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Abstract

A hybrid particle ensemble Kalman filter is developed for problems with medium
non-Gaussianity, i.e. problems where the prior is very non-Gaussian but the posterior is
approximately Gaussian. Such situations arise, e.g., when nonlinear dynamics produce a
non-Gaussian forecast but a tight Gaussian likelihood leads to a nearly-Gaussian
posterior. The hybrid filter starts by factoring the likelihood. First the particle filter
assimilates the observations with one factor of the likelihood to produce an intermediate
prior that is close to Gaussian, and then the ensemble Kalman filter completes the
assimilation with the remaining factor. How the likelihood gets split between the two
stages is determined in such a way to ensure that the particle filter avoids collapse, and
particle degeneracy is broken by a mean-preserving random orthogonal transformation.
The hybrid is tested in a simple two-dimensional (2D) problem and a multiscale system
of ODEs motivated by the Lorenz-‘96 model. In the 2D problem it outperforms both a
pure particle filter and a pure ensemble Kalman filter, and in the multiscale Lorenz-‘96
model it is shown to outperform a pure ensemble Kalman filter, provided that the
ensemble size is large enough.

1 Introduction 1

Data assimilation of high-dimensional dynamical systems routinely falls to various kinds 2

of ensemble Kalman filters (EnKF) [1]. Ensemble Kalman filters make two fundamental 3

approximations: the first is that the likelihood and prior are both Gaussian, and the 4

second is that the mean and covariance of the Gaussian prior are approximated from an 5

ensemble. The EnKF is known to converge to the correct posterior in the limit of large 6

ensemble size when the distributions are Gaussian [2], but it clearly will not converge to 7

the correct posterior in the presence of non-Gaussianity. 8

In contrast, Sequential Importance Sampling with Resampling (SIR a.k.a. Particle 9

Filtering) is known to weakly converge to the correct posterior in the large-ensemble 10

limit — with remarkably mild constraints on the dynamics, prior, and observing 11

system [3–5]. This flexibility makes SIR superficially attractive for applications like 12

weather forecasting where nonlinear fluid dynamics lead to non-Gaussian distributions. 13

Unfortunately, however, SIR suffers a severe curse of dimensionality that has prevented 14

its practical application to high dimensional data assimilation problems [6–8]. A variety 15

of methods have been proposed to improve the performance of particle filters in 16

high-dimensional problems, including implicit particle filters [9–11], the 17

equivalent-weights particle filter [12–16], likelihood approximations [17], local particle 18
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filters [18–20] and particle filters based on kernel mappings [21] and synchronization 19

methods [22]. Particle filters have also been hybridized with EnKFs [23–26] and with 20

variational methods [27]. Methods have also been proposed to mitigate the assumption 21

of Gaussianity within the Kalman filter, including nonlinear transformations on the 22

univariate marginal distributions (termed ‘Gaussian anamorphosis’ in the 23

literature [28–32]) and methods based on rank statistics [33–36]. 24

Although nonlinear dynamics, nonlinear observation operators, and non-Gaussian 25

error distributions lead to non-Gaussian priors and likelihoods in many applications, the 26

degree of non-Gaussianity is not always so great that it severely degrades EnKF 27

performance. This has led several authors to classify problems according to the degree 28

of nonlinearity, i.e. the degree of non-Gaussianity [34, 37,38]. Following [38] we 29

distinguish three categories: 30

• Mild nonlinearity: The prior and posterior are both approximately Gaussian. 31

• Medium nonlinearity: The prior is very non-Gaussian but the posterior is 32

approximately Gaussian. 33

• Strong nonlinearity: The prior and posterior are both very non-Gaussian. 34

Particle filters and non-Gaussian extensions of the EnKF are not needed in situations 35

with mild nonlinearity, while problems with strong nonlinearity can greatly benefit from 36

such methods. Problems with medium nonlinearity can arise when nonlinear dynamics 37

produce a non-Gaussian prior, but a highly accurate Gaussian likelihood generates a 38

nearly Gaussian posterior. The concept of medium nonlinearity is related to the Laplace 39

approximation [39]. Morzfeld and Hodyss [38] argue that variational methods are more 40

appropriate for medium nonlinearity than EnKF methods because the former make a 41

Gaussian approximation of the posterior, while the latter make a Gaussian 42

approximation of the prior. 43

The goal of the present work is to develop a hybrid of the SIR particle filter with the 44

EnKF that is appropriate for problems with medium nonlinearity. The hybrid is based 45

on the likelihood splitting of Frei & Künsch [23]. At each assimilation cycle, part of the 46

observational information is incorporated by means of an SIR step, and then the 47

remaining observational information is incorporated with a serial square root version of 48

the EnKF. Particle degeneracy that results from the resampling step of the SIR is 49

broken by a mean preserving random orthogonal transformation of the ensemble, as 50

seen in certain EnKFs [40–42] and moment-matching particle filters [43,44]. The goal of 51

the hybrid is to present the EnKF with an intermediate prior that is closer to Gaussian 52

than the true prior. The curse of dimensionality in the particle filter is mitigated by 53

assimilating only part of the observational information, i.e. only moving partway from 54

the prior to the posterior, thereby enabling accurate results with practical ensemble 55

sizes. The hybrid presented here is broadly similar to other hybrids (e.g. [23, 24]), and 56

differs mainly in the explicit focus on problems with medium nonlinearity and in details 57

of the implementation. Differences are discussed further in section 2.3. 58

The hybrid particle ensemble Kalman filter is presented in section 2. The new 59

hybrid is compared to the hybrids from [23,24] and to a particle filter and an ensemble 60

Kalman filter in the context of a simple two-dimensional problem in section 3. A 61

multiscale Lorenz-’96 model from [45] is described in section 4.1, followed by a 62

description of the data assimilation system configuration in section 4.2. The EnKF 63

component of the hybrid uses multiplicative inflation and localization, and the method 64

used to optimize the values of these parameters is described in section 4.3. Results of 65

the experiments are described in section 5, followed by a conclusion in section 6. 66
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2 The hybrid algorithm 67

2.1 SIR 68

Standard sequential importance resampling (SIR) particle filters work as follows [3, 46]. 69

Each ensemble member x
(i)
0 (or ‘particle’) starts with equal weight w

(i)
0 = 1/N , where 70

N is the ensemble size and i = 1, . . . , N . Subscripts refer to time, while superscripts in 71

parenthesis refer to ensemble members. Each ensemble member is forecast until the 72

next assimilation cycle. At assimilation cycle j the weights are updated using the 73

likelihood L(x) 74

w
(i)
j = w̃

(i)
j−1

L
(

x
(i)
j

)

Zj
(1)

where Zj is a normalization constant to ensure that the weights sum to one, and w̃j 75

denotes the effect of resampling: without resampling at step j we have w̃
(i)
j = w

(i)
j 76

whereas with resampling we have w̃
(i)
j = 1/N . A resampling is then applied whereby 77

particles with high weights are replicated and particles with low weights are eliminated. 78

There are a variety of resampling algorithms; here we use the so-called ‘systematic’ 79

resampling scheme of [47]. 80

It is well known that the weights of a particle filter can collapse, especially in high 81

dimensions, i.e. a small number of particles receive a weight near one while all others 82

receive a weight near zero [7,8]. After resampling, only the high-weight particles are left. 83

If an optimal-transport based alternative to resampling is used [24,48,49], then all 84

particles are transported to a very small vicinity of the high-weight particles. In both 85

cases the posterior distribution is poorly estimated. The number of particles with a 86

substantial portion of the weight can be approximated by the effective sample size 87

ESS =
1

∑N
i=1

(

w
(i)
j

)2 . (2)

The ESS takes values between 1 and N , and small ESS indicates that the weights have 88

collapsed. 89

2.2 Ensemble Square Root Filter (ESRF) 90

There are many ensemble Kalman filters, any of which could be hybridized with the 91

smoothed particle filter. We focus here on an ensemble square root filter (ESRF) 92

developed in [50] for sequential assimilation of observations possessing uncorrelated 93

errors. At a single assimilation cycle the ensemble is denoted {x(i)}Ni=1. The ensemble 94

mean is denoted x̄, and the scaled ensemble perturbation matrix is denoted 95

A =
1√

N − 1

[

x(1) − x̄, . . . ,x(N) − x̄
]

. (3)

The ensemble covariance matrix is thus AAT . Covariance inflation is applied by 96

replacing A with
√
1 + rA, where r > 0 is a tunable inflation factor. 97

Observations are linear, and a single scalar observation y takes the form 98

y = hTx+ ε. (4)

Here the observation error ε is a sample from a zero-mean normal distribution with 99

variance γ2 and the row vector H = hT extracts the observations from the state vector 100
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x. It is convenient to define the row vector vT = hTA. With this notation, the ESRF 101

from [50] corresponds to the following update of the ensemble mean 102

x̄a = x̄+
(y − hT x̄)

σ2 + γ2
Av (5)

and the following update of the scaled ensemble perturbation matrix

Aa = A− bAvvT , (6)

b =
1

σ2 + γ2 + γ
√

σ2 + γ2
(7)

where σ2 = vTv and Aa is the scaled analysis ensemble perturbation matrix. 103

Localization is applied by multiplying the increments elementwise by a localization 104

vector ρ. The elements of ρ are e−(d/L)2/2, where d is the distance from xi to y and L 105

is a tunable localization radius. This amounts to updating Eq 5 and Eq 6 to 106

x̄a = x̄+
(y − hT x̄)

σ2 + γ2
ρ ◦ (Av) (8)

and 107

Aa = A− b (ρ ◦ (Av))vT (9)

where ◦ denotes an elementwise product. 108

Evensen was the first to suggest resampling the posterior within the context of an 109

ensemble square root filter by multiplying Aa from the right by a random orthogonal 110

matrix [40]. Since the posterior ensemble covariance matrix is AaAaT , this kind of 111

resampling does not change the ensemble covariance matrix. Sakov & Oke [42] pointed 112

out that the random orthogonal matrix should have 1 (the vector whose elements are all 113

1) as an eigenvector in order for the resampling to preserve the ensemble mean. We 114

construct a new scaled ensemble perturbation matrix Aa by multiplying Aa from the 115

right by a random orthogonal matrix Q that has 1 as an eigenvector. The matrix Q is 116

constructed as follows [42] 117

Q = U

[

1 0

0 P

]

UT . (10)

The matrix U is an orthogonal matrix whose first column is proportional to 1, while the 118

matrix P is a random orthogonal matrix of size N − 1×N − 1. The matrix U is time 119

independent. With a large ensemble size it can become costly to sample a new P at 120

each assimilation cycle. In principle the matrix Q could be constructed once and used 121

repeatedly, but in our numerical experiments P is resampled at each assimilation cycle. 122

Using this method, a single assimilation cycle proceeds as follows 123

• Form the ensemble mean x̄ and scaled ensemble perturbation matrix A. 124

• Inflate the scaled ensemble perturbation matrix: A← (1 + r)A 125

• For each observation, find x̄a and Aa using Eq 8 and Eq 9. 126

• Resample the posterior ensemble by replacing Aa with AaQ. 127

• Reconstitute the ensemble according to x(i) = x̄a +
√
N − 1Ai where Ai is the 128

ith column of A. 129
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2.3 SIR-ESRF hybrid 130

The SIR/ensemble square root filter (SIR-ESRF) hybrid developed here is based on the 131

bridging method of Frei and Künsch [23]. The likelihood L(x) is split into a product 132

(L(x))α · (L(x))1−α where α ∈ [0, 1] is the “splitting factor”. The hybrid proceeds by 133

having the SIR particle filter assimilate using the likelihood (L(x))α, followed by an 134

ESRF assimilation using the likelihood (L(x))1−α. In principle, the methods can be 135

applied in either order [24], but the method developed here is intended for situations 136

where the prior is non-Gaussian but the posterior is nearly Gaussian (‘medium’ 137

nonlinearity according to [38]). In such cases the intermediate posterior produced after 138

the first assimilation with the particle filter should be closer to Gaussian than the prior. 139

The ESRF subsequently performs an assimilation on a problem that more closely 140

conforms to its underlying Gaussian approximation. 141

Following Frei & Künsch [23] we choose the splitting factor α to ensure that the 142

effective sample size is within some tolerance of a tunable theshold. This is achieved 143

with a rootfinding method. A large ESS threshold implies a small α, though the precise 144

value of α depends on the ensemble size. If α = 0, then the hybrid reverts to a pure 145

ESRF because all the particle filter weights become equal. 146

The resampling step of the SIR particle filter leads to a degeneracy where there are 147

multiple copies of some ensemble members. In our numerical experiments we use a 148

deterministic system of ordinary differential equations, so the dynamics do not break 149

the degeneracy. We opt to follow the ESRF assimilation with a mean-preserving 150

random orthogonal transformation that resamples the ensemble within the Gaussian 151

posterior, as described in the foregoing section. 152

There are two other extant hybrid particle/ensemble Kalman filters: those of [23] 153

and [24]. Our hybrid is essentially the same as the hybrid of [24] with the following 154

differences: We use standard resampling methods for the particle filter part of the 155

hybrid instead of the Ensemble Transform Particle Filter (ETPF) method of [48], and 156

we break degeneracy using a random orthogonal transformation rather than the 157

‘particle rejuvenation’ procedure of [24]. Our use of a random orthogonal transformation 158

is motivated by the focus on medium nonlinearity problems. Naive implementations of 159

the ETPF are computationally expensive, and in the experiments with the Hénon map 160

described in section 3 there seems to be little benefit in using the ETPF instead of 161

standard resampling. 162

The hybrid of [23] is significantly different from the one proposed here and from the 163

hybrid of [24] because the first step of Frei & Künsch’s hybrid is really a Gaussian 164

mixture model update and not a particle filter update (cf. [51]), though it does limit to 165

a pure SIR particle-filter update in the limit α→ 1. In particular the particle weights in 166

the hybrid of [23] are different from those used here and in [24], and are more expensive 167

to evaluate. Particle degeneracy is avoided in the hybrid of [23] by using a stochastic 168

update for each step: a perturbed-observation Gaussian mixture update (cf. [51]) for the 169

first step and a perturbed-observation EnKF for the second step (cf. [52, 53]). It is 170

worth noting that the hybrids of [23] and [24] are generally intended to overcome 171

non-Gaussianity in the filtering problem. The hybrid developed here is quite similar to 172

that of [24] but has a tighter focus: we expect the hybrid to achieve near-optimal 173

performance on problems with medium nonlinearity, but not on problems with strong 174

nonlinearity. 175

2.4 Blurring observations 176

The development of particle filters that avoid or reduce the incidence of collapse is an 177

active area of research. The authors recently proposed an alternative that uses the same 178

forecast as the standard particle filter, but imposes a generalized random field model of 179
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observation errors [17]. When the observation errors are Gaussian, the likelihood takes 180

the form 181

L(x) ∝ exp

{

−1

2
(y −H(x))TR−1(y −H(x))

}

. (11)

Here y is the observation vector, H is the observation (or ‘forward’) operator, and R is 182

the observation error covariance matrix. In the particle filter of [17], the observation 183

error covariance matrix R is replaced by a covariance matrix that has increasing 184

variance at small spatial scales. In practice this is implemented by blurring (i.e. 185

smoothing) the innovations y −H(x). The authors recently developed a fast algorithm 186

for blurring scattered data in arbitrary dimensions for this purpose [54]. 187

In the numerical experiments presented here, the spatial domain is periodic and 188

Fourier methods are used to apply the blurring. The true observation error covariance 189

matrix is R = γ2I. In the particle filter with blurred observations this is replaced by 190

γ2
(

STS
)−1

, where the matrix S corresponds to an operator that attenuates the Fourier 191

coefficients using the following spectrum 192

1

(1 + (`k)2)
β

(12)

where β and ` are tunable parameters and k is the Fourier wavenumber. More general 193

blurring spectra are trivial to implement in our experiments, but the above blurring 194

corresponds to the spectrum of the fast algorithm for scattered data developed in [54]. 195

Replacing the true likelihood by a likelihood associated with spatial blurring means 196

that the particle filter is approximating a distribution other than the true Bayesian 197

posterior. The effect of this blurring is to make the likelihood uninformative at small 198

scales, so that the posterior reverts to the prior at small scales. At large scales the 199

blurring likelihood is close to the true likelihood, so the approximate posterior is close 200

to the true posterior. Blurring reduces the effective dimension of the problem by 201

confining the dimensionality to that of the large scales. This has the effect of reducing 202

the minimum ensemble size needed to avoid collapse. It can also improve uncertainty 203

quantification of large scales for a fixed ensemble size. 204

3 Numerical experiment: Hénon map 205

This section serves to illustrate a specific problem with medium nonlinearity, and to 206

compare the three hybrid particle/ensemble Kalman filters with a particle filter and an 207

ensemble Kalman filter. Rather than performing a cycled data assimilation experiment 208

where the output of one cycle serves as the initial condition for the next, we repeat the 209

same experiment multiple times. This serves to focus attention on a single Bayesian 210

assimilation update, avoiding the complication associated with cycled data assimilation 211

where the degree of non-Gaussianity can vary from one cycle to the next. 212

The prior imposed is the joint distribution of U and V obtained by applying one
iteration of the Hénon map to a standard normal initial condition on U0 and V0, i.e.

U = 1− 1.4U2
0 + V0,

V = 0.3U0.

The prior probability density is shown in color in the upper left panel of Fig 1. The true 213

values of U and V are set to −4 and 0.6, respectively, and the observation is drawn 214

from the normal distribution with mean equal to the true value of U and V and 215

diagonal covariance with entries 1 and 0.01. The resulting posterior probability 216

distribution is approximately Gaussian, as shown by the contours in the upper left panel 217
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Fig 1. Upper left: Prior distribution (color) and posterior distribution (contours). The
remaining panels illustrate the five methods. In each panel the blue dots show the prior
ensemble, the black dots show the posterior ensemble, and the green dot shows the
observation. In the right column, the orange dots represent the intermediate ensemble
produced by the first step of each hybrid.

of Fig 1 (where the observation is without error, for convenience). Since the prior is 218

clearly non-Gaussian, a pure EnKF solution is expected to give a biased result 219

regardless of ensemble size. In contrast, the hybrid should achieve nearly optimal 220

performance provided that the ensemble size is large enough to avoid sampling errors. 221

To illustrate these ideas we compare five methods: 222

(i) ETPF: A pure particle filter from [48] 223

(ii) ESRF: A pure ESRF described in section 2.2 224

(iii) GMM-EnKF: The Gaussian mixture model – EnKF hybrid of [23] 225

(iv) ETPF-ESRF: The hybrid of [24] combining the ETPF and the serial square root 226

ESRF described in section 2.2 227

(v) SIR-ESRF: The hybrid described in section 2.3 that combines a standard SIR 228

particle filter and an ESRF with a mean-preserving random orthogonal resampling 229

These five methods are illustrated in Fig 1, using an ensemble size of 100; in every panel 230

the blue dots represent the prior sample and the green dot shows the true value of U 231

and V . The black dots represent the posterior ensemble in each panel, and in the panels 232

illustrating the hybrid methods the orange dots represent the sample from the 233

intermediate posterior distribution. 234

The center left panel illustrates the particle filter (ETPF). The ETPF posterior 235

sample is tightly clustered around a small number of the prior samples, which reflects 236

the fact that the ESS is very low (ESS = 5 in this example), despite having an ensemble 237

size of 100 for a problem with dimension 2. This illustrates the severe ensemble size 238

requirements of particle filters. The lower left panel shows the ESRF. The ESRF 239

produces a posterior close to the true value in this case, but the posterior ensemble it 240

produces shows clear discrepancy from the true posterior. 241

The hybrids all choose the split α to produce an ESS of 30. ETPF-ESRF and 242

SIR-ESRF are shown in the center right and lower right panels, respectively; they use 243

the same split α and the same particle weights. The two methods produce very similar 244

results; one notable difference is that ETPF-ESRF produces an intermediate 245

distribution with less particle degeneracy than SIR-ESRF. This difference in the 246

intermediate distribution does not have a significant impact on the final posterior 247

distribution. GMM-EnKF (upper right panel) uses a different formula for the particle 248

weights — because the first step is a Gaussian mixture model rather than a sum of 249

delta distributions — and thus chooses a different split α to achieve the target ESS of 250

30. As a result, GMM-EnKF produces an intermediate distribution that is more tightly 251

clustered on the observation in comparison to the other hybrids. The posterior ensemble 252

is also slightly less dispersed than the other hybrids, but is qualitatively similar. 253

To carefully compare the performance of the different methods, we solve the problem 254

1,000 times for each method over a range of ESS thresholds. The results are compared 255

on the basis of the root mean squared error (RMSE) where the mean is taken over the 256

1,000 experiments, and the continuous ranked probability score (CRPS; [55, 56]). The 257

median of these 1,000 CRPS values is used as a summary statistic. We also run a 258
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Fig 2. Filter performance over 1,000 trials as a function of ESS threshold. Top row:
RMSE. Bottom row: Median CRPS. Left column: Results for the U variable. Right
column: Results for the V variable. The ETPF results are shown in the plots at ESS
= 0 even though the ESS for ETPF is typically around 4.4. The ESRF results are
shown in the plots at ESS = 100. The dashed line in each panel shows the performance
of an SIR particle filter with 104 particles.

standard SIR particle filter with 104 particles, as a reference approximation of the true 259

Bayesian posterior. 260

Figure 2 shows the performance of the methods as a function of the ESS threshold. 261

The top panels show RMSE and the bottom panels show the median of CRPS for the U 262

(left) and V (right) variables. The mean ESS of the ETPF over 1,000 trials is 4.4, so the 263

smallest ESS threshold was set to 10. The ETPF performance is shown on the plots at 264

ESS= 0, purely for convenience. The pure ESRF performance is shown on the plots at 265

ESS= 100. In each panel the performance of the pure particle filter with an ensemble 266

size of 104 is shown for reference. 267

All three hybrids perform similarly, though the hybrid of [23] performs slightly worse 268

than the other two in terms of RMSE. This may be because the first step of the 269

GMM-EnKF hybrid uses a GMM whose component Gaussians all use a covariance 270

matrix obtained from the full prior ensemble; performance might be improved by using 271

a clustering approach in the GMM following [57]. The hybrids of [24] and section 2.3 272

are both able to perform better than the pure particle filter when the ESS threshold is 273

low, and are able to nearly match the performance of the true Bayesian filter as 274

approximated by the pure particle filter with 104 particles. This is because the pure 275

particle filter with 100 particles is still limited by low ESS (as underscored by the 276

typical ESS value of 4.4). 277

The differences in RMSE between the methods are fairly small – on the order of 25% 278

at most. Differences in CRPS, which measures the quality of the uncertainty 279

quantification (UQ) associated with the ensemble, are much larger. The hybrid filters 280

all achieve nearly optimal UQ, achieving more than 50% improvement in CRPS over 281

both ETPF and ESRF. 282

The pure particle filter is quite general in the sense that it generates a consistent 283

estimator of the true Bayesian posterior for a wide range of problems. The cost of this 284

generality is the requirement of a very large ensemble size. The hybrids trade this 285

generality for improved performance using smaller ensemble sizes on a specific subset of 286

problems, namely those with medium nonlinearity. 287

The code and data associated with this section can be found in [58]. 288

4 Numerical experiment: Lorenz-‘96 289

4.1 A two-scale Lorenz-‘96 Model 290

The experiments in this section make use of a model inspired by the Lorenz-‘96 291

model [59, 60] and developed in [45]. The standard two-scale (or ‘two-layer’) Lorenz-‘96 292

model includes two sets of variables, Xk and Yj,k. There are fewer Xk variables, and 293

they evolve more slowly than the Yj,k variables, so the Xk variables are typically viewed 294

as ‘large-scale’ while the Yj,k variables are viewed as ‘small-scale.’ The difficulty with 295

this model is that it lacks a clear connection to a spatial field of a physical quantity like 296

temperature or velocity, observations of which contain both large and small scales. A 297

model inspired by the Lorenz-’96 models that possesses a single set of variables xi with 298

distinct large-scale and small-scale dynamics was developed in [45] and has been used 299
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Fig 3. A simulation of the two-scale Lorenz-‘96 model initialized at t = 0 with a
sample from a standard normal distribution.

recently as a test model for data assimilation in [61]. The model is governed by a 300

system of ordinary differential equations of the form 301

ẋ = hNS(x) + JTTNL(Tx)− x+ F1 (13)

where h, F ∈ R, J ∈ N, 1 is a vector of ones, and

(NS(x))i = −xi+1(xi+2 − xi−1) (14)

(NL(X))k = −Xk−1(Xk−2 −Xk+1). (15)

The number of state variables in x is 41J ; here J = 128 for a total system dimension of 302

5248. As in the Lorenz-‘96 model, the indices extend periodically. The matrix T 303

projects onto the 41 largest-scale discrete Fourier modes and then evaluates that 304

projection at 41 equally-spaced points on the grid of state variables. The matrix JTT
305

interpolates a vector of length 41 back to the full dimension of x. 306

The large-scale part of the model dynamics is obtained by applying T to x. The 307

result is identical to large-scale dynamics of the standard Lorenz-‘96 model, except that 308

the large scales are coupled to small scales via the term hTNS(x). While the 309

Lorenz-‘96 model is often configured with 40 large-scale variables (e.g. [62]), [45] used 41 310

variables so that the 20th Fourier mode is not split between large and small scales. At 311

small scales, the dynamics are the same as those of original Lorenz-‘96 model but with 312

the direction of indexing reversed. 313

The experiments presented here use h = 0.38 and F = 8. With these parameters the 314

large-scale dynamics are very similar to the standard Lorenz-‘96 model, with fairly weak 315

coupling to the small scales. The exception is when the large-scale Lorenz-‘96 316

component reaches large values (e.g. amplitudes ≥ 10). This occurrence excites a fast 317

small-scale instability, causing the small scales also to reach large amplitudes that feed 318

back locally onto the large-scale dynamics. Fig 3 shows the result of a simulation of this 319

model initialized at t = 0 with a sample from a standard normal distribution. After a 320

short transient the dynamics settle onto an attractor, with large-scale Lorenz-’96 modes 321

propagating eastward and small-scale instabilities transiently excited by the large-scale 322

waves. 323

4.2 Data assimilation system configuration 324

Reference solutions are generated by drawing initial conditions from an uncorrelated 325

standard normal distribution and propagating the initial conditions by 9.0 time units by 326

numerical intergration of the dynamical model, at which point the state arrives at a 327

statistical steady state (cf. Fig 3). Upon reaching that statistically steady state, a 328

reference state is produced at 1500 time intervals separated by 1.2 time units. In the 329

usual interpretation of the standard Lorenz-‘96 model, this time interval corresponds to 330

6 days, which is quite long compared to other studies. At shorter time intervals the 331

model exhibits only mild nonlinearity, where the forecast distribution is still very nearly 332

Gaussian even though the dynamics are nonlinear. At 6 days the forecast distributions 333

are certifiably non-Gaussian, as shown in Fig 4. This figure was produced by projecting 334

a forecast ensemble of 1200 members onto the three leading singular vectors of the 335

ensemble’s empirical covariance matrix. The forecast distribution is dramatically 336

non-Gaussian within this subspace — therefore the EnKF assumption of a Gaussian 337

prior is invalid. 338
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Fig 4. After one ensemble forecast (ensemble size is 1200) the deviations from the
forecast mean are projected into the three leading eigenvectors of the empirical
covariance matrix, with projection coefficients denoted x, y, and z. The four panels
show four different perspectives on the projected ensemble. The color of each dot
corresponds to the particle filter weight assigned using a split α chosen to yield an
effective sample size of ESS = 600.

Our hybrid is intended for situations with medium non-Gaussianity, where the prior 339

is not Gaussian but the posterior is nearly Gaussian. To achieve an approximately 340

Gaussian posterior in the face of a non-Gaussian prior requires a large number of 341

sufficiently-accurate observations. Observations are taken at every fourth grid point (i.e. 342

32 observations for each of the 41 large-scale modes), with observation error variance 343

γ2 = 1/2. This density and accuracy of observations is sufficient to produce a 344

nearly-Gaussian posterior without rendering the data assimilation procedure 345

superfluous. (If the observations are dense enough and accurate enough then the filter 346

adds essentially no information to the observations; this situation is avoided here, as the 347

filter accuracy remains better than the observational accuracy.) 348

Ensemble members are initialized by propagating a sample from the uncorrelated 349

multivariate standard normal distribution by 9.0 time units to arrive at an ensemble of 350

substantially disparate states near the dynamic’s attractor. Because this initial forecast 351

ensemble is fairly uninformative of the true state, there is a transient in filter 352

performance while the filter approaches its asymptotic optimal performance. The 353

results of the first 100 assimilation cycles are ignored in computations of filter 354

performance statistics, so that the results presented are reflective of the statistical 355

steady state of the filter. The data assimilation system was run for 1500 cycles, i.e. 356

nearly 25 years, for each trial in the experiment. 357

4.3 Parameter Optimization 358

The ESRF used here has two primary tunable parameters: the inflation factor r and the 359

localization radius L. The SIR-ESRF hybrid filter has an additional tunable parameter, 360

the ESS threshold that determines the splitting factor α. The version of the hybrid 361

filter with blurred observations (denoted BSIR-ESRF) also has tunable parameters 362

related to the blurring, but these should not be viewed as a primary means of 363

optimizing performance; we expect the hybrid to outperform the pure ESRF using only 364

reasonable blurring parameters chosen a priori. The demarcation between large and 365

small scales occurs at Fourier wavenumber 20 for the Lorenz-‘96 model considered here, 366

so the blurring is chosen to have a Fourier spectrum 367

1
(

1 +
(

k
20

)2
)2 .

To help substantiate a comparison between our SIR-ESRF hybrid approach and the 368

pure ESRF filter, we independently tuned the respective filter parameters. This began 369

by generating parameter configurations, described hereafter as “arms,” from a Sobol 370

sequence of low-discrepancy quasirandom numbers in a bounding box that we chose as a 371

search space [63]. (The term “arm” comes from the literature on multi-armed bandits 372

and denotes a particular configuration to be tested.) The range of inflation factors 373

considered was from r = 0 to r = 0.08 for the pure ESRF, and from r = 0 to r = 0.15 374

for the hybrid. The range of ESS thresholds for the hybrid was from 66 to 400 for 375

N = 400 and 200 to 1200 for the N = 1200. The range of localization radius L was 376

from 128 points (equal to the separation between large-scale Lorenz-‘96 modes) and 320 377
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points. At larger localization radii the filter performance became highly erratic, with 378

some experiments performing extremely well and others extremely poorly. It seems 379

likely that at large localization radii there are rare occurrences of spurious long-range 380

correlations that significantly degrade the filter performance. 381

For each arm, we ran at least four separate experiments with different reference 382

solutions and initial ensembles. For each assimilation cycle we computed the resulting 383

root mean square error (RMSE), spread, and continuous ranked probability score 384

(CRPS; [55, 56]) for both the forecast (prior) and analysis (posterior). RMSE and 385

spread are scalar quantities at each timestep, but CRPS was computed for each state 386

variable at each timestep. We then aggregated these quantities by computing a mean 387

over all state variables, timesteps, and assimilation trials — excluding the first 100 388

timesteps to allow for filter burn-in. 389

We elected to optimize for mean analysis CRPS because it quantifies the accuracy of 390

the entire distributional estimate, whereas RMSE only describes accuracy of the 391

ensemble mean point estimate. The ensemble spread would also provide an estimate of 392

the distributional accuracy, but CRPS is preferable in its ability to quantify the 393

accuracy of non-Gaussian distributional estimates. The median was excluded as an 394

aggregation function to optimize because we found it to be insufficiently sensitive to 395

situations in which the filter produces large intermittent excursion from the true state. 396

After exploring broad patterns with a Sobol sequence, we switched to a Bayesian 397

optimization method for choosing new arms to evaluate. Using a Bayesian optimization 398

method substantially accelerated convergence to optimal filter parameters relative to 399

the quasirandom search. In short, this involved fitting a Gaussian process surrogate 400

model to the mean CRPS observations as a function on the parameter search space, and 401

then choosing new arms that maximize a utility function under that surrogate model. 402

We chose a utility function that estimates improvement from previously observed arms 403

expected under the surrogate model. The arms are then evaluated in parallel, by 404

running the filter on a subset of the reference simulations using those arms’ filtering 405

parameters. Those results are then incorporated with previous results to fit a new 406

Gaussian process surrogate model used in the next iteration of the Bayesian 407

optimization loop. The technical details of the optimization strategy we used are 408

described in S1 Appendix. 409

5 Results: Lorenz-‘96 410

The three methods have indistinguishable performance at ensemble sizes smaller than 411

400, and the performance of all three methods improves with increasing N up to 412

N = 400. This suggests that for N < 400 sampling errors limit filter performance more 413

than errors due to non-Gaussianity. It is probable that this threshold could be reduced 414

with more sophisticated inflation and localization strategies (e.g. [64, 65]). Table 1 415

presents the results for the optimal parameter configurations of each method at two 416

ensemble sizes N = 400 and N = 1200. 417

5.1 N = 400 418

At an ensemble size of 400 the three methods yield very similar results. In all three 419

cases the filter is clearly doing better than simply trusting the observations, because the 420

RMSE is nearly half the standard deviation of observation error. The SIR-ESRF hybrid 421

is slightly worse than the other two on average, because three of the eight runs 422

produced significantly worse results, with analysis CRPS above 1.4. In contrast, the 423

BSIR-ESRF hybrid produces results quite similar to the ESRF. One notable difference 424

is that the optimal inflation parameter r is larger for the hybrid filters than for the pure 425
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Analysis Forecast

N Configuration CRPS RMSE CRPS RMSE

400

ESRF 0.115 0.296 0.548 1.13
SIR-ESRF 0.125 0.328 0.554 1.13

BSIR-ESRF 0.111 0.287 0.533 1.10
1200

ESRF 0.112 0.280 0.539 1.11
SIR-ESRF 0.115 0.281 0.530 1.08

BSIR-ESRF 0.106 0.266 0.500 1.03

Table 1. Results for optimal parameter configurations of each method: pure ESRF,
hybrid SIR-ESRF, and hybrid with blurred observations BSIR-ESRF. Results are
averaged over the last 1400 assimilation cycles and over 8 different sets of initial
conditions.

ESRF, presumably to counteract the under-dispersion that results from the resampling 426

step in the particle filter. (The optimal r for SIR-ESRF is 0.06 vs 0.026 for ESRF.) The 427

optimal effective sample size for the SIR-ESRF hybrid was 297, which is fairly large 428

compared to the ensemble size of 400. 429

Figure 5 shows the GP surrogate model’s prediction for analysis CRPS as a function 430

of localization radius and inflation ratio (1 + r) for the pure ESRF filter at N = 400. 431

Gray squares indicate parameter configurations where experiments were run. The left 432

panel plots the mean of the GP, while the right panel plots the standard deviation. The 433

optimal parameters are in a fairly broad well, with near-optimal localization radii 434

ranging from 100 to 300 and corresponding inflation factors from r = 0 to r = 0.06. 435

Interestingly, as the localization radius increases the corresponding optimal inflation 436

factor does too. At larger localization radii the filter makes more use of each observation 437

leading to greater reduction in the posterior spread, which needs to be counterbalanced 438

by increased inflation. The GP surrogates for analysis RMSE and for forecast metrics 439

are qualitatively similar, as is the behavior of the hybrid filters. The optimal 440

localization radii for the three filters are L = 209 (ESRF), L = 279 (SIR-ESRF), and 441

L = 238 (BSIR-ESRF). These optimal values should not be over-interpreted, because 442

the filters are not overly sensitive to the localization radius within the broad well that 443

contains the optimal values. Nevertheless, the fact that the hybrids are able to use a 444

larger localization radius might suggest that the particle filter resampling step is 445

eliminating outliers that would otherwise lead to spurious long-range correlations. 446

All of the methods lead to under-dispersed ensembles in the sense that the ensemble 447

spread is less than the RMSE. The forecast RMSE is 23% larger than the forecast 448

spread for both ESRF and BSIR-ESRF, while it is 30% larger for SIR-ESRF. Forecast 449

spread is here measured before inflation, but in every case the inflation is not enough to 450

match the inflated spread to the forecast RMSE. The under-dispersion is worse for the 451

analysis ensembles, with RMSE bigger than spread by 50% for ESRF and BSIR-ESRF, 452

and by 80% for SIR-ESRF. This mismatch between spread and RMSE can be reduced 453

by tuning the parameters (particularly by increasing the inflation), but only at the cost 454

of increasing both the RMSE and the CRPS. 455

5.2 N = 1200 456

When the ensemble size is increased from 400 to 1200 the performance of the pure 457

ESRF remains essentially flat, with only a minor improvement in analysis RMSE. This 458
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Fig 5. The Gaussian Process (GP) model of analysis CRPS for the pure ESRF model
at N = 400, showing analysis CRPS as a function of localization radius L and inflation
ratio r. The left panel shows the mean of the GP and the right shows the standard
deviation. The small gray squares indicate parameter values where experiments were
run.

shows that for N ≥ 400 the performance of the pure ESRF is limited primarily by the 459

Gaussian approximation rather than by sampling errors. The optimal inflation 460

parameter for ESRF reduces from r = 0.026 at N = 400 to r = 0.015 at N = 1200, and 461

the optimal localization radius increases from L = 209 to L = 250. This is consistent 462

with the intuition that as ensemble size increases less inflation and localization are 463

needed to counteract sampling errors. The ensemble remains about as under-dispersed 464

as at N = 400, with forecast RMSE 22% larger than forecast spread and analysis RMSE 465

42% larger than analysis spread. 466

The performance of the hybrid filters improves with increased ensemble size, with 467

small improvements in CRPS and RMSE. The SIR-ESRF hybrid is now nearly 468

indistinguishable from the pure ESRF, and the BSIR-ESRF hybrid outperforms both by 469

5-10% in CRPS and RMSE. It is not clear whether further improvements could be 470

obtained by increasing the ensemble size, or whether the hybrids are already close to the 471

true Bayesian posterior. No investigations have been performed at larger ensemble sizes 472

due to the computational expense of optimizing parameters with very large ensembles. 473

Blurring of the observations enables the BSIR-ESRF hybrid to slightly out-perform 474

the ESRF and the SIR-ESRF hybrid. The split parameter α for a fixed ESS threshold 475

tends to be larger in the hybrid with blurred observations: at N = 400 the median α for 476

SIR-ESRF is 10−3.14 while the median α for BSIR-ESRF is 10−2.91; at N = 1200 the 477

median α for SIR-ESRF is 10−2.96 while the median α for BSIR-ESRF is 10−2.48. This 478

suggests that for a fixed split α the blurring increases the ESS, but when the split α is 479

instead chosen to produce a desired ESS the smoothing instead impacts which ensemble 480

members are selected for resampling. Heuristically this can be explained as follows: The 481

hybrid essentially decides a priori how many distinct ensemble members will remain 482

after resampling (by fixing the ESS), so the only impact of the blurring will be on which 483

ensemble members are eliminated and which are replicated. The effect of blurring is to 484

trade improved assimilation performance at large scales for degraded performance at 485

small scales; this trade is effective because predictability on longer time horizons comes 486

from the large scales. Indeed, the RMSE of the analysis mean projected onto the large 487

scale modes is better for BSIR-ESRF than the other two methods. 488

When the ensemble size increases from N = 400 to N = 1200 the optimal inflation 489

for the SIR-ESRF hybrid decreases from r = 0.06 to r = 0.04, and the optimal 490

localization radius increases from L = 279 to L = 316. The optimal ESS threshold is 491

757, although results are not overly sensitive for ESS thresholds in the range of 500 to 492

800. The optimal parameters of the BSIR-ESRF method are similar: r = 0.02, L = 319, 493

and ESS threshold 642. Code and summary data associated with this section can be 494

found in [58]. 495

6 Conclusions 496

This paper has developed a hybrid particle ensemble Kalman filter targeting 497

applications with medium nonlinearity, i.e. applications where the prior (forecast) 498

distribution is very non-Gaussian but the posterior (analysis) distribution is close to 499

Gaussian. It was argued in [38] that variational methods are more appropriate than the 500

EnKF in this situation, because they approximate the posterior as Gaussian whereas 501
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EnKF methods approximate the prior as Gaussian. The hybrid developed here is a pure 502

ensemble approach for problems with medium nonlinearity, not requiring any variational 503

optimization. The particle filter acts first and results in an intermediate distribution 504

that is closer to Gaussian than the prior; this intermediate distribution is then 505

presented to the EnKF, and matches more closely the Gaussian approximation inherent 506

to the EnKF. The hybrid developed here is similar in spirit to previously-developed 507

hybrids (e.g. [23, 24]). The main differences, besides the emphasis on medium 508

nonlinearity, are the use of a serial square root filter and of a random resampling of the 509

posterior ensemble to break the particle degeneracy introduced by the resampling step 510

of the particle filter. 511

The hybrid SIR-ESRF developed here includes a resampling step that reduces the 512

number of distinct ensemble members seen by the EnKF part of the hybrid (which is, in 513

this case, a serial square root ESRF). The EnKF’s performance is limited by sampling 514

errors even in purely Gaussian problems, so reducing the number of distinct ensemble 515

members used within the EnKF increases the sampling errors and can hurt performance. 516

Our hybrid is configured such that the ESS in the particle filter step is specified a priori, 517

and we find that the optimal ESS threshold for the hybrid needs to be at least as large 518

as the ensemble size needed to obtain optimal performance in the pure EnKF. (ESRF 519

performance stopped improving for ensemble sizes greater than 400, and the optimal 520

ESS in the hybrid was between 500 and 800.) This leads one to expect that a larger 521

ensemble size is required for the hybrid to outperform a pure EnKF, so that the particle 522

filter component of the hybrid can effectively resample from the full ensemble size down 523

to a size that is still large enough to obtain good EnKF performance. In problems where 524

non-Gaussianity presents in the form of a few outliers in an otherwise nearly-Gaussian 525

distribution, the hybrid will presumably need only a slightly larger ensemble size, so that 526

it can eliminate outliers during the resampling step. But in problems where the forecast 527

exhibits pathological non-Gaussianities such as multi-modality or strong curvature such 528

as that seen in Fig 4, a much larger ensemble may be needed in order for the hybrid to 529

outperform the pure EnKF. The SIR-ESRF hybrid did not achieve significant 530

improvements over the pure ESRF in our experiments on the multiscale Lorenz-’96 531

model, but the BSIR-ESRF using smoothing of the innovations achieved limited 532

improvements (5-10% improvement in CRPS and RMSE). This limited improvement 533

compared to a pure ESRF may be a reflection of the fact that non-Gaussianity of the 534

forecast is confined to a fairly low dimensional subspace associated with the leading 535

singular vectors, i.e. the fastest directions of expansion along the system’s attractor. 536

Supporting information 537

S1 Appendix Let ci(p) denote the observed mean CRPS for trial i with parameters 538

p. It is reasonable to expect that the mean CRPS is a continuous latent function f of 539

the filter parameters for fixed values of observed data, initial ensembles, random 540

resamplings, and random rotations. But since these fixed values all vary in practice, we 541

can view each f as a realization of a random field F . In this view, the quantities ci(p) 542

are noisy observations of the random field’s true mean F . Our Bayesian optimizer seeks 543

the minimizer of F using these noisy observations. 544

Let cp be the mean CRPS observed over all assimilation trials that were run with 545

parameters p. Then let σcp be the empirical standard error of that mean, computed as 546

the sample standard deviation divided by the square root of the number of trials. For 547

convenience in setting hyperparameters of the Gaussian process model, we scale the 548

search space to the unit cube and standardize the observations. The raw search spaces 549

are hyperrectangles, so they are scaled in each coordinate in the obvious manner to 550

arrive at a unit cube. To standardize the observations, we subtract the mean of the set 551
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{cp}, for all parameter sets p previously evaluated in the experiment, and divide the 552

result by the sample standard deviation σcp of the same set. The raw standard errors 553

σcp are simultaneously divided by σcp to preserve their validity in this standardized 554

output space. We do not introduce new notation for these transformed quantities; the 555

remainder of this section will treat c in the standardized output space and will treat 556

values of p in the scaled parameter space. 557

In these scaled spaces, we form a surrogate model supposing that fp depends on p as
a Gaussian process

GP ∼ N (0, k(p, p′)). (16)

We take k(p, p′) to be the Matérn covariance kernel

k(pi, pj) =
Θs2

1−ν

Γ(ν)

(√
2νd(pi, pj)

)

Kν

(√
2ν · d(pi, pj)

)

, (17)

where Kν is the modified Bessel function of the second kind, and

d(pi,pj) = (pi − pj)
>Θ−1

d (pi − pj) (18)

Here Θd is a diagonal matrix of length scale hyperparameters. Each of the scalars on
the diagonal of Θd corresponds to a length scale of a feature in the space of scaled filter
parameters, and each is endowed with a Gamma distribution prior Γ(λL, rL) with shape
λL = 6 and rate rL = 3. The factor Θs is another hyperparameter that controls the
covariance function’s overall scale, on which we also impose a Gamma distribution prior
Γ(λS , rS) with shape λS = 2 and rate rS = 0.15. We let the smoothness parameter
ν = 5/2 so that realizations are almost surely twice-differentiable. Marginalizing over
the latent function f yields the posterior distribution with log density

lnP (f |{pi},Θ) =− 1

2
s>(K+Ξ)−1s− 1

2
ln |K+Ξ| − Np

2
ln(2π) (19)

+

Np
∑

j=1

[(λL − 1) ln (ΘL,j)− rLΘL,j + λL ln rL − ln Γ(λL)] (20)

+ (λS − 1) ln (ΘS)− rSΘS,j + λS ln rS − ln Γ(λS), (21)

where Kij = k(pi, pj) is a covariance matrix. The equation above obtains by adding the 558

log-likelihood of our hyperparameter priors to Equation 2.30 of [66]. The GP surrogate 559

is then fit to the rescaled data by maximizing the log-density Eq 19 using many restarts 560

of the L-BFGS-B method [67] to arrive at the maximum a posteriori (MAP) estimator. 561

Finally, a batch of candidate arms is generated that approximately optimizes the 562

batched noisy expected improvement acquisition function [68] on the MAP estimator. 563

Batch sizes varied between 1 and 32 depending on computational resources available at 564

the time. 565

References

1. Evensen G. Data Assimilation: The Ensemble Kalman Filter. Springer; 2009.

2. Mandel J, Cobb L, Beezley JD. On the convergence of the ensemble Kalman
filter. Appl Math. 2011;56(6):533–541.

3. Gordon NJ, Salmond DJ, Smith AF. Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. In: IEEE Proceedings F (Radar and Signal
Processing). vol. 140. IET; 1993. p. 107–113.

February 26, 2021 15/19



4. Crisan D, Doucet A. A survey of convergence results on particle filtering methods
for practitioners. IEEE T Signal Proces. 2002;50(3):736–746.

5. Law K, Stuart A, Zygalakis K. Data assimilation. Springer: Cham, Switzerland;
2015.

6. Bengtsson T, Bickel P, Li B. In: Nolan D, Speed T, editors.
Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale
systems. vol. Volume 2 of Collections. Beachwood, Ohio, USA: Institute of
Mathematical Statistics; 2008. p. 316–334. Available from:
http://dx.doi.org/10.1214/193940307000000518.

7. Snyder C, Bengtsson T, Bickel P, Anderson J. Obstacles to high-dimensional
particle filtering. Mon Wea Rev. 2008;136(12):4629–4640.

8. Snyder C, Bengtsson T, Morzfeld M. Performance bounds for particle filters
using the optimal proposal. Mon Wea Rev. 2015;143(11):4750–4761.

9. Chorin AJ, Tu X. Implicit sampling for particle filters. Proc Natl Acad Sci
(USA). 2009;106(41):17249–17254.

10. Chorin AJ, Tu X. An iterative implementation of the implicit nonlinear filter.
ESAIM-Math Model Num. 2012;46(3):535–543.

11. Chorin A, Morzfeld M, Tu X. Implicit particle filters for data assimilation.
Comm App Math Com Sc. 2010;5(2):221–240.

12. Van Leeuwen PJ. Particle filtering in geophysical systems. Mon Wea Rev.
2009;137(12):4089–4114.

13. Ades M, Van Leeuwen PJ. An exploration of the equivalent weights particle filter.
Quart J Roy Meteor Soc. 2013;139(672):820–840.

14. Ades M, Van Leeuwen PJ. The equivalent-weights particle filter in a
high-dimensional system. Quart J Roy Meteor Soc. 2015;141(687):484–503.

15. Zhu M, van Leeuwen PJ, Amezcua J. Implicit equal-weights particle filter. Quart
J Roy Meteor Soc. 2016;142(698):1904–1919. doi:https://doi.org/10.1002/qj.2784.

16. Skauvold J, Eidsvik J, van Leeuwen PJ, Amezcua J. A revised implicit
equal-weights particle filter. Quart J Roy Meteor Soc. 2019;145(721):1490–1502.
doi:https://doi.org/10.1002/qj.3506.

17. Robinson G, Grooms I, Kleiber W. Improving particle filter performance by
smoothing observations. Mon Wea Rev. 2018;146(8):2433–2446.

18. Rebeschini P, Van Handel R. Can local particle filters beat the curse of
dimensionality? Ann Appl Probab. 2015;25(5):2809–2866.

19. Penny SG, Miyoshi T. A local particle filter for high-dimensional geophysical
systems. Nonlinear Proc Geoph. 2016;23(6):391–405.

20. Poterjoy J. A localized particle filter for high-dimensional nonlinear systems.
Mon Wea Rev. 2016;144(1):59–76.

21. Pulido M, van Leeuwen PJ. Sequential Monte Carlo with kernel embedded
mappings: The mapping particle filter. J Comput Phys. 2019;.

February 26, 2021 16/19



22. Pinheiro FR, van Leeuwen PJ, Geppert G. Efficient nonlinear data assimilation
using synchronization in a particle filter. Quart J Roy Meteor Soc.
2019;145(723):2510–2523.
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