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Abstract. Biodiversity image repositories are crucial sources of training data
for machine learning approaches to biological research. Metadata, specifically
metadata about object quality, is putatively an important prerequisite to select-
ing sample subsets for these experiments. This study demonstrates the im-
portance of image quality metadata to a species classification experiment in-
volving a corpus of 1935 fish specimen images which were annotated with 22
metadata quality properties. A small subset of high quality images produced an
F1 accuracy of 0.41 compared to 0.35 for a taxonomically matched subset of
low quality images when used by a convolutional neural network approach to
species identification. Using the full corpus of images revealed that image qual-
ity differed between correctly classified and misclassified images. We found the
visibility of all anatomical features was the most important quality feature for
classification accuracy. We suggest biodiversity image repositories consider
adopting a minimal set of image quality metadata to support future machine
learning projects.
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1 Introduction

1.1  Quality Metadata for Species Image Repositories

The extensive growth in open science repositories, and, in particular,
the underlying application of rich metadata has potential value for data
mining, machine learning and deep learning (ML/DL). Metadata has
historically been used for machine learning and automatic document
classification [1] and there is growing attention to the role of metadata
in reproducible research pipelines [2,3]. Less common, but of para-
mount importance is metadata that denotes the quality of the object be-
ing represented. Metadata addressing quality control characteristics of
data can support the data cleaning steps common to virtually all
ML/DL analyses. In fact, computer vision is one area of particular in-
terest where quality-specific metadata can play an important role in the
selection of training, validation and test image sets. For example, Ellen
et. al found the use of context metadata, consisting of hydrographic, ge-
otemporal, and geometric data, collected or extracted from plankton
images improved the accuracy of a convolutional neural network
(CNN) classifier [4]. Tang found a 7% gain in mean average precision
after including GPS coordinates in a general image classification task
[5]. These studies shed light on an important area of metadata research
that has broad implications for leveraging collections of digital images
across nearly every scientific discipline.

One area of particular interest is specimen images, particularly given
their value as a data source for species identification and morphological
study &7. The research presented in this paper, addresses this topic in
the context of a NSF supported Harnessing the Data Revolution (HDR)
project, Biology-Guided Neural Networks for Discovering Phenotypic
Traits (BGNN). A team of information and computer scientists, biolo-
gists, and image experts are collaborating to develop a novel set of arti-
ficial neural networks (ANNSs) for classifying fish species and extract-
ing data on fish external morphological features from images of fish
specimens. Unlike genomic data, specimen trait data is largely unstruc-
tured and not machine readable. The paucity of trait data for many
groups of organisms has led to efforts to apply neural network-based



classification and morphological analysis to the extensive store of exist-
ing species photographic images to automatically extract trait data in an
unsupervised manner. The product of these efforts, the focus of BGNN,
should improve our ability to derive phenotype data from digital ana-
logs of specimens. Metadata is recognized as an important aspect of
this research, particularly in the selection of images for ML/DL.

The research presented in this paper demonstrates the value of image
quality metadata for BGNN, and presents the results of baseline re-
search on automatic specimen classification, depending on metadata
quality metrics. The sections that follow provide contextual back-
ground; describe the research sample of digital images and the scheme
of 22 image metadata attributes, and present the results of our baseline
study. The conclusion highlights the importance of this work, specifi-
cally metadata that indicates image quality attributes important for se-
lecting high quality images for, in our case, biology-guided training of
neural networks to extract phenotypic trait data from diverse assort-
ments of fish specimen images.

1.2 Image Metadata Content Description and Quality

Over the last few decades, national and international support has tar-
geted the digitization of analog specimen collections. Examples of key
programs include the U.S. National Science Foundation’s (NSF) Ad-
vancing Digitization of Biodiversity Collections (ADBC) program and
the European Union’s (EU) Distributed System of Scientific Collec-
tions (DiSSCo) project. Digital images produced by these initiatives
have further supported the creation of large-scale specimen images re-
positories (e.g., The Phthiraptera Database http://phthiraptera.info/sid;
Burke Museum Paleontology Data-
base,https://www.burkemuseum.org/; Morphosource, https://www.mor-
phosource.org/), where the images and their associated metadata are
freely available for research and education purposes. The search, dis-
covery, and use of images from these and other collections is highly de-
pendent on the metadata associated with the image objects. A number
of different metadata schemes are used across these projects, due, in
part to the diversity of scope of the projects and the make-up of the pro-
ject teams.



The MODAL framework [8, 9] provides a mechanism for understand-
ing the range and diversity of metadata standards used to describe digi-
tal specimens, as their domain foci (general to specific), including the
extent of support for image quality. Metadata applicable to analog im-
ages, which is our immediate focus, falls broadly into two classes, 1.)
descriptive metadata that is humanly generated by a curator; and 2.)
technical metadata that is automatically generated by technology used
to capture the image. The Dublin Core Metadata Standard and the Dar-
win Core Standard are among the most popular schemes used for de-
scribing digital specimens. These metadata standards are more descrip-
tive covering specimen name and topical and geo-spatial aspects, with
limited coverage of technical aspects. On the technical end, Dublin
Core’s dc:type or dc:description properties or Darwin Core’s dwc:dy-
namic property may be used to record information impacting object
quality, but these properties are still limited coverage of quality
measures. The recently developed Audubon Core metadata standard for
multimedia objects includes a couple of metadata properties classed un-
der the Service Access Point Vocabulary that support some aspects of
quality assessment. For example, Image-Height and Image-Width can
give an indication of quality, but without knowledge of the ideal height
and width it is difficult to make a clear assessment of image quality.

A richer set of metadata properties giving insight into image quality is
found in the more technically oriented metadata standards identified in
Table 1. The example metadata properties need to be measured against
parameters that define image quality to be of value. The Digital Imag-
ing and Communications in Medicine (DICOM) standard is an excep-
tion; this extensive scheme with over 200 metadata properties includes
imageQuality as a metadata property, and supports scoring on a scale
of 1 to 100.

Table 1. Example Technical and Biomedical Metadata Standards

Metadata Standard | Primary Focus Metadata quality
property
Preservation Long term preserva- | Fixity

Metadata: Implemen- | tion
tation Strategies




Exchangeable image | Image formats X/Y dimensions,

file format (EXIF) compression, color
space

DICOM Medical imaging imageQuality (1-100)

Semantically-oriented ontologies and even controlled vocabularies, can
also be used to indicate value. Table 2 identifies two ontologies, and
example semantics, that indicate image quality, and Figure 1 illustrates
the class-hierarchy where the entity Thing, representing an anatomical
feature and aspect of color (e.g., hue and saturation) can encode object

quality.
Table 2. Selected Ontologies
Ontology Primary Focus Semantics/metadata val-
ues
Biomedical | Biomedical images Image filters, ImagePrePro-

Image Ontol-
ogy (BIM) !

cessing, ImagePostPro-
cessing

Base 12

OntoNeuro- | Neuro imaging structure of interest, orienta-

tion, segmentation result

Class Hierarchy

Thing
+ continuant

+ specifically dependent continuant

+ quality

+ physical guality
+ radiation guality

+ electromagnetic (EM) radiation quality
+ optical quality
+ chromatic property
- color hue
- color saturation
- low saturation
- high saturation




Fig. 1. Phenotype And Trait Ontology: Example of Quality relating to color saturation and other
factors.

Overall, the schemes identified here range in their focus on content de-
scription, supporting discovery with metadata properties such as a spec-
imen’s scientific name, geographic location, provenance, and collec-
tor’s name, to technical aspects that aid in access and can help to deter-
mine aspects of quality, particularly when the parameters of what deter-
mines quality are known. Our assessment finds there does not yet exist
a targeted metadata standard that captures the types of object - in our
case, specimen image quality - necessary for our work in BGNN.

The need for adequate metadata to support our efforts to aggregate a
sufficient quantity and variety of teleost fish images for experiments in
species classification, trait segmentation and ultimately automated phe-
notyping in a supervised machine learning context, led us to examine a
number of large curated image repositories. We initially explored using
images from the iDigBio Portal (https://www.idigbio.org/portal) the na-
tional repository of NSF’s Advancing Digitization of Biodiversity Col-
lections program, a 10-year effort to digitize data on specimens in U.S.
biodiversity collections. The iDigBio Portal reportedly hosts 160,000
media files on fishes. However, searching the images, visualizing them
online and obtaining copies presented challenges. A random check of
roughly 5,000 images subsampled from 100,000 media files represent-
ing a number of families and genera of teleost fishes detected misiden-
tified fish species and non-fish specimens such as plants and crusta-
ceans. Moreover, few of the images had metadata for filtering based on
quality and the metadata were incomplete in most of these instances.

We ultimately settled on using images of fish specimens from the Great
Lakes Invasives Network (GLIN), one of the NSF ADBC Thematic
Collections Networks. The images used in this study were obtained
from the Illinois Natural History Survey Fish Collection, one of six fish
collections that participated in the GLIN project.

While the metadata associated with the GLIN collections is not exten-
sive and does not indicate image quality, the overall quality of the im-
ages was useful to serve the needs of the project, provided we gathered
basic metadata to confirm the quality of individual images. Conversely
image metadata may be rich and follow a standard, but that standard



may not include aspects of image quality relevant to machine learning.
We found image quality varied substantially, and perhaps more im-
portantly, unevenly with respect to taxa within image repositories (Fig-
ure 3), which may belie both individual variation in photography and
batch effects associated with submitters. This challenge, ultimately, led
BGNN research to identify a set metadata properties to track image
specimen quality, and the analysis demonstrating the value of these
properties.

1.3  Quality Metadata for Machine Learning

The challenges we faced obtaining images of fish specimens from im-
age repositories for use in the BGNN Project have implications across
neural networks using images. The process we undertook to determine
which images would be useful to us and manually annotated facets of
image quality affect species classification accuracy. This manual ap-
proach contrasts with the automated image quality assessment (IQA)
which is the focus of most machine learning image quality work.

IQA is an established and active area of research within computer vi-
sion. IQA research is concerned with the automated assessment of im-
age quality for perception by both humans and machines, and the crea-
tion of robust image classification, segmentation, or detection models
that are resilient to low-quality images. Reference-based IQA tech-
niques (full-reference or FR) attempt to quantify the effects of distor-
tions such as those imposed by compression or other forms of blur,
noise, or loss of contrast. No-reference IQA algorithms have no access
to high-quality reference images during inference [13]. Both FR and
NR approaches rely on ratings from several human observers to estab-
lish subjective measures for training. Databases such as the Tampere
Image Database [14] serve as fixed gold standard references for these
attempts at quantifying and modeling image quality.

Unlike IQA, domain-specific annotated quality assessment is con-
ducted by trained annotators for the purposes of grading key relevant
features. For example, in fishes the ability to see and count features like
scales and ray-fins is crucial to species identification. This intense
work, captured in a set of metadata properties, informed our research
goals.



Purpose & Goals. The overall aim of our research was to examine the
importance of image quality metadata for species classification. Our goals
were the following:

1. Determine if the annotated image quality affected classification
accuracy

2. Determine which specific quality annotations were most im-
portant for classification accuracy

3. Make recommendations for future image quality metadata in
large image repositories

2 Methods

To address the above goals, we conducted an empirical analysis that in-
volved the following computational steps. Except where noted, anal-
yses were performed using R and Python. Raw data is located at
https://bgnn.org/igm and reproducible source code is available at
https://github.com/orgs/hdr-bgnn/iqm.

2.1 Sample.

The dataset used for this study comprises 23,807 digital images of fish
specimens from the Illinois Natural History Survey (INHS) Fish Col-
lection that were produced for the Great Lakes Invasives Network Pro-
ject [15]. After checking the images for file duplications, errors with
image or file formats, institution code, catalog numbers and suffixes to
file names, the images were transferred to a file server from which they
could be shared with other researchers in the BGNN project. Specimen
collection information (occurrence records) for the images were gath-
ered from FishNet2 [16] and the scientific names were updated using
Eschmeyer's Catalog of Fishes [17].

Based on our experience with other fish specimen image datasets avail-
able online, we defined a set of metadata properties to record image
quality for the digitized fish specimens (Table 3). The set of properties



forms a metadata scheme for capturing image quality, and is based on
the expertise of members at Tulane University's Biodiversity Research
Institute, with feedback from members of the Metadata Research Cen-
ter, Drexel University. Team members included informaticians, fish ex-
perts, and data entry technicians, who defined and refined the metadata
scheme over a period of several months, as they processed specimen
images. The scheme includes 22 metadata properties, requiring the con-
tent-value of a categorical concept, free text, a Boolean operator, or a
score. A web-based form, and an underlying SQL-based database help
to expedite capturing the metadata content (Figure 2). The main pur-
pose of capturing this metadata is to derive a set of quality features
(metadata properties) for filtering and retrieving digitized specimens
and determining how the quality features impact image processing and
machine learning.

The image quality score used in this study is an integer value between 1
to 10 that represents the evaluator’s gestalt opinion of the quality of the
image and its usefulness for further analysis. The evaluator assigns the
score to an image after answering 21 quality-related questions about the
image. However, the overall image quality score is independent of the
other quality assessment questions and doesn’t integrate data from re-
sponses to any of these questions.

A score of 8-10 would be for images that are good to excellent, a score
of 5-7 would be for images that have some issues but may be usable
and a score of 1-4 would be for images that have major problems and
are unusable.

2.2 Descriptive statistical analysis of quality

A basic exploratory data analysis was performed on quality metrics.
Quality averages by taxonomic groups (genus and species) were exam-
ined in order to understand potential biases.

2.3  Implementation of a CNN-based classification pipeline

A convolutional neural network image classification pipeline was de-
veloped using PyTorch [18] with Torchvision [19] extensions. Genera
(genus groups) and species (genus + specific epithet combinations)
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were trained and inferred simultaneously using a novel multi-classifier
model, called a Hierarchy-Guided Neural Network (in submission).
Several hyperparameters, including learning rate, regularization
lambda, early stopping patience were tuned prior to this quality analy-
sis.

2.4  Classification accuracy using high vs low quality subsets

Using the composite median image quality score of 8, we divided the
data set into low-quality and high-quality subsets. Some species are in-
herently more visually similar to others, so in a classification scenario,
an unbalanced distribution of taxa would confound our aim of measur-
ing the isolated effect of image quality. To address this we sampled im-
ages based on equal distributions of individuals by species (Esox amer-
icanus, Gambusia affinis, Lepomis gibbosus, Lepomis humilis, Lepomis
macrochirus, Lepomis megalotis, Lepomis cyanellus, Notropis atheri-
noides, Notropis blennius, Notropis buccata, Notropis hudsonius, Not-
ropis stramineus, Notropis volucellus, Noturus gyrinus, and Phenaco-
bius mirabilis) totaling 106 individuals both high and low quality sub-
sets.

2.5  Quality features distinguishing correctly and incorrectly identified
species

Using a dataset of 1703 quality annotated images with 20 or more indi-
viduals per species (in order to achieve enough training and test data),
the holdout test set of 341 images (17 species over 8§ Genera) was then
divided into correctly classified and misclassified images. Quality fea-
tures between these two subsets were compared, and pairs of correct/in-
correct within species were examined closely.
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Image Metadata Entry
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Fig. 2. Web form for quality metadata entry

At the time of this publication, metadata annotations indicating quality
have been created for a total of 1935 images. Table 3, column 1, lists
the metadata properties that form the bases of quality assessment; col-
umn 2 and 3, follow with each metadata property’s data type, and pro-
vides a brief description.

Table 3. Quality Metadata Fields

Metadata: Quality property Data type | Description

1. if fish boolean Whether or not
T fish are in the im-

age.

2. fish number integer Number of fish in
T the image.

3.if ruler boolean Whether or not a

B ruler in the image.
4. if label boolean Whether or not a

label in the image.
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5.1if label name correct

boolean

Whether or not the
image
name matches the

number on the la-
bel.

6. if label catalog number cor-
rect

boolean

Whether or not the
catalog number is
correct.

7. label detailed

categorical

Whether or not the
label is detailed
and has full infor-
mation.

8. if colorbar

boolean

Whether or not a
colorbar is in the
image.

9.1if each fish label

boolean

Whether or not
each fish speci-
men has a label.

10. non_specimen_objects

freetext

Identify objects in
image that are not
fish specimens.

11. if overlapping

boolean

Whether or not
objects in the im-
age overlap or
hide any parts of
the fish.

12. specimen_angled

categorical
(1-12
based on
clock face)

Number on a

clock face the
fish’s head is

pointing to.

13. specimen_view

categorical

The surface(s) of
the specimen
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visible (left side
visible when head
points left)

14.

if curved

categorical

Whether or not the
body of the fish
specimen is
curved or straight.

15.

if missing parts

boolean

Whether or not

any parts of the

fish are cropped
from view.

16.

if parts visible

boolean

Whether or not all
parts of the fish
(including fins)
are visible.

17.

if fins folded

boolean

Whether or not
any of the fins are
folded.

18.

brightness

categorical

The brightness of
the fish speci-
men.(dark, bright,
normal)

19.

if _background_uniform

boolean

Whether or not the
background of the
image is uniform.

20.

if focus

boolean

Whether or not the
fish specimen is in
focus.

21.

color_issues

categorical

Identify color-re-
lated issues with
the specimen (e.g.
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Contrast, Satura-
tion etc.)

22. image_quality Integer (1- | The overall qual-
B 10) ity of the image.

600 -
Genus

. Alosa . Marone
. Carassius . Neogobius
. Carpiodes . Notropis

400 -
= Cyprinus . Noturus
§ Esox . Oncorhynchus
. Etheostoma . Osmerus
2004 . Gambusia . Phenacobius
. Lepomis . Pimephales
. . Misgurnus . Salmo
0_ s
2.‘ 5 “5 7! 5 1‘0

image_quality
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Fig. 3. A histogram of manually annotated image quality scores across the 18 genera
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Fig. 4. Quality scores by genera with more than 10 individuals clearly shows variability within
and between genera

In order to prepare images for classification, Advanced Normalization
Tools in R (ANTsR)[20] was used to subtract background shading, rul-
ers, and labels using a supervised segmentation with a training set de-
veloped in 3D Slicer [21]. This "fish mask" was used to isolate fish im-
ages for downstream steps.

Early attempts at classification using a subset of 53 species belonging
to 13 genera, with each species having 50 images, produced a mean F;
score ( 2*((precision*recall)/(precisiontrecall) ) of 0.757 (£0.017 SD)
for species classification and 0.910 for genus classification.

Our analysis focused on comparing low and high-quality images that
were roughly balanced by genus and species composition, in order to
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control for the effect of inherent differences in identification difficulty
that vary among taxa. We noted that image quality varied non-ran-
domly among species (Figure 3

), perhaps due to batch effects as well as anatomic differences between
fish taxa that affect photographic fidelity.

Fig. 5. Examples of very low (1) and very high (10) quality images of Esox americanus

3 Results

3.1 Low/High Subset Comparison

A t-test of F1 scores generated by several runs on the small balanced
high and low quality subsets showed a small but significant difference
in accuracy (0.41 vs 0.35, pval=0.031) (Figure 6).
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Fig. 6. F1 test score across 19 trials on genus classification using low quality (mean 0.35) and
high quality (mean 0.41). Using high quality images produced better F, scores (0.41 vs 0.35,
pval=0.031).

3.2 Quality by Classification Outcome

Here we compared correctly classified vs misclassified images using a
test set of 341 images (278 correctly classified and 63 misclassified). A
confusion matrix (Figure 6) shows that most misclassifications occur
between species within the same genus, although these misclassifica-
tions are not symmetric (e.g. 53% of Notropis blennius images were
misclassified as Notropis atherinoides, while no Notropis atherinoides
were misclassified as Notropis blennius).

Comparing the means of quality scores between correctly classified im-
ages reveals five quality features correlated with classification accu-
racy: if curved (0.0179 vs 0.0634), if parts_visible (0.8669 vs 0.8413),
if overlapping (0.1043 vs 0.1270), and image quality (8.230 vs 8.079),
and two negatively correlated :if background uniform (0.6151 vs
0.6984), and if fins folded (0.046512 vs. 0.025641). While im-

age quality is the strongest variable, a logistic regression which in-
cludes all features except image quality (to avoid collinearity), reveals
if parts visible (p-val = 0.0001) as the sole significant covariate.
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Fig. 7. A confusion matrix of 341 species classifications. The diagonal represents correct classi-
fications. The y-axis represents true labels, and x-axis are predictions.

classified correct misclassified

probability of true label 0.837085 0.105787
if_ruler 1.000000 1.000000

if_colorbar 0.003597 0.000000

if label 1.000000 1.000000

if_overlapping 0.104317 0.126984

if_ curved 0.017986 0.063492
if_missing_parts 0.010791 0.015873

if blur 0.000000 0.000000

if_ color_issue 0.000000 0.000000
specimen_angled 8.830935 8.841270

if background_uniform 0.615108 0.698413
if_parts_visible 0.866906 0.841270
image_quality 8.230216 8.079365
if_fins_folded 0.046512 0.025641
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Table 3. Mean of quality features by correctly classified and misclassified images

4 Discussion

In this paper we show that image quality measures do affect classifica-
tion accuracy. This was demonstrated using two approaches - a dichot-
omous split of the image corpus using the manually-annotated im-

age quality metric, and a comparison of correctly and incorrectly clas-
sified images from the entire quality-annotated data set. Our abilities to
discern the importance of quality are hampered by three factors: 1) a
relative paucity of low-quality images in our dataset, 2) the nature of
classification - some fish are simply more similar to their brethren - but
we have attempted to control for this where possible, and 3) some taxa
are inherently more difficult to position or illuminate for photography.
Our results lead to a number of recommendations for assessing quality
of images from biodiversity image repositories to support machine
learning analyses.

The quality score assigned by curators, while based on a rubric, does
lend itself to some inter-rater error. We surmised that a composite met-
ric of the binary quality items (e.g. if curved, if fins folded, etc..)
could represent a more objective score, and explored this, but it ulti-
mately did not prove substantially better than "image quality".

The quality scores generated by our curators included some that are
strictly technical (blur, color issues), those that would apply to any bio-
diversity catalog ("if parts_visible") and those that are specific to fish
(e.g. "if fins folded"). We contend that all three types of quality (tech-
nical, biospecimen, taxon-specific) are important to include for biore-
positories. The automated measurement of technical image quality, and
possible higher-level judgments, can help accelerate the collection of
this metadata. Metadata librarians may also find it useful to distinguish
local and global image quality characteristics [22, 23] from semantic
quality features. Local features might include fin-level textures that
would indicate lepidotrichia, global features such as large segmented
areas as well as basic image characteristics such as color and shape.
These characteristics are logically distinct from semantic quality
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judgments made by the curators in this project ("folded fins"/"label ob-
struction"), though automated semantic quality annotations are within
the capabilities of neural networks.

Another metadata property that we have mentioned tangentially is
provenance, particularly because of the batch effects introduced by dis-
parate labs collecting and photographing specimens with different set-
tings and equipment. Batch effects are a huge issue in all repositories
and data coordinating centers, and due to the geographically localized
nature of certain species and associated labs, this can sometimes pre-
sent a "complete separation" problem, where controlling for the random
effects of collection centers becomes impossible. This would suggest
each center be encouraged to collect certain common species to serve
as controls for normalization. Both provenance and quality are essential
for large image repositories to address bias and confounds for down-
stream analyses.

Overall, observed that machine learning is hampered by its dependence
on classification accuracy instead of more direct intermediate measures,
for example, the number of features detected. Though this is an active
area of research within the deep learning community, species detection
will continue to present some confounds because of inherent heteroge-
neity discussed above. Certainly, one consideration specimen curators
should be aware of is whether the intended use of the biorepository im-
ages is to classify real-world specimens. Certain types of low-quality
images may serve to augment robustness in computer vision - a tech-
nique called "noise injection". These uses suggest annotating for qual-
ity, rather than simply culling, is a preferable strategy. Quality metadata
to aid robustness and generalizability in machine learning, rather than a
narrow focus on pristine specimens, is an open area for future work.

5 Conclusion

The main objective of this research was to determine if annotated im-
age quality metadata impacted generic and species-level classification
accuracy of a convolutional neural network. We conducted an empirical
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analysis to examine which specific quality annotations were most im-
portant for classification accuracy. We worked with a set of 22
metadata properties developed at Tulane University to evaluate the
quality of large caches of 2D fish specimen images. Our key finding
was that images with high-quality metadata metrics had significantly
higher classification accuracy in convolutional neural network analysis
than images with low-quality metadata metrics.

We offer a number of recommendations for assessing the quality of im-
ages from biodiversity image repositories to support machine learning
analyses. This investigation serves as a baseline study of useful
metadata for assessing image quality. The methodology and our ap-
proach also serves to inform other research that may examine image
quality and impact on classification for other fishes, other specimens,
and even other disciplines where the image is a central object. Overall
the research conducted serves the needs of the BGNN project, and bio-
logically-focused, machine-learning projects generally, for determining
whether images for biodiversity specimen image repositories are useful
for higher-level analysis.
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at https://github.com/orgs/hdr-bgnn/igm
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