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Abstract

A hybrid particle ensemble Kalman filter is developed for problems with medium
non-Gaussianity, i.e. problems where the prior is very non-Gaussian but the posterior is
approximately Gaussian. Such situations arise, e.g., when nonlinear dynamics produce a
non-Gaussian forecast but a tight Gaussian likelihood leads to a nearly-Gaussian
posterior. The hybrid filter starts by factoring the likelihood. First the particle filter
assimilates the observations with one factor of the likelihood to produce an intermediate
prior that is close to Gaussian, and then the ensemble Kalman filter completes the
assimilation with the remaining factor. How the likelihood gets split between the two
stages is determined in such a way to ensure that the particle filter avoids collapse, and

particle degeneracy is broken by a mean-preserving random orthogonal transformation.

The hybrid is tested in a simple two-dimensional (2D) problem and a multiscale system
of ODEs motivated by the Lorenz-‘96 model. In the 2D problem it outperforms both a
pure particle filter and a pure ensemble Kalman filter, and in the multiscale Lorenz-‘96
model it is shown to outperform a pure ensemble Kalman filter, provided that the
ensemble size is large enough.

1 Introduction

Data assimilation of high-dimensional dynamical systems routinely falls to various kinds
of ensemble Kalman filters (EnKF) [1]. Ensemble Kalman filters make two fundamental
approximations: the first is that the likelihood and prior are both Gaussian, and the
second is that the mean and covariance of the Gaussian prior are approximated from an
ensemble. The EnKF is known to converge to the correct posterior in the limit of large
ensemble size when the distributions are Gaussian [2], but it clearly will not converge to
the correct posterior in the presence of non-Gaussianity.

In contrast, Sequential Importance Sampling with Resampling (SIR a.k.a. Particle
Filtering) is known to weakly converge to the correct posterior in the large-ensemble
limit — with remarkably mild constraints on the dynamics, prior, and observing
system [3-5]. This flexibility makes SIR superficially attractive for applications like

weather forecasting where nonlinear fluid dynamics lead to non-Gaussian distributions.

Unfortunately, however, SIR suffers a severe curse of dimensionality that has prevented
its practical application to high dimensional data assimilation problems [6-8]. A variety
of methods have been proposed to improve the performance of particle filters in
high-dimensional problems, including implicit particle filters [9-11], the
equivalent-weights particle filter [12-16], likelihood approximations [17], local particle
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filters [18-20] and particle filters based on kernel mappings [21] and synchronization
methods [22]. Particle filters have also been hybridized with EnKFs [23-26] and with
variational methods [27]. Methods have also been proposed to mitigate the assumption
of Gaussianity within the Kalman filter, including nonlinear transformations on the
univariate marginal distributions (termed ‘Gaussian anamorphosis’ in the

literature [28-32]) and methods based on rank statistics [33-36].

Although nonlinear dynamics, nonlinear observation operators, and non-Gaussian
error distributions lead to non-Gaussian priors and likelihoods in many applications, the
degree of non-Gaussianity is not always so great that it severely degrades EnKF
performance. This has led several authors to classify problems according to the degree
of nonlinearity, i.e. the degree of non-Gaussianity [34,37,38]. Following [38] we
distinguish three categories:

e Mild nonlinearity: The prior and posterior are both approximately Gaussian.

e Medium nonlinearity: The prior is very non-Gaussian but the posterior is
approximately Gaussian.

e Strong nonlinearity: The prior and posterior are both very non-Gaussian.

Particle filters and non-Gaussian extensions of the EnKF are not needed in situations
with mild nonlinearity, while problems with strong nonlinearity can greatly benefit from
such methods. Problems with medium nonlinearity can arise when nonlinear dynamics
produce a non-Gaussian prior, but a highly accurate Gaussian likelihood generates a
nearly Gaussian posterior. The concept of medium nonlinearity is related to the Laplace
approximation [39]. Morzfeld and Hodyss [38] argue that variational methods are more
appropriate for medium nonlinearity than EnKF methods because the former make a
Gaussian approximation of the posterior, while the latter make a Gaussian
approximation of the prior.

The goal of the present work is to develop a hybrid of the SIR particle filter with the
EnKF that is appropriate for problems with medium nonlinearity. The hybrid is based
on the likelihood splitting of Frei & Kiinsch [23]. At each assimilation cycle, part of the
observational information is incorporated by means of an SIR step, and then the
remaining observational information is incorporated with a serial square root version of
the EnKF. Particle degeneracy that results from the resampling step of the SIR is
broken by a mean preserving random orthogonal transformation of the ensemble, as
seen in certain EnKFs [40-42] and moment-matching particle filters [43,44]. The goal of
the hybrid is to present the EnKF with an intermediate prior that is closer to Gaussian
than the true prior. The curse of dimensionality in the particle filter is mitigated by
assimilating only part of the observational information, i.e. only moving partway from
the prior to the posterior, thereby enabling accurate results with practical ensemble
sizes. The hybrid presented here is broadly similar to other hybrids (e.g. [23,24]), and
differs mainly in the explicit focus on problems with medium nonlinearity and in details
of the implementation. Differences are discussed further in section 2.3.

The hybrid particle ensemble Kalman filter is presented in section 2. The new
hybrid is compared to the hybrids from [23,24] and to a particle filter and an ensemble
Kalman filter in the context of a simple two-dimensional problem in section 3. A
multiscale Lorenz-"96 model from [45] is described in section 4.1, followed by a
description of the data assimilation system configuration in section 4.2. The EnKF
component of the hybrid uses multiplicative inflation and localization, and the method
used to optimize the values of these parameters is described in section 4.3. Results of
the experiments are described in section 5, followed by a conclusion in section 6.
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2 The hybrid algorithm
2.1 SIR

Standard sequential importance resampling (SIR) particle filters work as follows [3,46].

Each ensemble member :c(()i) (or ‘particle’) starts with equal weight w(()i) = 1/N, where
N is the ensemble size and ¢ = 1,..., N. Subscripts refer to time, while superscripts in
parenthesis refer to ensemble members. Each ensemble member is forecast until the

next assimilation cycle. At assimilation cycle j the weights are updated using the
likelihood L(x)
(@)
o L (mi )
e (1)

Z;

where Z; is a normalization constant to ensure that the weights sum to one, and w;

denotes the effect of resampling: without resampling at step j we have ibj(-i) = wﬁ-i)

whereas with resampling we have 1I)§-i) = 1/N. A resampling is then applied whereby

particles with high weights are replicated and particles with low weights are eliminated.

There are a variety of resampling algorithms; here we use the so-called ‘systematic’
resampling scheme of [47].

It is well known that the weights of a particle filter can collapse, especially in high
dimensions, i.e. a small number of particles receive a weight near one while all others

receive a weight near zero [7,8]. After resampling, only the high-weight particles are left.

If an optimal-transport based alternative to resampling is used [24,48,49], then all
particles are transported to a very small vicinity of the high-weight particles. In both
cases the posterior distribution is poorly estimated. The number of particles with a
substantial portion of the weight can be approximated by the effective sample size

BS§— 1 (2)

Zi]\il (wﬁ-i)) i

The ESS takes values between 1 and IV, and small ESS indicates that the weights have
collapsed.

2.2 Ensemble Square Root Filter (ESRF)

There are many ensemble Kalman filters, any of which could be hybridized with the
smoothed particle filter. We focus here on an ensemble square root filter (ESRF)
developed in [50] for sequential assimilation of observations possessing uncorrelated
errors. At a single assimilation cycle the ensemble is denoted {z(P}¥ . The ensemble
mean is denoted &, and the scaled ensemble perturbation matrix is denoted
1 _ _
A=—-— |2V -z, .. =™ —z|. (3)

The ensemble covariance matrix is thus AA”. Covariance inflation is applied by
replacing A with v/1 4+ rA, where r > 0 is a tunable inflation factor.
Observations are linear, and a single scalar observation y takes the form

y=hTx +e (4)

Here the observation error € is a sample from a zero-mean normal distribution with
variance v2 and the row vector H = h” extracts the observations from the state vector
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x. It is convenient to define the row vector v7 = hT A. With this notation, the ESRF
from [50] corresponds to the following update of the ensemble mean

(y—h'z)

T =+
o2 +~2

Av (5)

and the following update of the scaled ensemble perturbation matrix

A=A — bAvvT, (6)

b= ! (7)

0-2_;'_72_’_7 /0-2_;'_72
2 T

where 0 = v* v and A?® is the scaled analysis ensemble perturbation matrix.

Localization is applied by multiplying the increments elementwise by a localization
vector p. The elements of p are e_(d/L)z/Q, where d is the distance from x; to y and L
is a tunable localization radius. This amounts to updating Eq 5 and Eq 6 to

—a __ -~ (y - hT:i) o
' =T+ P po (Av) (8)
and
A=A —b(po(Av))v” (9)

where o denotes an elementwise product.

Evensen was the first to suggest resampling the posterior within the context of an
ensemble square root filter by multiplying A® from the right by a random orthogonal
matrix [40]. Since the posterior ensemble covariance matrix is A*A%T this kind of
resampling does not change the ensemble covariance matrix. Sakov & Oke [42] pointed
out that the random orthogonal matrix should have 1 (the vector whose elements are all
1) as an eigenvector in order for the resampling to preserve the ensemble mean. We
construct a new scaled ensemble perturbation matrix A* by multiplying A® from the
right by a random orthogonal matrix Q that has 1 as an eigenvector. The matrix Q is
constructed as follows [42]

110 T
a-v[ e ]u -
The matrix U is an orthogonal matrix whose first column is proportional to 1, while the
matrix P is a random orthogonal matrix of size N —1 x N — 1. The matrix U is time
independent. With a large ensemble size it can become costly to sample a new P at
each assimilation cycle. In principle the matrix Q could be constructed once and used

repeatedly, but in our numerical experiments P is resampled at each assimilation cycle.

Using this method, a single assimilation cycle proceeds as follows

e Form the ensemble mean & and scaled ensemble perturbation matrix A.

Inflate the scaled ensemble perturbation matrix: A + (1+7r)A

For each observation, find £* and A® using Eq 8 and Eq 9.

Resample the posterior ensemble by replacing A with A*Q.

Reconstitute the ensemble according to W = g% + /N — 1A; where A; is the
i*h column of A.
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2.3 SIR-ESRF hybrid

The SIR/ensemble square root filter (SIR-ESRF) hybrid developed here is based on the
bridging method of Frei and Kiinsch [23]. The likelihood L(x) is split into a product
(L(z))® - (L(x))'~® where a € [0, 1] is the “splitting factor”. The hybrid proceeds by
having the SIR particle filter assimilate using the likelihood (L(x))®, followed by an
ESRF assimilation using the likelihood (L(x))!~. In principle, the methods can be
applied in either order [24], but the method developed here is intended for situations
where the prior is non-Gaussian but the posterior is nearly Gaussian (‘medium’
nonlinearity according to [38]). In such cases the intermediate posterior produced after

the first assimilation with the particle filter should be closer to Gaussian than the prior.

The ESRF subsequently performs an assimilation on a problem that more closely
conforms to its underlying Gaussian approximation.

Following Frei & Kiinsch [23] we choose the splitting factor « to ensure that the
effective sample size is within some tolerance of a tunable theshold. This is achieved
with a rootfinding method. A large ESS threshold implies a small «, though the precise
value of @ depends on the ensemble size. If o = 0, then the hybrid reverts to a pure
ESRF because all the particle filter weights become equal.

The resampling step of the SIR particle filter leads to a degeneracy where there are
multiple copies of some ensemble members. In our numerical experiments we use a
deterministic system of ordinary differential equations, so the dynamics do not break
the degeneracy. We opt to follow the ESRF assimilation with a mean-preserving
random orthogonal transformation that resamples the ensemble within the Gaussian
posterior, as described in the foregoing section.

There are two other extant hybrid particle/ensemble Kalman filters: those of [23]
and [24]. Our hybrid is essentially the same as the hybrid of [24] with the following
differences: We use standard resampling methods for the particle filter part of the
hybrid instead of the Ensemble Transform Particle Filter (ETPF) method of [48], and
we break degeneracy using a random orthogonal transformation rather than the
‘particle rejuvenation’ procedure of [24]. Our use of a random orthogonal transformation
is motivated by the focus on medium nonlinearity problems. Naive implementations of
the ETPF are computationally expensive, and in the experiments with the Hénon map
described in section 3 there seems to be little benefit in using the ETPF instead of
standard resampling.

The hybrid of [23] is significantly different from the one proposed here and from the
hybrid of [24] because the first step of Frei & Kiinsch’s hybrid is really a Gaussian
mixture model update and not a particle filter update (cf. [51]), though it does limit to
a pure SIR particle-filter update in the limit @ — 1. In particular the particle weights in
the hybrid of [23] are different from those used here and in [24], and are more expensive
to evaluate. Particle degeneracy is avoided in the hybrid of [23] by using a stochastic
update for each step: a perturbed-observation Gaussian mixture update (cf. [51]) for the
first step and a perturbed-observation EnKF for the second step (cf. [52,53]). It is
worth noting that the hybrids of [23] and [24] are generally intended to overcome
non-Gaussianity in the filtering problem. The hybrid developed here is quite similar to
that of [24] but has a tighter focus: we expect the hybrid to achieve near-optimal
performance on problems with medium nonlinearity, but not on problems with strong
nonlinearity.

2.4 Blurring observations

The development of particle filters that avoid or reduce the incidence of collapse is an
active area of research. The authors recently proposed an alternative that uses the same
forecast as the standard particle filter, but imposes a generalized random field model of
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observation errors [17]. When the observation errors are Gaussian, the likelihood takes
the form

(@) cexp {3 (v~ H(@) "Ry~ H() | (11)
Here y is the observation vector, H is the observation (or ‘forward’) operator, and R is
the observation error covariance matrix. In the particle filter of [17], the observation
error covariance matrix R is replaced by a covariance matrix that has increasing
variance at small spatial scales. In practice this is implemented by blurring (i.e.
smoothing) the innovations y — H (x). The authors recently developed a fast algorithm
for blurring scattered data in arbitrary dimensions for this purpose [54].

In the numerical experiments presented here, the spatial domain is periodic and
Fourier methods are used to apply the blurring. The true observation error covariance
matrix is R = ~2I. In the particle filter with blurred observations this is replaced by
~2 (STS)fl, where the matrix S corresponds to an operator that attenuates the Fourier
coefficients using the following spectrum

1

(1+ (¢k)2)° ()

where 8 and ¢ are tunable parameters and k is the Fourier wavenumber. More general
blurring spectra are trivial to implement in our experiments, but the above blurring
corresponds to the spectrum of the fast algorithm for scattered data developed in [54].

Replacing the true likelihood by a likelihood associated with spatial blurring means
that the particle filter is approximating a distribution other than the true Bayesian
posterior. The effect of this blurring is to make the likelihood uninformative at small
scales, so that the posterior reverts to the prior at small scales. At large scales the
blurring likelihood is close to the true likelihood, so the approximate posterior is close
to the true posterior. Blurring reduces the effective dimension of the problem by
confining the dimensionality to that of the large scales. This has the effect of reducing
the minimum ensemble size needed to avoid collapse. It can also improve uncertainty
quantification of large scales for a fixed ensemble size.

3 Numerical experiment: Hénon map

This section serves to illustrate a specific problem with medium nonlinearity, and to
compare the three hybrid particle/ensemble Kalman filters with a particle filter and an
ensemble Kalman filter. Rather than performing a cycled data assimilation experiment
where the output of one cycle serves as the initial condition for the next, we repeat the
same experiment multiple times. This serves to focus attention on a single Bayesian
assimilation update, avoiding the complication associated with cycled data assimilation
where the degree of non-Gaussianity can vary from one cycle to the next.

The prior imposed is the joint distribution of U and V obtained by applying one
iteration of the Hénon map to a standard normal initial condition on Uy and Vj, i.e.

U=1-1402 +V,

The prior probability density is shown in color in the upper left panel of Fig 1. The true
values of U and V are set to —4 and 0.6, respectively, and the observation is drawn
from the normal distribution with mean equal to the true value of U and V' and
diagonal covariance with entries 1 and 0.01. The resulting posterior probability
distribution is approximately Gaussian, as shown by the contours in the upper left panel
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Fig 1. Upper left: Prior distribution (color) and posterior distribution (contours). The
remaining panels illustrate the five methods. In each panel the blue dots show the prior
ensemble, the black dots show the posterior ensemble, and the green dot shows the
observation. In the right column, the orange dots represent the intermediate ensemble
produced by the first step of each hybrid.

of Fig 1 (where the observation is without error, for convenience). Since the prior is

clearly non-Gaussian, a pure EnKF solution is expected to give a biased result

regardless of ensemble size. In contrast, the hybrid should achieve nearly optimal

performance provided that the ensemble size is large enough to avoid sampling errors.
To illustrate these ideas we compare five methods:

(i
(i

(iii

) ETPF: A pure particle filter from [48]

) ESRF: A pure ESRF described in section 2.2

) GMM-EnKF: The Gaussian mixture model — EnKF hybrid of [23]

) ETPF-ESRF: The hybrid of [24] combining the ETPF and the serial square root
ESRF described in section 2.2

(iv

(v) SIR-ESRF: The hybrid described in section 2.3 that combines a standard SIR
particle filter and an ESRF with a mean-preserving random orthogonal resampling

These five methods are illustrated in Fig 1, using an ensemble size of 100; in every panel
the blue dots represent the prior sample and the green dot shows the true value of U
and V. The black dots represent the posterior ensemble in each panel, and in the panels
illustrating the hybrid methods the orange dots represent the sample from the
intermediate posterior distribution.

The center left panel illustrates the particle filter (ETPF). The ETPF posterior
sample is tightly clustered around a small number of the prior samples, which reflects
the fact that the ESS is very low (ESS = 5 in this example), despite having an ensemble
size of 100 for a problem with dimension 2. This illustrates the severe ensemble size
requirements of particle filters. The lower left panel shows the ESRF. The ESRF
produces a posterior close to the true value in this case, but the posterior ensemble it
produces shows clear discrepancy from the true posterior.

The hybrids all choose the split a to produce an ESS of 30. ETPF-ESRF and
SIR-ESRF are shown in the center right and lower right panels, respectively; they use
the same split o and the same particle weights. The two methods produce very similar
results; one notable difference is that ETPF-ESRF produces an intermediate
distribution with less particle degeneracy than SIR-ESRF. This difference in the
intermediate distribution does not have a significant impact on the final posterior
distribution. GMM-EnKF (upper right panel) uses a different formula for the particle
weights — because the first step is a Gaussian mixture model rather than a sum of
delta distributions — and thus chooses a different split a to achieve the target ESS of
30. As a result, GMM-EnKF produces an intermediate distribution that is more tightly
clustered on the observation in comparison to the other hybrids. The posterior ensemble
is also slightly less dispersed than the other hybrids, but is qualitatively similar.

To carefully compare the performance of the different methods, we solve the problem
1,000 times for each method over a range of ESS thresholds. The results are compared
on the basis of the root mean squared error (RMSE) where the mean is taken over the
1,000 experiments, and the continuous ranked probability score (CRPS; [55,56]). The
median of these 1,000 CRPS values is used as a summary statistic. We also run a
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Fig 2. Filter performance over 1,000 trials as a function of ESS threshold. Top row:
RMSE. Bottom row: Median CRPS. Left column: Results for the U variable. Right
column: Results for the V' variable. The ETPF results are shown in the plots at ESS
= 0 even though the ESS for ETPF is typically around 4.4. The ESRF results are
shown in the plots at ESS = 100. The dashed line in each panel shows the performance
of an SIR particle filter with 10* particles.

standard SIR particle filter with 10* particles, as a reference approximation of the true
Bayesian posterior.

Figure 2 shows the performance of the methods as a function of the ESS threshold.
The top panels show RMSE and the bottom panels show the median of CRPS for the U
(left) and V' (right) variables. The mean ESS of the ETPF over 1,000 trials is 4.4, so the
smallest ESS threshold was set to 10. The ETPF performance is shown on the plots at
ESS= 0, purely for convenience. The pure ESRF performance is shown on the plots at
ESS= 100. In each panel the performance of the pure particle filter with an ensemble
size of 10* is shown for reference.

All three hybrids perform similarly, though the hybrid of [23] performs slightly worse
than the other two in terms of RMSE. This may be because the first step of the
GMM-EnKF hybrid uses a GMM whose component Gaussians all use a covariance
matrix obtained from the full prior ensemble; performance might be improved by using
a clustering approach in the GMM following [57]. The hybrids of [24] and section 2.3
are both able to perform better than the pure particle filter when the ESS threshold is
low, and are able to nearly match the performance of the true Bayesian filter as
approximated by the pure particle filter with 10* particles. This is because the pure
particle filter with 100 particles is still limited by low ESS (as underscored by the
typical ESS value of 4.4).

The differences in RMSE between the methods are fairly small — on the order of 25%
at most. Differences in CRPS, which measures the quality of the uncertainty
quantification (UQ) associated with the ensemble, are much larger. The hybrid filters
all achieve nearly optimal UQ, achieving more than 50% improvement in CRPS over
both ETPF and ESRF.

The pure particle filter is quite general in the sense that it generates a consistent
estimator of the true Bayesian posterior for a wide range of problems. The cost of this
generality is the requirement of a very large ensemble size. The hybrids trade this
generality for improved performance using smaller ensemble sizes on a specific subset of
problems, namely those with medium nonlinearity.

The code and data associated with this section can be found in [58].

4 Numerical experiment: Lorenz-‘96

4.1 A two-scale Lorenz-‘96 Model

The experiments in this section make use of a model inspired by the Lorenz-‘96

model [59,60] and developed in [45]. The standard two-scale (or ‘two-layer’) Lorenz-‘96
model includes two sets of variables, X} and Yj ;. There are fewer X, variables, and
they evolve more slowly than the Y ; variables, so the X} variables are typically viewed
as ‘large-scale’ while the Y variables are viewed as ‘small-scale.” The difficulty with
this model is that it lacks a clear connection to a spatial field of a physical quantity like
temperature or velocity, observations of which contain both large and small scales. A
model inspired by the Lorenz-"96 models that possesses a single set of variables x; with
distinct large-scale and small-scale dynamics was developed in [45] and has been used
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Fig 3. A simulation of the two-scale Lorenz-‘96 model initialized at ¢ = 0 with a
sample from a standard normal distribution.

recently as a test model for data assimilation in [61]. The model is governed by a
system of ordinary differential equations of the form

& = hNs(z) + JT' N (Tz) — x + F1 (13)
where h, FF € R, J € N, 1 is a vector of ones, and

(Ns(®)); = —Tit1(Tite — @i-1) (14)
(NL(X))y = = Xp-1(Xp—2 — Xpy1)- (15)

The number of state variables in « is 41J; here J = 128 for a total system dimension of
5248. As in the Lorenz-‘96 model, the indices extend periodically. The matrix T
projects onto the 41 largest-scale discrete Fourier modes and then evaluates that
projection at 41 equally-spaced points on the grid of state variables. The matrix JT7
interpolates a vector of length 41 back to the full dimension of x.

The large-scale part of the model dynamics is obtained by applying T to . The
result is identical to large-scale dynamics of the standard Lorenz-‘96 model, except that
the large scales are coupled to small scales via the term h'TNg(a). While the
Lorenz-‘96 model is often configured with 40 large-scale variables (e.g. [62]), [45] used 41
variables so that the 20*" Fourier mode is not split between large and small scales. At
small scales, the dynamics are the same as those of original Lorenz-‘96 model but with
the direction of indexing reversed.

The experiments presented here use h = 0.38 and F' = 8. With these parameters the
large-scale dynamics are very similar to the standard Lorenz-‘96 model, with fairly weak
coupling to the small scales. The exception is when the large-scale Lorenz-‘96
component reaches large values (e.g. amplitudes > 10). This occurrence excites a fast
small-scale instability, causing the small scales also to reach large amplitudes that feed
back locally onto the large-scale dynamics. Fig 3 shows the result of a simulation of this
model initialized at ¢ = 0 with a sample from a standard normal distribution. After a
short transient the dynamics settle onto an attractor, with large-scale Lorenz-’96 modes
propagating eastward and small-scale instabilities transiently excited by the large-scale
waves.

4.2 Data assimilation system configuration

Reference solutions are generated by drawing initial conditions from an uncorrelated
standard normal distribution and propagating the initial conditions by 9.0 time units by
numerical intergration of the dynamical model, at which point the state arrives at a
statistical steady state (cf. Fig 3). Upon reaching that statistically steady state, a
reference state is produced at 1500 time intervals separated by 1.2 time units. In the
usual interpretation of the standard Lorenz-‘96 model, this time interval corresponds to
6 days, which is quite long compared to other studies. At shorter time intervals the
model exhibits only mild nonlinearity, where the forecast distribution is still very nearly
Gaussian even though the dynamics are nonlinear. At 6 days the forecast distributions
are certifiably non-Gaussian, as shown in Fig 4. This figure was produced by projecting
a forecast ensemble of 1200 members onto the three leading singular vectors of the
ensemble’s empirical covariance matrix. The forecast distribution is dramatically
non-Gaussian within this subspace — therefore the EnKF assumption of a Gaussian
prior is invalid.
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Fig 4. After one ensemble forecast (ensemble size is 1200) the deviations from the
forecast mean are projected into the three leading eigenvectors of the empirical
covariance matrix, with projection coefficients denoted z, y, and z. The four panels
show four different perspectives on the projected ensemble. The color of each dot
corresponds to the particle filter weight assigned using a split a chosen to yield an
effective sample size of ESS = 600.

Our hybrid is intended for situations with medium non-Gaussianity, where the prior
is not Gaussian but the posterior is nearly Gaussian. To achieve an approximately
Gaussian posterior in the face of a non-Gaussian prior requires a large number of
sufficiently-accurate observations. Observations are taken at every fourth grid point (i.e.
32 observations for each of the 41 large-scale modes), with observation error variance
4?2 = 1/2. This density and accuracy of observations is sufficient to produce a
nearly-Gaussian posterior without rendering the data assimilation procedure
superfluous. (If the observations are dense enough and accurate enough then the filter
adds essentially no information to the observations; this situation is avoided here, as the
filter accuracy remains better than the observational accuracy.)

Ensemble members are initialized by propagating a sample from the uncorrelated
multivariate standard normal distribution by 9.0 time units to arrive at an ensemble of
substantially disparate states near the dynamic’s attractor. Because this initial forecast
ensemble is fairly uninformative of the true state, there is a transient in filter
performance while the filter approaches its asymptotic optimal performance. The
results of the first 100 assimilation cycles are ignored in computations of filter
performance statistics, so that the results presented are reflective of the statistical
steady state of the filter. The data assimilation system was run for 1500 cycles, i.e.
nearly 25 years, for each trial in the experiment.

4.3 Parameter Optimization

The ESRF used here has two primary tunable parameters: the inflation factor r and the
localization radius L. The SIR-ESRF hybrid filter has an additional tunable parameter,
the ESS threshold that determines the splitting factor . The version of the hybrid
filter with blurred observations (denoted BSIR-ESRF) also has tunable parameters
related to the blurring, but these should not be viewed as a primary means of
optimizing performance; we expect the hybrid to outperform the pure ESRF using only
reasonable blurring parameters chosen a priori. The demarcation between large and
small scales occurs at Fourier wavenumber 20 for the Lorenz-‘96 model considered here,
so the blurring is chosen to have a Fourier spectrum

v
(1+ (%))

To help substantiate a comparison between our SIR-ESRF hybrid approach and the
pure ESRF filter, we independently tuned the respective filter parameters. This began
by generating parameter configurations, described hereafter as “arms,” from a Sobol
sequence of low-discrepancy quasirandom numbers in a bounding box that we chose as a
search space [63]. (The term “arm” comes from the literature on multi-armed bandits
and denotes a particular configuration to be tested.) The range of inflation factors
considered was from r = 0 to r = 0.08 for the pure ESRF, and from r =0 to » = 0.15
for the hybrid. The range of ESS thresholds for the hybrid was from 66 to 400 for
N =400 and 200 to 1200 for the N = 1200. The range of localization radius L was
from 128 points (equal to the separation between large-scale Lorenz-‘96 modes) and 320
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points. At larger localization radii the filter performance became highly erratic, with
some experiments performing extremely well and others extremely poorly. It seems
likely that at large localization radii there are rare occurrences of spurious long-range
correlations that significantly degrade the filter performance.

For each arm, we ran at least four separate experiments with different reference
solutions and initial ensembles. For each assimilation cycle we computed the resulting
root mean square error (RMSE), spread, and continuous ranked probability score
(CRPS; [55,56]) for both the forecast (prior) and analysis (posterior). RMSE and
spread are scalar quantities at each timestep, but CRPS was computed for each state
variable at each timestep. We then aggregated these quantities by computing a mean
over all state variables, timesteps, and assimilation trials — excluding the first 100
timesteps to allow for filter burn-in.

We elected to optimize for mean analysis CRPS because it quantifies the accuracy of
the entire distributional estimate, whereas RMSE only describes accuracy of the
ensemble mean point estimate. The ensemble spread would also provide an estimate of
the distributional accuracy, but CRPS is preferable in its ability to quantify the
accuracy of non-Gaussian distributional estimates. The median was excluded as an
aggregation function to optimize because we found it to be insufficiently sensitive to
situations in which the filter produces large intermittent excursion from the true state.

After exploring broad patterns with a Sobol sequence, we switched to a Bayesian
optimization method for choosing new arms to evaluate. Using a Bayesian optimization
method substantially accelerated convergence to optimal filter parameters relative to
the quasirandom search. In short, this involved fitting a Gaussian process surrogate
model to the mean CRPS observations as a function on the parameter search space, and
then choosing new arms that maximize a utility function under that surrogate model.
We chose a utility function that estimates improvement from previously observed arms
expected under the surrogate model. The arms are then evaluated in parallel, by
running the filter on a subset of the reference simulations using those arms’ filtering
parameters. Those results are then incorporated with previous results to fit a new
Gaussian process surrogate model used in the next iteration of the Bayesian
optimization loop. The technical details of the optimization strategy we used are
described in S1 Appendix.

5 Results: Lorenz-‘96

The three methods have indistinguishable performance at ensemble sizes smaller than
400, and the performance of all three methods improves with increasing N up to

N = 400. This suggests that for N < 400 sampling errors limit filter performance more
than errors due to non-Gaussianity. It is probable that this threshold could be reduced
with more sophisticated inflation and localization strategies (e.g. [64,65]). Table 1
presents the results for the optimal parameter configurations of each method at two
ensemble sizes N = 400 and N = 1200.

5.1 N =400

At an ensemble size of 400 the three methods yield very similar results. In all three
cases the filter is clearly doing better than simply trusting the observations, because the
RMSE is nearly half the standard deviation of observation error. The SIR-ESRF hybrid
is slightly worse than the other two on average, because three of the eight runs
produced significantly worse results, with analysis CRPS above 1.4. In contrast, the
BSIR-ESRF hybrid produces results quite similar to the ESRF. One notable difference
is that the optimal inflation parameter r is larger for the hybrid filters than for the pure
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Analysis Forecast

N Configuration CRPS RMSE CRPS RMSE

400
ESRF 0.115  0.296 0.548 1.13
SIR-ESRF  0.125  0.328 0.554 1.13
BSIR-ESRF 0.111  0.287 0.533 1.10

1200

ESRF 0.112 0.280 0.539 1.11
SIR-ESRF 0.115  0.281 0.530  1.08
BSIR-ESRF 0.106  0.266 0.500 1.03
Table 1. Results for optimal parameter configurations of each method: pure ESRF,
hybrid SIR-ESRF, and hybrid with blurred observations BSIR-ESRF. Results are
averaged over the last 1400 assimilation cycles and over 8 different sets of initial
conditions.

ESRF, presumably to counteract the under-dispersion that results from the resampling
step in the particle filter. (The optimal r for SIR-ESRF is 0.06 vs 0.026 for ESRF.) The
optimal effective sample size for the SIR-ESRF hybrid was 297, which is fairly large
compared to the ensemble size of 400.

Figure 5 shows the GP surrogate model’s prediction for analysis CRPS as a function
of localization radius and inflation ratio (1 + r) for the pure ESRF filter at N = 400.
Gray squares indicate parameter configurations where experiments were run. The left
panel plots the mean of the GP, while the right panel plots the standard deviation. The
optimal parameters are in a fairly broad well, with near-optimal localization radii
ranging from 100 to 300 and corresponding inflation factors from r = 0 to r = 0.06.
Interestingly, as the localization radius increases the corresponding optimal inflation
factor does too. At larger localization radii the filter makes more use of each observation
leading to greater reduction in the posterior spread, which needs to be counterbalanced
by increased inflation. The GP surrogates for analysis RMSE and for forecast metrics
are qualitatively similar, as is the behavior of the hybrid filters. The optimal
localization radii for the three filters are L = 209 (ESRF), L = 279 (SIR-ESRF), and
L = 238 (BSIR-ESRF). These optimal values should not be over-interpreted, because
the filters are not overly sensitive to the localization radius within the broad well that
contains the optimal values. Nevertheless, the fact that the hybrids are able to use a
larger localization radius might suggest that the particle filter resampling step is
eliminating outliers that would otherwise lead to spurious long-range correlations.

All of the methods lead to under-dispersed ensembles in the sense that the ensemble
spread is less than the RMSE. The forecast RMSE is 23% larger than the forecast
spread for both ESRF and BSIR-ESRF, while it is 30% larger for SIR-ESRF. Forecast
spread is here measured before inflation, but in every case the inflation is not enough to
match the inflated spread to the forecast RMSE. The under-dispersion is worse for the
analysis ensembles, with RMSE bigger than spread by 50% for ESRF and BSIR-ESRF,
and by 80% for SIR-ESRF. This mismatch between spread and RMSE can be reduced
by tuning the parameters (particularly by increasing the inflation), but only at the cost
of increasing both the RMSE and the CRPS.

5.2 N =1200

When the ensemble size is increased from 400 to 1200 the performance of the pure
ESRF remains essentially flat, with only a minor improvement in analysis RMSE. This
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Fig 5. The Gaussian Process (GP) model of analysis CRPS for the pure ESRF model
at N = 400, showing analysis CRPS as a function of localization radius L and inflation
ratio r. The left panel shows the mean of the GP and the right shows the standard
deviation. The small gray squares indicate parameter values where experiments were
run.

shows that for N > 400 the performance of the pure ESRF is limited primarily by the
Gaussian approximation rather than by sampling errors. The optimal inflation
parameter for ESRF reduces from r» = 0.026 at N = 400 to » = 0.015 at N = 1200, and
the optimal localization radius increases from L = 209 to L = 250. This is consistent
with the intuition that as ensemble size increases less inflation and localization are
needed to counteract sampling errors. The ensemble remains about as under-dispersed
as at N = 400, with forecast RMSE 22% larger than forecast spread and analysis RMSE
42% larger than analysis spread.

The performance of the hybrid filters improves with increased ensemble size, with
small improvements in CRPS and RMSE. The SIR-ESRF hybrid is now nearly
indistinguishable from the pure ESRF, and the BSIR-ESRF hybrid outperforms both by
5-10% in CRPS and RMSE. It is not clear whether further improvements could be
obtained by increasing the ensemble size, or whether the hybrids are already close to the
true Bayesian posterior. No investigations have been performed at larger ensemble sizes
due to the computational expense of optimizing parameters with very large ensembles.

Blurring of the observations enables the BSIR-ESRF hybrid to slightly out-perform
the ESRF and the SIR-ESRF hybrid. The split parameter « for a fixed ESS threshold
tends to be larger in the hybrid with blurred observations: at N = 400 the median « for
SIR-ESRF is 1073 while the median « for BSIR-ESRF is 1072-%1; at N = 1200 the
median « for SIR-ESRF is 107296 while the median o for BSIR-ESRF is 107248, This
suggests that for a fixed split « the blurring increases the ESS, but when the split « is
instead chosen to produce a desired ESS the smoothing instead impacts which ensemble
members are selected for resampling. Heuristically this can be explained as follows: The
hybrid essentially decides a priori how many distinct ensemble members will remain
after resampling (by fixing the ESS), so the only impact of the blurring will be on which
ensemble members are eliminated and which are replicated. The effect of blurring is to
trade improved assimilation performance at large scales for degraded performance at
small scales; this trade is effective because predictability on longer time horizons comes
from the large scales. Indeed, the RMSE of the analysis mean projected onto the large
scale modes is better for BSIR-ESRF than the other two methods.

When the ensemble size increases from N = 400 to N = 1200 the optimal inflation
for the SIR-ESRF hybrid decreases from r = 0.06 to r = 0.04, and the optimal
localization radius increases from L = 279 to L = 316. The optimal ESS threshold is
757, although results are not overly sensitive for ESS thresholds in the range of 500 to
800. The optimal parameters of the BSIR-ESRF method are similar: r = 0.02, L = 319,
and ESS threshold 642. Code and summary data associated with this section can be
found in [58].

6 Conclusions

This paper has developed a hybrid particle ensemble Kalman filter targeting
applications with medium nonlinearity, i.e. applications where the prior (forecast)
distribution is very non-Gaussian but the posterior (analysis) distribution is close to
Gaussian. It was argued in [38] that variational methods are more appropriate than the
EnKF in this situation, because they approximate the posterior as Gaussian whereas
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EnKF methods approximate the prior as Gaussian. The hybrid developed here is a pure
ensemble approach for problems with medium nonlinearity, not requiring any variational
optimization. The particle filter acts first and results in an intermediate distribution
that is closer to Gaussian than the prior; this intermediate distribution is then
presented to the EnKF, and matches more closely the Gaussian approximation inherent
to the EnKF. The hybrid developed here is similar in spirit to previously-developed
hybrids (e.g. [23,24]). The main differences, besides the emphasis on medium
nonlinearity, are the use of a serial square root filter and of a random resampling of the
posterior ensemble to break the particle degeneracy introduced by the resampling step
of the particle filter.

The hybrid SIR-ESRF developed here includes a resampling step that reduces the
number of distinct ensemble members seen by the EnKF part of the hybrid (which is, in
this case, a serial square root ESRF). The EnKF’s performance is limited by sampling
errors even in purely Gaussian problems, so reducing the number of distinct ensemble

members used within the EnKF increases the sampling errors and can hurt performance.

Our hybrid is configured such that the ESS in the particle filter step is specified a priori,
and we find that the optimal ESS threshold for the hybrid needs to be at least as large
as the ensemble size needed to obtain optimal performance in the pure EnKF. (ESRF
performance stopped improving for ensemble sizes greater than 400, and the optimal
ESS in the hybrid was between 500 and 800.) This leads one to expect that a larger
ensemble size is required for the hybrid to outperform a pure EnKF, so that the particle
filter component of the hybrid can effectively resample from the full ensemble size down
to a size that is still large enough to obtain good EnKF performance. In problems where
non-Gaussianity presents in the form of a few outliers in an otherwise nearly-Gaussian
distribution, the hybrid will presumably need only a slightly larger ensemble size, so that
it can eliminate outliers during the resampling step. But in problems where the forecast
exhibits pathological non-Gaussianities such as multi-modality or strong curvature such
as that seen in Fig 4, a much larger ensemble may be needed in order for the hybrid to
outperform the pure EnKF. The SIR-ESRF hybrid did not achieve significant
improvements over the pure ESRF in our experiments on the multiscale Lorenz-"96
model, but the BSIR-ESRF using smoothing of the innovations achieved limited
improvements (5-10% improvement in CRPS and RMSE). This limited improvement
compared to a pure ESRF may be a reflection of the fact that non-Gaussianity of the
forecast is confined to a fairly low dimensional subspace associated with the leading
singular vectors, i.e. the fastest directions of expansion along the system’s attractor.

Supporting information

S1 Appendix Let ¢;(p) denote the observed mean CRPS for trial ¢ with parameters
p- It is reasonable to expect that the mean CRPS is a continuous latent function f of
the filter parameters for fixed values of observed data, initial ensembles, random
resamplings, and random rotations. But since these fixed values all vary in practice, we
can view each f as a realization of a random field F'. In this view, the quantities ¢;(p)
are noisy observations of the random field’s true mean F. Our Bayesian optimizer seeks
the minimizer of I using these noisy observations.

Let ¢, be the mean CRPS observed over all assimilation trials that were run with
parameters p. Then let oz, be the empirical standard error of that mean, computed as
the sample standard deviation divided by the square root of the number of trials. For
convenience in setting hyperparameters of the Gaussian process model, we scale the
search space to the unit cube and standardize the observations. The raw search spaces
are hyperrectangles, so they are scaled in each coordinate in the obvious manner to
arrive at a unit cube. To standardize the observations, we subtract the mean of the set
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{€,}, for all parameter sets p previously evaluated in the experiment, and divide the 55
result by the sample standard deviation oz, of the same set. The raw standard errors  ss

oz, are simultaneously divided by oz, to preserve their validity in this standardized 554
output space. We do not introduce new notation for these transformed quantities; the  sss
remainder of this section will treat ¢ in the standardized output space and will treat 556
values of p in the scaled parameter space. 557

In these scaled spaces, we form a surrogate model supposing that f, depends on p as
a Gaussian process

GP ~ N(0,k(p,p'))- (16)

We take k(p,p’) to be the Matérn covariance kernel

k(pi,p;) = @F?;” (@d(pi,pj)) K, (@ . d(pmp;‘)) , (17)

where K, is the modified Bessel function of the second kind, and

d(pi,p;) = (Pi —P;) O (Pi — D)) (18)

Here ©, is a diagonal matrix of length scale hyperparameters. Each of the scalars on
the diagonal of ®, corresponds to a length scale of a feature in the space of scaled filter
parameters, and each is endowed with a Gamma distribution prior I'(Ar, r1,) with shape
Ar, = 6 and rate r;, = 3. The factor O is another hyperparameter that controls the
covariance function’s overall scale, on which we also impose a Gamma distribution prior
I'(Ag,rs) with shape A\g = 2 and rate rg = 0.15. We let the smoothness parameter
v =5/2 so that realizations are almost surely twice-differentiable. Marginalizing over
the latent function f yields the posterior distribution with log density

1

1 N,
InP (f|{p;},0) =— §ST<K +E) s — 3 nK+ZE| - 717 In(27) (19)

NP
+ ) (AL =1 (Or;) —rOL; + Arlnry, —InT(AL)]  (20)
j=1

+ ()\S — 1) In (es) — TsesJ +Aslnrg —In F(As), (21)

where K;; = k(p;,p;) is a covariance matrix. The equation above obtains by adding the ss
log-likelihood of our hyperparameter priors to Equation 2.30 of [66]. The GP surrogate sso
is then fit to the rescaled data by maximizing the log-density Eq 19 using many restarts s
of the L-BFGS-B method [67] to arrive at the maximum a posteriori (MAP) estimator. sa
Finally, a batch of candidate arms is generated that approximately optimizes the 562
batched noisy expected improvement acquisition function [68] on the MAP estimator.  se3
Batch sizes varied between 1 and 32 depending on computational resources available at  ses
the time. 565
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