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Abstract. A blurring algorithm with linear time complexity can reduce the small-scale con-
tent of data observed at scattered locations in a spatially extended domain of arbitrary dimension.
The method works by forming a Gaussian interpolant of the input data, and then convolving the
interpolant with a multiresolution Gaussian approximation of the Green’s function to a differen-
tial operator whose spectrum can be tuned for problem-specific considerations. Like conventional
blurring algorithms that the new algorithm generalizes to data measured at locations other than a
uniform grid, applications include deblurring and separation of spatial scales. An example illustrates
a possible application toward enabling importance sampling approaches to data assimilation of geo-
physical observations, which are often scattered over a spatial domain, since blurring observations
can make particle filters more effective at state estimation of large scales. Another example, moti-
vated by data analysis of dynamics like ocean eddies that have strong separation of spatial scales,
uses the algorithm to decompose scattered oceanographic float measurements into large-scale and
small-scale components.
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1. Introduction. We present a linear-time blurring algorithm that works for
data measured at scattered points in R

d, for arbitrary dimension d > 0, and that
permits choice in shaping its response to different length scales. This algorithm is
equivalent to solving a positive definite self-adjoint elliptic partial differential equation.

By blurring, we mean the process of attentuating small-scale content of a dataset.
Doing so offers a way to denoise and simplify spatial data whose large features are
of primary relevance. Blurring is also a mechanism for isolating small-scale content
by simply subtracting the blurred version from the original. We show an example of
each of these use cases.

Applications of blurring in scientific computing generally benefit from having con-
trol over the blurring spectrum, i.e. the factor by which it attenuates inputs of different
spatial scales. This concept is made more rigorous in 2. Regularly-spaced data on
a periodic domain would enable straightforward application of Fourier methods to
implement a blurring algorithm that obeys a desired spectrum. But applications in
geophysics, and remote sensing in general, often involve measurements made at irreg-
ularly scattered locations in a spatially-extended domain. It is therefore desirable not
to require a regular grid.

The paper is organized as follows. Our blurring method is described in section 2;
an illustrative synthetic example is shown in section 3; an example of separating large
and small scales of scattered oceanographic data is presented in section 4; how this
blur can be applied in its original motivating context of meteorological data assimila-
tion is described in section 5 along with a connection to generalized Gaussian random
fields that led to our algorithm’s discovery; another example using real meteorological
data is in section 6 to show the blur has the desired effect on particle filtering; al-
gorithmic complexity and generalizations toward practical application of our method
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are discussed in section 7; and conclusions follow in section 8.

2. Method. Let z ∈ R
Nz be a vector of data at locations qi ∈ R

d for each
i ∈ (1, · · · , Nz), where Nz is the number of observations. The proposed blur S works
by solving for a discrete approximation of D−1ζ, where D is an elliptic differential
operator described in the next paragraph and ζ : Rd → R is a continuous-domain
interpolant of the data z expressed as a sum of Gaussians. This obtains by approxi-
mating the Green’s function g of D as a multiresolution sum of Gaussians, computing
the convolution of that approximation with ζ, and evaluating the result at the loca-
tions {qi}.

Define D to be the fractional bound-state Helmholtz operator:

D =
(

1− `2∆
)β
,(2.1)

where ∆ is the formal Laplacian operator, ` > 0 is a tuning parameter with dimensions
of length, and β > 0 is a dimensionless tuning parameter that controls the rate of
growth of eigenvalues. Eigenfunctions of D are Fourier modes of wavenumber k and
corresponding eigenvalues (1 + `2|k|2)β . The characteristic scale of this operator is

`/(2π
√
21/β − 1), in the sense that eigenfunctions with length scales longer than this

have corresponding eigenvectors close to 1.
A drawback of this approach is that convolution with g attenuates all but constant

functions on R
d, so even a constant data vector z will be attenuated to some degree.

We will discuss a way to mitigate this effect in section 3.
To represent the data in a continuous form that allows convolution with g, we

choose radial basis function (RBF) interpolation [4]. RBF interpolation of the obser-
vations requires us to choose a kernel ψ : R+ → R that is used as the radial basis in
which the interpolant will represent the data. The interpolant takes the form

ζ(·) =
Nz
∑

j=1

bjψ(‖ · −qj‖),(2.2)

where (bj) are interpolation weights such that

ζ(qi) =

Nz
∑

j=1

bjψ(‖qi − qj‖) = zi.(2.3)

In matrix form, this linear system becomes

(2.4) Bb = z.

We take the RBF kernel to be ψ(‖ · ‖) = φ(·; 0, ξI), where φ(·;µ,Σ) is the density of
a d-variate Gaussian random variable with mean µ and covariance Σ

φ(·;µ,Σ) = (2π detΣ)
−d/2

exp
(

(· − µ)TΣ−1(· − µ)
)

.(2.5)

This notation is used as a convenient description of Gaussian functions even though
we will not use them to describe any random variables.

One may worry that this method is hardly fast, despite using a fast PDE solver,
since a naive approach to solving for b requires O(N3

y ) operations. Computational
complexity of our algorithm, including faster alternatives to solving for b, is discussed
in section 7.
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The multiresolution Gaussian approximation of the Green’s function begins by
writing the Fourier transform of the inverse of (2.1) as an inverse-power function ĝ(t) =
t−β where t = 1 + `2|k|2. Exponential approximations of inverse power functions
like this are studied in [3, 12]. The approach therein is to write a finite trapezoid-
type discretization of an integral representation of ĝ. With the change of variables
introduced by McLean [12], the integral representation to be discretized is

1

tβ
=

1

Γ(β)

∫

∞

−∞

exp (−ϕ(x, t)) (1 + e−x) dx,(2.6)

where

ϕ(x, t) = t exp(x− e−x)− β(x− e−x).(2.7)

The finite trapezoid rule discretizes this into

1

tβ
≈ 1

Γ(β)

M+
∑

n=−M−

vne
−ant,(2.8)

where Γ(β) is the Gamma function and

an = exp(nh− e−nh),(2.9)

vn = h(1 + e−nh) exp
(

β(nh− e−nh)
)

.(2.10)

Ref. [12] Lemma 4 shows that the total required number of terms M− +M+ + 1
scales as (lnE)2 to achieve uniform relative error bounded by E > 0 in the limit
E ↓ 0.

The approximation in (2.8) can now be rewritten in terms of normalized multi-
variate isotropic Gaussian functions of k. Given weights vn and exponential rates an
from the exponential approximation above, we can derive the multiplicative factors
required of this equivalent formulation:

vne
−an(1+`2k2) = vne

−ane−an`
2k2

(2.11)

= vne
−an(2π/2`2an)

d/2
(

(2π/2`2an)
−d/2e−2`a2

nk
2/2

)

(2.12)

= vne
−an(π/`2an)

d/2φ(k; 0, 1/2`2an).(2.13)

The second line obtains from simultaneously multiplying and dividing by the constant
required to normalize the Gaussian term in large parentheses, which is written in
that manner to ease visual comparison to the standard form of an isotropic d-variate
Gaussian probability density function of mean 0 and variance 1/2`2an. Combining
(2.8)-(2.13) yields

1

(1 + `2|k|2)β ≈
1

Γ(β)

M+
∑

n=−M−

vne
−an(π/`2an)

d/2φ(k; 0, 1/2`2an).(2.14)

A plot of the relative error committed by this approximation is shown in Figure 1.
Taking the inverse Fourier transform and combining terms finally yields the de-

sired approximation of the Green’s function in physical space in terms of normalized
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The last line in the manipulation above shows that the continuous function we evaluate
to arrive at outputs can be interpreted as an RBF interpolant of the blurred data in
terms of a new blurred basis function ψ̃, given by

(2.21) ψ̃(·) =
M+
∑

i=−M−

ciφ (·; 0, (ρi + ξj)I) .

The weights bj of the blurred interpolant are identical to the weights of the input
interpolant, which will be valuable later in this section.

We now describe our blurring algorithm more concretely. Algorithm 2.1 ties
together pieces of the Green’s function approximation specified in (2.6)-(2.17). Algo-
rithm 2.2 combines RBF interpolation of the data with the output of Algorithm 2.1
with a convolution and evaluates the result at the data locations. These algorithms,
used together, are a complete description of our blur.

Algorithm 2.1 Gaussian approximation of fractional bound-state Helmholtz kernel

Input

Blurring scale parameter ` > 0.
Blurring shape parameter β > 0.
Integration mesh size h > 0.
Number of negative integration steps M− ∈ N.
Number of positive integration steps M+ ∈ N.
Dimension of each measurement location d ∈ N.

Output

Vector of positive weights c ∈ R
M−+M++1.

Vector of variances ρ ∈ R
M−+M++1.

function GaussianBSH(`, β, h, M−, M+, d)
for n = −M− →M+ do

â← exp (nh− exp (−nh)).
ŵ ← h (1 + exp (−nh)) exp (β (nh− exp (−nh))).
ŵ′ ← ŵ exp (−â)

(

π/`2â
)d/2

/Γ(β).
ρn ← 2`2â.
cn ← ŵ′ρ/2π.

end for

return c,ρ.
end function

Algorithm 2.2 defines a linear operator S on R
Nz . We will prove that S is positive

definite in Theorem 2.1, which will be useful in section 5. The theorem is more general
than the specific algorithm so far presented, which will set the stage for potential
variants to be described in section 7. To ease into the theorem, we will summarize the
preceding development of S and connect it to a briefer alternative formulation that
is easier to treat analytically.
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Algorithm 2.2 Blur

1: Input

2: Vector of measured data z ∈ R
Nz .

3: Array of data location vectors qi ∈ R
d, i ∈ (1, . . . , Nz).

4: RBF scale parameter ξ > 0.
5: Vector of positive weights ω ∈ R

M−+M++1.
6: Vector of variances ρ ∈ R

M−+M++1.

7: Output

8: Array of blurred data z̃i ∈ R, i ∈ (1, . . . , Nz)

9: function Blur(z, q, ξ, ω, ρ)
10: Let φ(‖ · ‖; 0, ξI) be a unit-mass Gaussian to use as the RBF kernel.
11: Generate RBF weight matrix B with elements:
12: for i = 1→ Nz, j = 1→ Nz do

13: Bij ← φ(‖zi − qj‖; 0, ξI).
14: end for

15: b← B−1z.
16: for i = 1→ Ny do

17: z̃i ←
∑

i′,n(bi · ωn)φ(‖yi − q′

i‖; 0, (ξ + ρn)I).
18: end for

19: return z̃.
20: end function

We described a sequence of mappings between vector spaces, with blurring taking
place most explicitly in the function space L2(RNy ) of interpolants by way of the
convolution ψi 7→ Gψi, where G denotes an operator that performs convolution with
the Gaussian approximation of g, and ψi is defined as the interpolation basis function
ψ(‖ · −qi‖) centered at location qi. Taken literally, that conceptual development
prescribes the following composition of linear operations:

Y
B

−1

−−−→W
F−→ X

G−→ X̃
F̃

−1

−−−→ W̃
B̃−→ Ỹ .(2.22)

Nodes in this diagram represents the various vector spaces found along the way of
describing our blurring algorithm:

• Y is the space of input data,
• W is the space of interpolant weights in the basis {ψi},
• X = span{ψi} ⊂ L2(Rn) is the space of interpolants,
• X̃ = span{Gψi} ⊂ L2(Rn) is the space of blurred interpolants,
• W̃ is the space of blurred interpolant weights in the basis {Gψi}, and
• Ỹ is the space of blurred data.

Arrows in the diagram represent the action of the operators superscribed on them:
• B−1 maps input data to RBF weights,
• F maps RBF weights to interpolated functions,
• G maps interpolated functions to blurred functions,
• F̃−1 maps blurred functions to weights in a blurred RBF basis, and
• B̃ maps blurred weights to blurred data.

The complicated sequence of steps above can simplify greatly; observe in (2.20)
that the weights in the blurred basis {Gψi} are always identical to the weights in the
unblurred basis {ψi}. Therefore F̃−1G F = I, leaving just S = B̃B−1 where B̃ is the
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RBF matrix in the blurred RBF basis:

(2.23) B̃i,j = ψ̃(‖qi − qj‖).

This alternative perspective demonstrates that S is equivalent to finding weights b

for an RBF interpolant of the unblurred data using a basis {ψi}, and then evaluating
an RBF interpolant of the blurred data using the same weights b that now act as
coefficients on a blurred basis {Gψi}. The following theorem is stated in terms of this
simplified perspective.

Theorem 2.1. Let ψ : R
+ → R be an interpolating radial basis function and

let g : R+ → R be a convolution kernel. Suppose ψ and g each have positive Fourier

transforms, and define ψ̃ = g∗ψ. Then the matrices B with entries Bij = ψ(‖qi−qj‖)
and B̃ with entries B̃ij = ψ̃(‖qi−qj‖) are symmetric positive definite, and the product

S = B̃B−1 is positive definite.

Proof. A standard theorem of RBF interpolation (e.g. Section 3 of [4]) states that
B is positive definite under the assumption that the Fourier transform of ψ is positive.

The Convolution Theorem guarantees that ψ̃ = g ∗ ψ has a positive Fourier
transform if g and ψ both have positive Fourier transforms, so B̃ is positive definite
for the same reason that B is positive definite.

Observe that B and B̃ are symmetric by construction, and that B−1 is symmetric
positive definite since it is the inverse of a symmetric positive definite matrix. Theorem
7.6.3 in [7] states that the product of a positive definite matrix P and a Hermitian
matrix Q is a matrix with the same number of negative, zero, and positive eigenvalues
as Q. It follows that the product of two Hermitian positive definite matrices is also
positive definite. Therefore, since B̃ and B−1 are Hermitian positive definite matrices,
B̃B−1 is positive definite.

The coefficients in the multiresolution approximation (2.15) are all positive, and
the Fourier transform of a positive Gaussian is also a positive Gaussian. Therefore
S, as defined by Algorithm 2.2 together with Algorithm 2.1, is positive definite as a
corollary of Theorem 2.1.

3. Example 1: circular measurement locations embedded in a 2-plane.

We want to verify that the blur’s effect resembles what we would expect of a discrete
approximation to D−1. To that end, we blur equally-spaced data on a circle embedded
in R

2 to provide insight into the spectral properties of the blur in practice. This
example will also describe heuristics in choosing parameters `, β, and ξ. In the
course of this example we will also demonstrate an undesirable phenomenon whereby
S attenuates even the largest scales, and suggest a workaround.

Locations were chosen to encircle the origin in R
2 with Ny = 100 distinct locations

separated by unit distance from nearest neighbors, i.e.

qi =
∣

∣

∣
e2inπ/100 − 1

∣

∣

∣

−1
[

cos (2nπ/100)
sin (2nπ/100)

]

.

The interpolation kernel was chosen to be the isotropic Gaussian PDF with standard
deviation ξ1/2 = 2.5. The convolution kernel is the multiresolution Gaussian approx-
imation (2.15) to the fractional bound-state Helmholtz kernel with ` = 1 and β = 1,
using approximation parameters h = 0.2, M = 32, and N = 28. These parameters
yield an approximation of ĝ with < 0.05% relative error up to kmax = 49, the Nyquist
number for the one-dimensional problem that this example simulates embedded in
two dimensions. Recall that Figure 1 shows this relative error as a function of k.
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The blur thus constructed defines a linear operator S on R
Ny . For the purpose of

inspecting the effect of blurring at different scales we numerically constructed a matrix
representation of S (though for practical application of the blurring algorithm it is
inadvisable to actually construct S). Due to the rotational symmetry of observation
locations, the matrices B−1 and B̃ are circulant. The class of circulant matrices is
stable under inversion, transposition, and matrix multiplication, so S = B̃B−1 is also
circulant. Therefore eigenvectors of S are discrete Fourier vectors. This connection
provides a rationale for comparing eigenvalues of S to the spectrum of D−1, whose
eigenfunctions are Fourier modes. However, it is important to recognize that the
comparison is imprecise because the interpolant (2.3) represents these discrete Fourier
eigenvectors as functions that differ from Fourier modes on R

2.
Eigenvalues of S are plotted in Figure 2 as circles, and some examples of eigen-

functions of S are visualized beneath the plot for k ∈ (1, 2, 25, 49). Eigenfunctions

of S are defined here as continuous interpolants of the matrix’s eigenvectors found
by the RBF interpolation scheme utilized in the blur. This figure also shows a solid
trace labelled “Fourier” that plots (1 + `2k2)−β , which is the spectrum of D−1 that
corresponds to R

2 Fourier modes. Since eigenvectors of S do not correspond to R
2

Fourier modes, this trace of the Fourier spectrum is only a rough comparison rather
than an analytical prediction that we are trying to match. The observed spectrum of
S behaves as expected, with gradual blurring of small scale features.

Recall from section 2 that this method has a drawback of attenuating large scales.
That behavior is evident in the eigenvalues plotted in Figure 2, which are all less
than 1. Eigenvalues less than 1 correspond to attenuation, so the blur attenuates
even the largest scale (eigenmode index 0). This over-attenuation occurs because
convolution with g attenuates every Fourier eigenmode of D except constant functions
in R

d. Since a finite Gaussian approximation can never fully describe a nonzero spatial
constant, even the largest-scale function in the space of possible RBF interpolants will
be attenuated by our blur. The largest-scale eigenfunctions in this example are thin
in the direction transverse to the circle, causing those modes to be blurred more than
continuous Fourier modes in R

2 with the same wavenumber (i.e. Fourier modes with
planar length scale equal to the circumferential length scale of S eigenfunctions)

For a similar reason that large scales are attenuated too much, the blur does not
suppress the smallest-scale eigenmodes as much as G would suppress a true R2 Fourier
mode of the same wavenumber. This is because the RBF interpolants of the most
highly-oscillatory eigenvectors in this example have more large-scale content than R

2

Fourier modes with the same length scale.
Over-attenuation can be mitigated, so that the largest scales are closer to unity, by

rescaling the operator by replacing S 7→ S/‖S1‖, where 1 is a unit-norm vector with
all entries identical. The eigenvectors of S are usually not discrete Fourier vectors like
they are in this symmetric example, so the largest-scale eigenvector is not necessarily
1. Therefore this mitigation technique is only a heuristic, which derives from the idea
that an input with identical entries contains little small-scale information.

Choosing the RBF standard deviation parameter ξ1/2 is not to be taken lightly.
We recommend choosing it to be roughly on the order of the nearest-neighbor distance
between measurements. A value too small prevents the RBF interpolation step from
resolving gradual transitions from location to location, causing the interpolant to
appear as a rugged set of “spikes” that are overly suppressed by the convolution step
on account of their inappropriately small scale. Choosing an interpolation kernel that
is too large, however, can cause numerical problems related to ill-conditioning of the
linear system we must solve to arrive at RBF coefficients. Choosing ξ1/2 to be as
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Argo data in space and time, it is usually interpolated to a regular grid before use
[15]. Our blurring algorithm enables extraction of the large-scale (blurred) part of the
data without the need to first interpolate onto a grid. The data used in this example,
accessed on February 13, 2020, were taken from the region 40◦N–60◦N and 20◦–50◦W
over the time period February 1, 2020 through February 10, 2020.

A small number of data points were removed to maintain a minimum nearest-
neighbor separation of 50 kilometers. A least-squares linear fit is subtracted from the
remaining data to arrive at deviations. These deviations are blurred with section 2
using RBF length scale ξ1/2 = 175 kilometers, ` = 70 kilometers, and exponent β = 8.
Subtracting the linear fit to obtain deviations avoids rapid variation of the interpolant
that could otherwise happen near the boundaries due to the basis functions’ rapid
decay.

The original field of sea surface temperature deviations, as interpolated by RBF
stage of our algorithm, is depicted in the top panel of Figure 3. The center panel
shows the large-scale component, which is the result of blurring the temperature
deviations. The small scale component, plotted in the bottom panel, is the difference
of the unblurred and blurred temperature deviations.

5. Application to particle filtering. The blur described above was originally
motivated by an effort to mitigate the dimensional curse of particle filtering, which we
will refer to as sequential importance sampling with resampling (SIR) hereinafter.1

This section will describe how the blur was derived from the motivating considerations
about SIR, in terms of an observation error covariance matrix.

SIR begins by running an ensemble of forecasts; each ensemble member is a
particle. A set of observations of the true system is then taken; the observations
are corrupted by instrument errors, whose distribution defines a likelihood. This
likelihood is used to compute weights for each particle so that the weighted ensemble
approximates the Bayesian posterior.

SIR is susceptible to a phenomenon called collapse, characterized by essentially
all the ensemble weight accumulating on a single ensemble member that is closest to
the observations, causing the filter to catastrophically underestimate posterior dis-
persion. The number of ensemble members required to avoid SIR collapse depends
on system covariance and observation error covariance, scaling exponentially in an
effective system dimension.

Specific estimates of ensemble size required to avoid collapse, provided in [21,
22], suggest one can reduce the required ensemble size by increasing eigenvalues of
the observation error covariance.2 Doing so carefully can also improve uncertainty
quantification for a fixed number of ensemble members. Ref. [14] suggests inflating
the observation error variance at small scales, letting variance grow in wavenumber,
since small scales have very limited predictability in geophysical flows [10, 17, 8].

To be more precise, consider an observing system

y(q) = H {x}(q) + r1/2(q) ε(q),(5.1)

where y(q) ∈ R is the observation at location q ∈ R
d, H is a function-valued obser-

vation operator acting on x, which describes the scalar system state as a function of

1Sequential importance sampling (SIS) is also known as particle filtering. In this paper we special-
ize on SIS with resampling (SIR), the most famous variety of particle filter, though the dimensional
curse and presumably our applications also extend to other particle filter varieties.

2Decreasing eigenvalues of the system covariance has the same effect, for the same reasons.
However, it is harder to justify changes to a dynamical model, and to implement those changes, than
to modify the observation model as we propose.
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location, r1/2(q) can be imagined as the standard deviation of the observation error
at q, and r1/2(q) ε(q) is the random observation error.

It is natural to think of ε as a random field. But letting the spectrum grow
in wavenumber precludes pointwise definition of ε, with probability 1, so it is not a
random field in the traditional sense. The idea of imposing a correlation structure
with a growing spectrum can instead be understood in the framework of generalized
random fields. In this case ε can be treated as a random process with realizations
taking the form of tempered distributions, i.e. elements of the topological dual to a
Schwartz space of rapidly decaying functions on R

d.
Since realizations of ε with a growing spectrum cannot be described pointwise,

instead interpret the spatially parametrized terms in (5.1) as averages with respect to
a Schwartz function ν that is closely concentrated near q. For example,

ε(q) ≡
∫

Rd

ε ν dx

/
∫

Rd

ν dx .(5.2)

Narrowing our attention within the scope of generalized random fields, let ε be a
mean-zero stationary Gaussian generalized random field (GGRF). Then the vector
(

ε(q1), · · · , ε(qNy
)
)

is a multivariate normal random variable with zero mean and a
covariance matrix C with entries Cij that depend only on ‖qi−qj‖. Hence the vector
of observations y ≡

(

y(q1), · · · , y(qNy
)
)

conditioned on x is a multivariate normal
random variable with mean H(x) and covariance

R = R
1/2
0 CR

1/2
0 ,

where R
1/2
0

is a diagonal matrix of the discrete observation standard deviations
r1/2(qi) that can be treated as instrument errors and H(·) : RNy → R

Ny is an ob-
servation operator acting on the discrete vector x that characterizes the underlying
system state. The discrete observing system can be summarized in the form

y = Hx+R
1/2
0 ε ∈ R

Ny .(5.3)

In the spirit of [9, 18], a connection between elliptic stochastic partial differential
equations and random fields enables us to make use of fast algorithms for PDEs in
the context of solving for the likelihood under GGRF models, rather than naively
developing a dense approximation of C and then solving the associated linear system.
In seeking to build a GGRF error model with a likelihood that is cheap to evaluate
in high dimensions, it was this connection that led to the development of the more
generally-applicable blurring algorithm presented in this paper.

We specifically treat the continuous field of observation error as ε = DW, where
D = (1 − `2∆)β acts on a spatial white noise W with mean zero and unit pointwise
variance. As in (2.1), ∆ is the formal Laplacian operator, ` > 0 is a tuning param-
eter with dimensions of length, and β > 0 is a dimensionless tuning parameter that
controls the rate of growth of eigenvalues. Recall that eigenfunctions of D are Fourier
modes of wavenumber k and corresponding eigenvalues (1+ `2|k|2)β . Recall also that

the characteristic scale of this operator is `/(2π
√
21/β − 1), in the sense that eigen-

functions with length scales longer than this have corresponding eigenvalues close to
1. Modeling the observation error ε in this manner therefore ascribes a variance to
large scales that is commensurate with instrument error, but it also progressively and
unboundedly inflates variance for small scales at a rate controlled by β. The GGRF
description of observation error is thus a kind of surrogate model for the assumption
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of uncorrelated observations at large scales, but with inflated variance at small scales
that are of lesser concern in geophysical forecasting.

We will use the fact that preferentially inflating observation variance at small
scales is equivalent to treating blurred innovations as uncorrelated.3 To see this
equivalence, observe how the correlation matrix features in the Gaussian likelihood,
the logarithm of which is proportional to

(y −Hx)TR
−1/2
0 C−1R

−1/2
0 (y −Hx).(5.4)

Then consider preprocessing the “standardized innovations” R
−1/2
0 (y −Hx) with a

linear operation

R
−1/2
0 (y −Hx) 7−→ SR

−1/2
0 (y −Hx).(5.5)

If these blurred observations are now assimilated under the assumption that the errors
in the blurred field are standard normal, then the log-likelihood is proportional to

(y −Hx)TR
−1/2
0 STSR

−1/2
0 (y −Hx).(5.6)

Any valid covariance matrix must be symmetric and positive definite. If S is a
positive definite blurring operator — i.e. a positive definite operator with a decaying
spectrum toward small scales — then C = (STS)−1 is a symmetric positive definite
operator with a spectrum that grows toward small scales. In light of these considera-
tions, take S to be the algorithm presented in section 2. Although Theorem 2.1 shows
that S is positive definite, it is typically not symmetric, and the symmetric part of S

is not necessarily positive definite. For this reason we must treat R
1/2
0 (STS)−1R

1/2
0

as a covariance matrix, rather than R
1/2
0 S−1R

1/2
0 .

In summary, we propose blurring standardized innovations with S in such a way
that (STS)−1 is a covariance for a discretized GGRF.

6. Example 3: SIR with radiosonde data. To demonstrate the behavior of
our blurring algorithm on scattered data and its impact on SIR weights, we make use
of data from the U.S. National Center for Atmospheric Research (NCAR) Convection
Allowing Ensemble [19, 20]. The NCAR ensemble produced real-time 48 hour fore-
casts over the conterminous United States (CONUS) from April 7, 2015 to December
30, 2017. The ensemble forecasting system consisted of two components: an 80 mem-
ber ensemble assimilation system operating at 15 km resolution and a 10 member
ensemble forecast system operating at 3 km resolution. We make use of the 80 mem-
ber ensemble data. The assimilation system used the Advanced Research version of
the Weather Research and Forecasting (WRF) model; observations were assimilated
in a 6 hour cycle via the Ensemble Adjustment Kalman Filter [2] implemented in
the Data Assimilation Research Testbed software suite [1]. Every assimilation cycle
processed between 66,000 and 70,000 observations from a variety of sources including
radiosondes, aircraft measurements, satellite wind measurements, and Global Posi-
tioning System radio occultation data, among others. Further details are provided in
[19].

To verify that our blurring algorithm performs as expected on scattered data, we
apply it to radiosonde temperature measurements at a single pressure level. Every 12
hours, i.e. every other assimilation window, there are between 90 and 97 radiosonde

3The innovation of an ensemble member is the difference between observation and forecast.
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approach to evaluating this sum, as is written in Algorithm 2.2, has time complexity
O(N2

yM). This Gaussian sum approximation can be reduced to O(Ny +NyM) with
the Fast Gauss Transform (FGT) [6]. The FGT has exponential time complexity in
location dimensionality d, so it often runs slower than direct evaluation when d is
greater than 2. The Improved Fast Gauss Transform (IFGT) exists to eliminate that
exponential scaling that hinders the original FGT for large d [24]. The IFGT can
be challenging to use in practice, but there exist approaches to assist in automatic
tuning such as [13]. Finally, ASKIT offers a new approach to the kernel summation
problem that extends to non-Gaussian kernels and which may be less fragile in high
dimensions [11].

Our algorithm uses an interpolation basis function whose width remains fixed
throughout the domain. This may be problematic when the density of observation
locations is highly heterogeneous, since an RBF standard deviation ξ large enough
to resolve smooth features in a sparsely-sampled region may be large enough that
it causes numerical problems in densely-sampled regions. Those numerical problems
may arise from ill-conditioning of B or from insufficient data locality expected of some
divide-and-conquer solvers like PetRBF. There is some extant literature on the use of
nonuniform RBF width parameters to address this situation [5], so that the size of the
basis function can adapt to the density of observations. Using adaptive width involves
interpolation with a basis {ψi} that is allowed to vary with i. Adaptive width can
be incorporated into our blur, just by modifying (2.3) and (2.18) to let ξ vary with i.
Using nonuniform width parameters no longer comes with guaranteed nonsingularity,
but [5] suggests that singularity is more of an exception than a rule.

Unfortunately, many fast solvers for the RBF problem are incompatible with
basis functions that vary by location. One possibility to reduce the cost of solving
for interpolation weights in this case is to choose compactly-supported basis functions
ψi so that B is sparse. We are unaware of any compactly-supported radial basis
functions with positive Fourier transforms that are simple to convolve with a Gaussian,
particularly for arbitrary d. But performing the interpolation in terms of compactly-
supported bases ψi can be made compatible with the rest of our blurring method,
simply by approximating each ψi with a sum of Gaussians. The resulting Gaussian
approximation of the data will not be an interpolant, but careful construction can
make it accurate. Therefore Theorem 2.1 does not apply, but we can still expect this
substitution to yield a good approximation of the convolution acting on the original
interpolant.

It is similarly possible to choose a different convolution kernel g to approximate
with a sum of Gaussians. This idea can be used to implement a blur of the form
presented here with a wider variety of characteristics, such as a non-monotonic re-
sponse in length scale. If the Guassian approximation kernel possesses a positive
Fourier transform, and the RBF interpolation employs a uniform basis function, then
Theorem 2.1 still applies to guarantee that STS is a valid covariance matrix in its
application shown in section 5.

To reduce the M prefactor in the convolution step, we can apply a reduction
algorithm based on Prony’s method with the suboptimal approximation (2.8) as a
starting point [3]. Doing so yields an optimal multiresolution approximation of the
integral kernel for given uniform relative error bounds, which may require substantially
fewer terms to attain the same relative accuracy. This reduction method may be
particularly helpful for different forms of D (ergo g) that do not yield such a rapidly-
convergent approximation as (2.15).
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8. Conclusions. We have a described a method to blur data measured at Ny

locations that are arbitrarily scattered in R
d, for arbitrary d, by applying a dis-

crete approximation to the integral equation that inverts the fractional bound state
Helmholtz operator (1− `2∆)β . The degree of attenuation for different length scales
can be tuned by adjusting the parameters ` > 0 and β > 0; large scales are attenuated
little, but length scales shorter than `/(2π

√
21/β − 1) are rapidly suppressed with a

rate determined by β.
The discrete approximation results from a multiresolution Gaussian approxima-

tion to the differential operator’s Green’s function. This readily permits convolution
with a sum of Gaussians that approximate the data; we take the sum of Gaussians
approximation to be a radial basis function (RBF) interpolant with a Gaussian kernel.
The blur is shown to be a positive definite linear operator on R

Ny in a more general
context where the interpolation basis and the convolution kernel have positive Fourier
transforms.

Spectral properties of our blur are examined with an example shown in section 3.
This example provides evidence that the algorithm operates as expected: attenuation
gradually increases in wavenumber, roughly approximating the differential operator’s
inverse spectrum, with a caveat that our blur attenuates even the largest scale. In
order to preserve large scales, we propose dividing S by ‖S1‖, where 1 is a unit vector
with all entries identical.

Section 4 shows an example application of our blurring algorithm on sea surface
temperature data measured by oceanographic floats in the Argo project. In contrast
to the typical approach of decomposing these data into large-scale and small-scale
components, our method circumvents the need for interpolating onto a regular grid.

Our blur is developed with application to Sequential Importance Sampling with
Resampling (SIR) particle filters in mind. Section 5 describes how blurring observa-
tions with S before assimilating them as if they have uncorrelated errors is equivalent
to assuming that the observation errors have covariance (STS)−1, which gives observa-
tion errors the correlation structure of a stationary generalized Gaussian random field.
Relative to an uncorrelated model, an observation error model of this type decreases
the number of ensemble members required to achieve good uncertainty quantification
from SIR for spatially-extended dynamical systems [14].

Section 6 demonstrates that this blur has the desired effect of helping balance
SIR weights in an example with real meteorological data, which improves uncertainty
quantification by reducing the tendency of SIR to produce underdispersed posterior
distributions in high dimensions. This example is chosen to be provocative of poten-
tial future applications to geophysical fluid dynamics, but it is worth characterizing
traits of applications that would be more appropriate. The extratropical temperature
field in section 6 probably features little dynamical nonlinearity at large scales, and its
measurements are linear and Gaussian, so this corpus of data is an excellent candidate
for assimilation with any one of the many variants of the Ensemble Kalman Filter. A
more appropriate application of blurred-observation SIR would feature substantially
non-Gaussian behavior at large scales. That can arise due to nonlinear dynamics
of large scales or due to large dispersion of a non-negative state variable relative to
its mean, or due to a nonlinear observation operator inducing a non-Gaussian pos-
terior distribution. Moist convective systems, for example, have nonlinear dynamics
and substantially skewed sign-definite variables. Examples of nonlinear observation
operators that could be similar motivation for SIR include satellite radiance and pre-
cipitation measurements. Any of these features could provide motivation for accept-
ing the computational challenge of SIR in exchange for provable convergence to the
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smoothed-observation surrogate model with its controllable bias. However, it remains
to be seen whether a smoothed-observation SIR filter can beat methods in the EnKF
family when applied to real atmospheric problems.

A naive implementation of Algorithm 2.1 requires O(N2
y ) memory and O(N3

y ) op-
erations to solve for interpolant weights. However section 7 describes how specialized
kernel matrix solvers and fast kernel summation methods can reduce the asymptotic
complexity of our algorithm to O(Ny).
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