the left of its accurate placement, perhaps focusing on the greater
curvature. The bi-exponential form of the solutions in (5) corresponds
beautifully to the description of the distribution and elimination phases.
Those who wish to connect more to solution techniques can have the
students discuss the superposition of solutions using the eigenvalues of
this linear system, as well as the stable nature of the isolated critical
point at (0,0) as indicated by the negative values for α and β.

It can be worthwhile to have students reconcile the parametric repre-
sentation of solutions {Cp(t), Cp(t)} in Figure 3 with the nonparametric
representation of solutions in Figure 4.

4.5 Sensitivity to Parameter Values, for Our Reader

Our students repeat the analyses with the other parameter set to see
how the same dose would affect someone who weighs the same, but
whose kidneys do not function as well. Students connect the various
representations of the model: pharmacokinetics, differential equations,
solutions, and graphs. The analyses emphasize the importance of pa-
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rameter values in distinguishing renal functionality and the sensitivity
of a model to parameter values. The activity reinforces understanding
and communication of mathematics and of pharmacokinetics.

Figure 5 shows both solution trajectories; “RF” indicates “renal fail-
ure.” Here, time increases from right to left; time values cannot be
determined from the graph. Figure 6 shows the drug-level curves for
each patient. Here, time increases from left to right.

0 1 2 3 4 5

0

1

2

3

4

Cp

C
t

Normal

RF

Figure 5. Parametric Representation of Sensitivity to Parameters.

Although the dose is the same for each patient, the initial plasma
concentration is higher for the subject with renal failure. The distri-
bution phase for each patient appears on Figure 5 to the right of each
maximal tissue concentration; on Figure 6, this appears to the left of
each maximal tissue concentration. The patient with renal failure ex-
periences a longer time until maximal tissue concentration, as seen in
Figure 6. This is also captured with the smaller distribution rate con-
stant, α = 0.5926 in the analytic solution. In Figure 5, the slopes of
each portion of the solution curve on either side of the maximal tissue
concentration, are apparently greater for the patient with renal failure.
Drug transfers into the tissue compartment when the ratio Ct/Cp, ex-
ceeds k21/k12, which is 0.15 for the subject with unimpaired kidneys and
0.24 in the subject with less functional kidneys. Similar comparisons can
be made regarding the elimination phase. All of the comparisons help
explain the significantly higher tissue concentration for the subject with
renal failure at the end of the first twenty-four hours.
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Figure 6. Drug-Level Curve Representation of Sensitivity to Parameters.

4.6 Additional Considerations for Digoxin

There are many quantities of pharmaceutical interest in drug models,
including rates per minute of various quantities, such as the amount in
mcg of drug eliminated by the body, number of mL of body fluid cleared
of drug, and fraction of drug eliminated [22], to name a few. A third
variable can account for the concentration of drug that is eliminated from
the body, extending the analysis to a 3X3 system of ordinary differential
equations. We could determine the amount of drug per kg body weight
of the subject, or scale the drug amount in any compartment by the
body mass of the individual to obtain the actual amount of the drug in
mcg.

In the healthcare profession, specific values of effective and non-toxic
drug concentrations are of enormous importance and define the therapeu-
tic window. This can be expressed in terms of the drug concentrations,
as in [14]. According to [7], digoxin has a narrow therapeutic range, and
subjects over sixty-five years of age, in particular, can experience po-
tentially fatal toxicity. Currently recommended plasma concentrations
of digoxin are between 0.5 and 1.0 mcg/L to treat congestive heart fail-
ure in the elderly – half the level that was previously recommended [7].
Elderly patients generally have decreased renal function, by as much as
50%, as a result of the aging process. This and other factors make older
patients more sensitive to drug dosing. However, digoxin is so widely
used to manage congestive heart failure, which occurs in about 80% of
the elderly, that it is one of the most frequently prescribed medications
for those over sixty-five.

In our implementation from [22], the plasma concentrations are mostly
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between 2.5 and 4.5 mcg/L – up to 450% of current recommendations.
The initial plasma concentrations in our model for the patient with less
functional kidneys is almost five times the recommended level. This
demonstrates the power of mathematical modeling by virtually investi-
gating a situation that could have toxic effects in reality.

Investigating a wider variety of the parameter values and initial con-
ditions could be a worthy student project. Those who wish to expand
the DE model of digoxin may be interested in the diagram in [7] that
could be treated as a four-compartment model with two additional pa-
rameters, though no parameter values are provided.

5 CONCLUSION

The pharmacokinetic modules we present contribute to the body of ma-
terials and active learning approaches to undergraduate mathematics.
They provide positive, contextualized experiences in modeling and dif-
ferential equations that enhance students’ mathematical and communi-
cation skills in the manner of SIMIODE. The structured style of the
materials, written in the POGIL style, has facilitated student conversa-
tion and has drawn our students to contribute questions and comments
to the group. Some students have been able to contribute ideas from
other disciplines, and the resulting dialogue has been amazingly rich for
the whole group. Our students have definitely been more engaged with
the drug model context, which has been novel to them, than with prob-
lems from the text. Through these modules, students can “get a taste of
what it might be like to work as a mathematician in an interdisciplinary
group,” according to our student who wrote of about her perspective.
See the Appendices for the full student commentary, for student learning
outcomes and self assessment activities, a discussion of inquiry methods,
and for more on SIMIODE, POGIL, and other mathematical communi-
ties.
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A. 1. INQUIRY AND THE POGIL STYLE

Process-oriented guided inquiry-learning [17], or POGIL, provides a struc-
ture for the careful crafting and implementation of materials to facilitate
active learning. Active learning means “classroom practices that engage
students in activities, such as reading, writing, discussion, or problem
solving, that promote higher-order thinking” [5]. There is a wide va-
riety of ideas regarding what constitutes inquiry learning. By inquiry
learning – also known as inquiry-based learning (IBL) or inquiry-oriented
learning – we mean “deep engagement in rich mathematics” in a collab-
orative setting [8] that adheres to the following principles: “generating
student ways of reasoning, building on student contributions, develop-
ing a shared understanding, and connecting to standard mathematical
language and notation” [13]. The latter article gives a great overview
of inquiry-oriented practices, as well as an overview of evidence from
multiple research studies of the efficacy of such practices.

The POGIL structure purposely develops process skills of teamwork,
information processing, critical thinking, oral and written communica-
tion, problem solving, and self-awareness of one’s learning for students
and of one’s teaching for faculty.
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The instructor can observe student learning better, especially in a
larger class, when the students are actively talking to each other in small
groups. Furthermore, “[w]hen students are required to express their
mathematical ideas in their own words, inadequacies can be identified
and addressed” [23]. The instructor facilitates the conversation, when
needed, and answers some questions, often with another question, but
is not directly leading the students or lecturing to them.

Each instructor must modify activities to her or his style of teaching,
and other styles of implementing the modules are appropriate. Indeed,
“there is a spectrum of [active learning] methods, techniques, and en-
vironments in which students can be effectively engaged in the process
of learning. Through identification of a wide array of such techniques,
mathematics faculty and departments can select those that best fit their
needs and that can be adapted for their local context” [5].

The POGIL framework begins with an explicit statement of the ra-
tionale, learning objectives, and student learning outcomes for the ac-
tivity. The activity author can glean wording for the objective and
for student learning outcomes from any source material for the activity
or from other sources that focus on educational content and pedagogy.
The example included in this paper includes wording specific to phar-
macokinetics and differential equations. In addition to those mentioned
elsewhere, our sources include [2], [1], and [15] on active and inquiry
learning, as well as [9] and [16] for general modeling curriculum and as-
sessment information. We also used [22] for the pharmacokinetic-related
objectives.

Finally, students engage in a wrap-up activity that includes a quick
qualitative assessment that we adapted from [25]. For specific data for
the efficacy of POGIL within a Calculus setting, see [2].

In the next section are the non-modeling portions of our assignments
for the students. These are adaptable for the specifics of almost any
topics. We include notes for the faculty and a student perspective.

A. 2. METACOGNITION IN OUR POGIL-LIKE FRAME-
WORK

General Activity Guidelines

(note for faculty: Provide a rationale - engage, motivate or in-
terest students in the activity. Indicate how this activity relates
to concepts that they have learned or will soon be learning. This
can include pre-requisites and specific stylistic instructions.)

Rationale: This activity is designed to enhance your understanding of
several fundamental concepts needed in mathematical modeling and to
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engage you in an interdisciplinary topic. In your answers to questions,
use modeling terms, although you should mix them with general English
sentences.

This activity is designed to be student centered, active, and inquiry-
oriented. You will reflect upon both content skills (what you learn) and
process skills (how you acquire, interpret, and apply knowledge). This
is designed to help you become lifelong learners and prepare you to be
more competitive in a global market.

If appropriate, as you progress through this module, you may wish
to revisit a portion and modify your response. Do not erase previous
efforts, but add to your response. Indicate what you changed and why.

Primary Content Learning Objective

Students will explore some mathematical aspects of molecular biology
dealing with a body’s method of processing various molecules. Specif-
ically, we will consider the pharmacokinetics of zero order processes in
drug absorption.

(note for faculty: Provide information that can be used by stu-
dents and faculty to assess the level of success.)

Student Learning Outcomes
Upon successful completion of the activity, the student should:

• be able to apply mathematical expertise to deal with an interdisci-
plinary topic (content and process)

• have increased their science and technology literacy (content and
process)

• have developed modeling techniques and the mathematics necessary
to model and analyze these situations (content)

• engage in critical thinking by interpreting and processing informa-
tion (process)

• communicate mathematical modeling effectively orally and in writ-
ing (content and process)

• deal with multiple representations of a concept, including verbal/written,
graphical, and symbolic (content and process)

• realize that “mistakes” can be as valuable as an initially correct
answer (process)

Student Wrap-Up

(note for faculty: Part of the POGIL style includes eliciting aware-
ness of one’s learning from the students. This may be unfamiliar
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to quite a few mathematics instructors.

Provide closure with self-assessment and reflection presented in
a meaningful and interesting manner consistent with the learning
objectives.)

Learning Reflection
Part of learning can include a self assessment. A good response indicates
honest evaluation and shows clearly that you have actually read and
thought about the Student Learning Outcomes. Discuss strengths and
areas for improvement. This segment is to provide some closure for you
and to engage you in metacognition, awareness of your own learning.

• Summarize the content objectives of this assignment. Assess how
well you mastered the objectives.

• Do you know more about mathematical modeling, differential equa-
tions, and molecular biology than you did prior to this assignment?
Briefly provide evidence. Indicate any questions regarding the con-
tent or the rationale for the activity that you may have.

• Did you work effectively to this assignment? If so, explain how. If
not, identify what needs to happen to enhance active and positive
participation.

Self-Assessment
For each question, on a scale of 1 for “Strongly Disagree” to 5 for
“Strongly Agree,” indicate your agreement.

• The activity added to my understanding of

– a real-world context for a differential equation

– the derivation of a differential equation model

– initial value or boundary value conditions

• The activity added to my appreciation of applied mathematics and
mathematical modeling

• The model and analysis enhanced my educational experience in this
class

A. 3. IMPLEMENTATION SPECIFICS

The material outlined above was the first in a sequence of three modules
written in this POGIL-like style. Through each, we strove to foster
shared understanding as in [13]. We describe three formats in which we
implemented our materials.

We used two modules that were written with this POGIL framework
in the beginning of a senior modeling course. We had students assume
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specific roles within their group, which is advocated by POGIL. This
aided effective team dynamics with students of different backgrounds.
Not everyone had taken differential equations, but the modules focus on
the modeling aspects and effective communication.

We implemented all three activities in differential equations course
with small groups without pre-defined roles. In the third model, the
groups of students were able to work through the materials primarily
outside of the instructor’s presence, although groups were able to confer
with the instructor when needed.

Student Perspective

One person completed the two preliminary group activities within
the senior modeling course. Immediately after graduation, she
worked through the third module completely on her own. She
had taken an elementary differential equations course that did
not cover systems of differential equations but learned about this
topic through the third module. Here is her reflection on these
experiences.

Working in small groups made the setting intimate and allowed for
ease of suggestions. This open and easy flow of ideas generated potential
approaches, which had us all thinking out loud about the advantages and
disadvantages of strategies. We even included variables that I would
not have considered, and we thought of practical constraints that made
logical sense. With my background being partially in biology, I was
able to contribute to the discussions about the body, caffeine, and the
removal therein. Other members of the group contributed their ideas
which were similarly integral, and sometimes the instructions gave us
wiggle room to decide how detailed we wanted to be. Additionally, we
had multiple different working problems of differential equations for each
scenario. The problem-solving strategy was stressed more than solution
techniques, and through that, we discovered the solutions. I realized
that finding the solutions was much more intuitive than I originally
considered them to be. There was, and always is, a great feeling to
know that the answer is logical and we can get there with reason.

I made a conscious effort to read the instructions carefully because I
did not want to miss anything. I encountered a question for which I was
supposed to refer to my previous answer. I did not realize this at first
and looked at the question for a long time. This experience taught me
to be more careful about determining what the question was asking. I
made sure to write down my thoughts and my thought processes while
working through the problems. This was important to me because the
questions were doing a great job at guiding my thoughts, and I wanted
to document the path the instructions took me on.
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We were all able to bounce around ideas, and we had to explain our
reasoning and thinking to each other. This was an outward manifestation
of the internal process that happens during metacognition, a tool which
has helped me tremendously. I had to think about not only what I was
thinking, but also how I was thinking. Without even knowing it, I was
doing something deeply powerful and impactful, which helped me take
ownership of my identity as a mathematician.

While working on the digoxin problems by myself, I was able to ap-
proach them with a certain level of confidence because of the positive role
that inquiry-based learning and metacognition had previously played
in my mathematics modeling experience with the preliminary models.
Drawing the diagram definitely clarified the generation and progress of
the equations, which made sense because of the context. Although I
did not have the specific solution techniques to unravel the problems
completely on my own, I was able to internalize the fact that there was
a system of differential equations and come to a reasonable conclusion.
Having this reaction is essential in learning mathematics in general, but
I think it can be a powerful tool for learning differential equations. It
allows students to come to the right conclusion via a somewhat intu-
itive path whose steps can be internalized, and this makes the content
relevant.

A. 4. ANSWERING CALLS FOR IMPROVEMENTS

We have presented the framework that we used in three student modules
for enhancing a modeling-first approach to differential equations, as well
as one student’s perspectives about the experiences. Now we share a
faculty perspective and place this work in a broader context.

When working in groups on our assignments, our students conjec-
tured different models or explanations, the merits of which they dis-
cussed in the group. The accessible nature of the differential equations
and questions in the first two activities benefitted the discussion among
students from a variety of backgrounds. Some upper level students found
these tasks challenging, in part because of being more accustomed to
performing computations than engaging in meaningful dialogue about
a topic using mathematics in a specific context. Throughout, students
were actively engaged in connecting to standard notation and language
in mathematics. This experience, aided by the POGIL-like framework,
students came to a shared understanding of the modeling, mathematics,
and the interdisciplinary context.

According to the Conference Board of the Mathematical Sciences
(CBMS), active learning methods “have been shown to strengthen stu-
dent learning and achievement in mathematics, to foster students’ con-
fidence in their ability to do mathematics, and to increase the diversity
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of the mathematical community.” [5] The CBMS report provides a won-
derful overview of such methods, an acknowledgement of the increased
preparation time and overall investment by faculty, and a call for broad
participation in supporting and expanding active learning throughout
all levels of mathematics. The CBMS statement outlines the need for
materials and supporting communities for active learning throughout
mathematics.

We mention some of the communities that have been helpful along
our journey and could support others in their journeys. Multiple con-
tributed paper sessions, workshops, and minicourses have been – and
will be – available venues for faculty development in the summer and at
national meetings by these groups.

A. 5. ENGAGING MATHEMATICAL COMMUNITIES

There are several groups involved with differential equations. The com-
munity “Systemic Initiative for Modeling Investigations and Oppor-
tunities with Differential Equations” (SIMIODE) [27] includes an on-
line, peer-reviewed bank of adaptable materials. A new grant from the
National Science Foundation (NSF) will support additional workshops
and production of materials with a modeling-first approach. SIMIODE
also sponsors a new modeling contest, SCUDEM. The group “Inquiry-
Oriented Differential Equations” (IODE) produced materials for differ-
ential equations [18] through a recent NSF grant that included other
inquiry-oriented mathematics sub-disciplines. The grant enabled on-
line support groups, “Teaching Inquiry-oriented Materials: Establishing
Supports” (TIMES) that tested and discussed materials that are now
available. The Community of Ordinary Differential Equations Educa-
tors CODEE [4] sponsors a peer-reviewed, open access journal. See the
upcoming special issue that considers social justice and environmental
concerns.

Regarding general modeling activities, the Society for Industrial and
Applied Mathematics (SIAM) [24] has a helpful report [16], Guidelines
for Assessment and Instruction in Mathematical Modeling Education
(GAIMME) [9], and a new activity group on Applied Math Education
with planned conferences. Students can also engage in the MCM/ICM
modeling contests [6].

There are several groups involved with active learning in general.
Math Learning By Inquiry [15] (MLI) is the new face of the former
“Legacy of RL Moore Conference” that supported IBL for twenty years.
MLI will work in conjunction with the Academy of Inquiry-Based Learn-
ing (AIBL) [1] and the IBL Special Interest Group of the MAA [10]. As
we said, we adapted the activity style from the POGIL mathematics
group [2].
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Involvement with these communities directly benefited the develop-
ment of our pharmacokinetic materials. The drug model context was
novel and interesting to the students. The structured style of the ma-
terials facilitated student conversation, drawing students to contribute
questions and comments to the group. Some were able to contribute
ideas from other disciplines. The resulting dialogue was amazingly rich.
Students were definitely more engaged than with problems from the text,
and they enhanced their communication skills.

Whether guided or more open, the overarching goal of an inquiry-
oriented, modeling-first approach is expressed in this statement: “[w]hile
specific mathematical skills from a college course may be easily forgot-
ten, the powerful experience of tackling a real world problem can help
students develop a lasting tenacity and confidence such that they are
better equipped to address the ill-defined challenges found outside of
the classroom.” [9] Moreover, in the progressive nature of these three
activities, we see “a structured approach to learning mathematics, lead-
ing students through a succession of ever more challenging problems ...
that force them to build a coherent understanding of mathematical ideas
and concepts.” [15]
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