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It is proposed to use analogs of the forecast mean to generate an

ensemble of perturbations for use in ensemble optimal interpo-

lation (EnOI) or ensemble variational (EnVar) methods. A new

method of constructing analogs using variational autoencoders

(VAEs; a machine learning method) is proposed. The resulting

analog methods using analogs from a catalog (AnEnOI), and

using constructed analogs (cAnEnOI), are tested in the context

of a multiscale Lorenz-‘96 model, with standard EnOI and an

ensemble square root filter for comparison. The use of analogs

from a modestly-sized catalog is shown to improve the perfor-

mance of EnOI, with limited marginal improvements resulting

from increases in the catalog size. The method using constructed

analogs (cAnEnOI) is found to perform as well as a full ensemble

square root filter, and to be robust over a wide range of tuning

parameters.
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1 | INTRODUCTION6

Data assimilation methods are widely used in geophysics for a variety of purposes. Workhorse methods include the Ensemble7

Kalman Filter (EnKF) and its many variants (Evensen, 1994; Houtekamer and Mitchell, 1998; Burgers et al., 1998), and 3D-Var8

and 4D-Var (Talagrand, 2010). Traditional variational methods suffer from the use of a time-independent background covariance,9

Abbreviations: EnKF, Ensemble Kalman Filter; EnOI, Ensemble Optimal Interpolation; ESRF, Ensemble Square Root Filter; VAE, Variational

Autoencoder
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2 IAN GROOMS

whereas the drawbacks of the EnKF include the sometimes high cost of generating ensemble members and less accurate treatment10

of nonlinearity and non-Gaussianity. A variety of hybrids exist between ensemble and variational methods that aim to combine11

the strengths of the different methods (Bannister, 2017). Ensemble optimal interpolation (EnOI; Oke et al., 2002; Evensen, 2003)12

is in some sense a less expensive and less accurate version of the EnKF. It uses a time-independent background covariance13

that is generated from a time-independent ensemble of perturbations. In EnOI a single model simulation is required for each14

assimilation cycle to propagate the mean state. EnOI uses a gain matrix to compute the increment between the forecast and15

analysis means.16

The ensemble of perturbations used in EnOI usually comes from a catalog of model states from a long-running simulation.17

Since the ensemble of perturbations used in EnOI is static, EnOI suffers from the same drawbacks as early implementations18

of variational methods, but has the benefit that only a single forecast is required for each assimilation cycle. The goal of this19

investigation is to explore a way of improving the performance of EnOI by generating a time-dependent ensemble of perturbations20

from a large catalog. The premise is that an ensemble of model states chosen as a subset from the catalog that are similar to the21

current forecast will produce an ensemble of perturbations that is more appropriate for use in EnOI than an ensemble that is22

representative of the climatology of the model. Ensemble perturbations drawn from the climatology represent the correlations in23

the climatology, which can be a poor proxy for correlations in the forecast error. Analog ensemble perturbations come from the24

part of the dynamical system’s attractor (or pullback attractor for non-autonomous systems) that is close to the actual forecast,25

and therefore represent correlations on a specific part of the model attractor rather than over the whole climatology. As a result26

they are expected to provide a more realistic representation of forecast error, since the forecast error distribution should be27

expected to cover a neighborhood of the attractor close to the forecast mean.28

Model states that are similar to the current forecast are called ‘analogs’ (Lorenz, 1969) and have a long history in weather29

forecasting and forecast downscaling (Delle Monache et al., 2013; Eckel and Delle Monache, 2016; Zhao and Giannakis, 2016).30

Van den Dool (1994) considered finding analogs from a large historical catalog of model states, and showed that to make31

an effective analog global weather forecast would require an impossibly large catalog - on the order of 1030 years of data.32

Nevertheless, in the current setting one may still expect some degree of success with analogs drawn from a practically-sized33

catalog since the analogs are not being used for forecasting, but only to improve the background covariance within the data34

assimilation framework.35

One way of avoiding the impossibly large size requirements of a catalog for analog forecasting is to use a reasonably-sized36

catalog to construct analogs, and there are many ways of doing this (Van den Dool et al., 2003; Hidalgo et al., 2008; Maurer37

et al., 2010; Abatzoglou and Brown, 2012; Tippett and DelSole, 2013; Pierce et al., 2014). This investigation explores a new way38

of constructing analogs using variational autoencoders (Kingma and Welling, 2019). A standard autoencoder consists of two39

functions: an encoder e(x) that maps the model state x ∈ Ò
d to a latent space z ∈ Ò

l where l � d , and a decoder d(z) that40

maps a vector in the latent space to a model state. Both e and d are usually specified as deep artificial neural networks. Given a41

catalog of model states {xi }Ni=1, the parameters of e and d are chosen to minimize42

∑

i

‖xi − d(e(xi )) ‖22

or some similar loss function. A standard autoencoder does not impose any particular structure on the latent space. For example,43

a sufficiently powerful autoencoder might simply learn the map i = e(xi ), d(i ) = xi . As a result, standard autoencoders are44

not always useful as generative models: If zi = e(xi ), then d(zi + ε) need not be very similar to xi for small ε. Variational45

autoencoders attempt to impose structure in the latent space; specifically, they aim to choose the parameters of e and d so46

that the structure of the data in latent space is approximately Gaussian. This is accomplished by two devices. First, the latent47

space is divided in two so that e(x) = (µ,σ) where µ,σ ∈ Ò
l . Then, a latent space vector is constructed as z = µ + σ ◦ ε48

where ε is a standard normal Gaussian random vector and ◦ denotes the elementwise product (also known as Hadamard product,49
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or Schur product). Second, the loss function is altered by the addition of a term that penalizes deviations of the latent space50

distribution from a standard normal. (For details on the form of this additional penalty term see Kingma and Welling (2019).)51

This investigation uses a variational autoencoder (VAE) to generate analogs that are then used to construct the ensemble of52

perturbations for use in data assimilation.53

Data assimilation algorithms using analogs have been proposed in the context of geophysical data assimilation by Lguensat54

et al. (2017, 2019). Two key differences between this approach and the current approach are (i) the current approach relies on a55

model simulation to make the forecast, whereas in Lguensat et al. (2017, 2019) the dynamics are data-driven in a manner similar56

to analog forecasting, and (ii) the current approach investigates the use of VAEs to construct analogs. The data-driven approach57

of Lguensat et al. (2017, 2019) is expected to be clearly superior in cases where there is no reliable dynamical model for the58

system in question, or where such a model would be prohibitively expensive.59

The investigation is carried out in the context of a multiscale Lorenz-‘96 model, which is described in section 2. The60

configuration and training of the VAE is described in section 3. The data assimilation system setup is described in section 4, and61

the results of data assimilation experiments are described in section 5. Conclusions are offered in section 6.62

2 | MULTISCALE LORENZ-‘96 MODEL CONFIGURATION63

Many data assimilation methods have been initially explored in the context of the Lorenz-’96 model (Lorenz, 1996, 2006). Higher64

dimensionality can be obtained in this model by simply retaining the model form while increasing the dimension; alternatively65

there is a two-scale version also described by Lorenz (1996). This latter two-scale model has two sets of variables, K variables66

Xi describing the large, slow scales and JK variablesYj describing the small, fast scales. Grooms and Lee (2015) introduced67

a multiscale Lorenz-‘96 model with a single set of variables xi with distinct large-scale and small-scale parts. The model is68

governed by the following system of ordinary differential equations69

Ûx = hNS (x) + JTTNL (Tx) − x + F 1 (1)

where the state vector x has length JK with K = 41, where h, F ∈ Ò, J ∈ Î, 1 is a vector of ones, and the nonlinearities have

the form

(NS (x))i = −xi+1(xi+2 − xi−1) (2)

(NL (X))k = −Xk−1(Xk−2 − Xk+1). (3)

The experiments presented here use h = 0.5 and F = 8. The matrix T projects onto the 41 largest-scale discrete Fourier modes70

and then evaluates that projection at 41 equally-spaced points. The vector X = Tx has length K = 41. The matrix JTT spectrally71

interpolates a vector of length 41 back to the full dimension of x, so that for example JTT Tx is the large-scale part of x. The72

number of state variables in x is 41J ; here J = 64 for a total system dimension of 2624. In the definition of the nonlinear terms73

the indices are assumed to extend periodically, as in the Lorenz-‘96 model.74

The large-scale part of the model dynamics, which can be extracted by applying T to x, is identical to the dynamics of the75

standard Lorenz-‘96 model, except that the large scales are coupled to small scales via the term hTNS (x). While the Lorenz-‘9676

model is often configured with K = 40 large-scale variables (e.g. Lorenz and Emanuel, 1998), this multiscale model uses 4177

variables so that the real and imaginary parts of the 20th Fourier mode are not split between large and small scales. At small78

scales, the dynamics are the same as those of original Lorenz-‘96 model but with the direction of indexing reversed, and with79

coupling to the large scales. Coupling to the large scales drives small-scale instabilities, which then grow and cause feedback80
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F I G U R E 1 A simulation of the multiscale Lorenz-‘96 model initialized at t = 0 with a sample from a standard normal

distribution.

onto the large-scale flow. Figure 1 shows the result of a simulation of this model initialized at t = 0 with a sample from a81

standard normal distribution. After a short transient the dynamics settle onto an attractor, with large-scale nonlinear waves82

propagating eastward and small-scale instabilities transiently excited by the large-scale waves. All simulations are performed83

using an adaptive fourth-order Runge-Kutta with relative error tolerance 10
−3 and absolute error tolerance 10

−6. This model has84

recently been used to study hybrid particle/ensemble Kalman filter performance (Robinson and Grooms, 2020).85

3 | VARIATIONAL AUTOENCODER86

Variational autoencoders (VAEs) were described generally in the introduction; the architecture of the VAE used here is described87

in this section. Higham and Higham (2019) provide an introduction to machine learning with artificial neural networks and the88

associated terminology. The architecture of the autoencoder is summarized in Fig. 2. The encoder e(x) is constructed as follows:89

1. A convolutional layer with three filters of size 3 × 190

2. A convolutional layer with nine filters of size 3 × 191

3. A convolutional layer with 27 filters of size 3 × 192

4. A max pooling layer with 2 × 1 pool size93

5. Two convolutional layers with 27 filters each of size 3 × 194

6. A max pooling layer with 2 × 1 pool size95

7. Two convolutional layers with 27 filters each of size 3 × 196

8. A max pooling layer with 2 × 1 pool size97
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F I G U R E 2 Architecture of the variational autoencoder. The leftmost vertical line indicates the data x. The blue rectangles

in the left half indicate convolutional layers, and the blue rectangles in the right half indicate transposed convolutional layers.

The yellow rectangles in the middle indicate fully-connected layers. The green oval indicates the random noise ε. The rightmost

vertical line indicates the output. Labels at the top of each layer indicate the size of the layer.
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9. A fully connected layer with two outputs, each of size 492.98

The decoder d(z) is constructed as follows:99

1. A fully connected layer whose output is reshaped to 27 channels, each of size 656.100

2. A transposed convolutional layer with 27 filters of size 3 × 1 and stride of 2101

3. A convolutional layer with 27 filters of size 3 × 1 and stride of 1102

4. A transposed convolutional layer with nine filters of size 3 × 1 and stride of 2103

5. A convolutional layer with nine filters of size 3 × 1 and stride of 1104

6. A convolutional layer with one filter of size 3 × 1 and a stride of 1.105

The convolutional layers, transposed convolutional layers, and fully connected layers all use the exponential linear unit106

activation function, with the form107

eLU(s) =
{

s s ≥ 0

es − 1 s < 0
(4)

The eLU function has a continuous first derivative, which implies that the the decoder also has a continuous first derivative, since108

it is a composition of continuously-differentiable functions. By contrast, the use of max pooling layers in the encoder implies109

that the encoder is continuous, but its first derivative is only piecewise continuous.110

The VAE architecture used here has a latent space dimension approximately five times smaller than the state dimension,111

which is not a significant reduction. However, it is important to note that the point of the VAE in this application is not to reduce112

the dimension, but to act as a generative model. In fact, the dimension reduction (in this application) serves only to keep the113

number of parameters manageable: a deep network of fully-connected layers with a latent space the same size as the state space114

would probably perform far better than the dimension-reducing convolutional VAE used here, but would be orders of magnitude115

more difficult to train, both in terms of data requirements and in terms of computational cost.116

The data used to train the VAE consists of 70,000 snapshots of the state of the multiscale Lorenz-‘96 model described117

in the previous section. These snapshots are generated by initializing the model from a standard normal, then running the118

simulation until it reaches a statistical equilibrium, then taking data every 1 time unit, which corresponds to 5 days in the119

standard dimensionalization of the Lorenz-‘96 model. Using training data from the model’s attractor means that the variational120

autoencoder is attempting to learn a map that transforms the stationary invariant measure on the system attractor to a Gaussian121

distribution in latent space. The model is trained (i.e. the parameters of e and d are estimated) using stochastic gradient descent.122

The batch size is 3500 snapshots, and the optimization was trained for 272 epochs, at which point the objective function had123

saturated. The relatively large batch size and number of epochs are enabled by the small size of the problem and the relative124

simplicity of the VAE architecture. In more realistic applications than the multiscale Lorenz-‘96 model it would be of interest to125

explore multiple architectures and training regimes to investigate whether the VAE strikes a balance between being sufficiently126

expressive and being simple enough to train with limited data. For the purpose here of demonstrating the proof of concept127

in a simple model, a single architecture suffices. Training machine learning methods to generate synthetic realizations of128

three-dimensional turbulent flows is an active area of research (e.g. Mohan et al., 2019; Rodriguez et al., 2020).129

Figure 3 shows the energy spectrum from a test data set consisting of 10,000 snapshots. A dashed black line at wavenumber130

k = 20 marks the dividing line between large and small scales. A solid black line at k = 328 marks the Nyquist wavenumber of131

the observing system; the bump in energy to the right of k = 328 results from a small-scale instability, and is not resolvable by132

the observing system. The trained VAE is used to reconstruct the test data, and Fig. 3 shows both the energy spectrum of the133
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F I G U R E 3 Energy spectra from (i) the test data, (ii) the test data reconstructed using the VAE, and (iii) the reconstruction

error. The dashed black line is at wavenumber k = 20, which is the dividing line between large and small scales. The solid black

line is at wavenumber k = 328, which is the Nyquist wavenumber of the observing system.

reconstructed data and the spectrum of the reconstruction error. The reconstruction does an excellent job at large scales. The peak134

of the energy spectrum at small scales is captured reasonably well by the VAE, but the other aspects of the small scales generally135

have too little energy. In the application to data assimilation the VAE is used to generate a synthetic forecast ensemble. These136

results on reconstruction accuracy suggest that the forecast error covariance associated with the synthetic forecast ensemble137

will generally have unrealistically small variance at small scales, as well as at scales intermediate between the main small-scale138

instability and the large scales at k ≤ 20.139

4 | DATA ASSIMILATION: METHODS140

The observations are taken at every fourth point in space and at every 0.2 time units (which corresponds to 1 day in the standard141

dimensionalization of the Lorenz-‘96 model). At every assimilation cycle there are effectively 16 observations for each of the 41142

large-scale Lorenz-‘96 modes. The observation errors are Gaussian with zero mean and variance 1/2. Experiments with the143

IEnKF in a similar model suggest that nonlinearity begins to assert itself over an observation window of this length (Bocquet and144

Sakov, 2012; Sakov et al., 2012; Bocquet, 2016).145

Each of the various data assimilation methods described below has several tunable parameters, e.g. localization radius and146

inflation factor. To optimize the performance of each method, a range of parameters is explored. For each parameter combination147

that is tested, at least 8 experiments are run. For each experiment a reference simulation is initialized from standard normal noise148

and run for 9 time units, by which time it has reached a statistical equilibrium. Observations are taken starting at time t = 9,149

every 0.2 time units (1 day) for 73 time units (one year), which corresponds to 365 assimilation cycles. This time window is150

somewhat longer than the standard 0.05 time units for the Lorenz-96 model; the density of the observing system means that the151

large-scale part of the field is very well observed, and the uncertainty in the forecast does not grow much over a forecast of length152

0.05. The longer window of 0.2 time units is used here because it results in a more difficult test, enhancing the performance153
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disparity between the methods. The first 73 assimilation cycles of each experiment are considered a burn-in period, and are154

discarded when computing performance statistics. Once optimal parameters are found, eight longer experiments are run, each155

having 1,000 assimilation cycles, to verify that the performance does not change over a longer time window; the results of the156

longer experiments are in every case not statistically-significantly different from the shorter experiments.157

At each assimilation cycle the performance of the filter is measured using the root mean square error (RMSE), defined as158

the 2-norm of the error between the reference simulation and the filter analysis mean. At each parameter value this procedure159

results in at least 8 × (365 − 73) = 2336 values of RMSE. The mean of these values is used to summarize the performance of the160

method for that specific combination of parameters. RMSE based on the forecast is available, but does not behave qualitatively161

differently from analysis RMSE and is therefore not shown.162

The following subsections detail the different assimilation methods to be compared.163

4.1 | Serial Ensemble Square Root Filter164

The point of this investigation is to consider methods that improve on EnOI but that are less computationally costly than an EnKF.165

As such, it is useful to run an EnKF as a baseline for comparison, giving an upper bound on the expected performance of the other166

methods. The baseline method used here is the serial ensemble square root assimilation of Whitaker and Hamill (2002), with167

Schur-product localization in observation space and multiplicative inflation. This method is referred to as ESRF in the results.168

The initial ensemble is constructed by initializing each ensemble member using an independent draw from a standard169

normal distribution, then forecasting this initial condition for 9 time units (45 days), by which time they have reached the system170

attractor. The final condition of each simulation at t = 9 is used to initialize the ensemble, so the initial ensemble is completely171

independent of the reference simulation used to generate the observations. The localization function has the form172

`i = e
− 1

2

(

i
L

)2

(5)

where L is the localization radius. For reference, the large-scale Lorenz-‘96 modes in this model are effectively 64 units apart, so173

to convert L to a comparable localization radius for the standard Lorenz-‘96 model it suffices to divide L by 64. The multiplicative174

inflation is applied to the analysis ensemble, since El Gharamti et al. (2019) recently found that posterior inflation is more175

appropriate and more effective in situations without model error. Inflation is applied by multiplying the analysis ensemble176

perturbations by an inflation factor of r ≥ 1.177

The three tunable parameters for the ESRF are the ensemble size Ne , the localization radius L, and the inflation factor r .178

Some limited exploration of ensemble size Ne was performed. First a range of L and r were explored at Ne = 100. Then, a179

range was explored at Ne = 200. The optimal RMSE obtained at Ne = 200 was not significantly better than at Ne = 100, so all180

results reported here for all methods described below (EnOI, AnEnOI, CAnEnOI, and ESRF) use an ensemble size of Ne = 100.181

4.2 | Ensemble OI182

EnOI can also be considered as a baseline for comparison of the analog methods, providing a lower bound on performance to183

complement the upper bound provided by the ESRF. The EnOI used here is configured exactly the same as the ESRF, except184

that no inflation needs to be applied. A different ensemble of perturbations is drawn randomly for each experiment from a185

catalog of 41,000 model states (once drawn, the ensemble perturbations remain time-independent for all assimilation cycles186

within a single experiment). This catalog is different from the one used to train the VAE, but is constructed in the same way.187

The climatological spread represented by this ensemble is too large to be an accurate representation of the forecast error, so the188

ensemble of perturbations is scaled to a pre-defined forecast spread, which forms the second tunable parameter (together with189
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localization radius) for the EnOI method. Ensemble size is Ne = 100.190

4.3 | Analog Ensemble OI191

The analog ensemble OI (AnEnOI) method is exactly the same as the EnOI method except for the following: At each assimilation192

cycle the ensemble is chosen to be the Ne = 100 members of the catalog that are closest to the current forecast. Future work193

will investigate using a weighted analog ensemble to construct the forecast error covariance matrix, with weights depending on194

distance to the forecast mean. The impact of the size of the catalog is briefly explored by performing experiments using (i) a195

catalog of only 1,000 members, and (ii) the full catalog of 41,000 members. Results reported below are for the smaller catalog,196

unless noted otherwise. The similarity of analogs to the forecast is defined using the 2-norm, i.e. x1 is considered to be similar197

to x2 when ‖x1 − x2 ‖2 is small. The impact of using other, more dynamically motivated measures of similarity is not explored.198

Ensemble size is Ne = 100.199

4.4 | Constructed Analog Ensemble OI200

The constructed analog ensemble OI (cAnEnOI) is exactly the same as the AnEnOI except for the construction of the analogs. To201

construct analogs, the forecast mean is first encoded using the encoder e(x). Recall that the encoder produces two vectors, µ202

and σ, and during training the encoded state is z = µ +σ ◦ ε where ε is a standard normal random variable. For the purposes of203

constructing analogs, an ensemble in latent space is constructed as follows:204

zi = µ + rz εi , i = 1, . . . ,Ne (6)

where εi are independent draws from a standard normal distribution and rz is a tunable parameter governing the spread of the205

ensemble in the latent space. The σ vector produced by the encoder is not used here. The analog ensemble is then constructed206

using the decoder as xi = d(zi ). Ensemble size is Ne = 100.207

As noted above, the decoder is a continuously-differentiable function. The ensemble in latent space is Gaussian, so for small208

enough rz the analog ensemble will also be approximately Gaussian distributed, with a covariance matrix approximately209

r 2zDD
T (7)

where D is the Jacobian derivative of d evaluated at µ. The rank of this covariance matrix is less than or equal to the dimension210

of the latent space, since D is a d × l matrix. Of course the analog ensemble covariance matrix will also have rank less than or211

equal to Ne − 1.212

For small rz the correlation structure depends only on the forecast mean, and not on rz . For larger rz the nonlinearity of213

the decoder comes into play with two important consequences. First, the analog ensemble becomes increasingly non-Gaussian,214

which allows the rank of the covariance matrix to exceed the dimension of the latent space (though the ensemble covariance215

matrix still must have rank bounded by Ne − 1). Second, the correlation structure of the analog ensemble begins to depend on rz216

as well as on the forecast mean.217

It is desirable to decouple the forecast spread of the analog ensemble from the correlation structure of the analog ensemble218

covariance matrix. This can be achieved by first constructing the analog ensemble as described above, and then rescaling the219

ensemble perturbations to have the desired spread. As a result, the cAnEnOI method has three main tunable parameters: (i)220

localization radius, (ii) rz which controls the correlation structure of the analog ensemble perturbation covariance matrix, and221

(iii) the forecast spread.222
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F I G U R E 4 Mean RMSE for the four methods, as a function of the governing parameters. The experimental results are

shown as red dots; values in between are interpolated. Values for cAnEnOI are at rz = 0.7. The colorbar is the same for all plots.

Note that all methods include localization radius as a tunable parameter, but ESRF has inflation as a tunable parameter while the

other methods have forecast spread. The axis limits on each panel are different.

5 | DATA ASSIMILATION: RESULTS223

Figure 4 shows analysis RMSE as a function of tunable parameters for the four methods (ESRF, EnOI, AnEnOI, and cAnEnOI).224

Results for the cAnEnOI method are shown for rz = 0.7; the dependence on rz is discussed below. The ESRF has a fairly broad225

well in parameter space where the analysis RMSE is around 1.5. The optimal observed RMSE is 1.35, which occurs at inflation226

factor r = 1.02 and localization radius L = 320. This is about a factor of two larger than the raw observation error 1/
√
2, which227

is not bad given that only one quarter of the state variables are observed. At localization radii smaller than 192 or larger than 384228

the performance begins to degrade. For larger localization radii the ESRF performance becomes erratic, being limited by the229

deleterious effects of rare spurious long-range correlations: some experiments perform well, while others diverge. For smaller230

localization radii the ESRF performance also degrades, for reasons that are not entirely clear and could be related to dynamical231

imbalance of the analysis or to the fact that localization is suppressing non-spurious long distance correlations.232

The EnOI (with a catalog of 1,000 model states) has an optimal analysis RMSE of 2.27, which occurs at a localization233

radius of 32 and a forecast spread of 0.6. Though significantly worse than ESRF, the EnOI still produces reasonably-accurate234

analyses; for comparison, a random draw from the climatological distribution would produce an RMSE of 4.97. The optimal235

localization radius for EnOI is a factor of 10 smaller than for ESRF. This is presumably because the correlations encoded in the236

ESRF ensemble are far more meaningful (i.e. representative of forecast error correlations) at long range than the climatological237

correlations associated with the EnOI ensemble.238

The use of analogs significantly improves the EnOI method: the optimal analysis RMSE for AnEnOI is 2.01, which occurs239
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at a localization radius of 16 and a forecast spread of 0.6. It is not clear why the optimal localization radius decreases, but on240

the other hand as seen in Fig. 4 the analysis RMSE of AnEnOI is not too strongly sensitive to changes in localization radius or241

forecast spread. This is very encouraging, since a catalog of only 1,000 states would presumably be far too small to produce242

accurate analog forecasts for this system. Increasing the catalog size to 41,000 further improves the analysis RMSE to 1.90: a243

very modest improvement for a very large increase in catalog size. To put a positive spin on this, it suggests that the bulk of244

the benefits that can be obtained by moving from EnOI to AnEnOI do not require an unrealistically large catalog. On the other245

hand, in a real application with a much larger dimension AnEnOI might require an unrealistically large library to produce even246

marginal improvement compared to EnOI.247

The real success comes from using constructed analogs. The optimal analysis RMSE obtained using cAnEnOI at rz = 0.6248

is 1.30: slightly better than obtained using ESRF! Each of the 8 experiments per parameter setting produces an independent249

estimate of the mean analysis RMSE at that parameter setting; from these 8 estimates of the mean one can calculate the ‘standard250

error in the mean’ (SEM) as a way to quantify how close the estimated mean is to the true mean that would be obtained over251

an infinite number of experiments. The SEM for the computed analysis RMSE is 0.05 both for the optimal cAnEnOI method252

and for the optimal ESRF method, which means that the differences are not statistically significant: on the basis of the results253

presented here one cannot conclude with certainty that cAnEnOI is better than ESRF, or vice versa. Furthermore, the standard254

deviation of analysis RMSE values is 0.33 for optimal ESRF and 0.29 for optimal cAnEnOI, so the performance of the methods255

is quite similar overall. The optimal localization radius and forecast spread are 40 and 0.7, respectively, but as shown in Fig. 4,256

the performance of cAnEnOI is not strongly sensitive to changes in these parameters: performance comparable to ESRF can be257

obtained over a wide range of localization radii and forecast spread.258

Though neither method is strongly sensitive to deviations from the optimal localization radius, cAnEnOI does seem to be259

even less sensitive in this regard than ESRF: good results for cAnEnOI can be obtained from localization radii of at least 10 to260

100 (a factor of 10), whereas good results for ESRF can be obtained from localization radii of about 250 to 400 (a factor of only261

1.6). These differences may stem from the fact that cAnEnOI does not forecast the full ensemble (only the ensemble mean). If262

one or a few members of the analysis ensemble are dynamically unstable it will have a detrimental impact on ESRF performance,263

while having no impact on cAnEnOI.264

Figure 5 shows the cAnEnOI analysis RMSE as a function of latent space spread rz for a fixed localization radius of 24 (left265

panel) and a fixed forecast spread of 0.7 (right panel). The method is extremely robust to varying all three parameters (forecast266

spread, localization radius, and latent space spread), and is able to produce RMSE comparable to ESRF over a wide range of267

parameters. As noted above, the correlation structure of the constructed analog ensemble is independent of rz for small rz .268

Consistent with this, for rz between 0.05 and 0.2, cAnEnOI produces RMSE of 1.38 (at optimal values of forecast spread and269

localization radius), which is comparable to ESRF. As rz increases the performance improves, with excellent results in the range270

.2 ≤ rz ≤ 1. As rz increases further the performance slowly degrades, but even at rz = 2 the performance is better than the271

optimal results using the AnEnOI method with ‘found’ analogs.272

Differences between cAnEnOI and AnEnOI are conjectured to stem primarily from the size of the library in AnEnOI. Even273

for a relatively small model like the one used here, it would presumably take an astronomically large library to achieve a dense274

coverage of the model’s attractor. The cAnEnOI method apparently circumvents this limitation in a manner analogous to the way275

that constructed analogs circumvent the limitations on library size in analog forecasting applications. The AnEnOI method could276

also potentially be improved by applying unequal weights, related to the distance between the analog and the forecast, when277

computing the forecast error covariance matrix.278
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F I G U R E 5 Mean RMSE for the cAnEnOI method, as a function of latent space spread rz and forecast spread (left panel),

and as a function of rz and localization radius L (right panel). The experimental results are shown as red dots; values in between

are interpolated. The colorbar is the same for both panels, and is the same as in Fig. 4.

6 | CONCLUSIONS279

This work introduces a new use for analogs, besides forecasting and downscaling: to construct an ensemble background280

covariance matrix for use in data assimilation, as in the EnOI or EnVar frameworks. The research was carried out in the context281

of a multiscale Lorenz-‘96 model invented by Grooms and Lee (2015). Two methods were formulated: one based on finding282

analogs within a catalog of historical states (AnEnOI), the other based on constructing analogs using a variational autoencoder283

(VAE; Kingma and Welling, 2019) trained on a catalog of historical states (cAnEnOI). It was found that AnEnOI outperforms a284

basic EnOI method even with a relatively small catalog of 1,000 members, and further improvements were marginal when the285

catalog size was increased to 41,000. The cAnEnOI method was able to perform as well as an optimized ensemble square root286

filter (ESRF), and was quite robust to variations in the tuning parameters of the method. Several alternate methods exist for287

constructing analogs (Van den Dool et al., 2003; Hidalgo et al., 2008; Maurer et al., 2010; Abatzoglou and Brown, 2012; Tippett288

and DelSole, 2013; Pierce et al., 2014); these could also be adapted for use in a cAnEnOI method.289

Analogs have previously been used in data assimilation by Lguensat et al. (2017, 2019). The key conceptual difference290

between the methods is that the method proposed here uses a model integration to generate the forecast, while the methods of291

Lguensat et al. (2017, 2019) use analog forecasting. A key procedural innovation of the present work is the use of machine292

learning to generate analogs.293

In real geophysical applications the model states are much larger than in the simple model considered here. This leads to294

two difficulties in implementing the analog ensemble data assimilation methods proposed here: (i) finding analogs within the295

catalog is expensive, and (ii) training a VAE to reproduce an entire model state is likely far more difficult and may be practically296

impossible. Fortunately, given the long history of analogs, there is already research on efficient ways to find analogs within a297

large catalog of large model states; see, e.g., Raoult et al. (2018) and Yang and Alessandrini (2019). Since the method using298

constructed analogs is far more successful, the second difficulty of real geophysical models is more pertinent. To overcome299

this limitation it is suggested to use a local analysis in the vein of the Local Ensemble Kalman Filter (LEnKF; Brusdal et al.,300

2003; Evensen, 2003; Ott et al., 2004). This framework uses many local ensembles: for each model grid point a local ensemble301

analysis is performed using observations near that grid point. The cAnEnOI method developed here could easily be used in this302
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local framework: For each grid point an analog ensemble is constructed for use in the local assimilation. The benefit of such a303

local analysis is that the VAE would only have to be trained to generate local subsets of the model state, rather than, e.g., the full304

state of a global coupled climate model. A similar localization procedure could be leveraged in the case of ‘found’ analogs rather305

than constructed ones.306

Overall, the results are quite promising. EnOI is a widely used method (Xie et al., 2011; Backeberg et al., 2014; Mignac307

et al., 2015; Deng et al., 2018; Wu et al., 2018) because of its acceptable performance and significantly reduced cost compared to308

EnKF, and ensemble background covariances are widely used in EnVar and hybrid data assimilation methods (Gharamti et al.,309

2014; Bannister, 2017). The results here suggest that improvements could be obtained using either found analogs or constructed310

analogs; the increased cost of using analogs will be situation-dependent, but if the costs can be made lower than the cost of311

forecasting an ensemble, then the analog EnOI or EnVar methods may be an attractive alternative. The methods used here to312

construct analogs could also be used to study predictability (Anderson and Hubeny, 1997), which was the original context for313

analogs (Lorenz, 1996).314
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