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This paper is concerned with learning decision makers’ preferences
using data on observed choices from a finite set of risky alterna-
tives. We propose a discrete choice model with unobserved hetero-
geneity in consideration sets and in standard risk aversion. We ob-
tain sufficient conditions for the model’s semi-nonparametric point
identification, including in cases where consideration depends on
preferences and on some of the exogenous variables. Our method
yields an estimator that is easy to compute and is applicable in
markets with large choice sets. We illustrate its properties using a
dataset on property insurance purchases.

This paper is concerned with learning decision makers’ (DMs) preferences us-
ing data on observed choices from a finite set of risky alternatives with monetary
outcomes. The prevailing empirical approach to study this problem merges ex-
pected utility theory (EUT) models with econometric methods for discrete choice
analysis. Standard EUT assumes that the DM evaluates all available alternatives
and chooses the one yielding the highest expected utility. The DM’s risk aversion
is determined by the concavity of her Bernoulli utility function. The set of all
alternatives — the choice set — is assumed to be observable by the researcher.

We depart from this standard approach by proposing a discrete choice model
with unobserved heterogeneity in preferences and unobserved heterogeneity in
consideration sets. Specifically, preferences satisfy the classic Single Crossing
Property (SCP) of Mirrlees (1971) and Spence (1974), central to important stud-
ies of decision making under risk.! That is, the preference order of any two
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alternatives switches only at one value of the preference parameter.? Given her
unobserved preference parameter, each DM evaluates only the alternatives in her
unobserved consideration set, which is a subset of the choice set.

Our first contribution is to provide a general framework for point identification
of these models. Our analysis relies on two types of observed data variation. In the
first case, we assume that the data include a single (common) excluded regressor
affecting the utility of each alternative. In the second case, we assume that each
alternative has its own excluded regressor. In both cases, the excluded regres-
sor(s) is independent of unobserved preference heterogeneity. When the excluded
regressor(s) also has large support it becomes a “special regressor” (Lewbel, 2000,
2014). For reasons we explain, the case of the single common excluded regressor is
the most demanding from an identification standpoint. Nonetheless, under clas-
sic conditions for identification of full-consideration discrete choice models (see,
e.g., Lewbel, 2000; Matzkin, 2007) and the SCP, we obtain semi-nonparametric
identification of the preference distribution given basically any consideration set
formation mechanism (henceforth, consideration mechanism).> We also prove
identification of the consideration mechanism for the widely used Alternative-
specific Random Consideration (ARC) model of Manski (1977) and Manzini and
Mariotti (2014). The identification argument is constructive and applicable be-
yond the ARC model. We establish identification results for preferences that do
not require large support of the excluded regressor(s). We also show that identi-
fication of both preferences and the consideration mechanism is attainable when
consideration depends on preferences. In particular, we introduce (i) binary con-
sideration types, and (ii) proportionally shifting consideration, both of which can
capture the notion that the DM’s attention probabilistically shifts from riskier
to safer alternatives as her risk aversion increases. In these cases, identification
requires that the distribution of the preference parameter admits a continuous
density function.

We can significantly expand our results with alternative-specific excluded re-
gressors. First, we can allow for essentially unrestricted dependence of consid-
eration on preferences without assuming that the excluded regressors have large
support. Second, we show that consideration can depend both on preferences
and on some excluded regressors. We show this for two cases. In the first case,
there is one alternative (the default) that is always considered. The probability of
considering other alternatives can depend on the default-specific excluded regres-
sor. This is a generalization of the models in Heiss et al. (2016); Ho, Hogan and
Scott Morton (2017); Abaluck and Adams (2020), where the consideration mech-
anism only allows for the possibility that either the default or the entire choice set

2The EUT framework satisfies the SCP, which requires that if a DM with a certain degree of risk
aversion prefers a safer lottery to a riskier one, then all DMs with higher risk aversion also prefer the
safer lottery.

3The identification results are semi-nonparametric because we specify the utility function up to a
DM-specific preference parameter. We establish nonparametric identification of the distribution of the
latter.
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is considered. We, however, allow for each subset of the choice set containing the
default to have its own probability of being drawn and this probability can vary
with the DM’s preferences. In the second case, we allow the consideration of each
alternative to depend on its own excluded regressor, but not on the regressors of
other alternatives (Goeree, 2008; Abaluck and Adams, 2020; Kawaguchi, Uetake
and Watanabe, 2020). In addition, consideration may depend on preferences — a
feature unique to our paper.

Our second contribution is to provide a simple method to compute our likelihood-
based estimator. Its computational complexity grows polynomially in the number
of parameters governing the consideration mechanism. Because the SCP gener-
ates a natural ordering of alternatives akin to vertical product differentiation, our
method does not require enumerating all possible subsets of the choice set. If
it did, the computational complexity would grow exponentially with the size of
the choice set. Moreover, we compute the utility of each alternative only once
for a given value of the preference parameter, gaining enormous computational
advantage similar to that of importance-sampling methods.

Our third contribution is to elucidate the applicability and the advantages of
our framework over the standard application of full consideration random utility
models (RUMs) with additively separable unobserved heterogeneity (e.g., Mixed
Logit). First, our model can generate zero shares for non-dominated alternatives.
Second, the model has no difficulty explaining relatively large shares of dominated
alternatives. Third, in markets with many choice domains, our model can match
not only the marginal but also the joint distribution of choices across domains.
Forth, our framework is immune to an important criticism by Apesteguia and
Ballester (2018) against using standard RUMs to study decision making under
risk. As these authors note, combining standard EUT with additive noise re-
sults in non-monotonicity of choice probabilities in the risk preferences, a clearly
undesirable feature.

Random preference models like the ones we consider are random utility models
as envisioned by McFadden (1974) (for a textbook treatment see Manski, 2009).
We show that our random preference models can be written as RUMs with unob-
served heterogeneity in risk aversion and with an additive error that has a discrete
distribution with support {—oc,0}. Then, it is natural to draw parallels with the
Mixed (random coefficient) Logit model (e.g., McFadden and Train, 2000). In
our setting, the Mixed Logit boils down to assuming that, given the DM’s risk
aversion, her evaluation of an alternative equals its expected utility summed with
an unobserved heterogeneity term capturing the DM’s idiosyncratic taste for un-
observed characteristics of that alternative. However, in some markets it is hard
to envision such characteristics.* We show that limited consideration models and

4Many insurance contracts are identical in all aspects except for the coverage level and price, e.g.,
employer provided health insurance, auto, or home insurance offered by a single company. In other
contexts, unobservable characteristics may affect choice mostly via consideration — as we model — rather
than via “additive noise”. E.g., a DM may only consider those supplemental prescription drug plans that
cover specific medications.
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the Mixed Logit generate several contrasting implications. First, the Mixed Logit
generally implies that each alternative has a positive probability of being cho-
sen, while a limited consideration model can generate zero shares by setting the
consideration probability of a given alternative to zero. Second, the Mixed Logit
satisfies a Generalized Dominance Property that we derive: if for any degree of
risk aversion alternative j has lower expected utility than either alternative k
or [, then the probability of choosing j must be no larger than the probability
of choosing k or I. Limited consideration models do not necessarily abide Gen-
eralized Dominance. Third, in limited consideration models choice probabilities
depend on the ordinal expected utility rankings of the alternatives, while in the
Mixed Logit it depends on the cardinal ranking. This difference implies that
choice probabilities may be monotone in risk preferences in the limited consider-
ation models we propose, while in the Mixed Logit they are not (Apesteguia and
Ballester, 2018).

We illustrate our method in a study of households’ deductible choices across
three lines of insurance: auto collision, auto comprehensive, and home (all perils).
We aim to estimate the distribution of risk preferences and the consideration
parameters and to assess the resulting fit of the models. We find that the ARC
model does a remarkable job at matching the distribution of observed choices, and
because of its aforementioned properties, outperforms the Mixed Logit. Under the
ARC model, we find that although households are on average strongly risk averse,
they consider lower coverages more often than higher coverages. We also find
support for proportionally shifting consideration. In particular, risk-neutral DMs
consider each of the safer alternatives 15% (11%) less often than do extremely
risk averse DMs (DMs with median risk aversion).

The rest of the paper is organized as follows. We describe the model of DMs’
preferences in Section I, and study identification in Section II. In Section IIT we
describe the computational advantages of our approach. Section IV compares
our model to the Mixed Logit. Section V presents our empirical application.
Section VI contextualizes our contribution relative to the extant literature and
offers concluding remarks.

I. Preferences
A. Decision Making under Risk in a Market Setting: An Example

Consider as an example the following insurance market, which mimics the set-
ting of our empirical application. There is an underlying risk of a loss that occurs
with probability p that may vary across DMs. A finite number of alternatives
are available to insure against this loss. Conditional on risk type, i.e., given pu,
each alternative j € D = {1,..., D} is fully characterized by the pair (d;,p;).
The first element is the insurance deductible, which is the DM’s out of pocket
expense in the case a loss occurs. Deductibles are decreasing with index 7, and all
deductibles are less than the lowest realization of the loss. The second element is
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the price (insurance premium), which also varies across DMs. For each DM there
is a baseline price p that determines prices for all alternatives faced by the DM
according to the multiplication rule p; = g;-p+4. Lower deductibles provide more
coverage and cost more, so g; is increasing with j. Both g; and ¢ are invariant
across DMs. The lotteries that DMs face are L;j(x) = (—pj, 1 — pw; —pj — dj, 1),
where x = p. DMs are expected utility maximizers. Given initial wealth w, the
expected utility of deductible lottery L;(x) is

Up(Lj(x)) = (1 = p)uy (w — pj) + puy (w — pj — d;),

where wu,(-) is a Bernoulli utility function defined over final wealth states. We
assume that wu, () belongs to a family of utility functions that are fully charac-
terized by a scalar v (e.g. Constant Absolute Risk Aversion (CARA), Constant
Relative Risk Aversion (CRRA), or Negligible Third Derivative (NTD)), which
varies across DMs.?

Given the risk type, the relationship between risk aversion and prices is stan-
dard. At sufficiently high p, less coverage is always preferred to more cover-
age for all v on the support: U,(Li(z)) > U,(L2(x)) > --- > U,(Lp(x)).
At sufficiently low p, we have the opposite ordering for all ¥ on the support:
U,(Lp(x)) > U,(Lp—i(x)) > --- > U,(L1(z)). At moderate prices, for each
pair of deductible lotteries j < k there is a cutoff value c; () in the interior of
v’s support, found by solving U, (L;(z)) = U,(Lg(x)) for v. On the left of this
cutoff the higher deductible is preferred and on the right the lower deductible is
preferred. In other words, c; () is the unique coefficient of risk aversion that
makes the DM indifferent between L;(z) and Ly(z), known to the researcher
at any given x. Those with lower v choose the riskier alternative L;(z), while
those with higher v choose the safer alternative Ly(x). Provided U,(-) is smooth
in v, ¢ji(x) is smooth in z. In fact, under CARA, CRRA, or NTD, c¢;(x) is
a continuously differentiable monotone function. The prices are such that, un-
der CARA, CRRA, or NTD, whenever U,(Li(x)) > U,(Lj(z)) it is also the
case that U,(L1(z)) > U,(L;j+1(2)).%5 As we show below, this can be stated as
c1j(z) < c1j41(x). That is, if the DM’s risk aversion is so low that she prefers
the riskiest lottery to a safer one, then she also prefers it to an even safer one. Fi-
nally, there are no three-way ties. That is, for a given z there are no alternatives
{4, k,1} such that U,(L;(x)) = U,(Lg(z)) = U, (Li(z)).”

B. Preferences with Single Crossing Property

There is a continuum of DMs. FEach of them faces a choice among a finite
number of alternatives, i.e., a choice set, which is denoted D = {1,...,D}. The

5Under CRRA, it is implied that DMs’ initial wealth is known to the researcher. NTD utility is
defined in Cohen and Einav (2007) and in Barseghyan et al. (2013).

6We analytically verify this claim for our application in Online Appendix B, but it can also be checked
numerically for any given dataset.

"It is straightforward to very this condition, and we do so in our application.
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number of alternatives is invariant across DMs. Alternatives vary by their utility-
relevant characteristics and are distinguished by (at least) one characteristic,
d; € R, j € D, which is DM invariant. This characteristic reflects the qual-
ity of alternative j (e.g., insurance deductible). When it is unambiguous, we may
write d; instead of “alternative j”. Other characteristics may vary across DMs
or across alternatives. Our analysis rests on the excluded regressor(s) x. To keep
the notation as lean as possible, we state our assumptions and results implicitly
conditioning on all remaining characteristics. Hence, alternative j is fully char-
acterized by (dj,x;). We consider two cases. In one case, all x;’s are perfectly
correlated with a single (common) excluded regressor,  (e.g., p in our insurance
example). In the other case, each x; has its own variation conditional on all other
xr, k # j (e.g., each alternative on the market exhibits locally independent price
variation).

Assumption TO. The random variable (or vector) x has a strictly positive den-
sity on a set S C R (S CRP, dimS = D).

Each DM’s valuation of the alternatives is defined by a utility function U, (d;, x),
which depends on a DM-specific index v distributed according to F(-) over a
bounded support.®

Assumption T1. The density of F(-), denoted f(-), is continuous and strictly
positive on [0,7] and zero everywhere else.

The DMs’ draws of v are not observed by the researcher. We require that DMs’
preferences satisfy the Single Crossing Property (SCP).

Assumption T2 (Single Crossing Property). For any two alternatives, d; and
dy, there exists a continuously differentiable function cp r: 8 — Ri_ o] 8-

Uy(dr,xz) > U,(dr,x) Vv € (—o0,cr r(z))
Uu( ) = Ul/(dR ) v = CL,R(J:)
U,(dr,z) < Uy(dr,z) Yv € (cr,r(z),00).

where (L, R) = (j,k) or (L,R) = (k,j). We refer to cp, r(-) as the cutoff between
dr, and dg.

The SCP implies that the DM’s ranking of alternatives is monotone in v. In the
context of risk preferences, if a DM with a certain level of risk aversion prefers a
safer asset to a riskier one, then all DMs with higher risk aversion also prefer the
safer asset. Since the cutoffs may be infinite, the SCP does not exclude dominated
alternatives.

Definition 1 (Dominated Alternatives). Given x, alternative d; is dominated if

8We assume that while v has bounded support, the utility function is well defined for any real valued
V.
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there exists an alternative dj, such that Vv € R, U, (dy,x) > U,(d;,x).

We now establish some useful facts that follow from Assumption T2. First, the
index L in ¢, g(-) indicates the alternative that is preferred on the left of the
cutoff. It is without loss of generality to assume L = min(j, k) and R = max(j, k)
because of the following fact:

Fact 1 (Natural Ordering of Alternatives). Suppose Assumption T2 holds. Then
alternatives can be enumerated such that as v — —oo, U,(dy,x) > U,(de,z) >
-+ > U,(dp,x) for all x at which no alternative is dominated.

We assume that alternatives are enumerated according to the Natural Ordering
of Alternatives.” As the next fact shows, for high values of v the preference over
the Natural Ordering of Alternatives is reversed.

Fact 2 (Rank Switch). Suppose Assumption T2 holds. Consider any x such that
no alternative is dominated. As v — oo, U, (d1,z) < U,(d2,z) < --- < U,(dp, z).
The SCP also has implications for the relative position of the cutoffs. For

readability, we state them for alternatives {di,d2,ds}, but they hold for any
{dj,dk,dl}, ] < k<l

Fact 3 (Simple Relative Order of Cutoffs). Suppose Assumption T2 holds. Given
z, if c12(z) < ci13(z), then c13(x) < ca3(x) or both di and dy dominate d3
(c13(z) = ca3(x) = 00).

The next fact concerns the relative order of cutoffs for non-dominated alterna-
tives. Before stating it, it is convenient to define Never-the-First-Best Alterna-
tives.

Definition 2 (Never-the-First-Best). Given x, alternative d; is Never-the-First-
Best in D if for every v there exists another alternative di(v) in D such that
Uy(dk(l/),.%') > Uy(dj,x).

Fact 4 (Cutoff Relative Order). Suppose that Assumption T2 holds. If, given
x, alternatives dy, ds, and d3 are not dominated, then one and only one of the
following cases holds:

(1) ci2(z) < c13(x) < ca3(x) and dy is the first best in {dy,d2,ds}, Yv €
(c12(2), c13(2));
(11) c12(x) > c13(x) > co3(x) and dy is Never-the-First-Best in {dy,ds,ds};
(i17) c12(x) = c13(x) = ca3(x) and dy is strictly worse than either di or ds

for all v except for v = c12(x) where there is a three-way tie among these
alternatives.

9Under this enumeration, d; will be ordered in either ascending or descending order. In our example
from the previous section, since d; refers to the deductible and v is the risk aversion coefficient, the
natural ordering implies d1 > da > --- > dp.
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Fact 4 is a convenient way to distill and exploit the SCP. In particular, for any
x, the complete preference order of the alternatives is known for all DMs as well
as the identity (of the preference parameter) of the DM indifferent between any
two alternatives d; and dj,.

II. Identification

The classic identification argument for discrete choice under full consideration
rests on the following four canonical assumptions.

Assumption 10. The random variable (or vector) x is independent of prefer-
ences.

Assumption I1. 3X C S s.t. c¢12(z) covers the support of v: [0,0] C
{clvg(x),l‘ € X}

Assumption I12. Consideration is independent of preferences.

Assumption I3. Consideration is independent of x.

The last two conditions are vacuous in the standard full consideration model,
while the first two are typically stated as data requirements.

We first discuss how to obtain identification and the role of Assumptions I0-
I3 in the simplest case of two alternatives (Section II.A). We then consider the
general model with D alternatives. Table 1 organizes our results by assumptions
imposed, the consideration mechanism assumed, data availability, and the theo-
rems’ conclusions. Theorems 1-3 in Section I1.B demonstrate that the preference
distribution and some features of the consideration mechanism are identified with
a single excluded regressor. Next, we show that alternative-specific variation al-
lows for identification of both the preference distribution and the consideration
mechanism when consideration depends on preferences and one of the excluded
regressors (Theorem 4 and Corollary 1 in Section II.C). We discuss testing for
limited consideration in Section II.D. We then turn to the ARC model in Section
II.LE. We show that the full model is identified with a single excluded regressor
(Theorem 5). Moreover, identification attains for a particular case where consid-
eration depends on preferences (Theorem 6). Finally, Theorem 7 shows that with
alternative-specific variation, identification attains when consideration of each al-
ternative depends both on preferences and its own regressor, without requiring
full support.

A. The Role of the Canonical Assumptions
Let the choice set be binary and suppose that the DM considers both alterna-

tives. In addition, let x be a scalar so that there is a single excluded regressor.
Under Assumptions T0O-T2 and 10-13, any realization of x is associated with a
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TABLE 1—IDENTIFICATION THEOREMS

Assumptions Consideration Mechanism Excluded Regressor Identification Result

0 11 12 13 Preferences  Consideration
Theorem 1 v v v v Generic Single v w1
Theorem 2 v v v Generic Single v v
Theorem 3 v v v Loosely Ordered Single v

Theorem 4 v v Generic Alternative Specific v v
Corollary 1 v Generic Alternative Specific v v
Theorem 5 v v v v ARC Single v v
Theorem 6 v v v ARC Single v v
Theorem 7 v ARC Alternative Specific v v

Note: In Theorems 1 and 2 we identify features of the consideration mechanism.

single conditional moment in the data:

c1,2(x)
Pr(d = di|z) / dF = Flc1 (),
0

because the DM chooses d; if and only if her preference parameter is less than
c12(x). The distribution F(-) is non-parametrically identified, since for any v on
the support there is an x such that v = ¢ 2(x).

We emphasize two points. First, given a family of utility functions, for any
x the value of the cutoff can be solved for. Hence, the function ¢; 2(z) (and its
derivatives) can be treated as data. Second, Assumption I1 requires that the cutoff
reaches both ends of the support: there exist z° and 2! such that F(cy2(z%)) =0
and F(cyo(zt)) = 1.

Turning to limited consideration, suppose that d; is considered with probability
0 < ¢1 <1, and whenever it is considered so is d2.'9 Then, d; is chosen when it
is considered and it is preferred to do, yielding:

dPr(d = dy|z)

(1) Pr(d=di|z) = p1F(c1a(z)) and —————— = (plf(cl,z(x))w,

dzx

At first glance, it appears that the distribution of preferences is identified up to
a constant. Yet, at the boundary of the support Pr(d = di|zt) = @1 F(c12(z!)) =
©1, so that ¢ is identified. Once ; is known, the distribution F'(-) is identified
by varying ci 2(x) over the support of v, similar to the full consideration case. We
now explore what happens to identification if Assumptions I0-I3 are not satisfied.

Assumption 10 fails: the variation in z is not independent of preferences.
Then F'(+) is not non-parametrically identified under either full or limited consid-
eration.

Assumption I1 fails: the variation in z is such that ¢j 2(x) only covers an
interval [!, "] C [0,7]. Then the data provide no information about preferences

10With two alternatives this implies that ds is always considered.
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outside of the interval [/, v"]. Inside the interval, the conditional distribution

Fvlv € [V, vY]) = %_FF((”:?) is identified under both limited and full consid-

eration. The consideration probability (and hence the scale of F'(-)) is partially
identified and satisfies the bounds Pr(d = d;|z") < ¢; < 1, where 2" is such that
c12(z") = v*. Point identification can be attained if an additional assumption is
maintained to pin down the scale of F(-). For example, one can simply assume
full consideration and set ¢; = 1.

Assumption 12 fails: ¢; depends on preferences and this dependence is arbi-
trary. Then identification breaks down completely as there is one data moment
to identify two unknown objects. However, since we assume — as it is common
in the econometrics literature — that the density function of v is continuous and
strictly positive, identification is possible for some types of dependence between
consideration and preferences. Suppose there are two consideration types:

, Vv elo,v*
() = {0 WEL)
P15 VVE [V 71/]

where * is an unobserved breakpoint. We show that ¢ , @;, and v* are identified.
First, the product ¢ (v)f(v) is identified under Assumptions 10, I1, and I3, since

. _ " C1,2(1’) ¢ z

at v = ¢y 2(x). The product ¢ (v) f(v) is discontinuous only at the point v*. Thus,
the breakpoint is identified by continuously varying c¢; 2(z) across [0, 7]. Next, the

ratio % is identified by the ratio of the right and left derivatives of Pr(d = d;|z)
at the breakpoint z* (v* = ¢12(2*)). The quantity F(v*) is identified by the
ratio:

Pr(d = dy|z*) $ P

Pr(d =di|z') — Pr(d=di|z*) @, 1—F(*)

Hence, ¢, and P, are identified. Identification of F'(-) on the entire support
follows from Assumption I1. The same argument above applies if the probability
of considering an alternative discretely jumps in z (i.e., Assumption I3 fails).
Concretely, suppose there is a breakpoint in ¢1(z) at 2* and let v* = ¢12(z").
The breakpoint z* is identified by the point of discontinuity in Equation (2), and
the rest follows.

To summarize the case of the binary choice set, the only seemingly real dif-
ference in identification is that without large support the scale of the preference
distribution F'(-) is partially identified under limited consideration, while it is
assumed to be known under full consideration. The key to identification is a
one-to-one mapping from a data moment, Pr(d = dy|z), and the preference dis-
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tribution F'(-) at a single point on the support, ci2(x). As we will show next,
even with just a single excluded regressor, Assumptions 10-13 allow for such a
mapping to be constructed for a generic consideration mechanism and a choice
set of arbitrary size.

B. Single Common Excluded Regressor
We start by introducing general notation for consideration probabilities.

Definition 3. Let QF(K) be the probability that, given x, the DM with preference
parameter v draws consideration set KK C D conditional on x. Let OL(A;B) be
the probability that, given x, every alternative in set A is in the consideration set
and every alternative in set B is not for the DM with preference parameter v:

oraB = Y QK.

K: ACK, BNK=0

The subscript is suppressed when consideration does not depend on prefer-
ences, and the superscript is suppressed when it does not depend on the excluded
regressor(s).

To ease exposition, we build our discussion around a choice set with three
alternatives, D = {d;, da,ds}, such that ¢; 2(z) < ¢13(z) < c23(x) for all z. That
is, by Fact 3, if U, (d1, ) > U,(dz, x) then U, (dy,z) > U, (ds, x) for all z. Suppose
consideration is independent of preferences and of the excluded regressor. Then
the choice frequencies of d; and d3 are

Pr(d = di|z) = O({dy,d2}; 0)F(c12(2)) + O({d1, d3}; d2) F(c13(x))
+ O(dy; {d2, d3});

Pr(d = ds|z) = O({dy, ds}; da)(1 — Fler(x))) + O({da, ds}: 0)(1 — Fleas(a)))
+ O(ds; {d1,da}).

Consider the expression for Pr(d = dj|z). Its RHS has three terms. The first
term captures the case when d; is considered along with ds, which happens with
probability O({dy,d2};0). Given the relative position of the cutoffs, whether ds
is considered or not is irrelevant. The DM will choose d; over ds if and only if her
preference parameter is below ¢ 2(z). The second term captures the case when
dj is considered along with d3, but dy is not considered, which happens with
probability O({d1,d3};dz2). Then the relevant cutoff for choosing d; is ¢ 3(x).
Third, when d; is the only alternative considered, it is chosen regardless of the
DM’s risk aversion. This event occurs with probability O(dy;{d1, d2}).

Since there are two cutoffs, ¢; 2(z) and ¢; 3(z), that enter the moment Pr(d =
dy|z), there is not, without additional assumptions, a one-to-one mapping between
the moment and the preference distribution at one point on the support, as it was
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the case in Section II.A. That is, as z changes, the observed choice frequency of dy
may change because of two types of marginal DMs: those indifferent between d;
and ds, and those indifferent between d; and ds. This is apparent in the following
derivative:

(3) dP(ddZd”x) =0({dy, d2}; @>f<c1,2<ﬂf>>dcld’i(x)

+ O({d1,d3}; dz2) f(c13(z)) ders () .

dx

The corresponding equation for Pr(d = ds|z) does not immediately help, as it
brings about f(-) evaluated at yet another cutoff, ca 3(x):

(4) dPr(dd;dB’ﬂU) =— O({d1,ds}; d2)f(0173(x))d61c}?;c(x)

— O({dz,d3};0) f(c2,3(7)) .

IDENTIFICATION WITH LARGE SUPPORT

When Assumption I1 holds, we can construct a one-to-one mapping sequen-
tially. The algorithm for doing so consists of four steps. First, we rewrite Equation
(3) as

dey () ; dey3(z)

IPHAZ DD _ fer (a8 4 e 122,

(5) dx

where ¢ = % and f(v) = O({d1,d2};0)f(v). Second, for v’s near the
far end of the support, we can find x and 2’ such that v = ¢12(x) < 7 < ¢ 3(2)
and v = ¢13(2') < 7 < ¢cg3(2). For any such pair, f(c13(z)) = f(c23(z")) = 0,

and, hence, by Equations (3) and (4):

dey 2(x) and dPr(d = ds|z’)
dz dz

A

The first equation identifies f(v), while the ratio of the two equations identifies
¢. Third, whenever f(ci3(z)) is known, f (c1,2(z)) is uniquely pinned down by
1,3(z), Vz, we can learn F() sequentially:

dPr(d = di|z)
dz

dey3(x')

= —of()—

= fw)

Equation (5). Because ¢ 2(x) <
1) Take an z' such that f(c;3(z!)) is already known, learn f(c12(z!));
2) Take 22 such that c; 3(z%) = ¢y 2(2!), learn f(cl 2(z?));

3) Let ! = 22. Repeat Step 2 until the entire support has been covered, i.e.,
c1a(2?) < 0.
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For this approach to work, ¢; 3(z) cannot “catch up” to ¢ 2(z) (i.e., as assumed,
c12(x) < c1,3(z) whenever ¢;2(x) is on the support). This requires that DMs
with preference coefficients on the support are never indifferent between d; and
two other alternatives — i.e. there are no three way ties involving d;. Fourth,
integration of f (v) over the entire support recovers the scale and the true density.
Indeed,

[ wiiv =0t a0 [ 501w = 0(fr, a0
0 0

pins down O({di,dz2};0), and hence f() is identified. A generalization of this
strategy yields our first formal result.

Theorem 1. Suppose Assumptions 10, 12, 13, T0-T2 hold, and

1) The consideration mechanism is s.t. with positive probability di and dg are
considered together;

2) Assumption I1 holds for X C S s.t. Vx € X

Ul,(dl,.%') > Ul,(dj,ac) = Uy<d1,$) > Uy(dj+1,.%'), Vj > 1.

Then f(-) is identified and so are O(di;0) and O({di,d2};0). For j > 2, if
Pr(d = dj|x) > 0 for some x, then O({d1,d;};{da,...,d;—1}) is identified.

The first assumption of the theorem ensures that a generalized version of Equa-
tion (5) is informative. The second assumption implies that the cutoffs for alterna-
tive dy are ordered: ¢y ;(x) < c1 j4+1(x). While Theorem 1 requires large support
for the excluded regressor, it does not generally require it to exhibit variation that
forces alternative d; to go from being the first best to the least preferred. Rather,
the theorem requires that at one extreme of the support alternative d; dominates
all others. However, at the other extreme we only require that ds is preferred to
dy for all DMs. Identification is attained for any consideration mechanism that
allows d; and do to be considered together with positive probability. Moreover,
if the probability of being considered together is zero for d; and do, but positive
for dy and d3, the theorem still holds as long as the assumptions of the theorem
hold for d3 instead of dy. Theorem 1 identifies some features of the consideration
mechanism. These features may be sufficient for identifying the entire mecha-
nism. In particular, as shown in Section II.E, Theorem 1 yields identification of
the ARC model, including the consideration mechanism.

Dependence between consideration and preferences.

We next generalize the example in Section II.A by allowing for high/low con-
sideration types.

Assumption I2.BCT (Binary Consideration Types). For some unknown v* €
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(0,7):
) QK) ifv<vr
QuiK) = {Q(IC) if v>v*
where, Vv and VK C D, Y jcp Qu(K) =1 and Q,(K) > 0.

Theorem 2. Suppose Assumptions 10, 12.BCT, 13, T0-T2, and Condition 2 of
Theorem 1 hold. Suppose Condition 1 of Theorem 1 holds for all v. Then f(-) is
identified and so is O, ({d1,dz2};0). Suppose w is discontinuous. Then
v* is identified. If, in addition, ¢ j(x) < v* for some x € X and j > 2, then
O,({d1,d;};{da,...,d;j—1}) is also identified.

. ... dPr(d=d
A discontinuity in % may occur when a cutoff ¢ j(x) crosses v*. In

some cases it may not happen despite binary consideration. For example, the
probability of considering dy and dy may jump but in a way that O, ({d1, dz2};0)
remains constant. In such a case, f(-) is identified but not necessarily the break-
point v*.

The theorem holds if Assumption I2.BCT is replaced with

e JQIK) ifx<a
(k) = {Q(IC) if z > a*

for some unknown z* € S. In sum, preferences can be identified even when there
are threshold effects affecting consideration. Assumption 12.BCT is one instance
where Assumption 12 does not hold but identification attains. Another instance,
which we establish for the ARC model in Section II.E, is proportionally shifting
consideration.

IDENTIFICATION WITHOUT LARGE SUPPORT

Returning to our example with three alternatives, it is immediate to see that if
whenever d; is considered so is dy, i.e. O({d1,ds};d2) = 0, the one-to-one mapping
is restored. Indeed, the second term on the RHS of Equation (3) disappears and
we are back to Equation (1).

Proposition 1. Suppose Assumptions 10, 12, 13, TO-T2 hold, and

1) The consideration mechanism is such that dy is considered with positive
probability and whenever it is considered so is ds;

2) There exists X C S such that c1 (), * € X, covers [V!,v"] C [0,7] and
Vere kX

Uy(dl,l') > Uy<d2,$) = Uy(dl,x) > Uy(dj,l'), Vj > 2.

Then F(vlv € [V}, vY]) is identified.
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The proposition above uses (the derivative of) Pr(d = dj|z) to create the one-
to-one mapping from data to the preference density function. Depending on
the consideration mechanism, the same can be achieved using the derivative of

PI‘(d € {dl, do, ... ,d]}’l‘)

Definition 4 (Loosely Ordered Consideration). The consideration mechanism is
loosely ordered around j, 7 < D, if whenever alternatives d and dy, k < j <,
are both considered, so are d;j and d;ji1. In addition, d; and dj1 have a positive
probability of being considered together.

Theorem 3. Suppose Assumptions 10, 12, 13, T0O-T2 hold, and
1) The consideration mechanism is loosely ordered around j.

2) There exists X C S such that cjj+1(x), z € X, covers [V, v"] C [0,7] and
Vee X

Uy(dj, ) > Uy(dj1,2) = Uy(dj, x) > Uy(dy, ),  Vk>j+1,
Uy(derl,l’) > U,,(dj,l‘) = Uy(dj+1,$) > Uy(dk,l'), VEk < ]

Then F(vlv € [V!,vY]) is identified.

Condition 1 in Theorem 3 — a loosely ordered consideration mechanism — splits
the choice set into “low quality” and “high quality” sets. Any subset of the low
quality set can form the consideration set and so can any subset of the high
quality set. However, if a consideration set contains both high and low quality
alternatives, then it must also contain the “bridging” alternatives {d;,d;+1}. The
following mechanisms can generate loosely ordered consideration:

I. Bottom-Up consideration: Alternative dj is considered only if di_1 is
considered;

II. Top-Down consideration: Alternative dj is considered only if di.q is
considered;

III. Center-to-edges consideration: Alternative d;, 1 < j < D, is always
considered. Alternative dy, k > j, is considered only if dj_; is considered.
Alternative di, k < j, is considered only if dj; is considered;

IV. Trimmed-from-the-edges consideration: Only consideration sets of the
form K = {dg,dg+1,-..,dk1} can occur with positive probability.

The identification result in Theorem 3 extends to mixtures of these mechanisms.
They cover a wide array of models including versions of threshold models (Kimya,
2018), (partial) elimination-by-aspects (Tversky, 1972), extremeness aversion (Si-
monson and Tversky, 1992), and edge aversion (Teigen, 1983; Christenfeld, 1995;
Rubinstein, Tversky and Heller, 1997; Attali and Bar-Hillel, 2003), as well as
models that embed budget or liquidity constraints.
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Condition 2 in Theorem 3 requires that whenever a DM prefers d; to d;1, she
also prefers d; to all high quality alternatives; and whenever a DM prefers d;;1
to dj, she also prefers d;;1 to all low quality alternatives. This condition can
be tested in any given dataset and is automatically satisfied if no alternative is
never-the-first-best.

The fundamental difference between Theorems 1 and 3 is that the former im-
poses the large support requirement, while the latter does not. On the other
hand, Theorem 1 imposes less restrictions on the consideration mechanism than
Theorem 3.

C. Alternative-specific Excluded Regressors

With alternative-specific excluded regressors we can allow for consideration to
depend on preferences. To illustrate, we continue to assume that the choice set
is {d1,d2,d3}. However, now each alternative has its own regressor z; that only
affects the utility of alternative j: = = (z1,x2,x3). In addition, these regressors
vary independently of one another and each consideration set contains at least
two alternatives.

Identification is built on the following insight. Consider the change in the choice
frequency of alternative d; in response to an incremental change in x3 (e.g., a price
increase for alternative dz). The DMs who may switch to d; are those indifferent
between d; and ds and consider them both. If these DMs prefer d; and ds to
ds, whether dg is considered is irrelevant; otherwise, for the response to occur, ds
should not be considered. These two cases translate to the following statements:
(i) c12(z) < c13(x) < ca3(x); and (i) ca3(x) < c13(x) < c12(x) and d3 is not
considered. No other ordering of cutoffs can occur by Fact 4. With alternative
specific variation we can construct two vectors of regressors, z* and x“, such that
v =c12(2') < c13(2") < ca3(2?) and co3(2™) < c13(2%) < c12(2") = v.1! The
derivative of the choice frequency of d; with respect to x5 for these cases are,
respectively:

() 2= Gl [Qu({dh ds}) + O, ({ds. do, dg}ﬂ vy 21242,
xo Z2
R e ) [ 25528,

It follows that Q,({di,d2})f(v) and Q,({d1,d2,ds})f(v) are identified. In a
similar fashion, Q,({d1,ds})f(v) and Q,({d2,ds})f(v) are identified. Hence, the
consideration probability of each non-singleton set is identified up to the same

HFirst, we can construct an x such that U, (di,z) = U,(d2,z) = U,(ds,x). To do so, we fix the
price of the first alternative, x1, and find a price for the second alternative that makes the DM with
preference parameter v indifferent between d; and ds. Since x3 does not affect the utility of d; nor da,
we can find an x3 so that the DM is indifferent between ds and d;, and hence she is indifferent between
all three alternatives. The two cases are then constructed by taking a small perturbation of z3. Taken
in a direction that reduces U, (ds, z) generates Case (3); and in the opposite direction Case (7).
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scale. The scale, however, is identified because consideration probabilities must
sum to one: f(v) =) Qu(K)f(v). Hence, Q,(K) is also identified for each K.
The following theorem generalizes this idea.

Definition 5 (Alternative-Specific Variation). We say that there is alternative-

U0 £ () e |y = j.,

specific variation if U,(d;, ) depends only on x;: o
Theorem 4. Suppose Assumptions 10, 13, TO-T2 hold, there is alternative-specific
variation, and the choice set contains at least three alternatives. Suppose

1) Each consideration set contains at least two alternatives and Q,(-) is mea-
surable;

2) For a given value of v, there exists an x with an open neighborhood around
it in S s.t.

Uy,(dy,x) =U,(d2,x) =--- =U,(dp, x).

Then f(v) is identified and so are Q,(K), VK C D.

The assumptions of the theorem above rule out singleton (and empty) con-
sideration sets: identification is impossible with singleton consideration sets and
arbitrary dependence on preferences, because any empirical choice frequency can
be explained by such consideration sets. An alternative approach is to have one
alternative — the “default” — that is always considered as the following corollary
demonstrates. The identification argument exploits the response of Pr(d = d;|x)
to changes in xj, but not the response of Pr(d = di|x) to changes in x;. Hence,
D — 1 excluded regressors are sufficient for identification, allowing for arbitrary
dependence of consideration on one (the default’s) excluded regressor.

Corollary 1. Suppose Assumptions 10, TO-T2 hold, there is alternative-specific
variation, the choice set contains at least three alternatives, all consideration sets
contain di, and

1) Consideration is independent of x_1 = (x2,...,xp): QLK) = QL (K), and
QT1(-) are measurable functions, continuous in x;

2) The consideration of K = {d1} is independent of v: Q7' (dy) = Q"' (dy) < 1,
Vv,

3) For a given value of x1 and each value of v € [0, 7], there exists an x_1 and
an open neighborhood around v = (z1,x_-1) in S s.t.

Uy(dl,{L‘) = Uy(dg,x) == Ul,(dD,l').

Then f(v) is identified and so are QF'(K), VI C D, for all v on the support.



18 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

Corollary 1 generalizes the model of Heiss et al. (2016); Ho, Hogan and Scott Mor-
ton (2017) in two dimensions. First, here each subset of the choice set containing
the default has its own probability of being drawn. Second, this probability can
vary with the DM’s preferences as well as with the excluded regressor of the
default alternative.

D. Testing for Limited Consideration

Since full consideration is a special case of limited consideration, it follows
from the identification results above that under the SCP one can test for full
consideration. The proposition below states one way of doing so without: (1)
relying on large support; (2) specifying a consideration mechanism; or (3) invoking
the independence assumptions 12 and I3.

Proposition 2. Suppose Assumptions 10, TO-T2 hold. Suppose there exist x,x' €
S, and sets L, L' C D s.t. for some v* € [0, 7]

1) argmax;cp Uy (dj, ) € L, Vv € [0,v7), and argmax;cp Uy (dj,z) € D\ L,
Vv e (v*, 7]

2) argmax;cp U, (dj,2") € L', Vv € [0,v%), and argmax;cp Uy (dj, 2') € D\ L',
Vv e (v*, 7]

If Pr(d € L|z) # Pr(d € L'|2'), then there is limited consideration.

Condition I of the proposition requires that, given x, the first-best alternative
belongs to £ for all DMs with v < v* and to D \ £ for all DMs with v > v*.
Condition 2 is the identical requirement, but given z’ and stated for £’. Under
these conditions and full consideration, the probability of choosing an alternative
in £ or, respectively, £’ should be F(v*) in both cases. Thus, if Pr(d € L|z) #
Pr(d € L'|2'), then there is a limited consideration mechanism pushing DMs’
choices away from £ and £’ at different rates.

E. The ARC Model

We now introduce a specific consideration mechanism, while maintaining the
preference structure, including the SCP, from Section I.B. We refer to this model
as the Alternative-specific Random Consideration (ARC) model (Manski, 1977;
Manzini and Mariotti, 2014). Each alternative d; appears in the consideration
set with probability ¢; independently of other alternatives. For now, we assume
that these probabilities do not depend on DMs’ preferences or the excluded re-
gressor. Once the consideration set is drawn, the DM chooses the best alternative
according to her preferences. To avoid empty consideration sets, following Manski
(1977), we assume that at least one alternative whose identity is unknown to the
researcher is always considered.!?

121n the previous version of this paper (Barseghyan, Molinari and Thirkettle, 2019) this completion
rule is called Preferred Option(s). There we also provide identification results for other completion
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Assumption ARC (The Basic ARC Model). The probability that the consider-
ation set takes realization K is

oK) =[[ex II O-ww), vKcD,

ke keD\K

where p; >0, Vj, and 3d* s.t. pg« = 1.

By assuming ¢; > 0, we omit never-considered alternatives from the choice
problem. Since a never-considered alternative is never compared to any other
alternative, whether it is in the choice set or not does not affect the DM’s problem.
Hence, never-considered alternatives have no impact on what we can learn about
preferences.

Under the assumptions of Theorem 1, identification attains. Notably, each
consideration parameter ; is identified (as long as d; is chosen with positive
probability at some z).

Theorem 5. Suppose Assumptions 10, 12-13, T0-T2, ARC hold, and Assumption
11 holds for X C S s.t. Ve € X

Uy(d1,$) > Uy(dj,x) = Uy(dl,m’) > Uy(dj+1,:11), Vi > 1.

Then f(-) is identified and so are p1 and @2. In addition, if Pr(d = dj|x) # 0 for
some x, then p; is identified.

PREFERENCE-DEPENDENT CONSIDERATION

Returning to our example with three alternatives, recall that we have an ad-
ditional moment Pr(d = ds|x). The information it provides allows us to identify
some forms of dependence between consideration and preferences, i.e., to relax As-
sumption I12. To see how, suppose ds is always considered. Then, with preference
dependence, the choice frequencies become:

c1,2(x) Iz
Pr(d = dy|z) = / p1(v)dF and Pr(d=ds|z) = / w3(v)dF.
0 c

2,3(x)
e1(v)
e3(v)”
are required to obtain point identification of the ¢;(r)’s. In Section IL.B we
provided identification results for Binary Consideration Types. Here, leveraging
the additional structure provided by the ARC model, we can allow for more
flexible dependence between consideration and preferences. We do so through

The ratio of the derivatives of these two moments yields

More assumptions

rules, including Coin Toss (if the empty consideration set is drawn, the DM randomly uniformly picks
one alternative from the choice set, i.e. each alternative has probability 1/D of being chosen), Default
Option (there is a preset alternative that is chosen if the empty set is drawn), and Outside Option (the
DM exits the market if the empty set is drawn).
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a proportionally shifting consideration mechanism, formally defined below. This
mechanism may arise when there is a cost to evaluate each alternative. In such
a case, the DMs may consider alternatives that they ex-ante deem more aligned
with their preferences (e.g., the DM’s consideration shifts away from riskier to
safer alternatives as her risk aversion increases).

Assumption ARC.P (ARC with Proportional Consideration). The consider-
ation mechanism follows the ARC model with {D > 4 & 1 < d* < D} or
{D=3& d* =2}, and

il —a(v) ifj<d
pijv) =141 if j =d*
pi(l+a(v) ifj>d*

s.t. o) is differentiable a.e., &/(-) #0 a.e., (V) =0, 0 < ¢;(v) < 1, Vj # d*,
Vv € [0,7].

In the case with three alternatives, o1v) _ erl=av) gy, this, £* is identified

e3(v) — e3(l+a(v)) ®3

when z and 2’ are chosen such that ¢ 2(z) = ¢z 3(2") = v. Once % is identified,
1—a(v)
1+a(v)
follows from substituting «(v) into the expression for
below generalizes this argument.

is known for all v; hence, a(r) can be solved for. Identification of f(v)

w‘ The theorem

Definition 6. (No Three Way Ties) For a given x, there are no-three way ties if
v € [0,7] and {j,k,1} s.t. U(dj,x) = U(dy,x) = U(d, x).

Theorem 6. Suppose Assumptions 10, 13, T0-T2, ARC.P hold, and Assumption
11 holds for X s.t. Vx € X there are no three-way ties and

Uy(dl,l‘) > Ul,(dj,l‘) = U,,(dl,l‘) > Uy(dj+1,x)7 \V/] > 1,
Uy(dD,.’L') > Uy(dj,x) = Uy(d[),l') > Uy(dj_l,x), Vi <D,

and 3z € X s.t. cjip(x) <0, V4, k, j <k. Then f(-) and {p;(-) ?:1 are identified.

The conditions of the theorem are stronger than in Theorem 5, as they impose
relative order of the cutoffs not only for alternative d; but also for dp. In many
cases, the relative order of ¢ ;j(x)’s alone is sufficient, for example when d; is
always considered.

IDENTIFICATION WITH ALTERNATIVE-SPECIFIC EXCLUDED REGRESSORS
By leveraging features of the ARC model, the identification results in Section

II.C can be extended to the case where the consideration of d; is a function
both of x; and preferences. This differs from Corollary 1, which restricted the
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consideration of alternative d; to depend only on the default alternative’s excluded
regressor. We continue to assume that the choice set is {di,d2,ds} and that
dy is always considered. Let the consideration of d; be a measurable function
of z; and v, continuous in its first argument: ¢; = ¢;(z;,v). Similar to the
example in Section I1.C, we construct two vectors, x! and x%, such that: (i)
v = c12(2%) < c13(2%) < cas(@?); and (9) co3(z™) < c13(2®) < c12(2?) = v.
The derivative of the choice frequency of d; with respect to xo for these cases are,
respectively:

N pr(o1, ) () PE2,
(i2) 6Pr(da;2d1\x) = (1 — p3(z3,v))p1(z1, V)f(V)acé’;ix).

The ratio of the expressions in Equation (6) identifies ¢3(z3,v). Using a similar
logic, we can identify ¢j(z1,v). Plugging these consideration probabilities into
Equation (6) identifies f(v). In sum, alternative-specific variation yields identifi-
cation without large support and without the independence Assumptions 12 and
I3. It is also possible to allow consideration of d; (and d3) to depend on 1, v, as
well as x3. The key exclusion restriction in this case is that the consideration of
ds is independent of all components of z. Our last identification result generalizes
this example.

Assumption ARC.AS. The consideration mechanism follows the ARC model.
The consideration probability of each alternative d; is a measurable function of
xj and preferences: ¢; = @j(xj,v), continuous in the first argument. Default
alternative d* is s.t. pg«(xg+,v) =1 for all xzg» € S and for all v € [0, V].

Theorem 7. Suppose Assumptions 10, T0O-T2, ARC.AS hold. Suppose there is
alternative-specific variation and the choice sets contain at least three alternatives.
Suppose for a given value of v there exists an x = (x1,x2,...,2p), and an open
neighborhood around it in S, s.t.

Uy(dl,x) = Uy<d2,x) == Uy(dD,.%').

Then f(v) and {goj(a:j,v)}jpzl are identified.

Existing identification results that rely on alternate-specific variation (Goeree,
2008; Abaluck and Adams, 2020; Kawaguchi, Uetake and Watanabe, 2020) allow
for consideration dependence on its own regressor, but not preferences. Theorem 7
states identification for a general version of the ARC model where the alternative-
specific consideration probability can depend on both its own regressor and DMs’
preferences.
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ITI. Likelihood and Tractability

We now turn to the computational aspects of limited consideration models
under the SCP and, in particular, of their likelihood function. Consider a generic
consideration mechanism.

A computationally appealing way to write the likelihood function is to deter-
mine the probability that a DM with preference parameter v chooses alternative
d; conditional on z. Alternative d; is chosen if and only if d; is in the consider-
ation set and every alternative that is preferred to d; is not. Denote the set of
alternatives that are preferred to d; by

B,(dj,z) ={k: Uy (dy,x) > U,(dj, x)}.

Then,

(7) Pr(djlz) = /Pr(dj]a:,y)dF = /Ol‘f(dj;BV(dj,J:))dF.

The object on the RHS does not require evaluating the utility of each alternative
within each possible consideration set. In fact, U, (d;, z) needs to be computed
only once for each v, dj, and z to create B, (dj, x), which does not vary with the
consideration set. Hence the computational complexity lies in the mapping from
OZ%(-) to the parameters governing the consideration mechanism. This, however,
may not even require enumerating all possible consideration sets. To demonstrate
this with a concrete example, we proceed with the basic ARC model. In this case,
the RHS of Equation (7) is:

(8) I(dj]z) = o; / I -0dr

keB,(dj,z)

Given {¢; }J 1, the integrand [[,cp, (d; ) (1—pg) is piecewise constant in v with at
most D — 1 breakpoints, corresponding to indifference points between alternatives
j and k, i.e., ¢;k(z), that are computed only once for each observed x. There are
at least two methods to compute this integral. First, for every d; and z, we can
directly compute the breakpoints and hence write I(d;|z) as a weighted sum:

I(dj|z) = %Z Foni) —F) [ (—-en) |,

kEByh (dj,:r)

where v,’s are the sequentially ordered breakpoints augmented by the integration
endpoints: vy = 0 and vp = v. This expression is trivial to evaluate given F'(-)
and breakpoints {I/h}hD:O. More importantly, since the breakpoints are invariant
with respect to the consideration probabilities, they are computed only once for
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each . This simplifies the likelihood maximization routine by orders of mag-
nitude, as each evaluation of the objective function involves a summation over
products with at most D terms. A second approach is to compute I(d;|x) using
Riemann approximation:

Y
14
I(djlz) = wj4; > | fem) I - |,
m=1 kEBVm(djvz)

where M is the number of intervals in the approximating sum, % is the intervals’
length, v,’s are the intervals’ midpoints, and f(-) is the density of F(-). Again,
one does not need to evaluate the utility from different alternatives in the likeli-
hood maximization. Instead, one a priori computes the utility rankings for each
Vm, m = 1,..., M. These rankings determine B,,, (d;,x). The likelihood max-
imization is now a standard search routine over {wj}le and f(:). Our theory
restricts f(+) to the class of continuous and strictly positive functions. In practice,
the search is over a class of non-parametric estimators for f(-).13 If the density
is parameterized, i.e., f(V) = f(Vm;07), then the maximization is over {goj}JD:l
and 6. Finally, the interval midpoints are the same across all DMs as they do
not depend on z, further reducing computational burden.

Allowing consideration to depend on preferences (or on z) introduces only min-
imal adjustments to the likelihood function. For example, let each consideration
function be parameterized by 0;: ¢;(v) = ¢;(v;6;). Then, at each v, we can
substitute ¢; with the corresponding ¢;(v;6;), and the likelihood maximization
is now over {0; }]D:1 and 0/. Given the desired level of parameterization — i.e., the

dimensionality of the parameter vectors ¢; and 67 — the computational complexity
of the problem grows polynomially in D.

As a final remark, if alternative d; is never chosen, then one can conduct estima-
tion as if d; were not in the choice set. Indeed, per Equation (8), ¢; contributes
positively to the likelihood if and only if alternative d; is chosen. When it is
never chosen, it may only enter via the term (1 — ¢;); hence, the likelihood will
be maximized by setting ¢; = 0. Therefore, setting ¢; = 0 for all zero-share al-
ternatives, regardless of why they were not chosen, has no impact on estimation.
This too may speed up estimation.

IV. Limited Consideration and RUM: A Comparison

We focus on a standard application of the RUM with full consideration in the
context of our example in Section I.A. The final evaluation of the utility that the

130ne could use a mixture of Beta distributions (Ghosal, 2001), as we do in Section V. B
M Depending on the class of (), it may be more accurate to compute I(dj|x) by substituting 7 f(vm)
with F(v,) — F(v,,,), where Uy, and v,,, are the endpoints of the corresponding interval.
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DM derives from alternative j now includes an additively separable error term:
(9) Vu(Lj(x)) = Uy (Lj(x)) + &,

where, as before, v captures unobserved heterogeneity in preferences, and ¢; is
assumed independent of the random coefficients (in this application, v).

Typical implementations of this model further specify that ¢; is i.i.d. across
alternatives (and DMs) with a Type 1 Extreme Value distribution, following the
seminal work of McFadden (1974). This yields a Mixed Logit that is distinct from
the commonly used one in McFadden and Train (2000). In their model, random
coefficient(s) enter the utility function linearly, while in the context of expected
utility they enter nonlinearly. We now discuss two properties of the Mixed Logit
that hinder its applicability in our context.

A. Monotonicity

Coupling utility functions in the hyperbolic absolute risk aversion (HARA)
family, for example CARA or CRRA, with a Type 1 Extreme Value distributed
additive error yields:

Proposition 3. (Non-monotonicity in RUM, Apesteguia and Ballester, 2018;
Wilcox, 2008) In Model (9) with HARA preferences and € i.i.d. Type 1 Extreme
Value, as the DM’s risk aversion increases, the probability that she chooses a
riskier alternative declines at first but eventually starts to increase.

To see why, consider two non-dominated alternatives d; and dj, such that d; is
riskier than dj. A risk neutral DM prefers d; to dj, and hence will choose the
former with higher probability. As risk aversion increases, the DM eventually
becomes indifferent between d; and dj, and chooses either of these alternatives
with equal probability. As risk aversion increases further, she prefers dj, to d;
and chooses the latter with lower probability. However, as risk aversion gets
even larger, the expected utility under HARA of any lottery with finite stakes
converges to zero. Consequently, the choice probabilities of all alternatives, re-
gardless of their riskiness, converge to a common value.!® Hence, at some point
the probability of choosing d; is increasing in risk aversion.

To the contrary, our model with a limited consideration mechanism that is
independent of preferences yields choice probabilities that are monotone in the
preference parameter.

Property 1 (Generalized Preference Monotonicity). A model satisfies generalized

15Recall that in the Mixed Logit the magnitude of the utility differences is tied to differences in (log)
choice probabilities, Uy (Lg(x)) — Uy (Lj(x)) = log(Pr(d = di|z,v)) — log(Pr(d = dj|z,v)), so that as
v — oo the choice probabilities are predicted to be all equal.
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preference monotonicity if for any v1 < vy and J € D:

J J
Udj z,v1 | > Pr Udj T,V
J=1 Jj=1

In the context of risk preferences, Property 1 states that the probability of
choosing one of the J riskiest alternatives declines as v increases. Since Property
1 is satisfied for any choice set under the SCP and full consideration, it is also
satisfied under limited consideration:

Proposition 4. A model that satisfies the SCP (i.e., Assumption T2) and As-
sumption 12 satisfies Generalized Preference Monotonicity.

B. Generalized Dominance

Next, we establish the relation between utility differences across two alternatives
and their respective choice probabilities. Because our random expected utility
model features unobserved preference heterogeneity, we work with an analog of
the rank order property in Manski (1975) that is conditional on v:

Definition 7. (Conditional Rank Order of Choice Probabilities) The model yields
conditional rank order of the choice probabilities if for given v and alternatives
J,keD,

U,(Lj(x)) > U,(Li(x)) = Pr(d = dj|z,v) > Pr(d = di|z,v).

We show that the conditional rank order property implies the following upper
bound on the probability that suboptimal alternatives are chosen.

Property 2. (Generalized Dominance) A model satisfies Generalized Dominance
if for any xz, d;, and set I C D\ {d;} s.t. alternative d; is never-the-first-best in
Ku{d;}
r(d = djlz) < Y Pr(d = di|x).
ke

Generalized Dominance holds in the Mixed Logit model and, more broadly, in
models that satisfy the conditional rank order property. However, it may not hold
in some limited consideration models. For example, Generalized Dominance is
violated if d; is never-the-first best among {d;, di, d; }, is almost always considered,
and alternatives di and d; are rarely considered.

C. Limited Consideration as Ordinal RUM

In the Mixed Logit, the cardinality of the differences in the (random) expected
utility of alternatives plays a crucial role in the determination of choice probabili-
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ties, as it interacts with the realization of the additive error. In contrast, in models
that satisfy the SCP, the DMs’ choices are determined by the ordinal expected
utility ranking of the alternatives. Hence, limited consideration models can be
recast as Ordinal Random Utility models (ORUM), where the key departure from
standard RUMs is the distribution of the additive error term.

Proposition 5. (Limited Consideration as ORUM) A Limited Consideration
Model is equivalent to an additive error random wutility model with unobserved
preference heterogeneity where all alternatives are considered, the DM’s utility of
each alternative d; € D is given by

VV(dj7 J") = Ul/(dj7 .CIZ‘) + Ej(l/a l’),
and (v, x) = {g;(v, ) 3D=1 is distributed on {—o00,0} according to Pr (£(v,x)) =
QY (K) for K s.t. dj € K ifej(v,x) =0 and d, € D\ K if (v, z) = —o0.

Casting our limited consideration model as an ORUM clearly demonstrates its
flexibility. In particular, our results show how to obtain identification when the
errors are correlated with the excluded regressors, the preference parameter, and
across alternatives.

TABLE 2—MODEL COMPARISONS

Error Structure Mixed Logit Basic ARC Binary Types Prop. Shifting Generic Consideration
Support R {—oc, 0} {—oc,0} {—c0,0} {—oc.0}
Indep. of Yes Yes Yesl Yes No

Indep. of v Yes Yes Nol No No

Indep. across alternatives Yes Yes Yes Yes No

Iden. across alternatives Yes No No No No

Note: Binary Types can also be dependent on x but would require independence with v in that case.

We conclude this section with Table 2, listing the differences across the Mixed
Logit and limited consideration models. The first two columns summarize the
differences between the basic ARC model and the Mixed Logit. The third col-
umn and fourth column remind the reader our two models with consideration
depending on preferences. Finally, the last column highlights the fact that with
alternative-specific variation we may also have dependence of the error term on
the excluded regressor(s) as well as on the preference parameter.

V. Application

We offer an empirical analysis of households’ decisions under risk. This analysis
aims to illustrate how our method works and its ability to fit the data.
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A. Data

We study households’ deductible choices across three lines of property insur-
ance: auto collision, auto comprehensive, and home all perils. The data come
from a U.S. insurance company (Anonymous Firm, 2018). Our analysis uses a
sample of 7,736 households who purchased their auto and home policies for the
first time between 2003 and 2007 and within six months of each other.'® Online
Table D.1 provides descriptive statistics for households’ observable characteris-
tics, which we use later to estimate households’ preferences.!” We observe the
exact menu of alternatives available at the time of the purchase for each house-
hold and each line of coverage. The deductible alternatives vary across lines of
coverage but not across households. Online Table D.2 presents the frequency of
chosen deductibles in our data.

TABLE 3—PREMIUM QUANTILES FOR THE $500 DEDUCTIBLE

Quantiles 0.01 0.05 025 050 0.75 0.95 0.99
Collision 53 74 117 162 227 383 565
Comprehensive 29 41 69 99 141 242 427
Home 211 305 420 540 743 1,449 2,524

Premiums are set coverage-by-coverage as in the example from Section I.A.
Online Table D.4 reports the average premium by context and deductible, and
Table 3 summarizes the premium distributions for the $500 deductible. Premiums
vary dramatically. The 99th percentile of the $500 deductible is more than ten
times the corresponding 1st percentile in each line of coverage.

Claim probabilities stem from (Barseghyan, Teitelbaum and Xu, 2018), who de-
rived them using coverage-by-coverage Poisson-Gamma Bayesian credibility mod-
els applied to a large auxiliary panel. Predicted claim probabilities (summarized
in Table 4) exhibit extreme variation: The 99th percentile claim probability in
collision (comprehensive and home) is 4.3 (12 and 7.6) times higher than the
corresponding 1st percentile. Finally, the correlation between claim probabilities
and premiums for the $500 deductible is 0.38 for collision, 0.15 for comprehensive,
and 0.11 for home all perils. Hence, there is independent variation in both.

16The dataset is an updated version of the one used in Barseghyan et al. (2013). It contains information
for an additional year of data and puts stricter restrictions on the timing of purchases across different
lines. These restrictions are meant to minimize potential biases stemming from non-active choices, such
as policy renewals, and temporal changes in socioeconomic conditions.

"These are the same variables that are used in Barseghyan et al. (2013) to control for households’
characteristics. See discussion there for additional details.
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TABLE 4—CLAIM PROBABILITIES ACROSS CONTEXTS

Quantiles 0.01 0.05 0.25 0.50 0.75 0.95 0.99
Collision 0.036 0.045 0.062 0.077 0.096 0.128 0.156
Comprehensive  0.005 0.008 0.014 0.021 0.030 0.045 0.062
Home 0.024 0.032 0.048 0.064 0.084 0.130 0.183

B. Estimation Results
THE BAsic ARC MobDEL: COLLISION

We start by presenting estimation results in a simple setting where the only
choice is the collision deductible and observable demographics do not affect pref-
erences. To execute our estimation procedure we set ¥ = 0.02, which is con-
servative (see Barseghyan, Molinari and Teitelbaum, 2016). We ex post verify
that this does not affect our estimation by checking that the density of the es-
timated distribution is close to zero at the upper bound. We approximate F(-)
non-parametrically through a mixture of Beta distributions. In practice, how-
ever, both AIC/BIC criteria indicate that a single component is sufficient for our
analysis, resulting in a total of seven parameters to be estimated. We let the data
speak to the identity of the always-considered alternative.'®

The estimated distribution and consideration parameters are reported in Online
Table E.1. As the first panel in Figure 1 shows, the model closely matches the
aggregate moments observed in the data. The second panel in Figure 1 illustrates
side-by-side the frequency of predicted choices, consideration probabilities, and
the distribution of households’ first-best alternatives (i.e., the distribution of op-
timal choices under full consideration). Predicted choices are determined jointly
by the preference induced ranking of deductibles and by the consideration prob-
abilities: Limited consideration forces households’ decision towards less desirable
outcomes by stochastically eliminating better alternatives. The two highest de-
ductibles ($1000 and $500) are considered at much higher frequency (1.00 and
0.92, respectively) than the other alternatives, suggesting that households have a
tendency to regularly pay attention to the cheaper items in the choice set. Yet,
the most frequent model-implied optimal choice under full consideration is the
$250 deductible, which is considered with low probability. In this application, as-
suming full consideration leads to a significant downward bias in the estimation of
the underlying risk preferences. To see why, consider increasing the consideration
probabilities for the lower deductibles to the same levels as the $500 deductible.
Holding risk preferences fixed, the likelihood that the lower deductibles are chosen

181n fact, the estimation is run under the Coin Toss completion rule that nests the possibility that
any alternative can be always considered. The data chooses 1000 = 1.
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FiGURE 1. THE ARC MODEL

Note: The first panel reports the distribution of predicted and observed choices. The second panel
displays consideration probabilities and the distribution of optimal choices under full consideration.

increases and therefore the higher deductibles are chosen with lower probability.
Average risk aversion must decline to compensate for this shift. This is exactly
the pattern we find when we estimate a near-full consideration model. In partic-
ular, we find that average risk aversion decreases by about 32% from 0.0037 to
0.0025 when all consideration parameters equal 0.9999.'° To put these numbers
into context, a DM with risk aversion equal to 0.0037 is willing to pay $431 to
avoid a $1000 loss with probability 0.1, while a DM with risk aversion equal to
0.0025 is only willing to pay $300 to avoid the loss.

The basic ARC model’s ability to match the data extends also to conditional
moments. The first two panels of Figure 2 show observed and predicted choices
for the fraction of households facing low and high premiums, respectively, and
the next two panels are for households facing low and high claim probabilities.?°
Finally, the last two panels display households who face both low claim probabili-
ties and high prices and vice versa. It is transparent from Figure 2 that the model
matches closely the observed frequency of choices across different subgroups of
households facing a variety of prices and claim probabilities, even though some
of these frequencies are quite different from the aggregate ones.

The ARC model’s ability to violate Generalized Dominance is key in matching
the data. In our dataset, because of the pricing schedule in collision, the $200
is never-the-first best among {$100, $200, $250} for 99.84% of all households and
100% of households who have chosen the $200 deductible. It costs the same

19We cannot assume that all consideration probabilities are equal to one, since the $200 deductible is
never-the-first-best under full consideration and is chosen with positive probability.

20Low and high groups here are defined as households whose claim rate (or baseline price) are in the
first and third terciles, respectively.
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FIGURE 2. THE ARC MODEL: CONDITIONAL DISTRIBUTIONS

to get an additional $50 of coverage by lowering the deductible from $250 to
$200 as it does to get an additional $100 of coverage by lowering the deductible
from $200 to $100. If a household’s risk aversion is sufficiently small, then it
prefers the $250 deductible to the $200 deductible. If, on the other hand, the
household’s level of risk aversion is such that it would prefer the $200 deductible
to the $250 deductible, then it would also prefer getting twice the coverage for
the same increase in the premium. That is, for any level of risk aversion, the $200
deductible is dominated either by the $100 deductible or by the $250 deductible.?!
Yet, overall the $200 deductible is chosen roughly as often as the $100 and $250
deductibles combined. More so, for certain sub-groups the $200 deductible is
chosen much more often than the $100 and $250 deductible combined. It follows
that a model satisfying Generalized Dominance cannot rationalize these choices.

Next we relax the assumption that demographic variables, Z, do not influ-
ence risk preferences. In particular, conditional on demographics, preferences are
distributed Beta(31(Z), 82), where log % = Zr, yielding a conditional mean

preference value E(v|Z) = lize; v. The details of this step and the results are

reported in Online Appendix E.1. Both consideration and preference estimates
remain close to those reported above.

PROPORTIONALLY SHIFTING CONSIDERATION

We estimate the model with proportionally shifting consideration where the
preference distribution and function a(r) may depend on demographic variables
(Online Table E.2). Motivated by the findings of the previous section, we assume

21This pattern is at odds not only with EUT but also many non-EU models (Barseghyan, Molinari
and Teitelbaum, 2016).
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that the cheapest/riskiest alternative is always considered. The consideration
probability of the remaining alternatives is equal to ¢;(z,v) = ¢;(1 — a(v|Z)),
where a(v|Z) = &(Z) (1 - %)52, &(Z) = %, and & is positive. We continue
to assume that preferences are distributed Beta((1(Z), B2).

The estimated average value of £;(Z) is 0.15, with the 95% CI of [0.02,0.21].
When &;(Z) = 0.15, a risk-neutral DM considers each of the safer alternatives
{$100, $200, $250, $500} 15% less often than does an extremely risk averse DM.
The estimated value of & is 7.14. This implies that as the risk aversion parameter
increases from 0 to its estimated average median value of 0.0035, consideration
probability of the safer alternatives increases by 11%, and it is essentially flat
after that rising by an additional 4% as risk aversion reaches its upper bound.

THE MI1XED LociT RANDOM UTILITY MODEL

As in the case of the ARC model, we assume that v is Beta distributed on
[0, 7], where 7 = 0.02. The Mixed Logit satisfies the Generalized Dominance and
smoothly spreads households’ choices around their respective first bests. Conse-
quently, it cannot match the observed distribution and, in particular, is unable to
explain the relatively high observed share of the $200 deductible. Online Table
E.3 reports the estimation results and Online Figure E.3 compares the observed
distribution of choices to the predicted choices. The predicted distribution is a
much poorer fit relative to the ARC model. In fact, the Vuong (1989) test soundly
rejects (at 1% level) the Mixed Logit in favor of the ARC model.

THE ARC MoDEL: ALL COVERAGES

We now proceed with estimation of the full model. We assume that households’
consideration sets are formed over the entire deductible portfolio. There are 120
possible alternative triplets (d“’”, deemp, dh"me), each having its own probability of
being considered. This model is flexible as it nests many rule of thumb assump-
tions such as only considering contracts with the same deductible level across
the three contexts or only considering contracts with a larger collision deductible
than comprehensive deductible. Figure 3 and Online Table E.4 present estimation
results. The first panel of the figure shows the predicted distribution of choices
across triplets, ranked in descending order by observed frequencies. The second
panel plots the differences between predicted and observed choice distributions.
Clearly, the predicted distribution is close to the observed distribution.

The largest difference between the predicted and observed shares equals 0.38
percentage points, which is for the ($250,$250,$500) triplet that is chosen by
2.9% of the households. The integrated absolute error across all triplets is 3.46%.
In our data, 43 out of 120 triplets are never chosen (these are omitted from
Figure 3). As discussed in Section III, the likelihood maximization implies that
the consideration probabilities for these triplets must be zero, so their predicted
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shares are zero. Hence, the likelihood maximization routine is faster and more
reliable as we do not need to search for ¢; for these alternatives.

Another virtue of the ARC model is that it effortlessly reconciles two sides of
the debate on stability of risk preferences (Barseghyan, Prince and Teitelbaum,
2011; Einav et al., 2012; Barseghyan, Molinari and Teitelbaum, 2016). On the
one hand, households’ risk aversion relative to their peers is correlated across lines
of coverage, implying that households preferences have a stable component. On
the other hand, analyses based on revealed preference reject the standard models:
under full consideration, for the vast majority of households one cannot find a
level of (household-specific) risk aversion that justifies their choices simultaneously
across all contexts. Limited consideration allows the model to match the observed
joint distribution of choices, and hence their rank correlations.

The estimated risk preferences are similar to those estimated with collision
only data, although the variance is slightly smaller. The triplet considered most
frequently is the cheapest one: ($1000,$1000,$1000). Its consideration probabil-
ity is 0.76, while the next two most considered triplets are ($500, $500, $1000)
and ($500, $500, $500). These are considered with probability 0.47 and 0.43,
respectively. Overall, there is a strong positive correlation (0.53) between the
consideration probability and the sum of the deductibles in a given alternative.

We summarize once more the computational advantages of our procedure. First,
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estimation of our model remains feasible for a large choice set.?? Second, the
model’s parameters grow linearly with the size of the choice set — one parameter
per an additional alternative. Third, enlarging the choice set does not call for
new independent sources of data variation. For example, in our model whether
there are five or one hundred twenty deductible alternatives does not make any
difference either from an identification or an estimation stand point: with suffi-
cient variation in p and/or p, the model is identified and can be estimated. As a
final remark, once the model is estimated, one can compute the average monetary
cost of limited consideration. In our data it is $50 (see Online Appendix C).

VI. Discussion

The literature concerned with the formulation, identification, and estimation of
discrete choice models with limited consideration is vast. However, to our knowl-
edge, there is no previous work applying such models to the study of decision
making under risk, except for the contemporaneous work of Barseghyan et al.
(2019). In particular, this paper is the first to exploit the SCP for identification
purposes. As a result, several fundamental differences emerge between our work
and existing papers. First, we achieve identification in the most challenging case
where there is a single excluded regressor that affects the utility of all alterna-
tives.?3 Second, we allow for consideration to depend on preferences. Third,
with alternative-specific excluded regressors, this dependence can be essentially
unrestricted and can be combined with dependence of consideration on (some
of) the excluded regressors. Fourth, we scrutinize the large support assumption,
show why it may be necessary, and when and how it is possible to make progress
when it is not satisfied. Fifth, our approach comes with an easy to implement
and computationally fast estimation strategy. Finally, we make a contribution
specific to the study of decision making under risk by proposing a model that is
immune from Apesteguia and Ballester (2018) criticism and features two sources
of unobserved heterogeneity — risk aversion and limited consideration — whose
distributions are identified. More generally, the paper establishes that, as long as
the DMs’ preferences satisfy the SCP, allowing for limited consideration does not
hinder the model’s identifiability or applicability. Hence, we view our framework
as a stepping stone for studies of consumer behavior in markets where limited
consideration may be present (one example is Coughlin, 2020, who builds on our
framework to study consumer choice in Medicare Part D markets).

Papers that allow for limited consideration or more broadly for choice set het-
erogeneity can be classified in four groups. The first relies on auxiliary informa-

22In our setting, it is feasible to estimate an additive error RUM assuming the DMs consider each
deductible triplet as a separate alternative (Online Figure E.4 and Online Table E.5). As the figure
shows, the failure to match the data is evident. The Vuong test formally rejects it in favor of the ARC
model.

23This setting is common in insurance markets, see, e.g.,Cohen and Einav (2007); Einav et al. (2012);
Sydnor (2010); Barseghyan, Prince and Teitelbaum (2011); Barseghyan et al. (2013); Handel (2013);
Bhargava, Loewenstein and Sydnor (2017).
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tion about the composition or distribution of DMs’ choice sets, such as brand
awareness (e.g., Draganska and Klapper, 2011; Honka and Chintagunta, 2017) or
search activity (e.g., Honka and Chintagunta, 2017; De los Santos, Hortagsu and
Wildenbeest, 2012; Kim, Albuquerque and Bronnenberg, 2010; Honka, Hortagsu
and Vitorino, 2017).24 We do not require such information.

The second group attains identification via two-way exclusion restrictions, i.e.,
by assuming that some variables impact consideration but not utility and wvice
versa. A well-known example of this approach is Goeree (2008), who posits that
advertising intensity affects the likelihood of considering a computer, but does not
impact consumer preferences, while computer attributes such as CPU speed affect
preferences but not consideration (see also van Nierop et al. (2010) and Gaynor,
Propper and Seiler (2016)). Hortagsu, Madanizadeh and Puller (2017) create an
exclusion restriction by exploiting the dynamic aspect of consumer choice.?> The
consumer’s decision to consider alternatives to her current service provider is a
function of (her experiences with) the last period provider but not her next period
provider (see also Heiss et al. (2016)). In contrast, we achieve identification with
as little as one common excluded regressor and a single cross section.

The third group relies on restricting the consideration mechanism to a specific
class of models. Abaluck and Adams (2020) consider two such models (and their
hybrid): a variant of the ARC and a “default specific” model (as in, e.g., Ho,
Hogan and Scott Morton, 2017; Heiss et al., 2016) in which each DM’s consid-
eration set comprises either a single default alternative or the entire feasible set.
They assume that consideration and preferences are independent, and that each
alternative has a characteristic with large support that is additively separable
in utility and may only affect its own consideration but not the consideration of
other alternatives.? They exploit violations of symmetry in the Slutsky matrix
(i.e., in cross-alternative demand responses to prices) to detect limited consider-
ation. Kawaguchi, Uetake and Watanabe (2020) study beverage purchases from
vending machines, allowing advertisement to be a driver of consideration, but
also to affect utility. Their approach is close to that of Goeree (2008), though
they provide a formal argument for identification with large support and exclu-
sion restrictions even when there is no choice set variation. A key assumption is
that all beverages are considered with probability equal to one as the advertising
intensity of each beverage becomes very large.

The methods we propose relate to the papers in the third group in two aspects.
First, we too sometimes require large support as a “fail safe” assumption, but only

24For canonical cites see, e.g., Roberts and Lattin (1991) and Ben-Akiva and Boccara (1995).

25Time variation is used also in Crawford, Griffith and Taria (2020), who show that with panel data
and preferences in the logit family, point identification of preferences is possible, without any exclu-
sion restrictions, under the assumption that choice sets and preferences are independent conditional on
observables and with restrictions on how choice sets evolve over time. These restrictions enable the
construction of proper subsets of DMs’ true choice sets (‘sufficient sets’) that can be utilized to estimate
the preference model.

26The exception is the “default” alternative, whose characteristic may trigger the consideration of the
entire choice set.
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in the most challenging case of a single common excluded regressor. Second, we
too rely on exclusion restrictions. The reliance on these assumptions is inescapable
given the econometrics literature on point identification of discrete choice models.
Our approach elucidates the identifying power of a single excluded regressor in
models that satisfy the SCP and, in particular, the relative ranking of alternatives
encapsulated in Facts 3 and 4 (see Lewbel and Yang, 2016, for related results for
average treatment effects in ordered discrete choice models). We further exploit
this structure to establish identification in models with substantially richer levels
of unobserved heterogeneity, by allowing for dependence between consideration
and preferences.

The fourth group of papers has a different goal than what we pursue here, as
it provides partial rather than point identification results. Cattaneo et al. (2020)
propose a random attention model with homogeneous preferences, and they re-
quire that the probability of each consideration set is monotone in the number
of alternatives in the choice problem. Their analysis yields testable implications
and partial identification for preference orderings. Barseghyan et al. (2019) study
discrete choice models, where consideration may arbitrarily depend on preferences
as well as on all observed characteristics. They show that such unrestricted forms
of heterogeneity generally yield partial, but not point, identification of the pref-
erence distribution and obtain bounds on the distribution of consideration sets’
size. Finally, Dardanoni et al. (2020) consider a stochastic choice model with
homogeneous preferences and heterogeneous cognitive types. They show how one
can learn the moments of the distribution of cognitive types from a single cross
section of aggregate choice shares.
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Appendices

A  Proofs

Proof of Fact 4. If ¢19(z) is less than co3(z), then, for any DM with preference v s.t.
c12(z) < v < ca3(x), dy is preferred to both d; and ds, i.e. we are in Case (i). If
c12(x) > ca3(x), then do is either dominated by either dy or ds. The relative location
of ¢13(z) is established as follows. First, suppose ¢;13(z) < c¢12(z) < co3(x). For any
v € (c13(x),c12(x)) we have U,(ds,x) > U,(dy,z) > U,(dy,x) > U,(ds,x), which is
an obvious contradiction. Second, suppose cz23(x) < cia(x) < ci13(x). Then, for any
v € (c12(x),c13(x)) we have U, (dy,x) > U,(ds,z) > U,(d2,x) > U,(dy, ), which is an
obvious contradiction. The remaining two possibilities are excluded following the same

logic. [

We maintain that = has strictly positive density on & (Assumption T0), its density is con-
tinuous (Assumption T1), and that preferences are continuous and strictly monotone in x.

l

Therefore, if x is a scalar and ¢ o(x) covers [v',v"], it is sufficient to consider an interval

(2!, 2%] C 8 such that [V}, v*] = {c12(x) : & € [z}, 2¥]}.
The following lemma is useful for establishing Theorem 1.
Lemma A.1. Suppose Assumptions TO-T2 and I1 hold. Suppose c12(z) < ¢ (x), Vo € X.

Let {x'}2, be s.t. c1a(zt) = ey ;(ath), 2t € X. Then 3T < 0o s.t. ¢12(z7) < 0.

Proof. The cutoff {c;2(x")}7°, is a strictly declining sequence. Suppose all its elements are
non-negative. Then it converges to some v > 0 such that 1> = ¢15(2™) = ¢ ;(z™) for

some > € X, a contradiction. O

Proof of Theorem 1. The second condition in the theorem implies that the cutoffs are or-



dered: ¢ j(x) < ¢1j41(2) for all x € X. Hence

Prd=dilz) =Y > QEK)F(cr;(x) +Q({di})
=
2,...j—1¢K

=3 O({dr.d}: {d. ... 1)) Flery(x)) + O(dr: 0)

D
= ZA]‘F(CL]‘(I)) —f- Al,
=2
so that
dPr(d = di|z) <& dey ; ()
= A . : )
d J; jf(cl,j<x>) dr

By Assumption I1, we can set 2% = a7 s.t. ¢;2(2”) = ¥ and similarly 2! = 2° s.t. ¢;2(2°) = 0.
It may be the case that ¢, 5(2°) < 7 and ¢, p,,(2") > ¥ for some D > 2. Then, Vj > D,
A; does not enter the expression for the derivative of Pr(d = d;|z), Vo € [2°,2”], because
f(c1j(x)) = 0. Henceforth, we only consider the relevant alternatives for the derivative of
Pr(d = di|x), namely j < D.

Next, consider the derivative of Pr(d = d;|z). By Fact 3, the term A; is the leading coefficient
on f(-) for this derivative. There exists 2/ € X such that ¢ ;(27) = v. Thus,

dPr(d = d;|z) dey j(27)

li = —N\;jf(v :2<j<D.
i ORI LEE
The ratio of li/m dPr(d = d;|z)/dx and li/‘rn2 dPr(d = dy|r)/dx identifies Q; = ﬁ—;, where

Ay # 0 by the first assumption in the theorem. Rewrite the derivative of Pr(d = d;|z) as



follows:

dPr(d = dy|x)
dx

dcl,j (l‘)
dx

Ms
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I|
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dey j(x)
dx

I
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dx

Mo

[A2f(c15(2))]
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dcl,j (l’)
dr

Q;f(cr(x))

Ms
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where f(v) = Ayf(ci;(z)). Equipped with €, we can recover f(v) sequentially. Note that
Vi s.t. c10(z) < 7 and ¢y 5(x) > i, the up-to-scale density f(c1o(x)) is identified. Indeed, it

is the only unknown in the expression above. We proceed as follows.
First, let 2! be such that ¢; 3(x') = #. Then, f(-) is identified on [¢;5(z), 7).

Second, let 22 be such that ¢; 5(22) = ¢; (). Now f(v) is identified on [¢1 5(22), 7] because
in the expression for the derivative of Pr(d = d;|z) all cutoffs ¢; j(x), j > 2, lie on the part

of the support where the up-to-scale density is known.

Identification of f(r) on [0, 7] attains by repeating the above step. Indeed, by Lemma A.1
c12(x") reaches the lower end of the support in a finite number of steps. Finally, the scale is

recovered by integrating f (v) over its support:

Ay = A /:f(mdy = /Opf(y)du.

Therefore f(-) is identified, as required. The term O(dy;0) = Ay

Pr(d = dy|z") is also
identified, and so are O(dy, ds; 0) = Ay and O({dy,d;};{d, ..., dj—1}) = A;.

]

Proof of Theorem 2. The second condition of Theorem 1 implies that the cutoffs are ordered:

c1,(x) < ¢ j1(x) for all z € X. Hence,

APHA= ) 5 e @) e ) 2222,

J=2




where
A= o kep: QK) ifv <t

Aj(u) — 2,...j—1€K )
A= kep. OK) ifv>vr
17j€’C7
2, j—1gK

Similar to the proof of Theorem 1, we only consider the relevant alternatives for the derivative
of Pr(d = dy|z), namely j < D.

dPr(d=di|z)

We start at «” and hence ¢y o(2”) = 0. As we lower « we check whether T

jumps. If
it does not, identification of f(-) attains by the proof of Theorem 1.

Suppose there is a point of discontinuity. It arises when a cutoff ¢; j(z) crosses the breakpoint

v*. The identity of the cutoff and hence v* = ¢ j(z) is identified by the fact there is a unique
dPr(d=d;|x)
dx

that of Theorem 1. Indeed, all ; = A, /A, are identified and so is f(v) = Ayf(v) for all

v > v,

that also jumps. Equipped with the identity of v* the proof proceeds similarly to

The additional step is how to identify A; and ©Q; = A; /A,. Start with A,. Consider an z*
s.t. c12(2*) = v*. The derivatives w from the left and from the right of z* identify
A, f(v*) and Ay f(v*). Hence, the ratio A,/A, is identified. Exactly the same logic applies

to all other A;’s whenever ¢, j(x) crosses v*. We can then rewrite

APr(d = di|z) S ae @) [ Ay ) der;(z)
(@) Q, flers@) =",

Now all coefficients of f (c14(x)) are identified, and identification of F() proceeds to the left
of v*. Once it is identified, we integrate it over the support to recover A,. Hence A, and
f(+) are identified.

When the breakpoint occurs at z* rather than v*, the same proof strategy can be applied.

[]

Proof of Proposition 1. The second condition in the theorem implies that ¢ 2(z) < ¢1(x)

for any j > 2. The cutoffs ¢; j(x)’s, j > 2, are irrelevant for evaluating Pr(d = d;|z) by the



first condition of the theorem. Therefore,

dPr(d:dlmz( > @(/d) Flena(e) 22 = o (e, ) 2120

dx dx dx
KCD:1,2eK

Consequently, the product o f(c;2(x)) can be written in terms of data:

dPr(d=di|z)
af(ea(@) = — 25—
dx
and hence variation in z guarantees that f(v) is identified up-to-scale on [c 2(z!), ¢1 2(2%)] =
[V, v4]. Tt follows that F(v|v € [V, v"]) is identified. O

Proof of Theorem 3. Under Condition I of the Theorem there can only be three types of
consideration sets. The first type are all possible subsets of {dy, ..., d;}; the second type are
all possible subsets of {d;1,...,dp}. The third type necessarily contains both d; and d;.
The probability of choosing an alternative in {dy, ..., d;} is one for the first type and zero
for the second type. Hence,

dPr(d € {dy,...,d;}|z) Z

i = QUK) (e () 22 LD).

dx

KCD:j,j+1€k

The rest of the proof follows the same steps as in the proof of Proposition 1, except we now

track ¢; j41(x). O

Proof of Theorem 4. Let v, T, N.() = {x : ||x —Z|| < €} satisfy Condition 2 in the theorem.
Then, v = ¢; (%) for all j, k. Consider any pair of alternatives (d;, dj). Since utility is strictly

monotone in x; and continuous, for each £ C D\ {j, k} we can find x € N.(Z) such that

U,(d;,x) = U,(dg, x); (A1)
U,(di,x) > U,(dj,z) VleL; (A.2)
Uy(dj, x) > Uy(di, ) VI € DN{LU{j, k}}; (A.3)

The remainder of the proof proceeds in two steps.

Step 1: Identification of f(r)Q,(K): The singleton sets occur with zero probability by
Condition I in the theorem, so it remains to show identification for consideration sets larger

than one. Consider any two alternatives (d;,d;). We claim that the following statement



holds for n =0,...,D:

P(n): For all L C D\ {j, k} satisfying |KC| < n, the quantity f(v)Q,({j,k} UK)
is identified.

To show this for P(0), set £ =D\ {j, k}. In this case K = (). Let x satisfy Equations (A.1)-
(A.3). Then, all alternatives d;, | # j, k, are preferred to d; and dj at v and ¢;x(z) = v.
Hence:

OPr(d=d;|x)

% = f(v)Q.({J, k}).

oxy,

It follows that f(v)Q,({j, k}) is identified.

Next, suppose P(n — 1) is true. Consider any K C D \ {j,k} such that || = n. Let
L=D\ (KU{j,k}). Let x satisfy Equations (A.1)-(A.3). Then,

O Pr(d=d;|x)
oz, ccK
= QUi kUK + Y f)Q{ikUC).
CCK:[Cl<n

The LHS of this expression is known, and the second term on the RHS is identified by the
induction step. Therefore P(n) holds.

Since d; and dj, were chosen arbitrarily, it follows that f(r)Q, (K) is identified for all L C D.
Step 2: Identification of f(v) and Q,(K). Since

Y FW)QK) = f(v) Y Qu(K) = f(v),

KcD KcD
f(v) is identified. Identification of Q,(K) follows from Step 1. O
Proof of Corollary 1. The proof follows the same steps as the proof of Theorem 4, but with
the following two modifications:

First modification: In Step 1 in the proof of Theorem 4, we start with d; = d; and loop
over dy, € {ds,...,dp}. This ensures that we only take derivatives with respect to xzy, k > 1.
Hence, f(v)Q% (K) is identified for all sets K C D : |K| > 1.



Second modification: In Step 2 we obtain

fQu(d)+ Y f)QK) = f(v) > QK) = f(v).

KCD:|K|>1 KcD

Since the second term on the LHS is known, f(v)(1 — Q% (d,)) is identified for all v € [0, 7].

The scale is identified, because

(1= Q) = [ @)1~ Q" (d:))dv
0
Once the scale is identified, f(v) is identified and so are Q*'(K), VK C D. O

Proof of Proposition 2. For the purpose of obtaining a contradiction, suppose that there is

/)

full consideration. Then

Pr(d € L|z) = Pr (arg max U, (d;,z) € L

jeD

= Pr(v € [0,%))
= F(v")

=Pr (arg max U, (d;, z") € L'

jE€D

)

= Pr(d € L'|2)).

This is a contradiction. Therefore there is limited consideration.

]

The following two Lemmas are used in the proof of Theorem 5. The proofs of these Lemmas

rest on the following claims.

1. The probability of alternative d; being chosen can only increase in its consideration
probability.
2. The probability of alternative d; being chosen can only decline in consideration prob-

ability of any other alternative d.

3. The probability of alternative d; or dj being chosen can only increase in the consider-
ation probability of d; as the positive effect of this change on Pr(d = d;|z) dominates
the negative effect on Pr(d = di|z).



4. The probability of an alternative in K being chosen can only decline in consideration

probability of any alternative that does not belong to K.

Lemma A.2. Consider the Basic ARC model. For any K C D, 3 Pr(d = djlx) is
increasing in gy, Vk € K, and decreasing in ¢, Yk ¢ K.

Proof. Fix KC and consider any j € K. For each v and [ € K, | # j, either j € B,(d;, z) or
not. If j & B,(d;, x), then Pr(d = d;|x,v) does not depend on ¢;. Hence,

ZPr(d =dj|z,v) = A+ Pr(d =dj|z,v) + Z Pr(d = d|x,v),
lek leK:jeB, (dy,x)

where A is a constant that collects terms that do not depend on ¢;. Continuing,

SPrd=dlzv)=A+e;, [[ G-e0+ > @ J[ Q-

lek k€By(dj,x) leK:jeBy (dix)  keBy(dy,x)
=A+e; I O-v0+ D> wl-¢) JI Q-
keB.,(dj,x) leK:jeBy (di,x) keBy (dy,x)\{j}
=A+ > o I (—w)
leK:jeBL(d,x) keBy (d,x)\{j}
+ I a-=e— D> @ I G-e) |
keBy(dj,x) leK:j€By (di,x) keBy (di,2)\{j}
=A+ Beyp;.

Since B, (j, ) C B,(d;, x) whenever j € B,(d;, z),
B={ I a-en||1- > @ 11 (1—k) | 0.
keB.(dj,x) lek:jeBy(dix)  k€By(dix)\{Bu(dj,x).5}

Therefore, 3~ Pr(d = dj|z) = [ 3. Pr(d = d;|z, v)dF is increasing in ;.

Finally, for any k € K, ¢), may only appear on the RHS as (1—¢y). Hence }_, Pr(d = d;|z)

is decreasing in (. O]

Lemma A.3. Consider the Basic ARC model. For any K C D, Y., Pr(d = d;|x) is strictly

increasing i @;, j € K, whenever there is an open interval of v’s at which alternative d; is

JjeK

preferred to all of the always-considered alternatives. It is strictly decreasing in ¢y, 7 & IC,



whenever there is an open interval of v’s and | € IC such that at these v’s alternative dy is

preferred to d; and d; is preferred to all of the always-considered alternatives.

Proof. To show the first claim, notice that B = 0 in the proof of Lemma A.2 if and only if
o = 1 for some k € B,(dj, ).

To show the second claim, consider any 7 € IC. Then,

Pr(d=djlz,v) =¢; ][ (1—¢x).
keB, (d; )

For this to be strictly decreasing in ¢y, it must be the case that k € B, (d;,z) and ¢; < 1 for
all | € B,(d;,x) \ {k}. O

Proof of Theorem 5. By the proof of Theorem 1, f(-) and Ay = p1¢9 are identified. The
consideration parameter ¢, is identified by Pr(d = dy|z”) = ¢1, where a7 is s.t. ¢ 2(2") = 1.
Since Ay is known, s is also identified. The rest of the proof is about identification of the

remaining consideration parameters.

To identify ¢; take an x such that Pr(d = d;|x) # 0. Denote & = {k : Pr(d = di|z) # 0}.
We claim that Pr(d = di|z),Vk € &, does not depend on ¢, for I ¢ £. Suppose otherwise.
That is, suppose there exists d; such that Pr(d = d;|x) = 0 and Pr(d = di|z) depends on ¢,
for some k € £. Then, for each v there is an always-considered alternative that is preferred
to d;. Since Pr(d = di|z) depends on ¢, there exists v € [0, 7] such that d; is preferred to
dj. However, the always-considered alternative that is preferred to d; at v is also preferred
to dy by transitivity. This leads to a contradiction, because a DM with such preferences will

never choose di in the first place. Therefore, Pr(d = di|x) does not on ¢, for any [ & £.

Since F(-) is already identified, {Pr(d = di|x)}rece defines a system of |E| non-linear equa-
tions, where the only unknowns are o, k € £. This system has a unique solution. Suppose
to the contrary that two sets of consideration parameters {y }ree and {@} }ree solve this sys-
tem and they are distinct. Denote &4 = {k : ¢ > ¢} }. By Lemma A.3, 37, o Pr(d = dk|z)
is strictly larger at {¢y}res than at {¢} }ree. Hence, only one of these sets could satisfy
data. Therefore there is a unique set of {¢y }ree that solves this system of equations, and ¢;

is identified as claimed. O



Proof of Theorem 6. Step 1. Suppose D = 3. Then d* = 2 and

N

c1,2(x)
Pr(d = dy|z) = / o1(v)dF  and Pr(d =ds|z) = / 3(v)dF.
0 c

2,3()

)

The ratio of the derivatives of these two moments yields ) where

Y1
¥3

pr(v) = e (1 = a(v))
ps(v) = w3(l +a(v)),

First, £ is identified when 2 and 2’ are chosen such that ¢is(z) = c23(2") = 7. Once £

is identified, =2 is known for all v; hence, a(r) can be solved for. Identification of f(v)

’ 14a(v)
follows from substituting «(v) into the expression for W.

Step 2. Let D > 3. We identify d* at z”. The smallest j such that Pr(d = d;|z”) = 0 yields
d* =j—1 (or d = D if no such j exists). We return to the case that d* = 1, d* = 2, or
d* = D at the end of this proof.

Step 3. Using large support we establish that ¢p is a decreasing function of ;. We have

v

Pr(d = dy|2") = gpl/o (1 —a(v))dF(v) =¢i(1 — Ea(v)).

Similarly, )
Pr(d = dp|a®) = ng/ (14 a(v))dF(v) = ¢p(1+ Ea(v)).
0
Hence
Pr(d = dy|z*)
1= o _ Pr(d=dp[a®) "
D

Step 4. This is an intermediate step, which we use later in the proof. By Fact 3,

c1(x) < ¢j(w) = min{{er; () han<y {¢1(7) Ficran}s V5.

Moreover any sequence {z°}32, such that ¢}(2°) = ¢; ;(2**") will reach the lower bound of
the support in finite number of steps. Otherwise, by the argument in the proof of Lemma
A1, ¢;(2°) and ¢y j(2°) converge to the same point in the interior of the support, which

contradicts the assumptions of the theorem.

Step 5. Identification of {¢;}1<j<a-. For each v in a sufficiently small neighborhood near 7,

10



say (7 —e,7), and for each j, there is an z7 such that ¢; ;(2/) = v and ¢4 j(2?) > v for all

k # 1,7. It follows by Step 4 that the following equations hold:

dPr(d; dg‘.T )/dC1§ix ) :901(,/)902(y)f(y)

AP =B 00D )1 = o) slw) 1 0)
dPr(d; d4|$5)/d01§i$4) =01 (V) (1 — (V) (1 — p3())a(v) f(V)
dPr(d Zxdd* xd*)/dCL(Zimd*) =01 (V) (1 — @2(V))(1 — @3(¥)) ... (1 — @ge_1 (V) f (V)

The summation of these expressions recovers the quantity ¢;(v)f(v). Next, substitute
¢1(v)f(v) into the expressions above to sequentially recover {y;(r)}a<j<q«. Since v can
be made arbitrarily close to v by selecting a smaller value of € and since «a(+) is continuous,

lim, 5 @; (V) = ¢;(7) = ¢;j(1 — (V) = @; is also identified. Hence, {¢;}%_, are identified.

Step 6: Identification of ¢y and {p;}a<j<p. The cutoffs are monotone in z* and all cutoffs
are on the right of 7 at 2. Consequently, Pr(d = d;|z”) = 0 for all j > d*. Continuously
decrease ¢ until Pr(d = d;,|2") > 0 for some j; € J = {d*+1,...,D} and Pr(d = di|z") = 0
for all k € J \ {j1}. This will happen when ¢y j, (z') crosses 7, yielding

dPr(d = d;,|z")
dx

jfanl) o ) p)),

where v is in a small neighborhood near v s.t. ¢ ;, (z*) > » for all k > d*, k # j; and

Mi(v) = 11 (1 — or(v)).

k€{2,~~~ ,d*—l}ledl (Zl‘t)>l_/

Near the end of this proof-step we will take the limit as v — © after dividing out f(v).
Importantly, M; = lim,_,; M;(v) is known, since all relevant ¢;’s are known, and M; does

not depend on 1, since ¢ j, (z') < g 4, (2") < D.

Next, continuously decrease ¢ further until Pr(d = dj,|z") > 0 for some j» € J \ {ji} and
Pr(d = dgla’) = 0 for all k € J \ {1, Jj2}. Again, this will happen when ¢y j,(z) crosses .

11



Hence,

dPr(d = dj,|2") dcg.j,(x*)
o T = e ) M)

I1 (1= @x(v)).

k€{2,...,d*71,j1}:ck7j2 (zt)>v

My (v)

The term M, = lim,_,; M5(v) is known, except possibly for the term (1 — ¢;,), since all
other relevant ¢;’s are known. The expression above defines ¢;, () as a strictly increasing
function of ¢;, (v) regardless of whether Ms(v) depends on ¢;, (v) or not. Indeed, for the

case where j; < j» we have

pi(v) if o p(at) <
Pin(v) o e ) N>
), () if ¢j, 5, (2) 2 7

where the coefficients of proportionality are known in the limit. A similar expression holds
when j; > jo. This argument immediately extends to all j € J. In particular, for the case

where js < j3

0 o Pja(v) if Cja,j3 (xt) <v
J3 i (V) . _
1L‘—DZ§J-2(1/) if Cja,j3 (xt) =z

Since Pr(d = dp|z®) # 0, the above sequential argument yields that ¢p(v) is an increasing
function of ¢;, (v). In turn, recall that ¢;(v)f(v) is known for v arbitrary close to v. The
limit of the ratio between ¢;(v)f(v) and ¢, (v)f(v), which is also known, yields ¢p as an
increasing functions of ;. Hence, taken with the result in Step 3, the quantity ¢, is uniquely

pinned down. Identification of all other ¢;’s immediately follow.
Step 7: Identification of a(v) and f(v). The identification argument is iterative. For each
alternative j, define

F? ={vel0,7]:dz € X st. v=cy;(r) and cj(z) > v}.

The set F? includes all preference parameters v covered by the cutoff ¢; ;(-) before any other
relevant cutoffs for d; enter the support. Let 'V = ﬂle I'). By Step 4, I'” is a non-trivial
interval and € I'%. For each v € TY and each d;, there is an 27 € X such that ¢ ;(27) = v.

As a result, the following system of equations hold for each v € I'’:

12



- APHA= ) 002 ) 1)

PHAZ I A0S 1)1 o)l S0)
dpr(ddx dylz?) /dc1;ix ) =01(1)(1 — pa(¥)) (1 — @3(v))a(v) f (V) (A.4)
dPr(d = dale”) dera ()

)Y EAE ) ()1 = s (1 = 250 - (1= a1 (W) (),

The summation of these expressions recovers the quantity ¢ (v)f(v). Substitute this into
the first equation to obtain @s(r) = pa(1 — a(r)). But ¢, is already known, so a(v) is
identified on I'°. Finally, since ¢;(v) = ¢;(1 — a(v)) is now identified, so is f(v) on I'°.

In the next step of the iteration, let ! = min,cro I'° be the smallest value of v where a(v)
and f(v) are identified. Define

F} ={vel0,7]:dz € X st. v=cy(r) and cj(z) > 7'} and T'= ﬂ Fl

Then, a similar system to (A.4) holds Vv € T, but may include additional terms. These
terms are known, because they are functions of f(-) and «a(-) evaluated at v € T'° (and also
of {¢;}12,). We can therefore repeat the argument from the base case to establish that o(v)
and f(v) are identified on T''. We repeat this iterative procedure. After a finite number of
steps T', we obtain I'" = [0, 7] by Step 4; hence, f(-) and «a(-) are identified.

Edge Case I: Suppose d* = d; (the identity is known from Step 2). The following expressions

hold for v close to :

- dPr(d; L) /d01§ix2> = (V) f(v)
_dPr(d = d|2®) deyz(a?)

) EA ) (1 oa0)eav)f (v)

AP = ) Al (3 )1 - a0 ) (A5)
AP =doleT) A0 ) (1 (1)1 = alv) . (1= s (1) p ()£ 0).

13



The ratio of the first and second equations in System (A.5) yields:

2 ()

where z(v) = (2%(v),23(v),...,2P(v)) is a known implicit function of v satisfying v =

¢1(27(v)) for j =2,...,D, and As(x(v)) is data:

dPr(d=d3|x3(u))/dc1,3(m3(V))

_ dx dx
Az(@(v)) = APr{d=dy]()) /o220
dx dx
From this, we obtain
P2 1
=(1- 1—a(v
5 ( 902( Oé( >)A3(w(y))
As(z(v)) 1
=~ (1-aW)
¥3 P2
1 A
Oé(l/) 1 = 3<w(y))
P2 Y3
0As(x(v)) da*(v)  0Az(x(v))dz®*(v)] 1 1
1)) — — =B —
o' (v) Ox? dv + Ox3 dv | @3 3(:c(1/))903,
where Bz(x(v)) is a known function of data. A similar idea yields
, 1
o' (v) = By(m(v))—
P4
1
o (v) = Bs(x(v))—
¥s
, 1
o' (v) = Bp(x(v))—.
YD
Hence, the ratios i—z, %, % ... are identified. The ratio and the limit at the far end of the
support of the third and fourth equations in System (A.5) yields
1 1
0=1—-—+ Au(z(v))—
—+ Ai(o()
o3 = 1= Au(@(?)) 2,
¥4
S0 (p3 is identified and so are ¢y, ..., @p. The ratio of the first and second equation in System

(A.5) identifies po. The proof continues on with Step 7. As such it does not require the
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second condition of the theorem.

Edge Case II: Suppose that d* = D. From Step 5 we obtain ¢; for j : 1 < j < D. Next,
we show how to identify ¢;. We can find 27 such that v = ¢; p(2?) is arbitrary close to zero

satisfying ¢, (27) < 0 for all k # 7, D, and so the following system of equations holds:

dPr(d = dp[77) deporp(e) _ )

dr ) dx B
dPr(d = 5§2|$ )/dCDQ’dDQEx ) =(1 —9p-1(v))pp-2(v) (V)
dPr(d = 35_3|xD3)/ch_3,5x(xD3) —(1 = @p (V)1 — pp_s())p_s(v) f(V)

dPr(d = d1|x1)/d017D(I1)
dz dz

=(L=@p1(¥))(1 = pp2(¥)) ... (L = 02(¥)) 1 (v) f (¥).

The ratio of the first two equations yield

A — YD—-2
¥YD-1

(1= ppa(l+a)),

where A, ¢p_o, and pp_; are known terms; hence, a(0) = lim,_,o a(v) is identified. Once
a(0) is identified, the term ¢; is identified from the ratio of the first and last equations in

the above system. Finally, f(v) and «(v) are identified by Step 7.

Edge Case III: Suppose d* = 2. By Steps 3, 5 and 6 all ;’s are identified. A modified version
of Steps 4 and 7 can be applied. We begin by starting at the lower end of the distribution
with dp taking the role of di; dp_;1 taking the role of ds, etc. Step 4 can be restated for

¢jp(x) > ¢ (x) = max{{cr; (@) herejs {¢n(2) i<ren}, V.

Finally Step 7 can be repeated starting at the lower end of the support and building on the
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following equations

dPr(d = dp1[eP7) deprp(@®T) _ s p )

dz dx
dPr(d:;l§2|x - )/dCDz,;)aEx —) —op()(1 = opr (V) pp_2(v) F ()
AP = ol 20500 1)1 - s (W)L~ a0
dPr(d = dg|z®) de;g(a?)

=) EA ) )1 = ppa ()1 = ppa(¥) - (1 = 3@ f(¥).

]

Proof of Theorem 7. Let v, x, N.(x) = {a’ : ||’ — z|| < €} satisfy the conditions in the
theorem. Then v = ¢;;(x) for all j, k. For any pair of alternatives (d;, d)) we can perturb

xr, k¢ {j,d*}, and x;, VI ¢ {j,d*, k}, so that the resulting 2’ € N (x) is such that

Uy(dk, .Z';C) > Uy(dj7 fl?j)
Unldyyz5) > Unld o), VL€ D\ {jik,d*}.

And we can do another perturbation of x;, VI ¢ {j,d*}, so that the resulting 2" € N.(Z) is
such that

U,(d;,xz;) > U,(dy,z]), VleD\{jd}.

Then

0Pr(d = d;|z) Jcja+ ()

= @j(l‘j’l/)(l - @k<$;€,V)>f<l/)

81’03* axd*
OPr(d = dj|lz") dc;a-(x)
Oz = ¢;(x;, V)f(’/)aTd*-

Taking the ratio of the expressions above identifies (1 — @ (2}, v)). By continuity we identify

i(xg, v). Identical steps identify ¢;(z;,v), Vj # d*, and hence f(v).
0

Proof of Proposition 4. Take any non-empty consideration set K. For a given preference
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coefficient v, let ji(x,v) denote the identity of the best alternative in this consideration set.

By the natural ordering, jx(z,v) is an increasing step function in v. Hence, I(ji(z,v) < J)

is a decreasing step function. The term Pr U;.Izl d;|z,v | is a non-negatively weighted sum

of I(ji(xz,v) < J). Hence it is decreasing in v. O

Proof of Proposition 5. Consider a limited consideration model with preferences U, (d;, z)
and consideration probability Q% (K), K C D. The optimal choice from D conditional on the
DM facing the consideration set IC # ) is the alternative with the largest value of U, (d;, x)
subject to j € K. This is the same solution as the one that maximizes V, (d;, z, ¢;) where
¢j =0 forall j € £ and ¢; = —oo for all j € D\ K. Finally, since conditional on x the
consideration set K has the same distribution as the set of alternatives with ¢; = 0 (this
is by construction), the limited consideration model and this ORUM model yield the same

model predictions, and hence they are equivalent. O

B Application: Verifying Cutoff Order

We start by recalling that CARA and CRRA utility functions satisfy the following basic
property (see, e.g., Pratt, 1964; Barseghyan, Molinari, O’'Donoghue, & Teitelbaum, 2018).

Lemma B.1. For any yo > y1 > y2 > 0, the ratio R(yo,y1,y2) = % is strictly

INCTEAsIng in v.

It follows that CARA and CRRA utility functions also satisfy a slightly extended version of
the property above:

Lemma B.2. For any yo > y1 > y2 > ys > 0, the ratio M,(yo,y1, Yo, y3) = % is
strictly increasing in v.
Proof.
M (yO Y1, s y3) _ uu(y2> — uu<y3) _ uu<y2> — uu<y3) « uu(yl) B uu(y2>
e uy(Yo) — up(y1)  w(y1) —w(y2)  wn(yo) — un(yn)
= Ry(yla Y2, yS)Ru(y07 Y1, ?J2)
]

I This property is equivalent to condition (e) in Pratt (1964, Theorem 1). As shown there, it is equivalent
to assuming that an increase in v corresponds to an increase in the coefficient of absolute risk aversion.
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For our application, we show that ¢1 ;(p, ) < ¢1,41(p, i) for any j > 2 under both CARA
and CRRA preferences.

Proposition B.1. Suppose deductibles and prices are such that

P1—Pj dy — dj
<
p1—Ppisv1 di—djp

and di, + pp, < w for all k. Under either CARA or CRRA expected utility preferences, the
cutoff mapping is unique and satisfies ¢y ;(p, ) < c1,4+1(D, ) for all j > 1.

Note that in a perfectly competitive markets where additional coverage is simply proportional
to its price both ratios will be equal. In practice, however, one might expect that with some

market power the prices increase faster than then coverage, and hence

P1—DP; dy — dj
<
p1—Ppiv1 i —djp

This is exactly what we find in our data (as well as for a larger number of firms appearing
in Barseghyan, Prince, & Teitelbaum (2011)).

Proof. We start with CARA preferences. The existence and the uniqueness of ¢; () for all
J < k follows directly from the Lemma B.2. Indeed note that p; < px < px + di < p; + d;.2
At the cutoff the DM is indifferent between lotteries j and k. Equating two expected utilities
and rearranging we have that

—v(w—pr—dg) _ ,—v(w—pj—d;) 1 —
‘ ‘ - (B.1)

e—v(w—p;) _ o—v(w—py) L

where w is the DM’s initial wealth. By Lemma B.2, the L.H.S. of Equation B.1 is strictly
monotone in v, and it tends to 400 when v goes to 400 and to zero when v goes to —oo.
It follows that there exists a unique v, i.e the cutoff ¢;;(z), that solves the Equation B.1.
Moreover, since the L.H.S. is strictly monotone in v it follows from the Implicit Function

Theorem that ¢;;(x) is continuous in p and p.

The next step is to establish ¢ ;(p, 1) < ¢141(p, i), j > 1. For the purpose of obtaining
a contradiction, suppose that there exists (p, 1) and an j such that ¢; ;(p, ) > ¢1j41(P, p)-

2If px + dx, > pj + d;, then alterantive j first order stochastically dominates k and hence the cuttoff is
+00.

18



Since the expected utility of lottery k is proportional to
EU,(Ly) o< —€"* (1 — pu+ pe”™)
there exists v = ¢ ;(p, i) > ¢1,j41(P, pt) such that

vd vd
L —p+ pe leu(grgj)p:1< I —p+ pe’™

v(91—9j+1)P
1—,u—|—,ue”dj _1—/,L+/,L6Vdj+1e 4+

Taking logs yields

log L= pe ( )P
(0] S ——— = —U J— .

| 1 — p+ perd
(0]
g 1 _ /.L + Mel/dj+1

) > —v(g1 — gj+1)D-

Dividing through and using the fact that —v(g1 — g;41)p > —v(g1 — g;)p > 0 yields

_ vdq
g (Lomect)
& 1—ptpe’%i < g1 — 9j
_ vdy - — . ’
1 L-ptpertt 91 — gj+1
Og 1_M+Meudj+1

The R.H.S. is less than one. We claim that the L.H.S. is monotonically decreasing in p < 1.
To show this, denote i = 1_7“, Ay =e'm A;=e"i and Ajyq = e’%+ to rewrite the L.H.S.
as follows

log(Ay + f1) — log(A; + 1)
log(Ay + f1) — log(Ajiq + 1)

LHS = f (l_TM) — ()

First, we show that the above expression is monotonically increasing in fi. Observe that

) ( 1 ) 1 - ( 11 ) 1
f@)  \NAr+i Aj+4) log(Ar + i) —log(A; + ) A+ p Ajp+ i) log(Ar + ) — log(Ajr + )
After relabeling Ay = —log(Ay + 1), Aj = —log(A; + 1) and Aj1 = —log(Ajq + 1) we

obtain

f/(ﬂ) 6A1 — eMin B 6A1 — e
fi) - A=A A=Ay

Since Ay < Aj < Ajy; and exponential function is convex, the expression above is positive.

Thus, the derivative of f (%) W.R.T. u is negative as claimed. That is, f (%) achieves
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d1—d, . Do . .
dll_ o Finally, a contradiction is obtained since
J

its lowest value at © = 1 and is equal to

dy — dj g1 — 9g;
>
dy — dj+1 g1 — gj+1

1—
L.H.S > min f ( “) - — R.H.S,
u p
where the strict inequality is by assumption. Therefore, ¢1 ;(p, 1) < ¢1j4+1(p, ) under CARA

as claimed.

Under CRRA, ¢;,(p, ;) exist and are continuous exactly for the same reasons as under
CARA. It remains to establish that ¢ ;(p, ) < ¢1,41(p, pt). For the purpose of obtaining a

contradiction, suppose ¢y ;(p, ft) > ¢1,4+1(P, pt) for some (p, 11). Consider the following Taylor

expansion for the CRRA Bernoulli utility function u,(w) = “1’1:::
(U} - pk)lfu wl*l/ w™Y wfufl ) —v—2 5
= —Pk) — - 1
R p S TR A TR AR e O
Or, equivalently,
1 w? w?
(1 — v)w” Hu, (w — pi) — uy ()] = (v — 1)ﬁw pr+ (v—1)v 5 — i+ (v =1+ 1)?pk +...

Hence,

BU(Li) o< (1= ) Y ok + 1 Y wnv) (o + )’

where w;(v) = (Hw) T [[L (v — 1 +#) < 0 when v € (0,1). When v > 1, w,(v) > 0 but
the factor premultiplying u, (w — px) above is negative, so we would still come to the same
conclusion that EU, (L) is proportional to a power series with coefficients 7(v) = —w(v) <
0. The power series are absolutely convergence provided that py + dj < w, so the difference

in the power series for EU,(L;) and EU,(Ly) is equal to the sum of the difference:
EU,(L;) = EU,(Ly) o< (1 = p) Y wi(v) (05 — p}) + Mzwt ((pj + )" = (P + dp)")

= (p;—pr) (1 — ) Zwt Zp?p}i "+

+ ((pj — i) + (d; — dy)) uzwt )Y (P +dy)" (e + di) ™"

t—
h=0
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The condition v = ¢; ;(p, 1) > ¢1,j+1(P, pt) implies

P1— Dy > p1—pj +di —dj 5(v),
P1—Dj+1  P1— Pj+1 +di —djp

where

o - - 0 -1 _
Sy wi(V) Yo (1 + )" (0 + )" 32 wi(v) Yo PP
Sy (v) S (1 + d)" (g + dyn)" 22 wiv) Mg ool

d(v)

Under the assumption v = ¢1;(p, 1) > ¢1j+1(p, pt) it is also the case that v = ¢ ;(p, p) >
C1,j+1 (}37 ,LL) > Cj,j—i—l(ﬁ; ,u) by Fact 4. HGDCG, pj—i-dj > P+l +dj+1. Indeed otherwise Pj+1—D; >
d; — d;yq is a violation of the first order stochastic dominance. Taken with p;i1 > p;, it

follows that 6(v) > 1. Finally, a contradiction will be obtained if

pi—p _ Pixi—prtdi—d
Pis1 — D1~ P1L— P41+ di —djyy]

since then Equation (B.2) will not hold. Re-arranging this expression we obtain:

p1—Pimitdi —di _p1—pjt+di—d
Pj+1 — P1 - Dj — D1
=y _dy—d,
Pi+1 — P pj — D1
P1—DPj < di — dj ‘
p1—Ppiv1 di—djp

The latter inequality holds by assumption. It follows that ¢ ;(p, 1) < ¢1+1(p, ), j > 1.

C Monetary Cost of Limited Consideration

We view limited consideration as a mechanism that constrains households from achieving
their first-best alternative either because the market setting forces some alternatives to be-
come more salient than others (e.g. agent effects) or because of time or psychological costs
that prevent the household from evaluating all alternatives in the choice set. Regardless
of the underlying mechanism(s) of limited consideration, we can quantify its monetary cost
within our framework. We ask, ceteris paribus, how much money the households “leave

on the table” when choosing deductibles in property insurance under limited consideration
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rather than under full consideration. This is likely to be a lower bound on actual monetary
losses arising from limited consideration, because insurance companies might be exploiting

sub-optimality of households choices when setting prices or choosing menus.

We measure the monetary costs of limited consideration as follows. For each household we
compute (the expected value of) the certainty equivalent of the lottery associated with the
households’ optimal choice, as well as of the one associated with their choice under limited
consideration.® We then take the difference between these certainty equivalent values and
average them across all households in the sample. On average, we find that households lose
$50 dollars across the three deductibles because of limited consideration. See Table E.6 for
variation conditional on demographic characteristics and insurance score. We also find wide
dispersion in loss across households (see Figure E.6). In particular, the 10* percentile of
losses is $31 and the 90" is $73.

3Certainty equivalent of the lottery is defined as the minimum amount they are willing to accept in lieu
of the lottery. In our case, for alternative j, it is simply ce; = L In[(1 — p) exp(vp;) + pexp(v(p; + d;))].
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D Data

Table D.1 Descriptive Statistics

Variable Mean Std. Dev. 1st % 99th %
Age 53.9 15.6 25.4 84.1
Female 0.40

Single 0.22

Married 0.55

Second Driver 0.43

Insurance Score 767 112 532 985

Table D.2 Frequency of Deductible Choices Across Contexts

Deductible 1000 500 250 200 100 50
Collision 0.063 0.676 0.122 0.129 0.009
Comprehensive 0.037 0.430 0.121 0.329 0.039 0.044
Home 0.176  0.559 0.262 0.002

Table D.3 Deductible Rank Correlations Across
Contexts

Collision Comprehensive Home

Collision 1
Comprehensive 0.61 1
Home 0.37 0.35 1
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Table D.4 Average Premiums Across Coverages

Deductible 1,000 500 250 200 100 50
Collision 145 187 243 285 327
Comprehensive 94 117 147 155 178 224
Home 594 666 720 885
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E Empirical Results: Figures and Tables

E.1 The ARC Model with Observable Demographics

While it is ideal to control for households’ observable characteristics non-parametrically, it
is data demanding. In practice, it is commonly assumed that household characteristics shift

the expected value of the preference-coefficient distribution.? We adopt the same strategy

here by assuming that for each household i, log B 52 = 7,7, where ~ is an unknown vector to

be estimated. The terms (3, ; and 3, denote the parameters of the Beta distribution, where

B1,i is household specific and /3, is common across households. The preference coefficients are
random draws from a distribution with an expected value that is a function of the observable
.. . . B
characteristics given by E(v;) = Tk
line with our first estimation. (See Column 2 in Table E.1, as well as Figures E.1 and E.2.)

eZi’ _ 5

v = 757z7v." The results of this estimation are in

The new observation here is that the model closely matches the distribution of choices across
various sub-populations in the sample including gender, age, credit worthiness, and contracts
with multiple drivers. The model’s ability to match these conditional distributions can be
attributed, in part, to the dependence of risk preferences on household characteristics. The
model is, however, fairly parsimonious as the consideration parameters are restricted to be
the same across all households. Finally, estimated consideration probabilities are close in
magnitude to those estimated above. In particular, the highest deductibles ($1,000 and
$500) are most likely to be considered, with respective frequencies of 0.94 and 0.92. The

remaining alternatives are considered at much lower frequencies.

4For exmaple, Cohen & Einav (2007) assume that logv; = Z;y + ¢;, where Z; are the observables for
household i and ¢, is i.i.d. N(0, 02). Hence, E(v;) = eZi7+7°/2,

5If, instead, we assume log ﬁgl'i
the exception that 7 = —~.

= Z;7, then we arrive to the same expression for the expected value with
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E.2 Figures
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Figure E.2: The ARC Model with Observable Demographics: Conditional Distributions
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Figure E.3: The Mixed Logit
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Figure E.4: The Mixed Logit, Three Coverages
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Figure E.5: The ARC Model, Three Coverages:
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E.3 Tables

Table E.1 MLE Estimation Results for the ARC Model: Collision Only

ARC Model ARC Model with Observables

Average B, 170 [1.56, 1.82] 223 [1.93, 2.50]

Ba 7.45 [6.68, 8.08] 9.20 [8.09, 10.1]
Mean of v 0.0037 [0.0036, 0.0038] 0.0038  [0.0036, 0.0040]
SD of v 0.0024 [0.0023, 0.0026] 0.0022 [0.0021, 0.0023]
Intercept - - —1.41  [-1.47,-1.33]
Age ; ; 0.207  [0.173, 0.237]
Age’ ; ; 0.048  [0.022, 0.073]
Female Driver - - 0.077  [0.051, 0.104]
Single Driver - : 0.050  [0.022, 0.079]
Married Driver - - 0.103  [0.062, 0.144]
Credit Score - - 0.134  [0.107, 0.160]
2+ Drivers - - —0.302 [-0.370, -0.224]
Collision $100  0.059  [0.050, 0.068] 0.050 [0.042, 0.058]
Collision $200 0.412  [0.391, 0.433] 0.390 [0.364, 0.413]
Collision $250 0.206  [0.198, 0.214] 0.204 [0.193, 0.212]
Collision $500  0.920  [0.913, 0.926] 0.915 [0.909, 0.924]
Collision $1000 1.000  [1.000, 1.000] 0.944 [0.899, 1.000]
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Table E.2 MLE Estimation Results for the Proportionally Shifting Consideration

Model

ARC Model ARC Model with Observables
Average (y; 1.44 [1.31, 1.55] 2.11 [1.86, 2.28]
By 6.07  [5.35, 6.67] 874  [7.73,9.58]
Mean of v 0.0038 [0.0037, 0.0040] 0.0038  [0.0036, 0.0040]
SD of v 0.0027 [0.0026, 0.0028] 0.0023  [0.0021, 0.0024]
Intercept - - —1.40  [-1.47,-1.35]
Age : : 0.194  [0.160, 0.222]
Age? - - 0.036 [0.010, 0.059]
Female Driver - - 0.070  [0.046, 0.096]
Single Driver - - 0.049  [0.021, 0.076]
Married Driver - - 0.091  [0.047, 0.130]
Credit Score - - 0.135  [0.110, 0.160]
2+ Drivers - - —0.283 [-0.348, -0.200]
Collision $100 0.061  [0.051, 0.070] 0.055 [0.046, 0.063]
Collision $200 0.424  [0.401, 0.446] 0.408 [0.382, 0.433]
Collision $250 0.211  [0.202,0.220]  0.212  [0.201, 0.222]
Collision $500 0.985  [0.974,0.998]  0.961  [0.929, 0.977]
Collision $1000 1.000 - 1.000 -
Average &; 0.478  [0.277, 0.652] 0.148 [0.021, 0.212]
£ 26.7  [16.1, 37.9] 714 [0.939, 10.3]
&: Intercept - - —2.24  [-3.59, 0.0011]
&: Age - - 1.24 -0.736, 1.75]
£: Age? ; ; ~0.382 [-0.701, 0.584]
& : Female Driver - - —0.323 [-1.16, 0.910]
&: Single Driver - - 0.382  [-1.51, 0.650]
&: Married Driver - - 0.0017  [-2.35, 1.45]
& : Credit Score - - 0.405  [-0.688, 0.642]
&t 2+ Drivers - - 0.485  [-2.22, 1.98]
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Table E.3 MLE Estimation Results for the

Mixed Logit:
Collision Only

Mixed Logit

Average [y;
B2

Mean of v
SD of v
Intercept

Female Driver

Single Driver

Married Driver

Credit Score
24 Drivers

Sigma

9.07
124.4
0.0014
0.0004
—2.59
—0.139
—0.024
—0.0035
—0.0098
—0.030
0.091
—0.016
0.039

7.54, 10.2]
106.0, 137.5]
0.0013, 0.0014]
0.0004, 0.0005]
-2.63, -2.55]
-0.156, -0.122]
-0.037, -0.010]
-0.019, 0.012]
-0.026, 0.0060]
-0.054, -0.0078]
0.076, 0.105]
-0.061, 0.029]

[
[
[
[
[
[
[
[
[
[
[
[
[0.037, 0.041]
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Table E.4 MLE Estimation Results for the ARC Model, Three Coverages

ARC Model ARC Model
Average (1, 4.70 (3.89, 5.30] (250,200,250) 0.037 [0.033, 0.041]
B2 24.0 [19.7, 27.2] (250,200,500) 0.056  [0.051, 0.061]
Mean of v 0.0032 [0.0032, 0.0033] (250,200,1000) 0.045 [0.035, 0.055]
SD of v 0.0013  [0.0012, 0.0014]  (250,250,100) 0.0011  [0.0004, 0.0020]
Intercept —1.68 [-1.72, -1.64] (250,250,250) 0.042 [0.038, 0.046]
Age 0.162  [0.146, 0.180] (250,250,500) 0.061  [0.056, 0.066]
Age? 0.041  [0.026, 0.054] (250,250,1000) 0.026  [0.019, 0.034]
Female Driver 0.043 [0.027, 0.061] (250,500,500) 0.0007  [0.0004, 0.0013]
Single Driver 0.010  [-0.0075, 0.028]  (500,50,250) 0.034  [0.028, 0.042]
Married Driver  0.030 [0.0054, 0.054] (500,50,500) 0.053 [0.044, 0.063]
Credit Score 0.137  [0.121, 0.153] (500,50,1000) 0.033  [0.018, 0.047]
24 Drivers —0.097 [-0.141, -0.052] (500,100,250) 0.015 [0.012, 0.019]
(100,50,250) 0.041 [0.033, 0.049] (500,100,500) 0.043 [0.036, 0.049]
(100,50,500) 0015  [0.0099, 0.021]  (500,100,1000) 0.048  [0.034, 0.062]
(100,50,1000) 0.013 [0.0048, 0.023] (500,200,100) 0.0079  [0.0040, 0.012]
(100,100,100) 0.0023  [0.0009, 0.0042]  (500,200,250) 0126  [0.119, 0.133]
(100,100,250) 0.0077 [0.0049, 0.010] (500,200,500) 0.337 [0.322, 0.352]
(100,100,500)  0.0050  [0.0027, 0.0078]  (500,200,1000)  0.243  [0.221, 0.264]
(100,100,1000)  0.0047  [0.0019, 0.0086]  (500,250,100) 0.0018  [0.0008, 0.0032]
(100,200,250) 0.0005 (0.0002, 0.0010] (500,250,250) 0.038 [0.034, 0.042]
(100,200,500) 0.0008  [0.0004, 0.0015]  (500,250,500) 0.102  [0.095, 0.109]
(100,200,1000) 0.0036 (0.0013, 0.0065] (500,250,1000) 0.093 [0.080, 0.106]
(200,50,100) 0.011  [0.0052, 0.016]  (500,500,100) 0.0032  [0.0015, 0.0059)]
(200,50,250) 0.066  [0.057, 0.075] (500,500,250) 0.110  [0.103, 0.116]
(200,50,500) 0.061  [0.051, 0.071] (500,500,500) 0.426  [0.413, 0.439]
(200,50,1000) 0.033 [0.018, 0.048] (500,500,1000) 0.469 [0.450, 0.486]
(200,100,100) 0.0020 (0.0008, 0.0037] (1000,50,250) 0.0069  [0.0020, 0.013]
(200,100,250) 0.021  [0.017, 0.026] (1000,50,500) 0.0085  [0.0022, 0.015]
(200,100,500) 0.028 [0.023, 0.034] (1000,50,1000) 0.029 [0.0031, 0.053]
(200,100,1000)  0.023  [0.012, 0.033] (1000,100,250)  0.0049  [0.0019, 0.0090]
(200,200,100) 0.0017  [0.0007, 0.0032]  (1000,100,500) 0.0060  [0.0021, 0.011]
(200,200,250) 0.157 [0.147, 0.167) (1000,100,1000) 0.035 [0.0080, 0.064]
(200,200,500) 0.165  [0.154, 0.176] (1000,200,250) 0.032  [0.019, 0.045]
(200,200,1000) 0.136 [0.113, 0.158] (1000,200,500) 0.082 [0.061, 0.105]
(200,250,250) 0.0004  [0.0002, 0.0006]  (1000,200,1000)  0.088  [0.046, 0.128]
(200,250,500) 0.0005 (0.0002, 0.0009] (1000,250,250) 0.0067  [0.0027, 0.012]
(200,500,250)  0.0015  [0.0008, 0.0023]  (1000,250,500)  0.027  [0.015, 0.039]
(200,1000,1000)  0.0047 [0.0017, 0.0085] (1000,250,1000) 0.053 [0.025, 0.083]
(250,50,100) 0.0020 (0.0008, 0.0037] (1000,500,250) 0.033 [0.022, 0.044]
(250,50,250) 0021  [0.017, 0.025] (1000,500,500) 0.140  [0.119, 0.161]
(250,50,500) 0.033 [0.027, 0.039] (1000,500,1000) 0.362 [0.309, 0.405]
(250,100,250) 0.017  [0.015, 0.020] (1000,1000,250)  0.082  [0.058, 0.107]
(250,100,500)  0.016  [0.014, 0.020] (1000,1000,500)  0.238  [0.199, 0.267]
(250,100,1000)  0.019  [0.011, 0.026] (1000,1000,1000)  0.755  [0.652, 0.829)]
(250,200,100) 0.0010 (0.0003, 0.0019]




Table E.5 MLE Estimation Results for RUM,
Three Coverages

Mixed Logit

Average (3y; 4.89 [4.60, 5.16]

By 542 [51.6, 56.6]
Mean of v 0.0017  [0.0016, 0.0017]
SD of v 0.0007  [0.0007, 0.0007]
Intercept —2.37  [-2.39, -2.34]
Age —0.077 [-0.088, -0.066]
Age? —0.015  [-0.024, -0.0059]
Female Driver ~ 0.0008  [-0.0098, 0.012]
Single Driver —0.014  [-0.025, -0.0030]
Married Driver —0.018 [-0.033, -0.0029]
Credit Score 0.034  [0.023, 0.045]
24 Drivers —0.048  [-0.075, -0.020]
Sigma 0.224  [0.209, 0.23]

Table E.6 Average Monetary Loss by Group

Average Monetary Loss

All ~50.2 [-52.4, -47.3]
Female Driver —54.3 [-56.8, -51.0]
Single Driver —45.1  [-47.1, -42.3]
Young —45.5  [-47.2, -43.2]
oud 654 [-69.3, -59.4]
Low Credit Driver —47.6 [-49.3,-44.9]
High Credit Driver —54.3 [-57.3,-50.3]

33



References

Barseghyan, L., Molinari, F., O’'Donoghue, T., & Teitelbaum, J. C. (2018). Estimating risk
preferences in the field. Journal of Economic Literature, 56(2), 501-564.

Barseghyan, L., Prince, J., & Teitelbaum, J. C. (2011). Are risk preferences stable across
contexts? Evidence from insurance data. American Economic Review, 101(2), 591-631.

Cohen, A., & Einav, L. (2007). Estimating risk preferences from deductible choice. American
Economic Review, 97(3), 745-788.

Pratt, J. W. (1964). Risk aversion in the small and in the large. Econometrica, 32(1/2), 122-136.

34



	BaMoTh_Online_Appendix.pdf
	Appendices
	Proofs
	Application: Verifying Cutoff Order
	Monetary Cost of Limited Consideration
	Data
	Empirical Results: Figures and Tables
	The ARC Model with Observable Demographics
	Figures
	Tables



