Heterogeneous Choice Sets and Preferences*

Levon Barseghyan Maura Coughlin
Cornell University Rice University
Francesca Molinari Joshua C. Teitelbaum
Cornell University Georgetown University

February 9, 2021

Abstract

We propose a robust method of discrete choice analysis when agents’ choice sets
are unobserved. Our core model assumes nothing about agents’ choice sets apart from
their minimum size. Importantly, it leaves unrestricted the dependence, conditional
on observables, between choice sets and preferences. We first characterize the sharp
identification region of the model’s parameters by a finite set of conditional moment
inequalities. We then apply our theoretical findings to learn about households’ risk
preferences and choice sets from data on their deductible choices in auto collision in-
surance. We find that the data can be explained by expected utility theory with low
levels of risk aversion and heterogeneous non-singleton choice sets, and that more than
three in four households require limited choice sets to explain their deductible choices.
We also provide simulation evidence on the computational tractability of our method in
applications with larger feasible sets or higher-dimensional unobserved heterogeneity.

Keywords: choice sets, discrete choice, partial identification, random utility, risk pref-
erences, unobserved heterogeneity.

*We are grateful to the editor, the referees, Panle Jia Barwick, Aureo de Paula, Jean-Francois Houde,
Chuck Manski, Ulrich Miiller, Matthew Thirkettle, Lin Xu, and participants at numerous conferences and
seminars. We acknowledge financial support from National Science Foundation grants SES-1031136 and SES-
1824448 and from the Institute for Social Sciences at Cornell University. Part of the research for this paper
was conducted while Barseghyan and Molinari were on sabbatical leave at the Department of Economics at
Duke University, whose hospitality is gratefully acknowledged.



1 Introduction

The primitives of any discrete choice model include two sets: a known universal set of feasible
alternatives—the feasible set—and the finite subset of the feasible set from which an agent
makes her choice—her choice set. Discrete choice analysis in the tradition of McFadden
(1974) rests on the assumption that agents’ choice sets are observed. McFadden shows that
when this assumption holds, one can apply the principle of revealed preference to learn about
agents’ unobserved preferences from data on their observed choices. Moreover, he shows that
with additional restrictions on the structure and distribution of agents’ preferences, one can
achieve point identification of a parametric model of discrete choice.

In practice, however, choice sets are often unobserved (Manski 1977). Sometimes this is
a missing data problem—agents’ choice sets are observable in principle but are not recorded
in the data. For example, one studying the college enrollment choices of high school students
may not observe the colleges to which a student applied and was admitted (Kohn et al. 1976);
one studying the travel mode choices of urban commuters may not observe if some modes
normally available to a commuter were temporarily unavailable on a given day (Ben-Akiva
and Boccara 1995); or one studying the hospital choices of English patients may not observe
which alternatives were offered to a patient by her referring physician (Gaynor et al. 2016).

At other times the problem is that agents’ choice sets are unobservable mental constructs.
This is the case in models of limited attention or limited consideration, where an agent
considers only a strict subset of the feasible set due to, for example, search costs, brand
preferences, or cognitive limitations. For instance, one studying the personal computer
choices of retail consumers can be sure that a consumer was not aware of all computers for
sale but cannot observe the computers of which a consumer was aware (Goeree 2008); one
studying the Medigap plan choices of Medicare insureds cannot observe which of the available
plans an insured in fact considered (Starc 2014); or one studying the energy retailer choices
of residential electricity customers cannot observe whether or to what extent a customer
considered the alternatives to her default, incumbent retailer (Hortagsu et al. 2017).

When choice sets are unobserved the econometrician is forced to make additional as-
sumptions in order to achieve point identification (Ben-Akiva 1973). The most common
approach is to assume, often implicitly, that all choice sets coincide with the feasible set or
a known subset of the feasible set. More sophisticated approaches allow for heterogeneity
in choice sets and obtain point identification by relying on auxiliary information about their
composition or distribution, two-way exclusion restrictions (i.e., variables assumed to impact
choice sets but not preferences and vice versa), and other restrictions on the choice set forma-

tion process (e.g., conditional independence between choice sets and preferences). In some



applications these approaches seem reasonable or at least plausible. In many applications,
however, they likely result in misspecified models, biased estimates, and incorrect inferences.

More fundamentally, the basic revealed preference argument breaks down when choice
sets are unobserved. At one extreme, when an agent’s choice set coincides with the feasible
set, her choice reveals that she prefers the chosen alternative to all others. At the other
extreme, when an agent’s choice set comprises a single alternative, her choice is driven
entirely by her choice set and reveals nothing about her preferences. In all other cases her
choice is a function of both her preferences and her choice set. Learning about preferences
from choices when choice sets are unobserved is the main challenge we address in this paper.

We propose a new, robust method of discrete choice analysis when agents’ choice sets are
unobserved. We lay out our core model in Section 2. We begin with the classic random utility
model developed by McFadden (1974) and others, though we allow for a utility function
that is neither linear in parameters nor additively separable in unobservables. Our key
point of departure from the classic model, however, is that we relax the assumption that
the agents’ choice sets are observed. Instead, we assume only that the minimum size of the
agents’ choice sets is a known integer greater than one. Consequently, our model admits any
choice set formation process (subject to the minimum size assumption) and allows for any
dependence structure, without restriction, between agents’ choice sets and their observables
and, conditional on observables, between agents’ choice sets and their preferences.

In Section 3 we first show that our model implies multiple optimal choices for an agent,
resulting from the multiple possible realizations of her choice set. It is this multiplicity
that, in the absence of additional restrictions on the choice set formation process, generally
precludes point identification of the model’s parameters. Because we avoid making such
additional, unverifiable assumptions, our approach yields a robust method of statistical in-
ference. We then present our main identification results, which leverage a result in random
set theory, due to Artstein (1983), to define a finite set of conditional moment inequalities
that characterizes the sharp identification region for the model’s parameters. We also discuss
the practicalities of computing the sharp identification region.!

In Sections 4 and 5 we demonstrate the usefulness of our theoretical findings by applying
them to learn about households’ risk preferences and choice sets from data on their deductible
choices in auto collision insurance. In Section 4 we specify an empirical model that allows for

unobserved heterogeneity in households’ risk preferences and in their choice sets. Although

ISharpness means that the identification region comprises all and only those parameters for which there
exists a choice set formation process such that the distribution of model-implied choices matches the distri-
bution of observed choices. The recent econometrics literature uses the result in Artstein (1983), discussed
in detail in Molchanov and Molinari (2018, Chapter 2), to conduct identification analysis in various partially
identified models (e.g., Beresteanu and Molinari 2008; Beresteanu et al. 2011; Galichon and Henry 2011;
Chesher et al. 2013; Chesher and Rosen 2017). For a review, see Molinari (2020).



we observe the feasible set of deductibles, we do not observe which deductibles enter a
household’s choice set. In our setting unobserved heterogeneity in choice sets may be due
to missing data—e.g., if different households are quoted different subsets of deductibles—or
to unobserved constraints—e.g., if some households disregard low deductibles due to budget
constraints or high deductibles due to liquidity constraints.

We present our empirical findings in Section 5. Our key finding on preferences is that the
data can be explained by expected utility theory with a distribution of risk aversion that has
low mean and variance, with at least a quarter of households being effectively risk neutral.
Our key finding on choice sets is that more than three in four households require limited
choice sets (i.e., strict subsets of the feasible set) to explain their deductible choices, and we
discuss two drivers of this result: suboptimal choices and violations of the law of demand.

Our empirical findings highlight the importance of using a robust method to conduct
inference on discrete choice models when there may be unobserved heterogeneity in choice
sets. The literature on risky choice, motivated in part by reported estimates of risk aversion
that seem implausibly high in light of the Rabin (2000) critique (e.g., Cicchetti and Dubin
1994; Sydnor 2010), has focused on developing and estimating models that depart from
expected utility theory in their specification of how agents evaluate risky alternatives. Our
findings provide new evidence on the importance of developing models that differ in their
specification of which alternatives agents evaluate, and of data collection efforts that seek to
directly measure agents’ heterogeneous choice sets (Caplin 2016).

In Section 6 we provide simulation evidence on the computational tractability of our
method in applications that feature larger feasible sets or higher-dimensional unobserved
heterogeneity. We also illustrate how the informational content of the data and the model
varies with the relative values of the size of the feasible set and the minimum size of the
agents’ choice sets, and with the dependence between the agents’ choice sets, on the one
hand, and their preferences or observables, on the other.

We conclude the paper in Section 7 with a discussion in which we review the prior
literature on discrete choice analysis with unobserved heterogeneity in choice sets and recap
our contributions to the literature. Supplemental Material (Barseghyan et al. 2021) contains

additional information and results, including on the computational aspects of our method.

2 A Random Utility Model with Unobserved
Heterogeneity in Choice Sets

Our starting point is the random utility model developed by McFadden (1974). Let Z denote

a population of agents and D denote a finite set of alternatives, which we call the feasible



set. Let U be a family of real-valued functions defined on D. The model posits that for each

agent ¢ € 7 there exists a function U; drawn from U according to some distribution such that
de* Cz = Ul(d) = Uz(C) forall ce Ci, (21)

where €* denotes “is chosen from” and C; € D denotes the agent’s choice set.

We assume that each agent ¢ € Z is characterized by a real-valued vector of observable
attributes x; = (s;, (2., c € D)), where s; is a subvector of attributes specific to agent ¢ that
are constant across alternatives and z;. is a subvector of attributes specific to alternative ¢
that may vary across agents. Let x;. = (s;,2;) denote the vector of observable attributes
relevant to alternative c. In addition, we assume that each agent i € 7 is further characterized
by a real-valued vector of unobservable attributes v;, which are idiosyncratic to the agent.
Let X and V denote the supports of x; and v;, respectively.

To operationalize U; as a random variable, we posit that it is a function of the agent’s

observable and unobservable attributes and we impose restrictions on its distribution.

ASSUMPTION 2.1 (Restrictions on Utility):

(I) There ezists a function W : X x V +— R, known up to a finite-dimensional parameter
vector § € A < R¥, where A is convexr and compact, and continuous in each of its

arguments such that U;(c) = W (X, V5 8) for all c € D, (X, ;) — a.s.

(1) The distribution of v;, denoted by P, is continuous, known up to a finite-dimensional

parameter vector v € I' © RY, where I is conver and compact, and independent of x;.

Assumption 2.1 allows for nonadditive unobserved heterogeneity in U;, indexed by v;.
It is weaker than the standard assumption that U; is additively separable in unobservables.
That said, one could let v; = (v, c € D) and specify W (X;., v;;0) = w(Xic; d) + Ve as in a
conditional logit (McFadden 1974), or let v; = (v;, (€, c € D)) and specify W (x;e, v;;8) =
w(Xie, V;; 0) + €. as in a mixed logit (McFadden and Train 2000).

Assumption 2.1 also posits that the functional family of U; and the distributional family
of v; are known parametric classes, and that v; is independent of x;. Though standard in
discrete choice analysis, the parametric assumptions are not essential for our partial identi-
fication results (see Remark 3.1), and the independence assumption can be relaxed based on
the structure of the empirical model (as we illustrate in our application). The assumption
that P is continuous, which ensures utility ties have probability zero, is also nonessential
because our partial identification results allow for sets of model-implied optimal choices and

thus can readily accommodate ties (see Section S1.2 of the Supplemental Material).



Our key point of departure from McFadden (1974) and the bulk of the discrete choice
literature is the assumption regarding what is observed by the econometrician. It is stan-
dard to assume that (i) a random sample of choice sets C;, choices d;, and attributes x;,
{(Cy,di,x;) - d; €* Cy,i € I < T}, is observed, and that (ii) |C;| = 2 for all i € Z, where | - |

denotes set cardinality (see, e.g., Manski 1975, Assumption 1). By contrast, we assume:

AssuMPTION 2.2 (Random Sample and Minimum Choice Set Size):
(I) A random sample of choices d; and attributes x;, {(d;,x;) : i € I < T}, is observed.

(IT) Pr(|C;| = k) =1 for all i € T, where k = 2 is a known integer.

Assumption 2.2(I) is weaker than the standard assumption as it omits the requirement
that choice sets are observed. Given this difference, Assumption 2.2(II) is comparable to the
standard assumption as it requires that choice sets have a known minimum size, k, greater
than one. The empirical content of the model increases with k. Knowledge of  is immediate
when choice sets are observed. We assume that x is known, either from information in the
data or by assumption, even though choice sets are unobserved. In any event, Assumption
2.2(II) is weaker than the common assumption that every agent’s choice set coincides with

the feasible set or a known subset of the feasible set.

REMARK 2.1: Under Assumption 2.2(II) the model has no empirical content if x = 1.
However, Assumption 2.2(II) can be weakened to Pr(|C;| = 1) < 7 < 1 for all i € Z, where

7, is known. In this case the empirical content of the model is decreasing in 7.

A key feature of our model is that it admits any choice set formation process, including
any mixture process, subject only to Assumption 2.2(IT). Choice sets may be formed by
internal processes, such as simultaneous or sequential search (Stigler 1961; Weitzman 1979;
Honka et al. 2019) or elimination-by-aspects or attention or attribute filters (Tversky 1972a,b;
Masatlioglu et al. 2012; Kimya 2018; Cattaneo et al. 2020), or by external processes, such as
advertising (Chamberlin 1933; Goeree 2008; Terui et al. 2011) or choice architecture (Thaler
and Sunstein 2008; Johnson et al. 2012; Gaynor et al. 2016). Whether internal or external,
the choice set formation process can admit any dependence structure, without restriction,
between agents’ choice sets and their observable attributes and, conditional on observables,
between agents’ choice sets and their unobservable attributes. That is, C; can be arbitrarily

correlated with x; and, conditional on x;, C; can be arbitrarily correlated with v;.
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Figure 3.1: Stylized depictions of D* when |D| = 3 and x = 2.

Notes: In Panel (a), v € R, U(c) = W(x,,v;d), and the alternatives in D are vertically differentiated. The
threshold 7, ., (x) is the value of v above which ¢, has greater utility than ¢, and below which ¢, has greater
utility than c,. In Panel (b), v € R? and U(c) = w(xc; 8) +ve. The threshold @, ¢, (X) = w(Xe,; 8) —w(Xc, ;)
is the value of v., —1,, above which ¢, has greater utility than ¢, and below which ¢, has greater utility than
¢q. Because k = 2, either |C] = 2 or |C| = 3 and hence D} comprises the first and second best alternatives in
D. For a given v, the first best appears in black and the second best in red. The agent’s choice is determined
by her realization G of C'. She chooses the first best if it is in G; otherwise she chooses the second best.

3 Partial Identification of the Model’s Parameters

3.1 Preferences

The random utility model in Section 2 implies multiple optimal choices for the agent, due
to the multiple possible realizations G of her choice set C;. Let d¥(G,x;,v;;8) denote the
model-implied optimal choice for agent ¢ with attributes (x;,v;), choice set C; = G < D,
and utility parameter 8. That is, df (G, x;, v;; 0) = arg maxeeg W (Xie, V45 6).

The set of model-implied optimal choices given (x;,v;) and 8 is

Dl (xvi8) = | {d;(a,xi,w;a)}: | {d;‘(G,xi,ui;é)}, (3.1)

GCD:|G|zk GCD:|G|=k

where the last equality follows from Sen’s property a: any alternative that is optimal for
a given choice set G' € D is also optimal for every choice set G < G’ containing that
alternative. The set D¥(x;,v;;8) is a random closed set with realizations in D.? It contains
the |D| — Kk + 1 best alternatives in D, where “best” is defined with respect to U;. Figure 3.1

contains stylized depictions of D¥*(x;,v;;0) when [D| =3 and k = 2.

2We formally define a random closed set in Definition A.1 in the Appendix. We formally establish that
DX(x;,v;;60) is a random closed set in Lemma A.1 in the Appendix.



When the information in the data and the economic model do not impose sufficiently
strong restrictions on the distribution of C;, the multiplicity of model-implied optimal choices
generally precludes point identification of the model’s parameters @ = [d;~]. The reason is
that the relationship between the data and the model is incomplete (Tamer 2003). To see
this, let Pr(d} = c|x;; 0, F) denote the model-implied conditional probability that alternative
c is chosen given x; and (@, F), where F = F(+;x;,v;) denotes the conditional probability

mass function of C; given (x;,v;). For all c € D,

Pr(d} = c|x;;0,F) = J Z 1(d} (G, x;,7;0) = ¢)F(G;x;, T)dP(T;7). (3.2)

TEY GeD

Because the only restriction we impose on F is that F(G;x;,v;) = 0 for G < D, |G| < &,

there may be multiple admissible values of (8, F) such that
Pr(df = c|x;;0,F) = Pr(d; = ¢|x;), Ve e D, x; — a.s., (3.3)

where d; is the agent’s observed choice.> Nonetheless, in general, it is not the case that for
every 0@ in a parameter space © there is an admissible F such that condition (3.3) holds.
Hence, we can partially identify @ from the information in the data and the model.

The set of values @ € © for which there exists an admissible distribution F such that
condition (3.3) holds forms the sharp identification region for 8. We denote this region
by ©;. The distribution F, however, is an infinite-dimensional nuisance parameter, which
creates difficulties for the computation of ©; and for statistical inference.* We circumvent
these difficulties by working directly with the set D (x;,v;; ).

If the model is correctly specified, the agent’s observed choice d; is maximal with respect

to her preference among the alternatives in her choice set and it therefore satisfies
d; € D} (x;,v;;6), almost surely, (3.4)

for the data generating value 8 € ©. To harness the empirical content of equation (3.4), we
leverage a result in Artstein (1983), reported in Theorem A.1l in the Appendix. This result
allows us to translate equation (3.4) into a finite number of conditional moment inequalities

that fully characterize the sharp identification region ©;.

3If F is known or sufficiently restricted (e.g., parametrically specified), then @ can be point identified by
condition (3.3) given sufficient variation in x; and exclusion restrictions. For a discussion, see Section 7.

4Moreover, in (conditional or mixed) logit models, the fact that F may depend on v; renders inapplicable
the closed-from expressions for choice probabilities that are typical of these models. By contrast, as we show
in Section S1.5 of the Supplemental Material, our method allows one to leverage such closed-form expressions
to simplify computation.



THEOREM 3.1: Let Assumptions 2.1 and 2.2 hold. In addition, let @ = [§;~], © = AxT,
and K={K c D : |K| < k}. Then

O = {0 €O :Pr(de K|x) < P(D!(x,v;0) n K # J;7v),VK e K, x — a.s.}. (3.5)

Our proof of Theorem 3.1, provided in Section A.2 of the Appendix, establishes that
the characterization in equation (3.5) is sharp—all and only those values 8 € © for which
the inequalities in equation (3.5) hold could have generated the observed data under the

maintained assumptions.®

These inequalities have a straightforward interpretation. At
the data generating value 8 € O, it must be the case that, for every subset K € K,
the conditional probability that K contains a model-implied optimal choice (right-hand
side) is not less than the conditional probability of the observed choice (left-hand side),
which itself is optimal. When v; € R and the alternatives in D are vertically differenti-
ated, the set K can be restricted to the subsets K = {1}, {c1, e}, .. {er, 0,00 e 1) and
K = {cpi}, {epsepi-1}s - L) o)1, - - - ,C"D‘,H_FQ},(S and the inequalities translate into

statements about cumulative shares for higher (respectively lower) quality alternatives.

3.2 Choice Sets

Theorem 3.1 establishes that, under mild restrictions on the utility function (Assumption 2.1)
and knowing only the minimum size of agents’ choice sets (Assumption 2.2), one can learn
features of the distribution of preferences without observing agents’ choice sets or knowing
how they are formed. We next show that, with an additional restriction on the choice set
formation process, one can also learn features of the distribution of choice sets.

Let ¢; = |C;| denote the size of agent i’s choice set C;. When ¢; = |D| we say that C; has
“full” size. When ¢; < |D| we say that C; is “limited” or “restricted.” More specifically, we
say that C; is “full-1” when ¢; = |D| — 1, “full-2” when ¢; = |D| — 2, and so forth.

In addition to Assumptions 2.1 and 2.2, one could assume that:

AssuMPTION 3.1 (Choice Set Size): Agent i draws the size {; of her choice set such that
Pr(l; = qlx;,vi) = Pr(l; = q|x;) = my(xi5m), ¢ =k, ..., |D|, (3.6)

where w,(x;;m) = 0 for ¢ = kK, Zgﬁ mo(xi;m) = 1, and the function w is known up to a

finite-dimensional parameter vector n € H < R™ where H is convexr and compact.

°If per Remark 2.1 one weakens Assumption 2.2(II) to Pr(|C;| = 1) < 7; < 1 where 7; is known, then
O;={0€0:Pr(de K|x) <71+ (1 —7)P(Di(x,v;8) n K # &;7),VK e K, x —a.s.}.
6See Corollary S1.1 and Claim S1.1 in the Supplemental Material.



Assumption 3.1 posits that the size ¢; of agent i’s choice set is drawn from an unspecified
distribution with support {x, ..., |D|}, which allows for the possibility that the agent’s choice
set has full size, ¢; = |D|, or is limited, ¢; < |D|. The only restrictions it imposes on the
distribution of agents’ choice sets are that the distributional family of ¢; is a known parametric
class—though, as before, the parametric structure is not essential (see Remark 3.1)—and
that ¢; is independent of v;. Conditional on ¢;, however, the model with Assumption 3.1
continues to allow for any dependence structure, without restriction, between agents’ choice
sets and their observable attributes and, conditional on observables, between agents’ choice
sets and their unobservable attributes. Moreover, agents with choice sets of the same size
need not have choice sets with the same composition.

Under Assumption 3.1, Theorem 3.1 specializes to the following corollary.”

COROLLARY 3.1: Let Assumptions 2.1, 2.2, and 3.1 hold. In addition, let 8 = [n;d;~]
and © = H x A x I'. Then

Or = {9 €O :Pr(de K|x) < ZLD:‘,{ m(x;m)P(D}(x,v;6) n K # &J;7),VK € D,x — a.s.}. (3.7)

The sharp identification region ©; in Corollary 3.1 has two noteworthy features. First, the
projection of ©y on [d;7] is equal to the sharp identification region in Theorem 3.1. In

other words, the information in ©; about the distribution of preferences is the same with or

*

without Assumption 3.1. This is because Dy,

(x4,v4;0) < Di(x;, v 6) for all ¢ > &, and
thus the projection of ©; on [d;~] is obtained with 7. (x;;m) = 1 and 7,(x;;m) = 0 for ¢ > k.
Second, O provides information about the distribution of choice set size, as well. It yields
a lower bound on 7, (x;; ) (the upper bound is one provided x < |D|) and upper bounds on

m(xi;m) for ¢ = kK +1,...,|D| (the lower bounds are zero provided x < |D|).

REMARK 3.1: Theorem 3.1 and Corollary 3.1 can be generalized for a structure (W, P)
or (W, P, ), as the case may be, that is subject only to nonparametric restrictions. We focus
on the case with parametric restrictions for computational reasons and because methods of

statistical inference for moment inequality models focus on this case.

3.3 Illustration of the Inequalities Characterizing O;

Figure 3.2 contains stylized depictions of three inequalities in equation (3.7) when |D| = 5,
k =4, v; = 1; € R with support V = [0,7], and the alternatives in D are vertically
differentiated. In this case Pr(¢; € {4,5}) = 1. With probability =5 the agent draws a

"The proof of Corollary 3.1 follows immediately from the proof of Theorem 3.1 and therefore is omitted.
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Figure 3.2: Stylized depictions of inequalities in ©; when |D| =5 and k = 4.

Notes: Inequalities for three subsets K < D are depicted: (a) K = {c1}; (b) K = {ca}; and (c) K = {c1, ca}.
For a given v, the first best alternative in D appears in black and the second best in red.

choice set of size 5, in which case D} comprises the first best alternative. With probability
m4 = 1 — 75 she draws a choice set of size 4, in which case D} comprises the first and second
best alternatives. In the former case the agent chooses the first best. In the latter case her
choice is determined by her realization G of C;. She chooses the first best if it is contained in
G; otherwise she chooses the second best.® The threshold Uea.c,(X;) s the value of v; above
which ¢, has greater utility than ¢, and below which ¢, has greater utility than c,.

Panel (a) depicts the inequality for K = {cy}. If ¢; = 5 then C; = D and ¢, is the optimal
choice if v; > U, o, (x;). If £; = 4 then ¢; is optimal if v; > 7., .,(x;) and the realization G of

C; includes ¢; or if v; € (Vg 05(Xi), Vey op (X3)) and G excludes c. It follows that
Pr(dl = Cl|Xi) < 7T5P(Vi > 7761762(}{2');7) + (1 - 7T5)P(Vi > ljcl,cs(xi);V)'

Similar reasoning applies to the other singleton sets, with K = {c} depicted in Panel (b).
The inequalities in equation (3.7) also include those for non-singleton sets. To see why,
Panel (c) depicts the inequality for K = {cy, co}. While the left-hand side is additive,

Pr(dl € {Cl, CQ}|XZ‘) = 1:)1'(61Z = Cl|Xi) + Pr(dl = CQ|XZ‘),

the right-hand side is subadditive: the shaded area in Panel (c) is smaller than the sum of
the shaded areas in Panels (a) and (b). Hence, the values 8 € © that satisfy the inequalities
for K = {c1} and K = {c3} may fail to satisfy the inequality for K = {cy, c2}.

8In general, the agent chooses the best alternative in the intersection of her realizations of Dy and C;.
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Not all pairs of singleton sets, however, yield nonredundant inequalities. Consider, for
example, K = {c;} and K = {c;}. As is clear from Figure 3.2, there is no value v; € V
for which D} contains both ¢; and c5. It follows that the inequality for K = {c1,cs} is
redundant if the inequalities for K = {¢1} and K = {c¢5} are satisfied. This type of reasoning
can substantially reduce the number of inequalities that are needed to recover ©;.°

Though not depicted in Figure 3.2, let us highlight the algebra that delivers an upper

bound on 5. Consider K = {c1, ¢, c3,¢4}. Given this K we have

Pr(d; e K|x;) < s Pr(Di n K # &) + (1 —m5) Pr(D} n K # &)
< Pr(d; = c5|x;) = w5 Pr(D: = {¢5}) = s P(V; < Ueyes (X0);7Y)-

Given any =, this inequality yields an upper bound on 75. In general, one obtains the upper

bound on 7, ¢ = k +1,...,|D|, from a projection of ©; on the n component of 6.

3.4 Implementation of the Method

There are two challenges, both computational, in applying Theorem 3.1 and Corollary 3.1.
First, given any x > 2, the number of inequalities that characterize ©; grows superlinearly
with |D|. Second, computing the model-implied probabilities (the right-hand sides of the
inequalities) may require evaluating a number of integrals equal to the dimension of v;.1° In
this section we discuss both challenges. For the sake of brevity we focus on Theorem 3.1.!

As the set D}(x;,v;;6) comprises the |D| — k + 1 best alternatives in D, it can have at

most h = (‘D‘gﬂ) realizations, which we denote D', ..., D" with

{D*(x;,v4;6) = D'} = {W(xio,v3;6) > W (Xie, v, 0) ¥ € D’ Yee D\D'}.
(In some models P(D¥(x;,v;;8) = D7;~) = 0 for some j € {1,...,h}.'?) Tt follows that

P(Di(xi,vi;8) N K # &) = ). P(D(x;,v1;8) = D'; ). (38)

j:DINK#QS

In some cases one can eliminate redundant inequalities through judicious use of set theory.

For example, consider two disjoint subsets K, Ko < D such that

P([D}(x;,vi;0) n Ky # I n [DEi(xi,v4;0) n Ky # ;) = 0.

9See Section 3.4 below.

10The left-hand sides can be estimated from the data.

"The same observations and results hold for Corollary 3.1 by replacing x with ¢ = k + 1,...,|D].

12Tn the example presented in Section 3.3, this is the case for all D’/ comprised on non-adjacent elements,

i.e., Dj € {{61765}, {61764},{61703},{02705},{02764},{03,05}}.
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If the inequalities for K = K; and K = K, are satisfied, then the inequality for K =

{K, U K} is also satisfied, so the latter is redundant.'® Now suppose
P(Dg(xi,vi;8) 0 Ky # &5) = P(Dg(xi,vi;8) 0 {Ky U Ko} # 7).

In this case, if the inequality for K = {K; U K5} holds, then the inequality for K = K,
also holds, so the latter is redundant. In Theorem S1.1 in the Supplemental Material we
provide an algorithm based on these considerations to eliminate redundant inequalities, and
in Corollary S1.1 we provide sufficient conditions under which the number of inequalities is
2(k — 1). One can check the conditions for the application of these results numerically or,
in some cases, analytically (depending on the structure of the data and the model).

In some models, however, the predicate conditions in Theorem S1.1 and Corollary S1.1
do not apply, and the number of inequalities may be very large. This is the case, for instance,
in a model where v; = (v;, (€, c € D)), Us(¢) = w(Xie, Vy;0) + €5, and (€., ¢ € D) has full
support on RIP! (e.g., a mixed logit). In Section S1.4 of the Supplemental Material we show
that ©; can be equivalently characterized as the set of values 8 € © for which the optimal
value of a convex program with |D| optimization variables is zero.!* The convex program
bypasses the need to enumerate all of the inequalities, and thanks to efficient algorithms for
solving convex programs, the number of times that the objective function (which returns
each inequality for specific choices of the optimization variables) is evaluated is typically less
than the number of inequalities in equation (3.5).

The remaining challenge is computing P(D*(x;, v;; 6) K # J;~) when the dimension of
v; is large. In light of equation (3.8) this amounts to computing P(D?*(x;, v;; 8) = D?;~) for
all j € {l1,...,h}. In Theorem S1.2 in the Supplemental Material we provide simplifications
to compute these probabilities in a mixed logit model with unobserved heterogeneity in
choice sets, where choice sets may be correlated with v;.1°> We show how one can exploit
the logit closed-form choice probabilities and then numerically integrate over the random

coefficients, thereby substantially reducing the computational burden.

13Tn the example in Section 3.3, this is the case, e.g., for K1 = {c1} and K2 = {c5}. Another useful
application of this result pertains to testing for full-size choice sets. With full-size choice sets, D} (x;,v;; d) is
a singleton and thus if K3 and K5 are disjoint it can intersect at most one of them. To test for full-size choice
sets, therefore, one need only check the inequalities for the singleton subsets of D and their complements.
14This characterization can be used for inference with the method proposed by Andrews and Shi (2017).
15 As in a typical mixed logit, we assume the random coefficients and additive errors are independent.
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4 Deductible Choices in Auto Collision Insurance

In this section and the next we apply our theoretical findings to learn about the distributions
of risk preferences and choice set size from data on households’ deductible choices in auto
collision insurance. In this section we specify a random expected utility model that allows

for unobserved heterogeneity in risk aversion and choice sets and we describe our data.

4.1 Empirical Model

We model households’ deductible choices in auto collision insurance. Each household i
(i) faces a menu of prices p; = (pi,¢ € D), where p;. is the household-specific premium
associated with deductible ¢ and D is the feasible set of deductibles, (ii) has a probability
i; of experiencing a claim during the policy period, and (iii) has an array of observed
characteristics t;.1° Following the related literature (e.g., Cohen and Einav 2007; Sydnor
2010; Barseghyan et al. 2011, 2013, 2016),'” we make two simplifying assumptions about

claims and their probabilities.

AsSSUMPTION 4.1 (Claims and Claim Probabilities):
(I) Households disregard the possibility of more than one claim during the policy period.
(II) Any claim exceeds the highest deductible in D; payment of the deductible is the only

cost associated with a claim; and deductible choices do not influence claim probabilities.

Assumption 4.1(I) is motivated by the fact that claim rates are small, so the likelihood of
two or more claims in the same policy period is very small. Assumption 4.1(IT) abstracts
from small claims, transaction costs, and moral hazard.

Under Assumption 4.1, household ¢’s choice of deductible involves a choice among binary
lotteries, indexed by ¢ € D, of the following form: L;(c) = (—pjc, 1 — pi; —pic — ¢, ;). The
household chooses among these lotteries based on the criterion in equation (2.1). We assume

that household 4’s preferences conform to expected utility theory,
Ui(e) = (1 = pa)ui(wi — pic) + pii(w; — pic — ©), (4.1)

where w; is the household’s wealth and w; is its Bernoulli utility function.

We impose the following shape restriction on w;.

AsSSUMPTION 4.2 (CARA): The function u; exhibits constant absolute risk aversion, i.e.,
ui(y) = 1—ep(=riy) for v; # 0 and u;(y) =y for v; = 0.

v

16 As we explain in Section 4.2, we estimate j; and treat it as data.
1For a survey, see Barseghyan et al. (2018, Section 5.2).
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Assuming CARA has two key virtues. First, u; is fully characterized by the coefficient of ab-
solute risk aversion, v; = —u(y)/u;(y). Second, wealth does not affect utility comparisons.
We note, however, that our approach can accommodate other shape restrictions (e.g., con-
stant relative risk aversion) as well as non-expected utility models (e.g., the rank-dependent
expected utility model in Barseghyan et al. 2013).

In terms of the core model developed in Section 2, household ¢’s observable attributes are
x; = (i, ti, pi), with x;. = (g, t;, pic), and its sole unobservable attribute is its coefficient of
absolute risk aversion v;.!® Per Assumptions 2.1 and 4.2, we posit that v; ~ P(v(t;)), where

P is specified below in Assumption 4.3(1), and that, (x;, v;) — a.s.,

(1 — pi)(1 — exp(vipic)) + pi(1 — exp(vi(pic + C)))

Ui(c) = (4.2)
Observe that, by equation (4.2), we assume that p; and p;. affect utility directly and we
allow t; to affect utility indirectly through v;. To capture this indirect effect, we could
specify v(t;) = f(t;;8) where the functional form of f is known up to § € A. Instead, we
account for (discrete) observed heterogeneity in preferences nonparametrically by conducting
the analysis separately on population subgroups based on t,.

Per Assumption 2.2(I), we suppose that the deductible choices and observable attributes,
{(d;,x;) : i € I}, for a random sample of households I < Z, |I| = n, are observed, but that
the households’ choice sets, {C; : C; < D,i € I}, are unobserved. Per Assumption 2.2(II),
we assume that Pr(|C;| = k) = 1 for every household i € Z, where x > 2.

We close the baseline empirical model with two final assumptions.

AsSSUMPTION 4.3 (Heterogeneity Restrictions):

(I) Conditional on t;, v; follows a Beta distribution on [0,0.03] with parameter vector
Y(t:) = (71(t:),72(t;)) and is independent of (1;, pic). To simplify notation, we suppress
below the dependence of v on t;.

(II) The minimum choice set size is k = 3.

Assumption 4.3(1) specifies that P is the Beta distribution with support ¥V = [0,0.03]. The
main attraction of the Beta distribution is its flexibility (e.g., Ghosal 2001). Its bounded
support is a plus given our setting. A lower bound of zero rules out risk-loving preferences
and seems appropriate for insurance markets that exist primarily because of risk aversion.
Imposing an upper bound enables us to rule out absurd levels of risk aversion, and the choice

of 0.03 is conservative both as a theoretical matter and in light of prior empirical estimates

8In terms of the notation used in Section 2, s; = (i, t:), Zic = Pic, and v; = vj;.
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in similar settings (e.g., Cohen and Einav 2007; Sydnor 2010; Barseghyan et al. 2011, 2013,
2016). Assumption 4.3(1I) posits that the size of every household’s choice set is either full,

full-1, or full-2. In our setting |D| = 5. We set x = 3 for reasons we explain in Section 4.2.

REMARK 4.1: We also consider a mixed logit specification U;(c) = w(Xye, Vi) + €;c, where
w(X;e, 1) is the certainty equivalent of the right-hand side of equation (4.2), v; is distributed
per Assumption 4.3(I), and €. is an i.i.d. disturbance that follows a Type 1 Extreme Value

distribution and is independent of (x;., ;); see Section 5.1.1.

In the baseline model we do not impose Assumption 3.1. Thus, conditional on x;, C; can
be arbitrarily correlated with ;. We impose Assumption 3.1 only in Section 5.2 when we
apply Corollary 3.1 to learn about the distribution of choice set size. At that point, we could
specify a functional form for m,(x;;m) known up to n € H. Instead, as with v;, we assume 7,
is independent of (i, p;.) conditional on t;, and we account for (discrete) observed hetero-
geneity nonparametrically by conducting the analysis separately on population subgroups

based on t;. To simplify notation, we suppress below the dependence of 7, on t;.

4.2 Data Description

We obtained the data from a large U.S. property and casualty insurance company. The
data contain annual information on more than 100,000 households who first purchased auto
policies from the company during the ten year period from 1998 to 2007. We focus on
households’ deductible choices in auto collision coverage. This coverage pays for damage to
the insured vehicle, in excess of the deductible, caused by a collision with another vehicle
or object, without regard to fault. The feasible set of auto collision deductibles is D =
{$100, $200, $250, $500, $1000} and thus |D| = 5.

To construct our analysis sample, we initially include every household who first pur-
chased auto collision coverage from the company between 1998 and 2007, retaining, at the
time of first purchase, its deductible choice d;, its pricing menu p;, its claim probability u;,
and an array t; of three demographic characteristics: gender, age, and insurance score of
the principal driver.!® This yields an initial sample of 112,011 households. We then exclude
households whose deductible choices cannot be rationalized by the model specified in Sec-
tion 4.1 for any pair (v, C;) such that v; € [0,0.03] and |C;| € {3,4,5}. Importantly, our
rationalizability check does not rely on the assumption that P is the Beta distribution. This
excludes 0.1 percent of the initial sample, yielding a final sample of 111,890 households.?

YTnsurance score is a credit-based risk score.

20The data in this paper are not the same as the data in Barseghyan et al. (2013) and Barseghyan
et al. (2016), though both data sets have the same source. In this paper, the data comprise 112,011 house-
holds who first purchased auto collision coverage between 1998 and 2007. In Barseghyan et al. (2013) and
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Several comments are in order. First, we retain households’ deductible choices at the time
of first purchase to increase confidence that we are working with active choices. One might
worry that households renew their policies without actively reassessing their deductibles.

Second, we require v; € [0,0.03] for the reasons stated in Section 4.1. However, the
composition of our sample is robust to the upper bound of the support. If we decrease the
upper bound to 0.02 the sample decreases by one household to 111,889 households. If we
increase the upper bound to 0.04 the sample remains the same at 111,890 households.?!

Third, we require |C;| € {3,4,5}—i.e., we assume xk = 3—to keep the model as close as
possible to the standard approach that assumes full-size choice sets. As we explain in Section
5.2, k = 3 is the highest value that is consistent with the data.

Fourth, the company generates each household’s pricing menu, p; = (ps, ¢ € D), accord-
ing to the following pricing rule: p,. = g(c¢)p; + ¢, where p; is the household’s base price,
g is a decreasing positive function, and ¢ > 0. We observe ¢, (, and the premium paid by
each household given its chosen deductible. We thus can recover each household’s base price.
Given the company’s pricing rule, the base price is a sufficient statistic for p;. Moreover,
any p;. € p; can be treated as the base price. We treat the premium associated with the
$1000 deductible as the base price—i.e., p; = pigoo—and round it to the nearest five dollars.
We use the rounded base prices and resulting pricing menus throughout our analysis.??

Fifth, we estimate the households’ claim probabilities using the company’s claims data.
We assume that household 7’s auto collision claims in year t follow a Poisson distribution with
mean \;. We also assume that deductible choices do not influence claim rates (Assumption
4.1(IT)). We perform a Poisson panel regression with random effects and use the results to
calculate a fitted claim rate S\l for each household.?? In principle, a household may experience
one or more claims during the policy period. We assume that households disregard the

possibility of experiencing more than one claim (Assumption 4.1(I)). Given this, we transform

Barseghyan et al. (2016), the data comprise 4,170 households who first purchased auto collision coverage,
auto comprehensive coverage, and home all perils coverage in the same year, in either 2005 or 2006.

2 Moreover, our results are robust to increasing the upper bound from 0.03 to 0.04, as indicated by results
available from the authors upon request.

22This includes our rationalizability check, though the final sample would be virtually identical if we
used exact prices. Our use of rounded prices reduces the computational burden of recovering ©; and is
supported by evidence that “people show a marked tendency to produce 0- and 5-ending numbers” in
numerical cognition tasks, including price cognition (Schindler and Kirby 1997, p. 193). See also Schindler
and Wiman (1989), Vanhuele and Dreze (2000), and Liang and Kanetkar (2006).

23To obtain the most precise estimates, we use the full set of auto collision claims data, which comprises
1,349,853 household-year records. We calculate \; conditional on the household’s observables at the time of
first purchase and its subsequent claims experience; see Section S3.1 of the Supplemental Material.
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Table 4.1: Descriptive Statistics

Panel A. Summary Statistics
Mean Std. dev. 5th pctl. Median 95th pctl.

Deductible choice (dollars) 439 178 200 500 500
Pricing menus:

D500 217 137 7 181 480
P250 — P500 65 42 22 54 146
P500 — P1000 49 32 17 41 110
Claim probability (annual) 0.088 0.030 0.045 0.085 0.140
Demographic characteristics:

Female 0.468 0.499 0 0 1
Age (years) 48.1 16.6 24.5 45.9 76.7
Insurance score 731 114 559 725 934

Panel B. Deductible Choices
Percent choosing deductible

Obs. $100 $200 $250 $500 $1000
All households 111,890 1.1 15.2 13.7 65.4 4.6
Male 59,476 1.0 14.9 12.9 65.9 5.4
Female 52,414 1.1 15.5 14.7 64.8 3.8
Young 36,932 0.1 6.9 10.7 771 5.2
Old 38,046 2.5 26.2 16.7 51.0 3.6
Low Insurance Score 37,087 0.4 10.1 12.7 72.2 4.6
High Insurance Score 38,371 1.8 20.9 14.6 58.1 4.6

Notes: Analysis sample (111,890 households). Pricing statistics are annual amounts in nominal dollars.
Demographic statistics are for the principal driver.

~

A; into a claim probability u; = 1 — exp(—xi), which follows from the Poisson probability
mass function, and round it to the nearest half percentage point.?* We treat u; as data.
Table 4.1 presents descriptive statistics for the analysis sample. Panel A summarizes
the households’ deductible choices, pricing menus, claim probabilities, and demographic
characteristics. Panel B reports the sample distribution of deductible choices for the full
sample and for subsamples based on gender, age, and insurance score.?” In Table 4.1 and
throughout the paper, young/old and low/high insurance scores are defined as bottom/top

third based on the age and insurance score, respectively, of the principal driver.

240ur use of rounded claim probabilities reduces the computational burden of recovering ©; and is
supported by evidence that people report rounded probabilities (Manski and Molinari 2010).

25In addition, Table S3.1 in the Supplemental Material reports the sample distribution of deductible
choices by octiles of base price p; and claim probability p;.
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5 Empirical Method and Findings

Our empirical application is motivated in part by the fact that, although we observe the
feasible set of deductibles, we do not observe which deductibles enter a household’s choice
set. There are many plausible sources of unobserved heterogeneity in choice sets. It may be
due to missing data—e.g., different sales agents may quote different subsets of deductibles
to different households—or to unobserved constraints—e.g., some households may disregard
low deductibles due to budget constraints or high deductibles due to liquidity constraints.

Our application is also motivated by a persistent finding in prior empirical studies of
risk preferences which assume full-size choice sets. These studies tend to find that average
risk aversion is quite high—arguably implausibly high. Two recent examples that utilize
similar data are Cohen and Einav (2007) and Barseghyan et al. (2013). It is plausible
that the assumption of full-size choice sets may be driving this finding, and that allowing for
unobserved heterogeneity in choice sets may yield more credible estimates of risk preferences.

In what follows we first apply Theorem 3.1, which does not assume independence between
preferences and choice sets, to learn about the distribution of risk aversion (Section 5.1). In
this case @ = (y1,72). We then apply Corollary 3.1, which assumes that choice set size is
independent of preferences (Assumption 3.1), to learn about the distribution of choice set
size (Section 5.2). In this case @ = (71,72, 73, T4, 75). In the text we present results for
the population (all households). As indicated in Section 4.1, we also conduct our analysis
separately for population subgroups based on observed characteristics t;. The subgroup
results are reported in Section S3.3 of the Supplemental Material.

The sample moments that we use to implement equation (3.5) are

1
My, 1, (0) = ﬁzizl m.;(ds, pi, Di; @)
1 n

and similarly for equation (3.7). In equation (5.1), P(D} (1, pi) N K # ;) is a function
known up to @ that can be evaluated using the Beta cumulative distribution function, and B;,
j=1,...,J, are “hypercubes” as defined in Andrews and Shi (2013, Example 1) [hereafter,

AS] that are used to transform the conditional moment inequalities into unconditional ones.?®

26We follow AS and transform (u;, p;) using the upper-triangular Cholesky decomposition of their sample
covariance matrix, so that the transformed variables (fi;, p;) have a sample covariance matrix equal to the
identity matrix. We then let the side lengths of the hypercubes B; be determined by the octiles of the
distributions of fi; and p;, and we also include a hypercube containing all values of (u;, p;), so J = 65. Each
hypercube contains between 660 and 2,901 households, except for one that contains all households.
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We apply the method proposed by AS to compute bootstrap-based critical values, de-
noted ¢,.(-) below, that define a confidence set which covers each 6 € ©; with asymptotic
probability 1 — o uniformly over a large class of probability distributions P.2” We first com-
pute a confidence set for (71, 72), from which we obtain a confidence set for (E(v;), Var(y;))
leveraging the fact that for v; ~ Beta(vy1,72) a unique pair (E(v;), Var(y;)) corresponds to
each value of (v;,72). Formally, the AS confidence set is

OS ={0€0:Tp(B0) <iniare(®) +E}. (5.2)

In equation (5.2), £ > 0 is an arbitrarily small constant (AS suggest setting £ = 107%) and
T,(0) is a Kolmogorov-Smirnov test statistic that aggregates sample moment violations:
T(0) = max  max (i (68)/5(0). OF

where 6, i ;(0) is the sample analog of the population standard deviation of my ;(d;, p;, pi; 0)
and the set K is determined using Theorem S1.1 in the Supplemental Material .2

We obtain confidence intervals for E(v;), w3, 74, and 75 using the method proposed by
Kaido et al. (2019) [hereafter, KMS]. The first is a smooth function of @ = (y1,72) with a
gradient that satisfies the assumptions in KMS, while the latter three are linear projections
of @ = (71,72, 73, m4,75). Let f(@) denote any of the aforementioned functions of 8. The
lower and upper bounds of the KMS confidence interval for f(@) are obtained by solving

rguél/maxf( ) s.be VMg, i (0)/6.k;(0) < @), j=1,...,J, Kek,
€

where ¢/ (0) is a bootstrap-based critical level calibrated such that f() is uniformly asymp-
totically covered with probability 1 — o over a large class of probability distributions P.?
For f(0) = E(v;) the set K is determined using Theorem S1.1, while for f(0) € {m3, my, 75}
the set K is determined using Corollaries S1.2 and S1.3 in the Supplemental Material.

2TSee AS (Theorem 2) for a formal statement. The AS confidence set asymptotically exploits all the
information in the conditional moments, in the sense that as the sample size grows to infinity the number of
inequalities used for inference increases and the confidence set shrinks to ©;.

Z8We note that there are values @ € © for which 7,,(8) = 0. This implies that we fail to reject the
hypothesis that our empirical model is correctly specified.

29Gee KMS (Theorem 3.1) for a formal statement. Although they do not asymptotically exploit all the
information in the conditional moments because they are based on a fixed number of inequalities, the KMS
confidence intervals (implemented on the same sample with the same inequalities and tuning parameters)
are shorter than the confidence intervals obtained by projecting the AS confidence set.
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Figure 5.1: AS 95 percent confidence set for (E(v), Var(v)).

In Section S2 of the Supplemental Material we provide further details on implementation
of the AS and KMS methods.?® We refer to the original papers for a thorough discussion
of the methods, and to Canay and Shaikh (2017) for a comprehensive presentation of the

literature on inference in moment inequality models.

5.1 Risk Preferences

Panel (a) of Figure 5.1 depicts the AS 95 percent confidence set for (E(v;), Var(y;)) for all
households.3! In addition, Table 5.1 reports (i) the KMS 95 percent confidence interval for
the mean of v; and (ii) 95 percent confidence intervals for the 25th and 75th percentiles of v;
based on projections of the AS confidence set. For the mean, we report the actual confidence
interval as well as the risk premium, for a lottery that yields a loss of $1000 with probability
10 percent, implied by each bound. For the percentiles, we report only the implied risk
premia. Focusing on the lower bounds, the main takeaway is that the households’ deductible
choices can be explained by a distribution of absolute risk aversion that has a low mean, on
the order of 1073, and low variance, on the order of 1075, Strikingly, the lower bound on the
25th percentile of v; corresponds to a risk premium of less than half a cent, implying that

the data are consistent with at least a quarter of households being effectively risk neutral.

30Both the AS and KMS methods entail the selection of tuning parameters. We find that our results are
robust to the choice of tuning parameters, as indicated by results available from the authors upon request.

31In Figure S3.2 in the Supplemental Material we also report a 95 percent confidence set for an outer
region of admissible probability density functions of v;.
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Table 5.1: Distribution of Absolute Risk Aversion

Implied risk premium

Mean Mean 25th pctl. 75th pctl.

LB UB LB UB LB UB LB UB

Baseline model 0.00105 0.00347 $ 62 $307 $ 0 $ 78 $ 79 $454
UR 0.00167 0.00170 $115 $117 $ 86 $ 88 $142  $145
ASR 0.00260 0.00264 $211 $216 $ 40 $ 43 $333  $340
Cohen and Einav (2007) 0.00310 $267 Not reported Not reported
Barseghyan et al. (2013) 0.00113 $ 68 Not reported Not reported

Notes: 95 percent confidence intervals for baseline, UR, and ASR models. LB = lower bound. UB =
upper bound. Implied risk premia for a lottery that yields a loss of $1000 with probability 10 percent.

To provide context for these results, Table 5.1 also reports 95 percent confidence intervals
for the mean, 25th percentile, and 75th percentile of v; obtained under two point-identified

expected utility models that fully specify the choice set formation process. They are:

Uniform random (UR): Utility is given by equation (4.2). Choice sets are drawn
uniformly at random from D, conditional on |C;| = ¢ for ¢ = k and independent of v;.

Specifically, Pr(C; = G||G| = q) = (‘?)71 forall G €D, |G| =q, ¢ = x; and C; L v;.

Alternative-specific random (ASR): Utility is given by equation (4.2). Alternatives
in D enter choice sets with alternative-specific probabilities, independent of one another
and v;, conditional on |C;| = £ (Manski 1977; Manzini and Mariotti 2014). Specifically,
Pr(C; = G||G| = k) = Pr(C; = G)/(1 = Xgepyg<x PT(Ci = G)) for all G < D, where
PH(C: = G) = e () Teme(1 — #(0)) and (c) = Pr(c € C); and C; L v

UR and ASR are “reduced form” models that can capture a wide range of choice set for-
mation processes. For example, UR is consistent with a simultaneous search process with
a uniform prior (cf. Stigler 1961),2 and ASR may describe an advertising process in which
alternatives are marketed with different intensities in independent, non-targeted campaigns.
With dependence between ¢(c) and v;, ASR can capture an even wider range of choice set
formation processes, including, for instance, a sequential search process with free recall (e.g.,
Weitzman 1979) or an advertising process with correlated, targeted campaigns.

For additional context, Table 5.1 includes point estimates for the mean of v; reported
by Cohen and Einav (2007) and Barseghyan et al. (2013) for their CARA models. Cohen
and Einav (2007) estimate the distribution of v; in a parametric expected utility model

using data on deductible choices in Israeli auto insurance. Barseghyan et al. (2013) estimate

32With a uniform prior, the simultaneous search problem reduces to choosing the optimal number of
alternatives to search and, given this number, randomly choosing the alternatives to be searched.
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the distributions of v; and probability distortions in a parametric rank-dependent expected
utility model using data on deductible choices in U.S. auto and home insurance.

The main takeaway is that the baseline lower bounds are substantially smaller than the
lower bounds obtained under UR and ASR and the point estimate reported by Cohen and
Einav (2007).33 This suggests that if one properly allows for heterogeneity in choice sets,
the data can be explained by expected utility theory with substantially lower levels of risk
aversion than many familiar models—including some that allow for choice set heterogeneity
but perhaps misspecify the choice set formation process—would imply. A second takeaway
comes from results in Barseghyan et al. (2013). Their point estimate for the mean of v; is
only slightly larger than the baseline lower bound ($68 versus $62 in terms of implied risk
premium). However, because they allow for probability distortions, v; neither fully captures
the level of risk aversion nor solely drives risk-averse behavior in their model. Taking into
account their point estimate for probability distortions, the implied risk premium is $91.
This suggests that failing to allow for heterogeneity in choice sets may affect inferences not

only about the level of risk aversion, but also about the sources of risk-averse behavior.
5.1.1 Mixed Logit with Unobserved Heterogeneity in Choice Sets

We also compute the AS 95 percent confidence set for (E(v;), Var(y;)) for a mixed logit spec-
ification U;(¢) = w(Xie, V4) + €ic, Where w(X;., ;) is the certainty equivalent of the right hand
side of equation (4.2), v; is distributed per Assumption 4.3(I), and €. is an i.i.d. disturbance
that follows a Type 1 Extreme Value distribution with scale parameter o and is independent
of (X, ;). We define utility in terms of its certainty equivalent so that €. is measured in
dollars (which allows for a clear economic interpretation). Panel (b) of Figure 5.1 depicts
the confidence set for three values of o chosen so that the standard deviation of ¢;. is equal
to 10 percent, 25 percent, and 50 percent of the average price difference among adjacent
deductibles in D. (At zero percent, of course, the mixed logit specification reduces to the
baseline model.) As the “noise factor” increases, the confidence set expands mainly to the
“northwest,” admitting higher values of Var(v;) and lower values of E(1;). Focusing on the
latter, the projection of the confidence set on E(;) is essentially unchanged at a noise factor
of 10 percent. At 25 percent the lower bound is smaller but still informative. By 50 percent,
however, the confidence set effectively admits (E(v;), Var(v;)) = (0,0) (i.e., all households
are risk neutral) and overall is quite large. The bottom line is that the confidence set remains
informative at reasonable levels of noise. Not surprisingly, however, as the magnitude of the
noise approaches that of the variation in observable covariates, the data loses much of its

informational content about households’ preferences.

33Moreover, the UR estimates lie outside ©; and hence this model is rejected in our application; see, e.g.,
the bounds on the 25th percentile reported in Table 5.1 and Figure S3.2 in the Supplemental Material.
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Table 5.2: Distribution of Choice Set Size

s T T3
(full) (full-1) (full-2)

LB UB LB UB LB UB

All households 0.00 0.24 0.00 0.89 0.11 1.00

Notes: KMS 95 percent confidence intervals. LB = lower
bound. UB = upper bound.

5.2 Choice Set Size

Table 5.2 reports KMS 95 percent confidence intervals for ms, m4, and 73. The interesting
quantities are the upper bounds on m5 and m4. The former is the maximum fraction of
households whose deductible choices can be rationalized with full-size choice sets, while the
latter is the maximum fraction of households whose deductible choices can be rationalized

34 The main result is that a large majority of households require

with full-1 choice sets.
limited choice sets (full-1 or full-2) to explain their deductible choices. Specifically, we find
that at least 76 percent of households require limited choice sets, including at least 11 percent
who require full-2 choice sets. In the remainder of this section we discuss two drivers of this

result: suboptimal choices and violations of the law of demand.??
5.2.1 Suboptimal Choices

The first driver is the existence and frequency of suboptimal choices. In total, 16.7 percent
of households in our sample choose a deductible that is suboptimal (i.e., not first best in D)
under our empirical model at all v € [0,0.03]. The vast majority of these households choose
$200, which is a suboptimal alternative under the model for virtually every household in our
sample.?® In particular, $200 is dominated by $100 or $250, depending on u. Suboptimal
alternatives, sometimes called dominated alternatives, are not uncommon in discrete choice
settings, including insurance settings (see, e.g., Handel 2013; Bhargava et al. 2017).

To see why $200 is a suboptimal alternative under the model, consider a risk-neutral
household with claim probability p. The household prefers $200 to $100 if and only if
< %, and prefers $200 to $250 if and only if u > %. In our data pigg — pogo =
P2oo — P2so for all households. For the risk-neutral household, therefore, at most one of
the foregoing inequalities holds and thus $200 is dominated by $100 or $250, depending

on the value of pu. A similar logic applies for risk-averse households with reasonable levels

34With x = 3, the lower bounds on 75 and 74 are zero, the lower bound on 73 is one minus the upper
bound on 74, and the upper bound on 73 is one.

35In other applications, additional or different data features may reveal the presence of heterogeneous
choice sets. One example is zero shares for alternatives that are not suboptimal.

36The remainder of these households choose $1000 or $500 when $250 is optimal.
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of risk aversion—under our model or any other model in which lotteries are evaluated by
expectations over functions of final wealth (see Barseghyan et al. 2016)—and indeed for
virtually every household in our sample $200 is suboptimal at all v € [0,0.03].3"

Yet 15.2 percent of households in our sample choose $200. At the same time, only 1.1
percent choose $100 and 13.7 percent choose $250. Hence, the combined demand for $100
and $250 is less than the demand for $200. This pattern is even more pronounced within
certain subgroups, including households with old principal drivers and households with high
insurance scores; see Table 4.1.

Heterogeneous choice sets can readily explain these choice patterns. In our model all
that is required to rationalize a household’s choice of $200 is the absence of $100 or $250, as
the case may be, from the household’s choice set. Moreover, all that is required to explain
Pr(d = 100|x) + Pr(d = 250|x) < Pr(d = 200|x) is a choice set distribution in which the
frequencies of $100 and $250 are sufficiently less than the frequency of $200.%®

With full-size choice sets, however, our model cannot explain these choice patterns. The
reason is that, with full-size choice sets, our model satisfies a rank order property which
implies Pr(d = a|x) + Pr(d = bjx) > Pr(d = ¢|x) when ¢ is dominated by a or b. Indeed,
any model that satisfies an analogous rank order property is incapable of explaining the
relative frequency of $200 in the distribution of observed deductible choices. This includes,
inter alia, the conditional logit model (McFadden 1974), the mixed logit model (McFadden
1974; McFadden and Train 2000), the multinomial probit model (e.g., Hausman and Wise
1978), and semiparametric models such as the one in Manski (1975). For a more complete

discussion, see Section S3.5 of the Supplemental Material.
5.2.2 Law of Demand

Violations of the law of demand are also driving our main result on choice sets. With full-size
choice sets, households’ demand for high deductibles should increase as base price increases
and should decrease as claim risk increases. If follows that, with full-size choice sets, we
should observe for all K € K = {{$1000}, {$1000, 500}, {$1000, $500, $250}},

Pr(d e K|u,p) > Pr(de K|/, p') if u <y’ and p > p'. (5.3)

3TEvaluating equation (4.2) for all 111,890 households over a fine grid of v, we find that the $200 deductible
is optimal in 0.001 percent of cases, all of which entail v > 0.0115.

38That said, not all heterogeneous choice set formation processes can explain these choice patterns. For
instance, UR cannot but ASR can; see Claim S3.1 in the Supplemental Material.

39This also includes the model in Barseghyan et al. (2016), which explains why they find that 13.0 percent
of the households in their data cannot be rationalized by their model.
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In our data, however, we observe multiple violations. In particular, when we compare all
pairs of hypercubes, where one hypercube has a lower average p and a higher average p than
the other, over all subsets K € K, we find 61 violations (3 percent) of equation (5.3).4°

The requirement in equation (5.3) holds generically for models in which w

<0
and %;U(d)] > 0foralle, € D, ¢ < . Given the assumptions of our empirical model, the
law of demand implies a second, stronger requirement (cf. Barseghyan et al. 2020). Observe
that for any x = (u, p) and any subset K < D of adjacent deductibles, there exists an interval
Sk(x) € V such that d*(D,x,v) € K if v € Sk(x) and d*(D,x,v) € D\K if v € V\Sk(x),
where d*(D, x, ) denotes the model implied-optimal choice when the choice set has full size.

It follows that, with full-size choice sets,
Pr(d e K|x) < Pr(d e K'|x') if Sk(x) © Si(x') (5.4)

for any subsets K, K’ = D of adjacent deductibles and any x # x’. In our data, however, we
observe numerous violations of equation (5.4). In particular, when we compare all pairs of
hypercubes, where x denotes the average (u, p) in one hypercube and x’ denotes the average
(¢, p") in the other, over all subsets K, K’ < D of adjacent deductibles where each subset
contains either one, two, or three deductibles, we find 44,847 instances (15 percent) in which
Sk (x) © Sgr(x') but Pr(d e K|x) > Pr(d e K'|[x').

We conclude by highlighting how equation (5.4) relates to the characterization of ©; in
Corollary 3.1. Consider whether any parameter vector with mp; = 1 belongs to ©;. At
that value D¥(x,v) = {d*(D, x,v)}, a singleton, and hence the inequality in equation (3.7),
evaluated at any subset K < D of adjacent deductibles and its complement D\ K, implies

Pr(de Kix) = f 1(d* (D, %, 7) = )dP(r: ) — f AP(7:),

ceK Sk (%)

which in turn implies equation (5.4). Thus, a violation of equation (5.4) implies that no
parameter vector with mp = 1 belongs to ©;. A similar logic applies to the choice prob-
abilities of suboptimal alternatives. In general, our method—through the inequalities in
equation (3.7)—takes into account all restrictions implied by the data and the economic

model, while accounting for finite sample uncertainty.

4OWe do not count violations where K contains a suboptimal alternative under the model given the
average (u,p) in either hypercube.

41 Again, we do not count violations where K or K’ contains a suboptimal alternative under the model
given x or x’, respectively.
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6 Computational Tractability of Our Method

As we note in Section 3.4, there are two computational challenges in applying Theorem
3.1. The first is that, given any x > 2, the number of inequalities in equation (3.5) grows
superlinearly with the number of feasible alternatives (i.e., cardinality of D). The second
challenge is computing the inequalities, the difficulty of which increases with the dimension-
ality of unobserved heterogeneity (i.e., dimension of v;). In our empirical application these
challenges are mitigated by the fact that |D| = 5 and v; € R. Other applications, however,
may feature larger feasible sets or higher-dimensional unobserved heterogeneity.

In this section we provide simulation evidence on the computational tractability of our
method when the cardinality of D or the dimension of v is large. Our simulations also
illustrate how the informational content of the confidence set is impacted by the size of &
(the minimum choice set size) relative to |D| and by the dependence between the agents’

choice sets, on the one hand, and their preferences or observables, on the other.

6.1 Data Generating Processes
6.1.1 Large Feasible Set

A first set of simulations probes the computational tractability of our method when the
feasible set is large. Specifically, we assume D = {$10, $20,...,$1010}, so that |D| = 101.
These simulations otherwise parallel our empirical application and maintain the assumptions
of our baseline empirical model in Section 4.1, except as follows.

For each household 7, we fix the probability of experiencing a claim equal to p; = 0.10 and
we set prices to be proportional to the amount of coverage (hence, there are no suboptimal
alternatives in the simulations): p;. = g(c)p; + ¢, where g(c) = [($1010 — ¢)/$1010] + $1, p;
is the household’s base price, and { > 0. We assume that the household draws p; from a
discrete Uniform distribution with support {$10, $20, ..., $1000}. (The value of ¢ is immaterial
because, with CARA utility, ¢ cancels out in utility comparisons.) We further assume that
the household draws its coefficient of absolute risk aversion v; from a Uniform distribution
with support [0, 0.01]—equivalently, v; ~ 0.01 x Beta(1,1).

We consider two formation processes for households’ choice sets C; € D.
FP1: Full-size choice sets: Pr(C; = D) = 1.

FP2: Limited choice sets: Pr(|C;| = ¢) = 1 where ¢ = 30 or ¢ = 70. For each ¢, we

run simulations with three forms of dependence:

No correlation: C; is drawn uniformly at random from D, independent of v; and

pi (hence, following the UR model).
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Correlation with v: If ; < 0.005 (hence, below the median), C; comprises the ¢

riskiest alternatives; if v; = 0.005, C; comprises the ¢ safest alternatives.

Correlation with p: C; comprises g adjacent alternatives, the index of the first of
which increases linearly (subject to rounding) from 1 to |[D| —q+ 1 as p; increases
from $10 to $1000.

In obtaining O, we assume only that Pr(|C;| = k) = 1 where x = 10, 30, 50, 70, 90 in the
case of FP1 and k = ¢ in the case of FP2. We use a sample size of n = 100,000 households.
Given this structure, all possible realizations of the set D*(x;, v;; §) are given by adjacent
elements of D, as {c;, ¢j+1, ..., Cjyp—x), for j = 1,..., k; see Claim S1.1 in the Supplemental
Material. Accordingly, we can leverage the results set forth in Theorem S1.1 and Corollary
S1.1 in the Supplemental Material to reduce the number of inequalities that are needed to

obtain ©;. Specifically, the number of inequalities needed here is 2(k — 1).
6.1.2 High-dimensional Unobserved Heterogeneity

A second set of simulations probes the computational tractability of our method when un-
observed heterogeneity is high-dimensional. These simulations are based on a mixed logit
model, U;(¢) = w(Xe, Vi) + €ie, as in Section 5.1.1. We maintain the assumptions of the
model in Section 5.1.1, except that (i) we assume v; ~ 0.01 x Beta(1,1) (as in the first set
of simulations) and (ii) for all ¢ € D, we set the standard deviation of €. equal to 10 percent
of the average price difference among adjacent alternatives in D. We also maintain the as-
sumptions on y; and p;. in Section 6.1.1. We consider three feasible sets, with |D| = 7,12, 17,
and we assume that choice sets are formed according to FP1. In obtaining ©;, we assume
only that Pr(|C;| = k) = 1 where k = 5. We use a sample size of n = 1,000, 000.

Our choice of |D| = 17 is motivated by the recent paper of Abaluck and Adams (2020),
who estimate a model of limited consideration using data on Medicare Part D prescription
drug plan choices. (We also consider |D| = 7,12 to illustrate the decrease in informational
content as |D| becomes larger relative to k.) Abaluck and Adams (2020) restrict the feasible
set to 17 plans to manage the computational burden of estimating their model’s alternative-
specific attention parameters. They find this restriction necessary even though they make
assumptions (discussed below in Section 7) to achieve point identification and their approach
involves neither moment inequalities nor random coefficients.

As we note in Section 3.4, the predicate conditions in Theorem S1.1 and Corollary S1.1
do not hold for this model, and hence we cannot apply these results to reduce the number
of inequalities characterizing ©; (though we can and do apply Theorem S1.2 to simplify the
evaluation of the inequalities). Computationally, therefore, the problem here is harder than in

the first set of simulations. Indeed, computational difficulties in conditional and mixed logit
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Table 6.1: Computational Performance of Simulations

Execution time Total
Number of Evaluation per evaluation execution
Choice sets |D| k  Correlation inequalities points point (seconds) time (hours)
Panel A. Large D Simulations
10 1,818 32,936 0.005 0.07
30 5,858 18,593 0.017 0.12
FP1 101 50 None 9,898 11,177 0.030 0.13
70 13,938 6,640 0.044 0.12
90 17,978 3,667 0.058 0.10
None 17,784 0.017 0.12
FP2 (¢ =30) 101 30 With v 5,858 47,030 0.017 0.25
With p 72,416 0.012 0.28
None 6,482 0.044 0.12
FP2 (¢ =70) 101 70 With v 13,938 6,809 0.044 0.12
With p 7,872 0.040 0.13
Panel B. High-dimension v Simulations
7 9,898 8,958 0.03 0.12
FP1 12 5 None 80,093 24,880 0.28 1.98
17 324,513 37,185 1.73 19.41

Notes: Total execution time includes pre-processing time.

models with unobserved heterogeneity in choice sets are pervasive even in fully parametric,
point-identified models due to the need to enumerate all subsets of the feasible set. As doing
so is often too costly in practice, it is common to resort to simulating choice sets (see, e.g.
Goeree 2008). This approach, however, requires numerous strong assumptions (including, in
particular, independence between preferences and choice sets) to obtain consistent estimates.
Under our approach, if necessary, one can resort to computing an outer region for ©; that is
based on fewer, and possibly cheaper to evaluate, inequalities. This outer region is guaranteed

to contain all parameter values in ©;, though it may also include some that lie outside ;.42

6.2 Number of Inequalities and Computation Time

Table 6.1 reports the number of inequalities needed and the total execution time (in hours)
spent to compute the AS 95 percent confidence set for (E(v;), Var(y;)). It also reports the
number of evaluation points used (through an adaptive grid construction that we built) and
the execution time (in seconds) per evaluation point. Panel A covers the large D simulations,

while Panel B covers the high-dimension v simulations. To assess the tractability of our

42Tt is not uncommon in the partial identification literature to resort to outer regions to preserve compu-
tational tractability (see, e.g., Ciliberto and Tamer 2009).
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Figure 6.1: AS 95 percent confidence set — large D simulations, FP1.

method from the perspective of a researcher who has access to run-of-the-mill computing
power, we run all our simulations on a single Dell Precision Tower 7910 (Dual CPU E5-
2687W v4 @ 3.00GHz with 128GB RAM). Of course, with more a powerful workstation, or
with access to computer clusters or cloud computing, one can handle larger problems (more
inequalities), reduce execution times, or both.

Panel A illustrates the power of Theorem S1.1 and Corollary S1.1. With |D| = 101
and k ranging as high as 90, the number of inequalities never exceeds 18,000 and the total
execution time never exceeds 20 minutes. Counterintuitively, the second fastest execution
time is achieved in the case where |D| = 101 and x = 90, despite the fact that this case has
the largest number of inequalities and hence the slowest execution time per evaluation point.
The reason is our adaptive grid: the confidence set is the smallest in this case (see Section
6.3 below), and thus the number of evaluation points is also the smallest.

Panel B illustrates the tractability of our method even when Theorem S1.1 and Corollary
S1.1 are not applicable. Even with more than 300,000 inequalities, we can test whether a
given 6 belongs to ©; in less than two seconds, and we recover the full confidence set in
less than 20 hours. The only computational challenge we encounter is inadequate memory
to utilize all 24 CPU cores when the number of inequalities becomes very large.*> But even
then, we can check a very large number of candidate values € in a reasonable amount of

time, thus demonstrating that our method can be employed in a wide range of applications.

6.3 Simulation Results

Figures 6.1 and 6.2 depict the AS 95 percent confidence sets for (E(v;), Var(v;)) for the large D

simulations. Figure 6.3 depicts the confidence set for the high-dimension v simulations. The

43We utilize all 24 CPU cores in every simulation but one: the mixed logit simulation with |D| = 17,
which entails checking more than 300,000 inequalities, utilizes 12 CPU cores.
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Figure 6.2: AS 95 percent confidence set — large D simulations, FP2.

axes of the figures represent the parameter space, and hence the depictions provide a sense
of the absolute and relative informativeness of each confidence set. As the figures show, each
confidence set includes the data generating values of the distribution of v; (0.01 x Beta(1,1)).

We first comment on how the informativeness of the confidence set varies with k, as
illustrated by Figure 6.1. Note that the inequalities used in a case with a smaller x are a
subset of those used in a case with a larger x.** As a consequence, the sharp identification
region O; shrinks as x increases. However, the critical values used to account for statistical
uncertainty may increase as more inequalities are used, thereby yielding an ambiguous effect
on the confidence set. Nonetheless, in our simulations the confidence sets are effectively
subsets of each other, and shrink substantially as x increases. This illustrates the important
role of k, and the fact that if x is very small relative to |D|, the confidence set is substantially
less informative than when & is closer to |D].

We next comment on how different forms of dependence between C;, on the one hand,
and v; or p;, on the other, impact the informativeness of the confidence set, as illustrated

by Figure 6.2. Panel (a) shows that when C; is independent of v; and p;, the confidence set

44To conserve space, Figure 6.1 depicts the confidence set for x = 10,50,90. The plots for x = 30, 70,
which exhibit the same nesting pattern, are available from the authors upon request.
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Figure 6.3: AS 95 percent confidence set — high-dimension v simulations.

is quite informative, even when C; is relatively small (¢ = 30). Panels (b) and (c) illustrate
that the confidence set expands—mainly to the “north,” admitting higher values of Var(v;)—
when C; is correlated with v; or p;, respectively, with larger expansions occurring when Cj
is smaller. We conjecture that this happens because the households’ choices are limited by
the restrictions that such dependence imposes on their choice sets. When C; is correlated
with 1;, for instance, the choice sets of households with high risk aversion do not include
high deductibles, and hence those households do not respond to increases in p; beyond
some level, because they cannot switch to cheaper alternatives (i.e., higher deductibles).
(By comparison, when C; is independent of v;, all households have a positive probability of
drawing a choice set that includes high deductibles.) Put differently, there is not enough
“price elasticity” for the econometrician to (relatively precisely) trace out the distribution
of v;. Moreover, this problem becomes more severe the smaller are the households’ choice
sets. A similar logic applies when Cj is correlated with p;.

Finally, we comment briefly on Figure 6.3. Again, the larger is |D| relative to k, the
larger is the confidence set. Nevertheless, despite the substantial amount of unobserved

heterogeneity captured by v € R'®, the confidence set remains informative.

7 Discussion

In what follows we provide an overview of the assumptions made in the econometrics and
applied literatures on discrete choice analysis to grapple with the identification problem

created by unobserved heterogeneity in choice sets.*> We describe four prominent approaches

45Many important papers in the theory literature—including papers on revealed preference analysis under
limited attention, limited consideration, and other forms of bounded rationality that manifest in unobserved
heterogeneity in choice sets—also grapple with the identification problem (e.g., Masatlioglu et al. 2012;
Manzini and Mariotti 2014; Caplin and Dean 2015; Lleras et al. 2017; Cattaneo et al. 2020). However,
these papers generally assume rich datasets—e.g., observed choices from every possible subset of the feasible
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and provide examples of recent papers that take each approach. We do not provide a
comprehensive review of the literature, which is vast and spans a diverse array of fields in
economics. However, our overview of the landscape enables us to situate our approach within
the literature and provides context for our contributions, which we recap at the end.

The most common approach in the discrete choice literature to the identification problem
created by unobserved choice sets is to assume that all choice sets comprise the feasible set
or a known subset of the feasible set (Swait 2001, p. 643; Honka et al. 2017, p. 615). This is
the approach taken by, for example, Berry et al. (1995) in estimating demand curves from
data on U.S. auto sales; Cohen and Einav (2007) in estimating risk preferences from data
on deductible choices in Israeli auto insurance; and Chiappori et al. (2019) in estimating
risk preferences from betting data on U.S. horse races. We also take this approach in prior
work on estimating risk preferences from data on deductible choices in U.S. auto and home
insurance (Barseghyan et al. 2011, 2013, 2016).

Papers that allow for heterogeneity in choice sets take three basic approaches to identi-
fication. The first is to rely on auxiliary information about the composition or distribution
of choice sets. For instance, Draganska and Klapper (2011), who study ground coffee sales,
use survey data on brand awareness; De los Santos et al. (2012), who study online book
purchases, use survey data on web browsing; Conlon and Mortimer (2013), who study vend-
ing machine sales, utilize periodic inventory snapshots; Honka and Chintagunta (2017), who
study auto insurance purchases, use survey data on price quotes; and Honka et al. (2017),
who study bank account openings, use survey data on brand awareness and search activity.*6

The second approach is to rely on two-way exclusion restrictions—i.e., assume that certain
variables impact choice sets but not preferences and vice versa. For example, Goeree (2008)
assumes that media advertising affects the set of computers of which a consumer is aware
(and hence her choice set) but not her preferences over computers, while computer attributes
affect her preferences but not her choice set; Gaynor et al. (2016) assume that waiting
times and mortality rates directly impact a patient’s preferences over hospitals but not her
referring physician’s preferences (which determine her choice set), while distance to hospital
and hospital fixed effects directly impact her referring physician’s preferences (and hence her
choice set) but not her preferences; and Hortagsu et al. (2017) assume that a retail electricity

customer’s decision to consider alternatives to her retailer is a function of her last period

set—that often are not available in applied work, especially outside of the laboratory. A notable exception is
Dardanoni et al. (2020), which assumes that only a single cross-section of aggregate choice shares is observed.
46For earlier papers, see, e.g., Roberts and Lattin (1991) and Ben-Akiva and Boccara (1995).
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retailer (e.g., a bad customer service experience) but not her next period retailer, while her
choice of retailer is a function of her next period retailer but not her last period retailer.”

The last approach is to rely primarily on restrictions to the choice set formation process.
Five recent papers that exemplify this approach are Abaluck and Adams (2020), Barseghyan
et al. (2020), Crawford et al. (2020), Lu (2019), and Cattaneo et al. (2020).®

Abaluck and Adams (2020) consider two models of choice set formation: a variant of the
ASR model described above and a “default specific” model in which each agent’s choice set
comprises either a single, default alternative or the entire feasible set. They show that the
restrictions imposed on choice probabilities by these models are sufficient for point identifica-
tion of preferences and choice set probabilities due to induced asymmetries in cross-attribute
responses (‘Slutsky asymmetries’), assuming that choice sets and preferences are indepen-
dent conditional on observables and that every alternative has a continuous attribute with
large support that is additively separable in utility and shifts choice set probabilities.

Barseghyan et al. (2020) study point identification of discrete choice models with un-
observed heterogeneity in preferences and choice sets. They establish conditions for point
identification of the preference distribution under generic choice set formation processes.
They also illustrate the tradeoff between the common exclusion restrictions and the restric-
tions on choice set formation required for semi-nonparametric point identification.

Crawford et al. (2020) show that with panel data (or group-homogeneous cross-section
data) and preferences in the logit family, point identification of preferences is possible, with-
out any exclusion restrictions, under the assumption that choice sets and preferences are
independent conditional on observables and with restrictions on how choice sets evolve over
time. These restrictions enable the construction of proper subsets of agents’ true choice sets
(‘sufficient sets’) that can be utilized to estimate the preference model.

Lu (2019) provides conditions for both partial and point identification of a random coef-
ficient logit model. He assumes that each agent’s unobserved choice set is bounded by two
observed sets, her largest possible choice set (e.g., the feasible set) and her smallest possible
choice set (containing a default alternative and at least one other alternative). He shows
that availability of these data, together with the assumption that agents’ choices obey Sen’s
property «, yields moment inequalities on the choice probabilities, which he uses to obtain

outer regions on the model’s preference parameters.

4THeiss et al. (2019) similarly assume that a Medicare Part D insured’s decision to consider alternatives
to her existing drug plan is triggered by past changes in her plan’s attributes (e.g., a price increase), while
her plan choice is determined by current attributes of available plans. See also Ho et al. (2017).

48Dardanoni et al. (2020) also take this approach. However, they rule out unobserved preference hetero-
geneity and focus on point identification of the choice set formation model.
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Cattaneo et al. (2020) propose a random attention model in which agents’ preferences
are homogeneous (and thus independent of choice sets) and the probability of a particular
choice set does not decrease when the number of possible choice sets decreases. Within this
framework, they provide revealed preference theory and testable implications for observable
choice probabilities, as well as partial identification results for preference orderings.

The method that we propose and apply in this paper falls into this last category. However,
it relies on fewer and weaker restrictions on the choice set formation process than any other
paper in that category. Our core model imposes—and hence our main identification result
requires—only one mild assumption on the choice set formation process, namely that choice
sets have a known minimum size greater than one. Importantly, our core model does not
assume that choice sets are independent of preferences conditional on observables (Abaluck
and Adams 2020; Crawford et al. 2020; Cattaneo et al. 2020). Nor do we impose other
restrictions on how agents’ choice sets are formed (Abaluck and Adams 2020; Barseghyan
et al. 2020) or evolve over time (Crawford et al. 2020), rely on exclusion restrictions or
large support assumptions (Abaluck and Adams 2020; Barseghyan et al. 2020), require that
the econometrician knows the composition of the smallest possible choice set for each agent
(Abaluck and Adams 2020; Lu 2019), or assume that choice sets satisfy a monotonicity or
other regularity condition (Lu 2019; Cattaneo et al. 2020).

Due to the parsimony of our method we obtain partial and not point identification of the
underlying model of preferences. Nevertheless, we demonstrate that much can be learned
about the distribution of preferences under our approach. Moreover, what is learned has more
credibility because we avoid making a host of arbitrary or unverifiable assumptions about
the choice set formation process to achieve point identification. Our primary contribution,
therefore, is that we offer a new, robust, informative, and implementable method of discrete
choice analysis when choice sets are unobserved. We show how one can use this method
to partially identify and conduct inference on the distribution of preferences as well as the
distribution of choice set size (with an additional independence assumption). Through our

empirical application we also contribute new insights to the literature on risky choice.

Appendix

A.1 Random Closed Sets

The theory of random closed sets generally applies to the space of closed subsets of a locally
compact Hausdorff second countable topological space F. For simplicity we consider here the

case F = R¥ and refer to Molchanov (2017) for the general case. Denote by JF (respectively,
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K) the collection of closed (compact) subsets of R¥. Denote by (£, F, P) the nonatomic

probability space on which all random variables and random sets are defined.

DEFINITION A.1 (Random Closed Set): A map Y : Q — F is a random closed set if for
every compact set K in R¥, Y 1K) ={weQ:Y(w)n K # J}eF.

DEFINITION A.2 (Selection): For any random set 'Y, a (measurable) selection of Y is a

random vector y (taking values in R*) such that y(w) € Y (w), P — a.s.

THEOREM A.1 (Artstein’s Theorem): A random vector y and a random set Y can be

realized on the same probability space as random elements y' and Y’', distributed as y and Y,
respectively, so that P(y' € Y') =1, if and only if Plye K) < P(Y n K # J) VK € K.

Because in this paper the random closed set of interest D*(x;,v;;6) is a subset of D, it
suffices to consider F = D; see Molchanov (2017, Example 1.1.9).

LEMMA A.1: The set DX(x;,v;;0) in equation (3.1) is a random closed set.

Proof. Let D* = D¥(x;,v;;6). Because D? is a finite set, we have that {D} n K # J} =
UGgD:\G|:f@ {d;‘(G, X;,V;;0) € K}. As df (G, x;,v;;0) is a random variable, the result follows
(see Molchanov and Molinari 2018, Example 1.5). O

A.2 Proof of Theorem 3.1

Let d*(G, x, v; §) denote the model-implied optimal choice for an agent with attributes (x, v/)
and choice set G. Recall that by Assumption 2.2(II), Pr(C' = G|x,v) = 0 for all G < D
such that |G| < k. Then by definition the sharp identification region ©; is given by the set
of values 8 € © for which there exists a distribution F(;x, ) such that F(G;x,v) > 0 for
all G €D, F(G;x,v) =0if |G| < K, Daep F(Gix,v) =1, and for all ce D

Pr(d = c|x) = f 2 1(d*(G,x,7;9) = ¢)F(G;x, T)dP(T;7), x — a.s. (A.1)

TEY GeD

This is because for such values @ € O, one can complete the model with a distribution
F(-;x,v) so that the model-implied conditional distribution of optimal choices matches the
distribution of observed choices. We are then left to show that this set is equal to the one in
equation (3.5). Molchanov and Molinari (2018, Theorem 2.33) show that the observed vector
(d,x) is a selection of the random closed set (D¥*(x,v;d),x) if and only if the condition in
equation (3.5) holds x — a.s. for all K < D. Take a value 8 € O such that there exists a
distribution F(G;x,v) under which equation (A.1) holds. By definition (d*(G,x,v;d),x)
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is a selection of (D} (x,v;d),x), and by Molchanov and Molinari (2018, Theorem 2.33) the
inequality in equation (3.5) holds x — a.s. for all K € D. Conversely, take a value 8 € ©
for which the inequalities in equation (3.5) are satisfied x — a.s. for all K € D. Then, by
Theorem A.1, there exists a selection (d(G),x) of (D*(x,v;d),x) such that Pr(d = ¢[x) =
Pr(d(G) = ¢|x), x — a.s., for all ¢ € D for some G such that |G| > . Let F(G;x,v) equal
1 for one such set G with d(G) = ¢, and equal 0 for all other G < D. Then equation (A.1)
holds x — a.s. for all ¢ € D. To conclude the proof, we show that if the inequalities in
equation (3.5) hold for all K € D : |K| < k, then they hold for all K € D. Recall that the
set D} (x,v;d) comprises the |D| — x + 1 best alternatives in D. Then any K < D : |K| > &
includes at least the (|D| — k + 1)-th best alternative for all realizations of v in V, so that

Pr(D}(x,v;0) n K # J) = 1 and the inequality in equation (3.5) holds mechanically. [
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S1 Theory

S1.1 Unobserved Heterogeneity in Choice Sets as Additively
Separable Disturbances

It is possible to represent unobserved heterogeneity in choice sets through additively sepa-
rable disturbances. In a classic random utility model with U;(c) = W;(c) + €, one may let
€ic € {—0,0} for each alternative ¢ € D and allow ¢, to be correlated with ¢; for any two
alternatives ¢, ¢ € D. One would then posit that: if &K = |D| then €, = 0 for each alternative
ce D; if k = |D| — 1 then €;. = —co for at most one alternative in D (the identity of which
is left unspecified); if Kk = |D| — 2 then ¢, = —oo for at most two alternatives in D (the
identities of which are left unspecified); and so forth. This model yields that alternative c is
not chosen if ¢, = —oo, which is analogous to alternative ¢ not being chosen when it is not

contained in the agent’s choice set.

S1.2 Positive Probability of Utility Ties

When utility ties are allowed, one can adapt the definition of D*(x;,v;;d) as follows:

D} (x;,v;;0) = {ar max W (X;., v;; 8 } = {ar max W (X;., v;; 8 },
( ) GQD%% g max W ( ) GQDUGFH gmax W ( )
(S1.1)

where again the last equality follows from Sen’s property «, and now arg max.eq W (X, vi; 6)
may include multiple elements of D due to the possibility of utility ties. The random closed
set D¥(x;,1;;8) contains alternatives up to the (|D| — k + 1)-th best in D, where “best” is
defined with respect to W(x., v;; ). Due to the possibility of ties, |D}(x;, v;; 8)| may be
larger than |D| — x + 1.1

To see that our characterization in Theorem 3.1 applied with this new definition of
D#*(x;,v;; 8) remains sharp, note that the model-implied optimal choice for an agent with
attributes (x;,v;), utility parameters &, and choice set G is no longer unique. But this
additional multiplicity of optimal choices is incorporated into D*(x;,v;; ), and all model
restrictions continue to be embedded in the requirement that d; € D*(x;,v;;9), almost
surely. The proof of Theorem 3.1 continues to apply, although at the price of additional
notation (a selection mechanism that determines the probability with which each optimal
choice df(G,x;,v;;0) € arg maxeeg W (X, V45 0) is selected when multiple alternatives are

optimal for a realization G of C;).

1To illustrate, consider the case |D| = 5 and x = 4. When utility ties occur with positive probability,
for a given (x,v;d) it might be, for example, that three alternatives are tied as first best, and hence at least
one of them is in any realization of C; and |D¥(x;,v;;0)| = 3.



S1.3 Computational Simplifications
We omit the subscript ¢ on random variables and random sets throughout this section.

S1.3.1 Sufficient Collection of Test Sets K

Theorem 3.1 and Corollary 3.1 provide a characterization of © as the collection of 8 € O that
satisfy a finite number of conditional moment inequalities, indexed by the test sets K < D.
In this subsection we provide results to reduce the collection of test sets K for which to check

the inequalities from all nonempty proper subsets of D to a smaller collection.

THEOREM S1.1: Let the assumptions of Theorem 3.1 hold. Then the following steps yield
a sufficient collection of sets K, denoted K, on which to check the inequalities in equation
(3.5) to verify if @ € O;. Initialize K = {K < D : |K| < k}. Then:

(1) For a given set K € K, if it holds that Yv € V an element of K (possibly different across
values of v) is among the |D| — k + 1 best alternatives in D, then set K = K\K

(q) Repeat the following step for ¢ = 2,...,k — 1. Take any set K € K such that K =
K1 v{cj} for some K,y with |K,—1| = q—1 and {c;} € K, K,_; € K after Steps (1)
and (q-1). If v € V such that both c; and at least one element of K,_1 are among the

|D| — k + 1 best alternatives in D, then set K = K\K.

If the set D} does not depend on &, as in our application in Sections 4-5, the collection K

18 invariant across 0 € O.

Proof. Step (1) follows because under the stated condition, Pr(D¥(x,v;6) n K # &) = 1.
Step (q) follows because under the stated condition, the events {D¥(x,v;d) n{c;} # &} and
{D!(x,v;0)n K, # &} are disjoint. This implies that the right-hand side of the inequality
in equation (3.5) is additive, and therefore that inequality evaluated at K is implied by the

ones evaluated at {c;} and at K, ;. O

Depending on the structure of the realizations of the random set D*(x,v;d), Theorem

S1.1 can be further simplified. The following corollary provides an example.

COROLLARY S1.1: Let Assumptions 2.1 and 2.2 hold. Suppose all possible realizations of

D} (x,v;6) are given by adjacent elements of D, as {¢;,Cjt1, ..., Cjyp|—}, for j =1,... K.

2Here the notation K\K indicates that the set K is removed from the collection of sets K. In practice,
one can implement this step first on sets K : |K| = 1, and for K that satisfies the condition remove from K
all sets K’ © K. Then repeat the procedure for the remaining sets K : |K| = 2, and so forth.



Then the collection of test sets K in Theorem S1.1 can be initialized to

K = {{er} feneb denenesh o fen e el

{cipi}s {ep)s epi—1}s {ep)s epj—15 =2}, - - L {ep), CD|=15 - - - 7C\D|—n+2}}> (S1.2)

which contains 2(k — 1) elements.

Proof. We first establish that if the inequalities in equation (3.5) are satisfied for sets of size
|K| =m, m =1,...,k — 1, comprised of adjacent alternatives (with respect to |D|), then
they are satisfied for all K < D.

Let the inequality in equation (3.5) be satisfied for Ky = {c;j, ¢jt1,...,¢p}, for Ky =
{cg, Car1s - - -y}, with p < g—1so that K1 n Ky = &, and for K = Kyu{cpi1, ..., ¢1} U Ko
(the set that comprises all adjacent alternatives between ¢; and ¢;). We then show that the
inequality for K7 u K is redundant. The same argument generalizes to sets comprised of
the union of disjoint collections of adjacent alternatives.

Consider first the case that ¢ —p > |D| — k + 1. Then D}(x,v;§) cannot intersect both
K7 and K5, and hence

P(Dy(x,v;6)n (K 1UK)) # &) = P(D(x,v;6)nKy # &;v)+P(Di(x,v;6)nKy # ;)

and the result follows.

Consider next the case that ¢ —p < |D| — k + 1. We claim that in this case
Di(x,v;60) n K\(K, v Ky) # & = Di(x,v;0) n (K1 U Ks) # . (S1.3)

To establish this claim, take ¢ € {cp41,...,¢-1} = K\(K; U Kb). Suppose ¢s € D} (x,v;6).
Then either ¢, € D (x,v;6) or ¢, € Di(x,v;0), because |D¥(x,v;0)| = |D| — x + 1. The
claim follows because K; u Ky < K, and hence Pr(d € K; u Ks|x) < Pr(d € K|x), while
P(D!(x,v;0) n (K U Ky) # ;) = P(Di(x,v;0) n K # ;) due to equation (S1.3).

Finally, we show that it suffices to verify equation (3.5) for the sets K € K as specified in
equation (S1.2). Consider first the case where |[D|—k+1 > xk—1. Thenforalll <p < g <=k
and K = {c,,cp41,.-.,¢q}, it holds that |[K| < x — 1 and, denoting K¢ = D\K,

P(Dy(x,v;0) n K # &;v) =1 - P(D;(x,v;6) = K%7)
= 1 - P(D:(X7V75) - {Clu"wcpfl};q/) - P(D:(X7V75) - {C(I+17"‘7CD};7)
=1—-P(Di(x,v;0) < {cgt1,---,cp};7y), (S1.4)



where the first equality follows by definition, the second follows because D¥(x,v;d) is com-
prised of |D| — k + 1 adjacent alternatives, and the last follows because P(DZ*(x,v;d) <
{c1,....cp—1};y) =0as [{c1,...,¢1}| <k —1 < |D| —k+ 1. On the other hand,

Pr(de {c,,...,c;}) <Pr(de{ci,...,c;}),

and hence if equation (3.5) is satisfied for K = {ci,...,¢,}, it is also satisfied for K =
{cp,Cps1,...,cqp forall 1 < p < ¢ < k. A similar reasoning, with appropriate modifications,
holds for sets K = {¢|p|—g+1, Cps1, - - - » C[D|—p+1}-

When |D| — k + 1 < k — 1, equation (S1.4) continues to hold as stated whenever p <
|ID| — k + 1. If p > |D| — k + 1, the result follows by the additivity in the second line of
equation (S1.4) and the additivity of probabilities, because

Pr(d € K|x) < P(D}(x,v;8) n K # &;7) < Pr(d € K°|x) = P(D(x,v;8) c K%~).

Hence, the inequality for K = {c,,...,¢,} is implied whenever it is satisfied for K =
{cr,...,¢pp and K = {c;, ..., cp|}. O

The following claim establishes that Corollary S1.1 applies when v € R and the alterna-

tives in the feasible set are vertically differentiated.

CrAM S1.1: Let Assumptions 2.1 and 2.2 hold. Let D = {cy,...,¢p|} andv = v e R.
Suppose that: (1) for every pair of alternatives c;,c, € D, j <k, and given any x € X, there
ezists a unique threshold v;(x) such that for all v > v; ,(x) alternative c; has greater utility
than alternative ¢, and for all v < v;,(x) alternative ci, has greater utility than alternative
¢;; and (II) for every alternative c; € D and given any x € X, there exists a v € R such that
c; 1s the first best in D. Then, given any (x,v) € X x R and any k = 2, the set D*(x,v;9)

comprises adjacent elements of D, as {¢;,cjt1,...,Cipp|-x}, forj=1,... kK.

Proof. The proof builds on Fact 4 in Barseghyan et al. (2020). Let |D| = 3 (otherwise
the claim holds trivially). Take any x € &X' and any three alternatives c;,c;+1,¢j42 € D.
Conditions (I) and (II) imply that 7;;,1(x) > 7 2(X) > Dji142(x). (In particular,
Uji1j+2(X) > Ujj10(X) > U;;41(x) violates condition (II) because c¢j41 is not first best for
any v € R, and every other permutation violates condition (I) due to the transitivity of
utility). In other words, the alternatives are vertically differentiated in that c; is first best
for all v > 7;;41(x); ¢j41 is first best for all v € (D41 j12(X), 7jj41(x)); and ¢;4o is first
best for all v < j41 j19(x). Consequently, for all v € R, the only possible strict utility

rankings of the three alternatives are: U(c;) > U(cjq1) > U(cjre) (When v > 7;,41(x));



Ulcjn) > Uley) > Ulejya) (when 7j541(x) > v > 75;0(x)); Ulejn) > Ulcjpa) > Uley)
(when 7 j19(x) > v > Dj11j42(%)); and U(cjie) > Ulcj1) > U(cj) (when v < 741 j42(X)).
Thus, alternative ¢;1; is never the third best among the three alternatives. This implies that
if ¢; and c¢j4o both have greater utility than a fourth alternative c,,, m ¢ {j,7 + 1,7 + 2},
then c¢j;1 also has greater utility than ¢,,. It follows that for any (x,v) € & x R, the set

D} (x;,v;; 0) comprises adjacent elements of D, as {¢;, ¢j41, ..., ¢jyp|-x), forj=1,...,5 O

When Assumption 3.1 is maintained, the logic of Theorem S1.1 can be used to obtain a
collection of sufficient test sets K on which to verify the inequalities in (3.7), by applying
its Steps 2.1-2.(k — 1) to the random sets D} (x,v;d), ¢ = k,...,|D|. Further simplifica-
tions are possible when interest centers on specific projections of O, using the fact that
Dy (xi,vi50) © Dy (x;,v;;6) for all ¢ = k. As discussed following Corollary 3.1, when As-
sumption 3.1 is maintained the projection of ©; on [§;~] is obtained by setting 7. (x;n) = 1
and m,(x;m) =0, ¢ = K+ 1,...,|D|. Hence, Steps 2.1-2.(k — 1) in Theorem S1.1 applied
only to D}(x,v;d) deliver the sufficient collection of sets K on which to verify (3.7) to ob-
tain the sharp identification region for [d;-]. On the other hand, the projection of ©; on
T(x;m), ¢ = K+ 1,...,|D|, is obtained by setting m(x;n) = 0 for all [ ¢ {g, s}, and that
on m.(x;m) by setting m(x;n) = 0 for all | = kK + 2,...,|D|. Hence, Steps 2.1-2.(k — 1) in
Theorem S1.1 applied, respectively, to only D} (x,v;§) and D} (x,v;d) deliver the sufficient
collection of sets K on which to verify (3.7) to obtain the sharp identification region for m,
qg=r+1,...,|D|, and applied only to D}(x,v;d) and D} ,(x,v;d) deliver the sufficient
collection of sets K on which to verify (3.7) to obtain the sharp identification region for 7.

The two corollaries that follow illustrate the specific adaptations of Theorem S1.1 that
we use in our application in Sections 4-5. Proofs are omitted because the corollaries follow

immediately from Theorem S1.1.

COROLLARY S1.2: Let D = {c1,¢9,¢3,¢4,¢5) and k = 3. Suppose that all assumptions
in Corollary 3.1 hold and that v = v € R with support [0,v], v < co. Then the following
steps yield a sufficient collection of sets K, denoted K, on which to check the inequalities in
equation (3.7) to obtain sharp bounds on ms. Initialize K = {K : K < D}. Then:

1. For any set K = {c;,cx} < D, if fv € [0,7] such that both c; and c;, are among the
best 3 alternatives in D, then set K = K\{c;, cx};

2. Set K = K\{¢;, cx, i} for all j,k,l e {1,2,3,4,5}.

COROLLARY S1.3: Let D = {c1,¢a,¢3,¢4,¢5} and k = 3. Suppose that all assumptions
in Corollary 3.1 hold and that v = v € R with support [0,7], 7 < 0. Then the following



steps yield a sufficient collection of sets K, denoted K, on which to check the inequalities in
equation (3.7) to obtain sharp bounds on my. Initialize K = {K : K < D}. Then:

1. For any set K = {c;,cx} < D, if fv € [0,7] such that both c; and c;, are among the
best 3 alternatives in D, then set K = K\{{c;, e}, {D\{¢;, ck}}};

2. For any set K = {cj,cx,c;} < D such that {c;, c;} € K after Step 1, if fv € [0, 7] such
that both ¢; and at least one element of {c;, c;} are among the best 3 alternatives in D,
then set K = K\{c;, cx, ci};

3. For any set K € K, if Vv € [0, 7] one element of K, possibly different across values of
v, is among the best 2 alternatives in D, then set K = K\ K.

In our application in Sections 4-5, the number of inequalities obtained through application
of the foregoing results (taking into account the 65 hypercubes on (, p)) is 6 x 65 = 390 for
the sharp identification region of ~; 17 x 65 = 1,105 for the sharp identification region of
ms; and 15 x 65 = 975 for the sharp identification region of .

S1.4 An Equivalent Characterization Based on Convex
Optimization

The characterization in Theorem 3.1 can equivalently be written in terms of a convex opti-

mization problem.

COROLLARY S1.4: Let Assumptions 2.1 and 2.2 hold and let © = A x I'. Then

ueRIPl||ul|<1 d*eDy (x,10

O;=<60€0: max u'p(x) — f max | (uqu*) dP(T;v)| =0,x — a.s.} ,

TEV

(S1.5)
where p(x) = [Pr(d = ¢1]x) ... Pr(d = ¢p||x)]" and, for a given d* € D}(x,v;8), g =
[1(d* =¢1) ... 1(d* = cpp))]"-

Proof. We establish the equivalence between equations (3.5) in the paper and (S1.5) here.?

Due to the positive homogeneity in u of u'p(x) — { maxgcpsxrs) u'q¥ dP(T;~), we
TEV
have that
u'p(x) - J max u'q? dP(T;v) <0 (51.6)
d*eD} (x,T;6)

TEVY

holds for all u : |[u]| < 1 if and only if expression (S1.6) holds for all u € RIPl. Consider
the specific subset of vectors U = {u e R?! : u; € {0,1},5 = 1,...,|D|}. Each vector u e U

3The argument of proof goes through similar steps as in Molchanov and Molinari (2018, Theorem 3.28).
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uniquely corresponds to a subset K, = {ciui,...,cppup(}. For a given u, u'q? = 1if

d* € Ky and u'q?" = 0 otherwise. Hence, the corresponding inequality in (S1.6) reduces to

Pr(de Kyx) =u'p(x) < E [d*eé%‘?;}c{ré) u'q? |x; 'y] = P(Di(x,v;6) n Ky # ;7).
It then follows that any 6 in the set defined in equation (S1.5) belongs to the set defined in
equation (3.5) because {K : K € D} = {K, : ue U}.

Conversely, take a 6 in the set defined by equation (3.5). Then, by Theorem A.1, there
exists a selection d* of D’(x,v;d) such that for all ¢ € D and x — a.s., Pr(d = c|x;) =
Pr(d* = c|x;). Hence, 6 belongs to the set defined in equation (S1.5). ]

As the set D¥(x,v; ) is comprised of the |D| — k + 1 best alternatives in D, it can have
only a finite number of realizations, as discussed in Section 3.4, which we denote D!, ..., D"

Hence, the characterization in equation (S1.5) can be rewritten as

Or = {0 €0: max [qu(x) =

ueRIPlju||<1

h
Z (max_ uqu*) P(D}(x,v;d) = Dj;'y)] =0,x — a.s} .

This means that to determine whether a given 6 € © belongs to Oy, it suffices to maximize
an easy-to-compute superlinear, hence concave, function over a convex set, and check if the
resulting objective value vanishes. Several efficient algorithms in convex programming are
available to solve this problem; see, for example, the Matlab software for disciplined convex
programming CVX (Grant and Boyd 2010).

S1.5 Additively Separable Extreme Value Type 1 Unobserved
Heterogeneity

We now explain how to compute P(D}(x,v;0) n K # ;) when v = (v, (¢, c € D)) and
W (X, v;0) = w(x.,v;8) + €., with €. independently and identically distributed Extreme
Value Type 1 and independent of v, as in a mixed logit (McFadden and Train 2000).

Given a realization G of the choice set and ¢ € G (and no utility ties), we have

Pr(d*(G,x,v;d) = ¢|x,v) = Pr(W(xz v;8) = W(x.,v;d) Ve e G|v)
_ exp(w(xg,v;6))
ZceG eXp(w(Xcv v; 6)) .

Conditional on v, one can leverage the closed-form expressions in equation (S1.7) to compute

(S1.7)

P(D*(x,v;8) n K # ;) so that numerical integration is needed only for v. The same
result applies, with ¢ replacing &, to compute P(D}(x,v;8) n K # ;) in Corollary 3.1.



THEOREM S1.2: Suppose that v = (v, (€., c € D)) and W(X.,v;8) = w(X.,v;0) + €,
with €. independently and identically distributed Extreme Value Type 1 and independent of v.
Conditional on v, any P(DE(x,v;0)n K # &|v;~) can be computed as a linear combination
over different sets G of expression (S1.7). Hence, any P(Di(x,v;8) n K # ;) can be
computed as an integral with respect to the distribution of v of linear combinations over
different sets G of expression (S1.7).

To prove this theorem, we first establish two auxiliary results. The first one states that
the probability of at least one alternative in K being preferred to all alternatives in D\ K is

the sum over all elements of K that each is first best in D.

CrAM S1.2: Conditional on v, the probability that at least one alternative in a set K < D
is better than all alternatives in the set D\K 1is given by

exp(w(xe, v; 0))
S Yep explw(xe, v56))

Pr(veex W(xe,v;60) > W(x.,v;0) Vee D\K|v) =
Proof of Claim S1.2. We first establish equivalence of the following events:

{3d € K s.t. W(xu,v;8) > W(x.,v;0); Vee D\K}
= Upex{W(xu,v;08) > W(x.,v;d),Yce D\c'}. (S1.8)

The right-to-left implication in (S1.8) is immediate. The left-to-right implication can be
established by contradiction, observing that the complement of the event in the right-hand
side of (S1.8) is that there exists a ¢ € D\K that is preferred to all other alternatives. The
result then follows because the events in the right-hand side of (S1.8) are disjoint. O]

Next, recall that, as discussed in Section 3.4, the set D¥*(x, v;d) can only take on a finite
number of realizations, denoted D!,... D" with |D/| = |D|—k+1forallj=1,...,h. We

show how to compute the probability of any of these realizations.

CramM S1.3: For each j = 1,...,h, P(D*(x,v;8) = D7|v;v) can be computed as a

linear combination of expression (S1.7) for different sets G.

Proof of Claim S1.5. Note that
P(Di(x,v;68) = D’ |v;v) = PW (x¢,v;8) > W(x,,v;6), V' € DV Yee D\D’|v;~).

Given this, the proof proceeds sequentially. Suppose |D*(x,v;d)] = 1. Then the result
follows immediately (with G = D). Suppose |D*(x,v;d)| = 2. Then we have D7 = {¢/, "}
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for some ¢, " € D, and

PW (x0,v;8) > W(x.,v;8)} n {W (xer,v;8) > W(x,,v;8)} Yee D\D?|v; )
= P(W (x¢,v;8) > W(x.,v;8) Ve € D\D?|v; y)+P(W (xer,v; 8) > W (x,, v; 8v;v) Ve e D\D)
— P({W (%0, v;8) > W (xe,v;8)} U {W (X, 5 8) > W(x,,v;68)} Ve e D\D?|v; 7).

The first term in this expression can be computed by applying equation (S1.7) with G = D\¢”;

the second term can be computed by applying equation (S1.7) with G = D\¢’; the last term,

by Claim S1.2, can be computed as the sum over ¢ € D’ of equation (S1.7) with G = D.
For |D#(x,v;68)| = 3 one can proceed iteratively using the inclusion/exclusion formula

and applying Claim S1.2. O
With these results in hand, we prove Theorem S1.2.

Proof of Theorem S1.2. By Claim S1.3 we can compute P(D¥(x,v;8) = D7|v;~) for each
D7 such that |D?| = |D|—k+1 as a linear combination of expression (S1.7) with different sets
G. To obtain the result in Theorem S1.2, for each set K one can simply sum P(D}(x,v;d) =
Dilv;~) over the sets D’ such that D7 n K # (. O

S2 Additional Details on Statistical Inference

As explained in Section 5, we base our confidence sets for the vector @ on the Kolmogorov-
Smirnov test statistic suggested by Andrews and Shi (2013, equation (3.7) on p. 618) [here-

after, AS], which in our framework simplifies to

M (0)
T.(0) =n max maX{A’—’J,O}
j=1,....,J;KeK Onx.(0)
where m,, k;(0) and 6, k(@) are defined in Section 5. Our application of the method

proposed by AS computes bootstrap-based critical values to obtain a confidence set
CS={0€0:T,(0) <é,1-0+¢(0) + &}

where ¢ > 0 is an arbitrarily small constant which we set equal to 107% as suggested by AS
(p. 625). In practice, we evaluate T,,(0) and the bootstrap-based critical value ¢, 1_+¢(0) on
a grid of values of @ designed to give good coverage of the (E(v), Var(v))-space to obtain a
precise description of the confidence set for this pair of parameters. To explain how this grid is

constructed, we note that given the assumption that v; ~ Beta(v1,v2) with support [0, 0.03],



E(v) € 0.03 x (0,1] and Var(r) € 0.0009 x (0,0.25]. We therefore obtain a grid of values
over (71,72) comprised of 665,603 points, such that the associated grid on (E(v), Var(v)) has
first coordinate in 0.03 x [0.0005, 0.9995] with step size 0.03 x 0.0005, and second coordinate
in 0.0009 x (0.0005,0.25] with step size 0.0009 x 0.0005.* The approximation of é,1_q¢(60)
is based on the bootstrap procedure detailed in AS (Section 9) and uses 1,000 bootstrap

> The procedure takes as inputs a GMS function ¢, a GMS sequence T, such

replications.
that 7,, — o0 as n — oo, and a non-decreasing sequence of positive constants (3, such that
Bn/Tn — 0 as n — o0, which together are used to determine which moment inequalities are
sufficiently close to binding to contribute to the limiting distribution of 7,,(6). We use the

GMS function proposed by AS (equation (4.10) on p. 627):°

0 lf T;l\/ﬁmmKJ(e)/(}n,K,j(e) = —1
vr;(0) =
—0, otherwise,

and we set 7, = (0.3Inn)"2 and B, = (0.4Inn/Inlnn)"? as recommended by AS (p. 643).
Similar to AS, the KMS procedure takes as inputs a GMS function ¢ and a GMS sequence

7,." To simplify computations, we use the hard threshold GMS function:®

0 if 7, 'W/nm,k;(0)/6nk;(0) = -1

—o0  otherwise.

¢r;(0) =

The procedure also requires a regularization parameter p = 0, which (like ¢ and 7,,) enters

the calibration of éj;l,a

uniform coverage of projections. The smaller is the value of p, the larger is the conservative

and introduces a conservative distortion that is required to obtain

distortion, but the higher is the confidence that the critical value is uniformly valid in
situations where the local geometry of ©; makes inference especially challenging. For a
discussion, see KMS (Section 2.2). We choose the value of p as follows. We begin with the
recommendation in KMS (Section 2.4). To further guard against possible irregularities in

the local geometry of ©;, we reduce the resulting value of p by 20 percent.

4To obtain confidence intervals on 5, 74, and 73, we first evaluate T, (6) on a coarser grid and compare
it with the AS critical value. For each 7,4, ¢ = 3,4,5, we then refine the grid around the extreme values of
7y that are not rejected, for a final step size of 0.01 on 7, and 0.05 on each component of (y1,72).

SCompared to the description in AS (Section 9), note that our moment inequalities are of the < form,
whereas AS’s are of the > form.

6AS label the GMS sequence #,,, but we use 7, to avoid confusion with our use of & for the (known and
fixed) minimum choice set size in Assumption 2.2.

"Our findings based on the AS and KMS methods are robust to the choice of tuning parameters, as
indicated by results available from the authors upon request.

8This function was proposed by Andrews and Soares (2010) and labeled o™ on p. 131 of their article.
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S3 Additional Results

S3.1 Claim Probabilities

The claim probabilities originate from Barseghyan et al. (2018). We estimate the house-
holds’ claim probabilities using the company’s claims data. We assume that household 7’s
auto collision claims in year ¢ follow a Poisson distribution with mean \;;. We also assume
that the household’s deductible choice does not influence its claim rates A\; (Assumption
4.1(IT)). We treat the household’s claim rate as a latent random variable and assume that
In A\ = XI,3 + ¢;, where X;; is a vector of observables and exp(e;) follows a Gamma distri-
bution with unit mean and variance ¢. We perform a Poisson panel regression with random
effects to obtain maximum likelihood estimates of 3 and ¢. In an effort to obtain the most
precise estimates, we use the full set of auto collision claims data, which comprises 1,349,853
household-year records. For each household, we calculate a fitted claim rate 3\1 conditional
on the household’s observables at the time of first purchase and its subsequent claims experi-
ence. More specifically, \; = exp(X;B) E(exp(e;)|Y;), where Y; records household i’s claims
experience after purchasing the policy and E(exp(g;)|Y;) is calculated using the maximum
likelihood estimate of ¢. In principle, a household may experience one or more claims during
the policy period. We assume that households disregard the possibility of experiencing more
than one claim (Assumption 4.1(I)). Given this, we transform ); into a claim probability
w=1- exp(—Xi), which follows from the Poisson probability mass function, and round it

to the nearest half percentage point. We treat pu; as data.

S3.2 Deductible Choices

Table S3.1 reports the sample distribution of deductible choices by octiles of base price p;
and claim probability ;. The octiles are the hypercubes referenced in Sections 5 and S2
(other than the one that contains all households).

S3.3 Subgroup Results

Figure S3.1 depicts the AS 95 percent confidence set for (E(v;), Var(v;)) for population
subgroups based on gender, age, and insurance score of the principal driver. In addition,
Table S3.2 reports (i) the KMS 95 percent confidence interval for the mean of v; and (ii) 95
percent confidence intervals for the 25th and 75th percentiles of v; based on projections of
the AS confidence set. For the mean, we report the actual confidence interval as well as the

risk premium, for a lottery that yields a loss of $1000 with probability 10 percent, implied
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Table S3.1: Deductible Choices by Octiles of p and

D 1 Percent choosing deductible
octile octile Obs. $100 $200 $250 $500 $1000
2,756 3.3 312 189 438 29
2,901 3.6 31.8 187 43.6 2.2
2,661 29 321 20.0 436 1.5
2,113 34 342 206 408 1.0
2,116 39 321 202 422 15
1,630 42 345 219 389 06
1,233 44 341 228 387 0.0
660 5.0 394 256 30.0 00
1,049 1.0 208 17.0 571 4.0
1,944 20 223 169 564 25
1,543 1.9 257 191 50.7 26
2,152 2.0 231 185 544 20
1,320 23 267 18.0 508 2.2
1,979 1.6 256 20.1 511 1.6
1,584 1.8 265 226 479 1.3
1,151 2.0 265 227 487 0.2
1,362 0.7 204 143 59.8 4.7
1,914 08 185 146 621 3.9
2,127 0.8 19.8 16.1 60.0 3.2
1,518 1.3 203 17.7 594 14
2,255 1.0 199 176 594 2.1
1,773 08 199 184 59.1 1.9
1,729 1.2 21.1 200 56.7 1.1
1,602 1.2 207 222 549 09
1,340 0.7 127 13.7 675 5.3
1458 08 141 152 658 43
1,632 0.7 151 154 66.1 2.8
1,595 0.6 147 16.6 648 3.3
1,606 08 143 17.1 654 25
1,705 0.6 161 152 655 2.6
1,974 07 154 17.0 655 15
1,914 10 173 17.7 628 1.2
1,126 04 114 126 705 5.2
1,547 0.1 118 119 71.7 4.5
1,609 05 104 13.0 71.6 4.5
1,522 05 106 145 714 3.0
2,066 0.7 108 128 721 35
1,697 06 125 147 692 29
1,801 02 122 146 709 22
2,128 0.5 119 17.1 688 1.6
1,303 03 6.7 91 783 56
1,403 02 69 114 755 6.0
1,326 05 7.3 112 768 4.2
1,784 03 81 11.2 762 4.2
1,580 02 79 98 780 41
1,725 05 89 120 747 39
2,061 0.1 73 112 784 3.1
2,363 0.1 9.0 123 763 22
1,521 03 52 69 8lL1 65
1,351 01 56 75 801 6.7
1,665 02 41 86 802 6.8
1,646 01 50 67 8L7 64
1,726 01 50 74 826 5.0
1,865 0.1 49 79 825 46
2,045 0.1 5.7 7.6 824 4.2
2452 02 54 91 810 44
2636 0.0 13 25 742 219
1,553 01 15 1.8 803 164
1463 00 16 31 828 124
1,568 00 14 27 802 156
1,384 00 1.8 20 806 15.6
1,570 0.1 2.0 3.0 789 16.1
1,501 0.0 1.2 25 827 137
1,698 01 21 33 810 135

Notes: Analysis sample (111,890 households).
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Figure S3.1: AS 95 percent confidence sets for (E(v), Var(v)).
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Table S3.2: Distribution of Absolute Risk Aversion

Implied risk premium

Mean Mean 25th pctl. 75th pctl.

LB UB LB UB LB UB LB UB

Male 0.00104 0.00321 $61 $279 $ 0 $ 73 $ 76 $426
Female 0.00101 0.00377 $ 59 $339 $ 0 $117 $ 81 $485
Young 0.00044 0.00306 $ 22 $263 $ 0 $95 $ 0 $407
Old 0.00107 0.00432 $ 63 $393 $ 0 $ 73 $ 95 $548
Low insurance score  0.00042 0.00315 $ 21 $273 $ 0 $ 73 $ 7 $425
High insurance score 0.00102 0.00501 $ 60 $452 $ 0 $127 $ 85 $591

Notes: 95 percent confidence intervals. LB = lower bound. UB = upper bound. Implied risk
premia for a lottery that yields a loss of $1000 with probability 10 percent.

by each bound. For the percentiles, we report only the implied risk premia. For the most
part, the subgroup results are comparable to the results for all households. The notable
exceptions are the lower bounds on the mean for households with young principal drivers
and households with low insurance scores. These lower bounds are on the order of 4 - 10~*
(which implies a risk premium of about $20), whereas the corresponding lower bounds for the
other subgroups and the population are on the order of 10~ (which implies a risk premium
of about $60).° Strikingly, the lower bounds on the 75th percentile for these two subgroups
correspond to risk premia of 17 cents and $7, respectively.

Table S3.3 reports KMS 95 percent confidence intervals for 75, m4, and w3 for the same
population subgroups. The interesting quantities are the upper bounds on 75 and 74. The
former is the maximum fraction of households whose deductible choices can be rationalized
with full size choice sets, while the latter is the maximum fraction of households whose
deductible choices can be rationalized with full-1 choice sets.!® We find, inter alia, that: (i)
at least 70 percent of households with female principal drivers require limited choice sets
to explain their deductible choices, whereas at least 74 percent of households with male
principal drivers require limited choice sets; (ii) at least 73 percent of households with old
principal drivers require limited choice sets to explain their deductible choices, whereas at
least 75 percent of households with young principal drivers require limited choice sets; and
(iii) at least 67 percent of households with low insurance scores require limited choice sets
to explain their deductible choices, whereas at least 73 percent of households with high

insurance scores require limited choice sets.!!

9Because the subgroups all have different confidence sets (as well as different sample sizes), it is possible
that a result for all households is not a weighted average of the corresponding results within a subgroup.
OWith x = 3, the lower bounds on 75 and 74 are zero, the lower bound on 73 is one minus the upper
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Table S3.3: Distribution of Choice Set Size

5 un T3
(full) (full-1) (full-2)
LB UB LB UB LB UB
Male 0.00 0.26 0.00 085 0.15 1.00
Female 0.00 0.30 0.00 0.90 0.10 1.00
Young 0.00 0.25 0.00 1.00 0.00 1.00
Old 0.00 0.27 0.00 0.96 0.04 1.00

Low insurance score 0.00 0.33 0.00 1.00 0.00 1.00
High insurance score 0.00 0.27 0.00 1.00 0.00 1.00

Notes: KMS 95 percent confidence intervals. LB = lower bound. UB
= upper bound.

S3.4 Admissible Probability Density Functions

Figure S3.2 depicts a 95 percent confidence set for an outer region of admissible probability
density functions of v; for all households. To construct the outer region (shaded in grey),
we find at each point on a grid of 101 values of v; the minimum and maximum values of
all probability density functions implied by values of @ in the AS 95 percent confidence
set. This gives us 101 points on the lower and upper envelopes of admissible probability
density functions. In other words, we obtain pointwise sharp lower and upper bounds on
the set of admissible probability density functions. Although the bounds are pointwise
sharp, the region is labeled an outer region because not all probability density functions
in it are consistent with the distribution of observed choices. The figure also superimposes
the predicted density functions of v; based on point estimates obtained under the UR and
ASR models. The UR predicted density function does not lie entirely inside the confidence
set, whereas the AR predicted density function does (although we note that this does not

necessarily imply that the true choice formation process is an ASR process).

S3.5 Suboptimal Choices

As we state in Section 5.2.1, with full size choice sets, our model cannot explain the frequency
of the $200 deductible in our data. The reason is that, with full size choice sets, our model
satisfies the following conditional rank order property, which is a generalization of the rank
order property established by Manski (1975) for random utility models that are linear in the

nonrandom parameters and feature an additive i.i.d. disturbance in the utility function.

bound on 74, and the upper bound on 73 is one.

Because the subgroups all have different confidence sets (as well as different sample sizes), it is possible
that the upper bound on 75 for all households is not a weighted average of the upper bounds on 75 within
a subgroup. The same is true for the upper bound on 74 (and, therefore, for the lower bound on 73).
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Figure S3.2: Confidence set for outer region of admissible probability density functions of v.

Notes: The figure depicts a 95 percent confidence set for an outer region of admissible probability
density functions of v;. It also superimposes the implied probability density functions of v; based
on point estimates obtained under the UR and ASR models.

PROPERTY S3.1 (Conditional Rank Order Property): For all c,c’ € D, Pr(d = d|x,v) >
Pr(d = c|x,v) if and only if W(xy,v;8) = W(x.,v;9), (x,v)—a.s.

Indeed, any model that satisfies an analogous property is incapable of explaining the
relative frequency of $200 in the distribution of observed deductible choices.'? This includes,
inter alia, the conditional logit model (McFadden 1974), the mixed logit model (McFadden
1974; McFadden and Train 2000), the multinomial probit model (e.g., Hausman and Wise
1978), and semiparametric models such as the one in Manski (1975). At the same time, not
all choice set formation processes can explain the relative frequency of $200 in our data. For
instance, UR cannot but ASR can.

CrLAm S3.1: Take the model in Section 2. Suppose for a given c € D there exist a,b e D,
a # b # ¢, such that for eachv € V, W(X,,v; ) > W (x.,v;8) or W(xp,v;8) > W(x,,v;0).
Then for any distribution of v with support V:

(I) Property S3.1 implies Pr(d = a|x) + Pr(d = b|x) > Pr(d = ¢|x), x — a.s.
(II) Under UR, Pr(d = a|x) + Pr(d = b|x) > Pr(d = ¢|x), x — a.s.

I11) Under ASR, Pr(d = a|x) + Pr(d = b|x) < Pr(d = c|x) is possible.
(111) p

12Tn the case of a model with additively separable noise where v = (v, (e.,c € D)) and W(x.,v;8) =
w(Xc,v; 8) + €, the analogous property is: For all ¢,¢' € D, Pr(d = d|x,v) = Pr(d = ¢|x,v) if and only if
w(xXe,v;0) 2 w(xe,v;0), (x,v) — a.s.
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Proof. The implication in Claim S3.1(I) follows from Property S3.1 by integrating with
respect to the distribution of v.

Claim S3.1(IT) follows from the fact that the UR model satisfies Property S3.1. Suppose
alternative ¢’ is preferred to alternative c. Alternative ¢’ may be chosen from choice sets that
contain both ¢ and ¢ and from choice sets that contain ¢ but not ¢. However, alternative
¢ may be chosen only from choice sets that contain ¢ but not ¢/. Because all choice sets,
conditional on the draw of |C|, are equiprobable, ¢’ is chosen more frequently than c.

We can establish Claim S3.1(III) with a trivial example. Suppose ¢(a) = ¢(b) = 0
and ¢(c) = 1. Then Pr(d = a|x) = Pr(d = b|x) = 0 and Pr(d = ¢[x) > 0 provided
there exists a positive measure of values v € V such that W(x.,v;d) > W(x.,v;d) for all
¢ € D\{a,b}, ¢ # c. More generally, Pr(d = a|x) + Pr(d = b|x) < Pr(d = ¢|x) is possible
provided ¢p(a) and ¢(b) are sufficiently low, ¢(c) is sufficiently high, and ¢ is the first best

alternative in D\{a, b} for some positive measure of values v € V. O

We emphasize that Claim S3.1 does not rely on Assumption 3.1 or the assumptions of the
empirical model in Section 4.1. It thus exemplifies a new approach to testing assumptions
on choice set formation in any random utility model under weak restrictions on the utility
function and without parametric restrictions on the distribution of preferences or choice sets.

An analogous claim holds in the case of a model with additively separable disturbances,
such as the mixed logit model in Section 5.1.1, for any distribution of v with support T,
where the predicate is: Suppose for a given ¢ € D there exist a,b € D, a # b # ¢, such that

for each v € T, W(X,, vV;6) > wW(X, V; ) or W(Xp, V;0) > wW(X,, V;d).
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