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Abstract

We propose a robust method of discrete choice analysis when agents’ choice sets
are unobserved. Our core model assumes nothing about agents’ choice sets apart from
their minimum size. Importantly, it leaves unrestricted the dependence, conditional
on observables, between choice sets and preferences. We first characterize the sharp
identification region of the model’s parameters by a finite set of conditional moment
inequalities. We then apply our theoretical findings to learn about households’ risk
preferences and choice sets from data on their deductible choices in auto collision in-
surance. We find that the data can be explained by expected utility theory with low
levels of risk aversion and heterogeneous non-singleton choice sets, and that more than
three in four households require limited choice sets to explain their deductible choices.
We also provide simulation evidence on the computational tractability of our method in
applications with larger feasible sets or higher-dimensional unobserved heterogeneity.
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1 Introduction

The primitives of any discrete choice model include two sets: a known universal set of feasible

alternatives—the feasible set—and the finite subset of the feasible set from which an agent

makes her choice—her choice set. Discrete choice analysis in the tradition of McFadden

(1974) rests on the assumption that agents’ choice sets are observed. McFadden shows that

when this assumption holds, one can apply the principle of revealed preference to learn about

agents’ unobserved preferences from data on their observed choices. Moreover, he shows that

with additional restrictions on the structure and distribution of agents’ preferences, one can

achieve point identification of a parametric model of discrete choice.

In practice, however, choice sets are often unobserved (Manski 1977). Sometimes this is

a missing data problem—agents’ choice sets are observable in principle but are not recorded

in the data. For example, one studying the college enrollment choices of high school students

may not observe the colleges to which a student applied and was admitted (Kohn et al. 1976);

one studying the travel mode choices of urban commuters may not observe if some modes

normally available to a commuter were temporarily unavailable on a given day (Ben-Akiva

and Boccara 1995); or one studying the hospital choices of English patients may not observe

which alternatives were offered to a patient by her referring physician (Gaynor et al. 2016).

At other times the problem is that agents’ choice sets are unobservable mental constructs.

This is the case in models of limited attention or limited consideration, where an agent

considers only a strict subset of the feasible set due to, for example, search costs, brand

preferences, or cognitive limitations. For instance, one studying the personal computer

choices of retail consumers can be sure that a consumer was not aware of all computers for

sale but cannot observe the computers of which a consumer was aware (Goeree 2008); one

studying the Medigap plan choices of Medicare insureds cannot observe which of the available

plans an insured in fact considered (Starc 2014); or one studying the energy retailer choices

of residential electricity customers cannot observe whether or to what extent a customer

considered the alternatives to her default, incumbent retailer (Hortaçsu et al. 2017).

When choice sets are unobserved the econometrician is forced to make additional as-

sumptions in order to achieve point identification (Ben-Akiva 1973). The most common

approach is to assume, often implicitly, that all choice sets coincide with the feasible set or

a known subset of the feasible set. More sophisticated approaches allow for heterogeneity

in choice sets and obtain point identification by relying on auxiliary information about their

composition or distribution, two-way exclusion restrictions (i.e., variables assumed to impact

choice sets but not preferences and vice versa), and other restrictions on the choice set forma-

tion process (e.g., conditional independence between choice sets and preferences). In some
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applications these approaches seem reasonable or at least plausible. In many applications,

however, they likely result in misspecified models, biased estimates, and incorrect inferences.

More fundamentally, the basic revealed preference argument breaks down when choice

sets are unobserved. At one extreme, when an agent’s choice set coincides with the feasible

set, her choice reveals that she prefers the chosen alternative to all others. At the other

extreme, when an agent’s choice set comprises a single alternative, her choice is driven

entirely by her choice set and reveals nothing about her preferences. In all other cases her

choice is a function of both her preferences and her choice set. Learning about preferences

from choices when choice sets are unobserved is the main challenge we address in this paper.

We propose a new, robust method of discrete choice analysis when agents’ choice sets are

unobserved. We lay out our core model in Section 2. We begin with the classic random utility

model developed by McFadden (1974) and others, though we allow for a utility function

that is neither linear in parameters nor additively separable in unobservables. Our key

point of departure from the classic model, however, is that we relax the assumption that

the agents’ choice sets are observed. Instead, we assume only that the minimum size of the

agents’ choice sets is a known integer greater than one. Consequently, our model admits any

choice set formation process (subject to the minimum size assumption) and allows for any

dependence structure, without restriction, between agents’ choice sets and their observables

and, conditional on observables, between agents’ choice sets and their preferences.

In Section 3 we first show that our model implies multiple optimal choices for an agent,

resulting from the multiple possible realizations of her choice set. It is this multiplicity

that, in the absence of additional restrictions on the choice set formation process, generally

precludes point identification of the model’s parameters. Because we avoid making such

additional, unverifiable assumptions, our approach yields a robust method of statistical in-

ference. We then present our main identification results, which leverage a result in random

set theory, due to Artstein (1983), to define a finite set of conditional moment inequalities

that characterizes the sharp identification region for the model’s parameters. We also discuss

the practicalities of computing the sharp identification region.1

In Sections 4 and 5 we demonstrate the usefulness of our theoretical findings by applying

them to learn about households’ risk preferences and choice sets from data on their deductible

choices in auto collision insurance. In Section 4 we specify an empirical model that allows for

unobserved heterogeneity in households’ risk preferences and in their choice sets. Although

1Sharpness means that the identification region comprises all and only those parameters for which there
exists a choice set formation process such that the distribution of model-implied choices matches the distri-
bution of observed choices. The recent econometrics literature uses the result in Artstein (1983), discussed
in detail in Molchanov and Molinari (2018, Chapter 2), to conduct identification analysis in various partially
identified models (e.g., Beresteanu and Molinari 2008; Beresteanu et al. 2011; Galichon and Henry 2011;
Chesher et al. 2013; Chesher and Rosen 2017). For a review, see Molinari (2020).
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we observe the feasible set of deductibles, we do not observe which deductibles enter a

household’s choice set. In our setting unobserved heterogeneity in choice sets may be due

to missing data—e.g., if different households are quoted different subsets of deductibles—or

to unobserved constraints—e.g., if some households disregard low deductibles due to budget

constraints or high deductibles due to liquidity constraints.

We present our empirical findings in Section 5. Our key finding on preferences is that the

data can be explained by expected utility theory with a distribution of risk aversion that has

low mean and variance, with at least a quarter of households being effectively risk neutral.

Our key finding on choice sets is that more than three in four households require limited

choice sets (i.e., strict subsets of the feasible set) to explain their deductible choices, and we

discuss two drivers of this result: suboptimal choices and violations of the law of demand.

Our empirical findings highlight the importance of using a robust method to conduct

inference on discrete choice models when there may be unobserved heterogeneity in choice

sets. The literature on risky choice, motivated in part by reported estimates of risk aversion

that seem implausibly high in light of the Rabin (2000) critique (e.g., Cicchetti and Dubin

1994; Sydnor 2010), has focused on developing and estimating models that depart from

expected utility theory in their specification of how agents evaluate risky alternatives. Our

findings provide new evidence on the importance of developing models that differ in their

specification of which alternatives agents evaluate, and of data collection efforts that seek to

directly measure agents’ heterogeneous choice sets (Caplin 2016).

In Section 6 we provide simulation evidence on the computational tractability of our

method in applications that feature larger feasible sets or higher-dimensional unobserved

heterogeneity. We also illustrate how the informational content of the data and the model

varies with the relative values of the size of the feasible set and the minimum size of the

agents’ choice sets, and with the dependence between the agents’ choice sets, on the one

hand, and their preferences or observables, on the other.

We conclude the paper in Section 7 with a discussion in which we review the prior

literature on discrete choice analysis with unobserved heterogeneity in choice sets and recap

our contributions to the literature. Supplemental Material (Barseghyan et al. 2021) contains

additional information and results, including on the computational aspects of our method.

2 A Random Utility Model with Unobserved

Heterogeneity in Choice Sets

Our starting point is the random utility model developed by McFadden (1974). Let I denote

a population of agents and D denote a finite set of alternatives, which we call the feasible
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set. Let U be a family of real-valued functions defined on D. The model posits that for each

agent i P I there exists a function Ui drawn from U according to some distribution such that

d P� Ci ô Uipdq ¥ Uipcq for all c P Ci, (2.1)

where P� denotes “is chosen from” and Ci � D denotes the agent’s choice set.

We assume that each agent i P I is characterized by a real-valued vector of observable

attributes xi � psi, pzic, c P Dqq, where si is a subvector of attributes specific to agent i that

are constant across alternatives and zic is a subvector of attributes specific to alternative c

that may vary across agents. Let xic � psi, zicq denote the vector of observable attributes

relevant to alternative c. In addition, we assume that each agent i P I is further characterized

by a real-valued vector of unobservable attributes νi, which are idiosyncratic to the agent.

Let X and V denote the supports of xi and νi, respectively.

To operationalize Ui as a random variable, we posit that it is a function of the agent’s

observable and unobservable attributes and we impose restrictions on its distribution.

Assumption 2.1 (Restrictions on Utility):

(I) There exists a function W : X � V ÞÑ R, known up to a finite-dimensional parameter

vector δ P ∆ � Rk, where ∆ is convex and compact, and continuous in each of its

arguments such that Uipcq � W pxic,νi; δq for all c P D, pxic,νiq � a.s.

(II) The distribution of νi, denoted by P , is continuous, known up to a finite-dimensional

parameter vector γ P Γ � Rl, where Γ is convex and compact, and independent of xi.

Assumption 2.1 allows for nonadditive unobserved heterogeneity in Ui, indexed by νi.

It is weaker than the standard assumption that Ui is additively separable in unobservables.

That said, one could let νi � pνic, c P Dq and specify W pxic,νi; δq � ωpxic; δq � νic as in a

conditional logit (McFadden 1974), or let νi � pυi, pεic, c P Dqq and specify W pxic,νi; δq �
ωpxic,υi; δq � εic as in a mixed logit (McFadden and Train 2000).

Assumption 2.1 also posits that the functional family of Ui and the distributional family

of νi are known parametric classes, and that νi is independent of xi. Though standard in

discrete choice analysis, the parametric assumptions are not essential for our partial identi-

fication results (see Remark 3.1), and the independence assumption can be relaxed based on

the structure of the empirical model (as we illustrate in our application). The assumption

that P is continuous, which ensures utility ties have probability zero, is also nonessential

because our partial identification results allow for sets of model-implied optimal choices and

thus can readily accommodate ties (see Section S1.2 of the Supplemental Material).
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Our key point of departure from McFadden (1974) and the bulk of the discrete choice

literature is the assumption regarding what is observed by the econometrician. It is stan-

dard to assume that (i) a random sample of choice sets Ci, choices di, and attributes xi,

tpCi, di,xiq : di P� Ci, i P I � Iu, is observed, and that (ii) |Ci| ¥ 2 for all i P I, where | � |
denotes set cardinality (see, e.g., Manski 1975, Assumption 1). By contrast, we assume:

Assumption 2.2 (Random Sample and Minimum Choice Set Size):

(I) A random sample of choices di and attributes xi, tpdi,xiq : i P I � Iu, is observed.
(II) Prp|Ci| ¥ κq � 1 for all i P I, where κ ¥ 2 is a known integer.

Assumption 2.2(I) is weaker than the standard assumption as it omits the requirement

that choice sets are observed. Given this difference, Assumption 2.2(II) is comparable to the

standard assumption as it requires that choice sets have a known minimum size, κ, greater

than one. The empirical content of the model increases with κ. Knowledge of κ is immediate

when choice sets are observed. We assume that κ is known, either from information in the

data or by assumption, even though choice sets are unobserved. In any event, Assumption

2.2(II) is weaker than the common assumption that every agent’s choice set coincides with

the feasible set or a known subset of the feasible set.

Remark 2.1: Under Assumption 2.2(II) the model has no empirical content if κ � 1.

However, Assumption 2.2(II) can be weakened to Prp|Ci| � 1q ¤ π̄1   1 for all i P I, where
π̄1 is known. In this case the empirical content of the model is decreasing in π̄1.

A key feature of our model is that it admits any choice set formation process, including

any mixture process, subject only to Assumption 2.2(II). Choice sets may be formed by

internal processes, such as simultaneous or sequential search (Stigler 1961; Weitzman 1979;

Honka et al. 2019) or elimination-by-aspects or attention or attribute filters (Tversky 1972a,b;

Masatlioglu et al. 2012; Kimya 2018; Cattaneo et al. 2020), or by external processes, such as

advertising (Chamberlin 1933; Goeree 2008; Terui et al. 2011) or choice architecture (Thaler

and Sunstein 2008; Johnson et al. 2012; Gaynor et al. 2016). Whether internal or external,

the choice set formation process can admit any dependence structure, without restriction,

between agents’ choice sets and their observable attributes and, conditional on observables,

between agents’ choice sets and their unobservable attributes. That is, Ci can be arbitrarily

correlated with xi and, conditional on xi, Ci can be arbitrarily correlated with νi.
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Figure 3.1: Stylized depictions of D�
κ when |D| � 3 and κ � 2.

Notes: In Panel (a), ν P R, Upcq � W pxc, ν; δq, and the alternatives in D are vertically differentiated. The
threshold ν̄ca,cbpxq is the value of ν above which ca has greater utility than cb and below which cb has greater
utility than ca. In Panel (b), ν P R3 and Upcq � ωpxc; δq�νc. The threshold ω̄ca,cbpxq � ωpxcb ; δq�ωpxca ; δq
is the value of νca�νcb above which ca has greater utility than cb and below which cb has greater utility than
ca. Because κ � 2, either |C| � 2 or |C| � 3 and hence D�

2 comprises the first and second best alternatives in
D. For a given ν, the first best appears in black and the second best in red. The agent’s choice is determined
by her realization G of C. She chooses the first best if it is in G; otherwise she chooses the second best.

3 Partial Identification of the Model’s Parameters

3.1 Preferences

The random utility model in Section 2 implies multiple optimal choices for the agent, due

to the multiple possible realizations G of her choice set Ci. Let d�i pG,xi,νi; δq denote the

model-implied optimal choice for agent i with attributes pxi,νiq, choice set Ci � G � D,

and utility parameter δ. That is, d�i pG,xi,νi; δq � argmaxcPG W pxic,νi; δq.
The set of model-implied optimal choices given pxi,νiq and δ is

D�
κpxi,νi; δq �

¤
G�D:|G|¥κ

!
d�i pG,xi,νi; δq

)
�

¤
G�D:|G|�κ

!
d�i pG,xi,νi; δq

)
, (3.1)

where the last equality follows from Sen’s property α: any alternative that is optimal for

a given choice set G1 � D is also optimal for every choice set G � G1 containing that

alternative. The set D�
κpxi,νi; δq is a random closed set with realizations in D.2 It contains

the |D| �κ� 1 best alternatives in D, where “best” is defined with respect to Ui. Figure 3.1

contains stylized depictions of D�
κpxi,νi; δq when |D| � 3 and κ � 2.

2We formally define a random closed set in Definition A.1 in the Appendix. We formally establish that
D�

κpxi,νi; δq is a random closed set in Lemma A.1 in the Appendix.
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When the information in the data and the economic model do not impose sufficiently

strong restrictions on the distribution of Ci, the multiplicity of model-implied optimal choices

generally precludes point identification of the model’s parameters θ � rδ;γs. The reason is

that the relationship between the data and the model is incomplete (Tamer 2003). To see

this, let Prpd�i � c|xi;θ,Fq denote the model-implied conditional probability that alternative

c is chosen given xi and pθ,Fq, where F � Fp�;xi,νiq denotes the conditional probability

mass function of Ci given pxi,νiq. For all c P D,

Prpd�i � c|xi;θ,Fq �
»

τPV

¸
G�D

1pd�i pG,xi, τ ; δq � cqFpG;xi, τ qdP pτ ;γq. (3.2)

Because the only restriction we impose on F is that FpG;xi,νiq � 0 for G � D, |G|   κ,

there may be multiple admissible values of pθ,Fq such that

Prpd�i � c|xi;θ,Fq � Prpdi � c|xiq, @c P D, xi � a.s., (3.3)

where di is the agent’s observed choice.3 Nonetheless, in general, it is not the case that for

every θ in a parameter space Θ there is an admissible F such that condition (3.3) holds.

Hence, we can partially identify θ from the information in the data and the model.

The set of values θ P Θ for which there exists an admissible distribution F such that

condition (3.3) holds forms the sharp identification region for θ. We denote this region

by ΘI . The distribution F, however, is an infinite-dimensional nuisance parameter, which

creates difficulties for the computation of ΘI and for statistical inference.4 We circumvent

these difficulties by working directly with the set D�
κpxi,νi; δq.

If the model is correctly specified, the agent’s observed choice di is maximal with respect

to her preference among the alternatives in her choice set and it therefore satisfies

di P D�
κpxi,νi; δq, almost surely, (3.4)

for the data generating value θ P Θ. To harness the empirical content of equation (3.4), we

leverage a result in Artstein (1983), reported in Theorem A.1 in the Appendix. This result

allows us to translate equation (3.4) into a finite number of conditional moment inequalities

that fully characterize the sharp identification region ΘI .

3If F is known or sufficiently restricted (e.g., parametrically specified), then θ can be point identified by
condition (3.3) given sufficient variation in xi and exclusion restrictions. For a discussion, see Section 7.

4Moreover, in (conditional or mixed) logit models, the fact that F may depend on νi renders inapplicable
the closed-from expressions for choice probabilities that are typical of these models. By contrast, as we show
in Section S1.5 of the Supplemental Material, our method allows one to leverage such closed-form expressions
to simplify computation.
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Theorem 3.1: Let Assumptions 2.1 and 2.2 hold. In addition, let θ � rδ;γs, Θ � ∆�Γ,

and K � tK � D : |K|   κu. Then

ΘI �
"
θ P Θ : Prpd P K|xq ¤ P pD�

κpx,ν; δq XK � H;γq, @K P K,x� a.s.

*
. (3.5)

Our proof of Theorem 3.1, provided in Section A.2 of the Appendix, establishes that

the characterization in equation (3.5) is sharp—all and only those values θ P Θ for which

the inequalities in equation (3.5) hold could have generated the observed data under the

maintained assumptions.5 These inequalities have a straightforward interpretation. At

the data generating value θ P Θ, it must be the case that, for every subset K P K,

the conditional probability that K contains a model-implied optimal choice (right-hand

side) is not less than the conditional probability of the observed choice (left-hand side),

which itself is optimal. When νi P R and the alternatives in D are vertically differenti-

ated, the set K can be restricted to the subsets
ÝÑ
K � tc1u, tc1, c2u, . . . , tc1, c2, . . . , cκ�1u andÐÝ

K � tc|D|u, tc|D|, c|D|�1u, . . . , tc|D|, c|D|�1, . . . , c|D|�κ�2u,6 and the inequalities translate into

statements about cumulative shares for higher (respectively lower) quality alternatives.

3.2 Choice Sets

Theorem 3.1 establishes that, under mild restrictions on the utility function (Assumption 2.1)

and knowing only the minimum size of agents’ choice sets (Assumption 2.2), one can learn

features of the distribution of preferences without observing agents’ choice sets or knowing

how they are formed. We next show that, with an additional restriction on the choice set

formation process, one can also learn features of the distribution of choice sets.

Let `i � |Ci| denote the size of agent i’s choice set Ci. When `i � |D| we say that Ci has

“full” size. When `i   |D| we say that Ci is “limited” or “restricted.” More specifically, we

say that Ci is “full�1” when `i � |D| � 1, “full�2” when `i � |D| � 2, and so forth.

In addition to Assumptions 2.1 and 2.2, one could assume that:

Assumption 3.1 (Choice Set Size): Agent i draws the size `i of her choice set such that

Prp`i � q|xi,νiq � Prp`i � q|xiq � πqpxi;ηq, q � κ, . . . , |D|, (3.6)

where πqpxi;ηq ¥ 0 for q ¥ κ,
°|D|

q�κ πqpxi;ηq � 1, and the function π is known up to a

finite-dimensional parameter vector η P H � Rm where H is convex and compact.

5If per Remark 2.1 one weakens Assumption 2.2(II) to Prp|Ci| � 1q ¤ π̄1   1 where π̄1 is known, then
ΘI �

 
θ P Θ : Prpd P K|xq ¤ π̄1 � p1� π̄1qP pD

�

2 px,ν; δq XK � H;γq,@K P K,x� a.s.
(
.

6See Corollary S1.1 and Claim S1.1 in the Supplemental Material.
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Assumption 3.1 posits that the size `i of agent i’s choice set is drawn from an unspecified

distribution with support tκ, . . . , |D|u, which allows for the possibility that the agent’s choice

set has full size, `i � |D|, or is limited, `i   |D|. The only restrictions it imposes on the

distribution of agents’ choice sets are that the distributional family of `i is a known parametric

class—though, as before, the parametric structure is not essential (see Remark 3.1)—and

that `i is independent of νi. Conditional on `i, however, the model with Assumption 3.1

continues to allow for any dependence structure, without restriction, between agents’ choice

sets and their observable attributes and, conditional on observables, between agents’ choice

sets and their unobservable attributes. Moreover, agents with choice sets of the same size

need not have choice sets with the same composition.

Under Assumption 3.1, Theorem 3.1 specializes to the following corollary.7

Corollary 3.1: Let Assumptions 2.1, 2.2, and 3.1 hold. In addition, let θ � rη; δ;γs
and Θ � H �∆� Γ. Then

ΘI �
"
θ P Θ : Prpd P K|xq ¤ °|D|

q�κ πqpx;ηqP pD�
q px,ν; δq XK � H;γq, @K � D,x� a.s.

*
. (3.7)

The sharp identification region ΘI in Corollary 3.1 has two noteworthy features. First, the

projection of ΘI on rδ;γs is equal to the sharp identification region in Theorem 3.1. In

other words, the information in ΘI about the distribution of preferences is the same with or

without Assumption 3.1. This is because D�
q�1pxi,νi; δq � D�

q pxi,νi; δq for all q ¥ κ, and

thus the projection of ΘI on rδ;γs is obtained with πκpxi;ηq � 1 and πqpxi;ηq � 0 for q ¡ κ.

Second, ΘI provides information about the distribution of choice set size, as well. It yields

a lower bound on πκpxi;ηq (the upper bound is one provided κ   |D|) and upper bounds on

πqpxi;ηq for q � κ� 1, . . . , |D| (the lower bounds are zero provided κ   |D|).

Remark 3.1: Theorem 3.1 and Corollary 3.1 can be generalized for a structure pW,P q
or pW,P, πq, as the case may be, that is subject only to nonparametric restrictions. We focus

on the case with parametric restrictions for computational reasons and because methods of

statistical inference for moment inequality models focus on this case.

3.3 Illustration of the Inequalities Characterizing ΘI

Figure 3.2 contains stylized depictions of three inequalities in equation (3.7) when |D| � 5,

κ � 4, νi � νi P R with support V � r0, ν̄s, and the alternatives in D are vertically

differentiated. In this case Prp`i P t4, 5uq � 1. With probability π5 the agent draws a

7The proof of Corollary 3.1 follows immediately from the proof of Theorem 3.1 and therefore is omitted.
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(c) Prpd P tc1, c2u|xq ¤ Prpshaded areaq

Figure 3.2: Stylized depictions of inequalities in ΘI when |D| � 5 and κ � 4.

Notes: Inequalities for three subsets K � D are depicted: (a) K � tc1u; (b) K � tc2u; and (c) K � tc1, c2u.
For a given ν, the first best alternative in D appears in black and the second best in red.

choice set of size 5, in which case D�
5 comprises the first best alternative. With probability

π4 � 1� π5 she draws a choice set of size 4, in which case D�
4 comprises the first and second

best alternatives. In the former case the agent chooses the first best. In the latter case her

choice is determined by her realization G of Ci. She chooses the first best if it is contained in

G; otherwise she chooses the second best.8 The threshold ν̄ca,cbpxiq is the value of νi above

which ca has greater utility than cb and below which cb has greater utility than ca.

Panel (a) depicts the inequality for K � tc1u. If `i � 5 then Ci � D and c1 is the optimal

choice if νi ¡ ν̄c1,c2pxiq. If `i � 4 then c1 is optimal if νi ¡ ν̄c1,c2pxiq and the realization G of

Ci includes c1 or if νi P pν̄c1,c3pxiq, ν̄c1,c2pxiqq and G excludes c2. It follows that

Prpdi � c1|xiq ¤ π5P pνi ¡ ν̄c1,c2pxiq;γq � p1� π5qP pνi ¡ ν̄c1,c3pxiq;γq.

Similar reasoning applies to the other singleton sets, with K � tc2u depicted in Panel (b).

The inequalities in equation (3.7) also include those for non-singleton sets. To see why,

Panel (c) depicts the inequality for K � tc1, c2u. While the left-hand side is additive,

Prpdi P tc1, c2u|xiq � Prpdi � c1|xiq � Prpdi � c2|xiq,

the right-hand side is subadditive: the shaded area in Panel (c) is smaller than the sum of

the shaded areas in Panels (a) and (b). Hence, the values θ P Θ that satisfy the inequalities

for K � tc1u and K � tc2u may fail to satisfy the inequality for K � tc1, c2u.
8In general, the agent chooses the best alternative in the intersection of her realizations of D�

q and Ci.
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Not all pairs of singleton sets, however, yield nonredundant inequalities. Consider, for

example, K � tc1u and K � tc5u. As is clear from Figure 3.2, there is no value νi P V
for which D�

4 contains both c1 and c5. It follows that the inequality for K � tc1, c5u is

redundant if the inequalities for K � tc1u and K � tc5u are satisfied. This type of reasoning
can substantially reduce the number of inequalities that are needed to recover ΘI .

9

Though not depicted in Figure 3.2, let us highlight the algebra that delivers an upper

bound on π5. Consider K � tc1, c2, c3, c4u. Given this K we have

Prpdi P K|xiq ¤ π5 PrpD�
5 XK � Hq � p1� π5qPrpD�

4 XK � Hq
ô Prpdi � c5|xiq ¥ π5 PrpD�

5 � tc5uq � π5P pνi ¤ ν̄c4,c5pxiq;γq.

Given any γ, this inequality yields an upper bound on π5. In general, one obtains the upper

bound on πq, q � κ� 1, . . . , |D|, from a projection of ΘI on the η component of θ.

3.4 Implementation of the Method

There are two challenges, both computational, in applying Theorem 3.1 and Corollary 3.1.

First, given any κ ¥ 2, the number of inequalities that characterize ΘI grows superlinearly

with |D|. Second, computing the model-implied probabilities (the right-hand sides of the

inequalities) may require evaluating a number of integrals equal to the dimension of νi.
10 In

this section we discuss both challenges. For the sake of brevity we focus on Theorem 3.1.11

As the set D�
κpxi,νi; δq comprises the |D| � κ � 1 best alternatives in D, it can have at

most h � �
|D|

|D|�κ�1

�
realizations, which we denote D1, . . . , Dh, with

tD�
κpxi,νi; δq � Dju � tW pxic1 ,νi; δq ¡ W pxic,νi; δq @c1 P Dj, @c P DzDju.

(In some models P pD�
κpxi,νi; δq � Dj;γq � 0 for some j P t1, . . . , hu.12) It follows that

P pD�
κpxi,νi; δq XK � H;γq �

¸
j:DjXK�H

P pD�
κpxi,νi; δq � Dj;γq. (3.8)

In some cases one can eliminate redundant inequalities through judicious use of set theory.

For example, consider two disjoint subsets K1, K2 � D such that

P prD�
κpxi,νi; δq XK1 � Hs X rD�

κpxi,νi; δq XK2 � Hs;γq � 0.

9See Section 3.4 below.
10The left-hand sides can be estimated from the data.
11The same observations and results hold for Corollary 3.1 by replacing κ with q � κ� 1, . . . , |D|.
12In the example presented in Section 3.3, this is the case for all Dj comprised on non-adjacent elements,

i.e., Dj P ttc1, c5u, tc1, c4u, tc1, c3u, tc2, c5u, tc2, c4u, tc3, c5uu.

11



If the inequalities for K � K1 and K � K2 are satisfied, then the inequality for K �
tK1 YK2u is also satisfied, so the latter is redundant.13 Now suppose

P pD�
κpxi,νi; δq XK1 � H;γq � P pD�

κpxi,νi; δq X tK1 YK2u � H;γq.

In this case, if the inequality for K � tK1 Y K2u holds, then the inequality for K � K1

also holds, so the latter is redundant. In Theorem S1.1 in the Supplemental Material we

provide an algorithm based on these considerations to eliminate redundant inequalities, and

in Corollary S1.1 we provide sufficient conditions under which the number of inequalities is

2pκ � 1q. One can check the conditions for the application of these results numerically or,

in some cases, analytically (depending on the structure of the data and the model).

In some models, however, the predicate conditions in Theorem S1.1 and Corollary S1.1

do not apply, and the number of inequalities may be very large. This is the case, for instance,

in a model where νi � pυi, pεic, c P Dqq, Uipcq � ωpxic,υi; δq � εic, and pεic, c P Dq has full

support on R|D| (e.g., a mixed logit). In Section S1.4 of the Supplemental Material we show

that ΘI can be equivalently characterized as the set of values θ P Θ for which the optimal

value of a convex program with |D| optimization variables is zero.14 The convex program

bypasses the need to enumerate all of the inequalities, and thanks to efficient algorithms for

solving convex programs, the number of times that the objective function (which returns

each inequality for specific choices of the optimization variables) is evaluated is typically less

than the number of inequalities in equation (3.5).

The remaining challenge is computing P pD�
κpxi,νi; δqXK � H;γq when the dimension of

νi is large. In light of equation (3.8) this amounts to computing P pD�
κpxi,νi; δq � Dj;γq for

all j P t1, . . . , hu. In Theorem S1.2 in the Supplemental Material we provide simplifications

to compute these probabilities in a mixed logit model with unobserved heterogeneity in

choice sets, where choice sets may be correlated with νi.
15 We show how one can exploit

the logit closed-form choice probabilities and then numerically integrate over the random

coefficients, thereby substantially reducing the computational burden.

13In the example in Section 3.3, this is the case, e.g., for K1 � tc1u and K2 � tc5u. Another useful
application of this result pertains to testing for full-size choice sets. With full-size choice sets, D�

κpxi,νi; δq is
a singleton and thus if K1 and K2 are disjoint it can intersect at most one of them. To test for full-size choice
sets, therefore, one need only check the inequalities for the singleton subsets of D and their complements.

14This characterization can be used for inference with the method proposed by Andrews and Shi (2017).
15As in a typical mixed logit, we assume the random coefficients and additive errors are independent.
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4 Deductible Choices in Auto Collision Insurance

In this section and the next we apply our theoretical findings to learn about the distributions

of risk preferences and choice set size from data on households’ deductible choices in auto

collision insurance. In this section we specify a random expected utility model that allows

for unobserved heterogeneity in risk aversion and choice sets and we describe our data.

4.1 Empirical Model

We model households’ deductible choices in auto collision insurance. Each household i

(i) faces a menu of prices pi � ppic, c P Dq, where pic is the household-specific premium

associated with deductible c and D is the feasible set of deductibles, (ii) has a probability

µi of experiencing a claim during the policy period, and (iii) has an array of observed

characteristics ti.
16 Following the related literature (e.g., Cohen and Einav 2007; Sydnor

2010; Barseghyan et al. 2011, 2013, 2016),17 we make two simplifying assumptions about

claims and their probabilities.

Assumption 4.1 (Claims and Claim Probabilities):

(I) Households disregard the possibility of more than one claim during the policy period.

(II) Any claim exceeds the highest deductible in D; payment of the deductible is the only

cost associated with a claim; and deductible choices do not influence claim probabilities.

Assumption 4.1(I) is motivated by the fact that claim rates are small, so the likelihood of

two or more claims in the same policy period is very small. Assumption 4.1(II) abstracts

from small claims, transaction costs, and moral hazard.

Under Assumption 4.1, household i’s choice of deductible involves a choice among binary

lotteries, indexed by c P D, of the following form: Lipcq � p�pic, 1� µi;�pic � c, µiq. The

household chooses among these lotteries based on the criterion in equation (2.1). We assume

that household i’s preferences conform to expected utility theory,

Uipcq � p1� µiquipwi � picq � µiuipwi � pic � cq, (4.1)

where wi is the household’s wealth and ui is its Bernoulli utility function.

We impose the following shape restriction on ui.

Assumption 4.2 (CARA): The function ui exhibits constant absolute risk aversion, i.e.,

uipyq � 1�expp�νiyq
νi

for νi � 0 and uipyq � y for νi � 0.

16As we explain in Section 4.2, we estimate µi and treat it as data.
17For a survey, see Barseghyan et al. (2018, Section 5.2).
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Assuming CARA has two key virtues. First, ui is fully characterized by the coefficient of ab-

solute risk aversion, νi � �u2i pyq{u1ipyq. Second, wealth does not affect utility comparisons.

We note, however, that our approach can accommodate other shape restrictions (e.g., con-

stant relative risk aversion) as well as non-expected utility models (e.g., the rank-dependent

expected utility model in Barseghyan et al. 2013).

In terms of the core model developed in Section 2, household i’s observable attributes are

xi � pµi, ti,piq, with xic � pµi, ti, picq, and its sole unobservable attribute is its coefficient of

absolute risk aversion νi.
18 Per Assumptions 2.1 and 4.2, we posit that νi � P pγptiqq, where

P is specified below in Assumption 4.3(I), and that, pxic, νiq � a.s.,

Uipcq � p1� µiqp1� exppνipicqq � µip1� exppνippic � cqqq
νi

. (4.2)

Observe that, by equation (4.2), we assume that µi and pic affect utility directly and we

allow ti to affect utility indirectly through νi. To capture this indirect effect, we could

specify γptiq � fpti; δq where the functional form of f is known up to δ P ∆. Instead, we

account for (discrete) observed heterogeneity in preferences nonparametrically by conducting

the analysis separately on population subgroups based on ti.

Per Assumption 2.2(I), we suppose that the deductible choices and observable attributes,

tpdi,xiq : i P Iu, for a random sample of households I � I, |I| � n, are observed, but that

the households’ choice sets, tCi : Ci � D, i P Iu, are unobserved. Per Assumption 2.2(II),

we assume that Prp|Ci| ¥ κq � 1 for every household i P I, where κ ¥ 2.

We close the baseline empirical model with two final assumptions.

Assumption 4.3 (Heterogeneity Restrictions):

(I) Conditional on ti, νi follows a Beta distribution on r0, 0.03s with parameter vector

γptiq � pγ1ptiq, γ2ptiqq and is independent of pµi, picq. To simplify notation, we suppress

below the dependence of γ on ti.

(II) The minimum choice set size is κ � 3.

Assumption 4.3(I) specifies that P is the Beta distribution with support V � r0, 0.03s. The
main attraction of the Beta distribution is its flexibility (e.g., Ghosal 2001). Its bounded

support is a plus given our setting. A lower bound of zero rules out risk-loving preferences

and seems appropriate for insurance markets that exist primarily because of risk aversion.

Imposing an upper bound enables us to rule out absurd levels of risk aversion, and the choice

of 0.03 is conservative both as a theoretical matter and in light of prior empirical estimates

18In terms of the notation used in Section 2, si � pµi, tiq, zic � pic, and νi � νi.
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in similar settings (e.g., Cohen and Einav 2007; Sydnor 2010; Barseghyan et al. 2011, 2013,

2016). Assumption 4.3(II) posits that the size of every household’s choice set is either full,

full-1, or full-2. In our setting |D| � 5. We set κ � 3 for reasons we explain in Section 4.2.

Remark 4.1: We also consider a mixed logit specification Uipcq � ωpxic, νiq � εic, where

ωpxic, νiq is the certainty equivalent of the right-hand side of equation (4.2), νi is distributed

per Assumption 4.3(I), and εic is an i.i.d. disturbance that follows a Type 1 Extreme Value

distribution and is independent of pxic, νiq; see Section 5.1.1.

In the baseline model we do not impose Assumption 3.1. Thus, conditional on xi, Ci can

be arbitrarily correlated with νi. We impose Assumption 3.1 only in Section 5.2 when we

apply Corollary 3.1 to learn about the distribution of choice set size. At that point, we could

specify a functional form for πqpxi;ηq known up to η P H. Instead, as with νi, we assume πq

is independent of pµi, picq conditional on ti, and we account for (discrete) observed hetero-

geneity nonparametrically by conducting the analysis separately on population subgroups

based on ti. To simplify notation, we suppress below the dependence of πq on ti.

4.2 Data Description

We obtained the data from a large U.S. property and casualty insurance company. The

data contain annual information on more than 100,000 households who first purchased auto

policies from the company during the ten year period from 1998 to 2007. We focus on

households’ deductible choices in auto collision coverage. This coverage pays for damage to

the insured vehicle, in excess of the deductible, caused by a collision with another vehicle

or object, without regard to fault. The feasible set of auto collision deductibles is D �
t$100, $200, $250, $500, $1000u and thus |D| � 5.

To construct our analysis sample, we initially include every household who first pur-

chased auto collision coverage from the company between 1998 and 2007, retaining, at the

time of first purchase, its deductible choice di, its pricing menu pi, its claim probability µi,

and an array ti of three demographic characteristics: gender, age, and insurance score of

the principal driver.19 This yields an initial sample of 112,011 households. We then exclude

households whose deductible choices cannot be rationalized by the model specified in Sec-

tion 4.1 for any pair pνi, Ciq such that νi P r0, 0.03s and |Ci| P t3, 4, 5u. Importantly, our

rationalizability check does not rely on the assumption that P is the Beta distribution. This

excludes 0.1 percent of the initial sample, yielding a final sample of 111,890 households.20

19Insurance score is a credit-based risk score.
20The data in this paper are not the same as the data in Barseghyan et al. (2013) and Barseghyan

et al. (2016), though both data sets have the same source. In this paper, the data comprise 112,011 house-
holds who first purchased auto collision coverage between 1998 and 2007. In Barseghyan et al. (2013) and
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Several comments are in order. First, we retain households’ deductible choices at the time

of first purchase to increase confidence that we are working with active choices. One might

worry that households renew their policies without actively reassessing their deductibles.

Second, we require νi P r0, 0.03s for the reasons stated in Section 4.1. However, the

composition of our sample is robust to the upper bound of the support. If we decrease the

upper bound to 0.02 the sample decreases by one household to 111,889 households. If we

increase the upper bound to 0.04 the sample remains the same at 111,890 households.21

Third, we require |Ci| P t3, 4, 5u—i.e., we assume κ � 3—to keep the model as close as

possible to the standard approach that assumes full-size choice sets. As we explain in Section

5.2, κ � 3 is the highest value that is consistent with the data.

Fourth, the company generates each household’s pricing menu, pi � ppic, c P Dq, accord-
ing to the following pricing rule: pic � gpcqp̄i � ζ, where p̄i is the household’s base price,

g is a decreasing positive function, and ζ ¡ 0. We observe g, ζ, and the premium paid by

each household given its chosen deductible. We thus can recover each household’s base price.

Given the company’s pricing rule, the base price is a sufficient statistic for pi. Moreover,

any pic P pi can be treated as the base price. We treat the premium associated with the

$1000 deductible as the base price—i.e., p̄i � p1000—and round it to the nearest five dollars.

We use the rounded base prices and resulting pricing menus throughout our analysis.22

Fifth, we estimate the households’ claim probabilities using the company’s claims data.

We assume that household i’s auto collision claims in year t follow a Poisson distribution with

mean λit. We also assume that deductible choices do not influence claim rates (Assumption

4.1(II)). We perform a Poisson panel regression with random effects and use the results to

calculate a fitted claim rate pλi for each household.23 In principle, a household may experience

one or more claims during the policy period. We assume that households disregard the

possibility of experiencing more than one claim (Assumption 4.1(I)). Given this, we transform

Barseghyan et al. (2016), the data comprise 4,170 households who first purchased auto collision coverage,
auto comprehensive coverage, and home all perils coverage in the same year, in either 2005 or 2006.

21Moreover, our results are robust to increasing the upper bound from 0.03 to 0.04, as indicated by results
available from the authors upon request.

22This includes our rationalizability check, though the final sample would be virtually identical if we
used exact prices. Our use of rounded prices reduces the computational burden of recovering ΘI and is
supported by evidence that “people show a marked tendency to produce 0- and 5-ending numbers” in
numerical cognition tasks, including price cognition (Schindler and Kirby 1997, p. 193). See also Schindler
and Wiman (1989), Vanhuele and Drèze (2000), and Liang and Kanetkar (2006).

23To obtain the most precise estimates, we use the full set of auto collision claims data, which comprises
1,349,853 household-year records. We calculate pλi conditional on the household’s observables at the time of
first purchase and its subsequent claims experience; see Section S3.1 of the Supplemental Material.
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Table 4.1: Descriptive Statistics

Panel A. Summary Statistics
Mean Std. dev. 5th pctl. Median 95th pctl.

Deductible choice (dollars) 439 178 200 500 500

Pricing menus:
p500 217 137 77 181 480
p250 � p500 65 42 22 54 146
p500 � p1000 49 32 17 41 110

Claim probability (annual) 0.088 0.030 0.045 0.085 0.140

Demographic characteristics:
Female 0.468 0.499 0 0 1
Age (years) 48.1 16.6 24.5 45.9 76.7
Insurance score 731 114 555 725 934

Panel B. Deductible Choices
Percent choosing deductible

Obs. $100 $200 $250 $500 $1000

All households 111,890 1.1 15.2 13.7 65.4 4.6

Male 59,476 1.0 14.9 12.9 65.9 5.4
Female 52,414 1.1 15.5 14.7 64.8 3.8

Young 36,932 0.1 6.9 10.7 77.1 5.2
Old 38,046 2.5 26.2 16.7 51.0 3.6

Low Insurance Score 37,087 0.4 10.1 12.7 72.2 4.6
High Insurance Score 38,371 1.8 20.9 14.6 58.1 4.6

Notes: Analysis sample (111,890 households). Pricing statistics are annual amounts in nominal dollars.
Demographic statistics are for the principal driver.

pλi into a claim probability µi � 1 � expp�pλiq, which follows from the Poisson probability

mass function, and round it to the nearest half percentage point.24 We treat µi as data.

Table 4.1 presents descriptive statistics for the analysis sample. Panel A summarizes

the households’ deductible choices, pricing menus, claim probabilities, and demographic

characteristics. Panel B reports the sample distribution of deductible choices for the full

sample and for subsamples based on gender, age, and insurance score.25 In Table 4.1 and

throughout the paper, young/old and low/high insurance scores are defined as bottom/top

third based on the age and insurance score, respectively, of the principal driver.

24Our use of rounded claim probabilities reduces the computational burden of recovering ΘI and is
supported by evidence that people report rounded probabilities (Manski and Molinari 2010).

25In addition, Table S3.1 in the Supplemental Material reports the sample distribution of deductible
choices by octiles of base price p̄i and claim probability µi.
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5 Empirical Method and Findings

Our empirical application is motivated in part by the fact that, although we observe the

feasible set of deductibles, we do not observe which deductibles enter a household’s choice

set. There are many plausible sources of unobserved heterogeneity in choice sets. It may be

due to missing data—e.g., different sales agents may quote different subsets of deductibles

to different households—or to unobserved constraints—e.g., some households may disregard

low deductibles due to budget constraints or high deductibles due to liquidity constraints.

Our application is also motivated by a persistent finding in prior empirical studies of

risk preferences which assume full-size choice sets. These studies tend to find that average

risk aversion is quite high—arguably implausibly high. Two recent examples that utilize

similar data are Cohen and Einav (2007) and Barseghyan et al. (2013). It is plausible

that the assumption of full-size choice sets may be driving this finding, and that allowing for

unobserved heterogeneity in choice sets may yield more credible estimates of risk preferences.

In what follows we first apply Theorem 3.1, which does not assume independence between

preferences and choice sets, to learn about the distribution of risk aversion (Section 5.1). In

this case θ � pγ1, γ2q. We then apply Corollary 3.1, which assumes that choice set size is

independent of preferences (Assumption 3.1), to learn about the distribution of choice set

size (Section 5.2). In this case θ � pγ1, γ2, π3, π4, π5q. In the text we present results for

the population (all households). As indicated in Section 4.1, we also conduct our analysis

separately for population subgroups based on observed characteristics ti. The subgroup

results are reported in Section S3.3 of the Supplemental Material.

The sample moments that we use to implement equation (3.5) are

m̄n,K,jpθq � 1

n

¸n

i�1
mK,jpdi, µi, p̄i;θq

� 1

n

¸n

i�1
rp1pdi P K, pµi, p̄iq P Bjq � P pD�

κpµi, p̄iq XK � H;γq1ppµi, p̄iq P Bjqs , (5.1)

and similarly for equation (3.7). In equation (5.1), P pD�
κpµi, p̄iq XK � H;γq is a function

known up to θ that can be evaluated using the Beta cumulative distribution function, and Bj,

j � 1, . . . , J , are “hypercubes” as defined in Andrews and Shi (2013, Example 1) [hereafter,

AS] that are used to transform the conditional moment inequalities into unconditional ones.26

26We follow AS and transform pµi, p̄iq using the upper-triangular Cholesky decomposition of their sample
covariance matrix, so that the transformed variables pµ̃i, p̃iq have a sample covariance matrix equal to the
identity matrix. We then let the side lengths of the hypercubes Bj be determined by the octiles of the
distributions of µ̃i and p̃i, and we also include a hypercube containing all values of pµi, p̄iq, so J � 65. Each
hypercube contains between 660 and 2,901 households, except for one that contains all households.
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We apply the method proposed by AS to compute bootstrap-based critical values, de-

noted ĉn,�p�q below, that define a confidence set which covers each θ P ΘI with asymptotic

probability 1�α uniformly over a large class of probability distributions P .27 We first com-

pute a confidence set for pγ1, γ2q, from which we obtain a confidence set for pEpνiq,Varpνiqq
leveraging the fact that for νi � Betapγ1, γ2q a unique pair pEpνiq,Varpνiqq corresponds to

each value of pγ1, γ2q. Formally, the AS confidence set is

CS � tθ P Θ : Tnpθq ¤ ĉn,1�α�ξpθq � ξu . (5.2)

In equation (5.2), ξ ¡ 0 is an arbitrarily small constant (AS suggest setting ξ � 10�6) and

Tnpθq is a Kolmogorov-Smirnov test statistic that aggregates sample moment violations:

Tnpθq � n max
j�1,...,J ;KPK

max tm̄n,K,jpθq{σ̂n,K,jpθq, 0u2 ,

where σ̂n,K,jpθq is the sample analog of the population standard deviation of mK,jpdi, µi, p̄i;θq
and the set K is determined using Theorem S1.1 in the Supplemental Material.28

We obtain confidence intervals for Epνiq, π3, π4, and π5 using the method proposed by

Kaido et al. (2019) [hereafter, KMS]. The first is a smooth function of θ � pγ1, γ2q with a

gradient that satisfies the assumptions in KMS, while the latter three are linear projections

of θ � pγ1, γ2, π3, π4, π5q. Let fpθq denote any of the aforementioned functions of θ. The

lower and upper bounds of the KMS confidence interval for fpθq are obtained by solving

min
θPΘ

{max
θPΘ

fpθq s.t. ?nm̄n,K,jpθq{σ̂n,K,jpθq ¤ ĉfnpθq, j � 1, ..., J, K P K,

where ĉfnpθq is a bootstrap-based critical level calibrated such that fpθq is uniformly asymp-

totically covered with probability 1 � α over a large class of probability distributions P .29

For fpθq � Epνiq the set K is determined using Theorem S1.1, while for fpθq P tπ3, π4, π5u
the set K is determined using Corollaries S1.2 and S1.3 in the Supplemental Material.

27See AS (Theorem 2) for a formal statement. The AS confidence set asymptotically exploits all the
information in the conditional moments, in the sense that as the sample size grows to infinity the number of
inequalities used for inference increases and the confidence set shrinks to ΘI .

28We note that there are values θ P Θ for which Tnpθq � 0. This implies that we fail to reject the
hypothesis that our empirical model is correctly specified.

29See KMS (Theorem 3.1) for a formal statement. Although they do not asymptotically exploit all the
information in the conditional moments because they are based on a fixed number of inequalities, the KMS
confidence intervals (implemented on the same sample with the same inequalities and tuning parameters)
are shorter than the confidence intervals obtained by projecting the AS confidence set.

19



0 1 2 3 4 5

10
-3

0

1

2

3

4

5

6

7
10

-5

(a) Baseline model

0 1 2 3 4 5

10
-3

0

1

2

3

4

5

6

7
10

-5

0.10

0.25

0.50

(b) Mixed logit

Figure 5.1: AS 95 percent confidence set for pEpνq,Varpνqq.

In Section S2 of the Supplemental Material we provide further details on implementation

of the AS and KMS methods.30 We refer to the original papers for a thorough discussion

of the methods, and to Canay and Shaikh (2017) for a comprehensive presentation of the

literature on inference in moment inequality models.

5.1 Risk Preferences

Panel (a) of Figure 5.1 depicts the AS 95 percent confidence set for pEpνiq,Varpνiqq for all
households.31 In addition, Table 5.1 reports (i) the KMS 95 percent confidence interval for

the mean of νi and (ii) 95 percent confidence intervals for the 25th and 75th percentiles of νi

based on projections of the AS confidence set. For the mean, we report the actual confidence

interval as well as the risk premium, for a lottery that yields a loss of $1000 with probability

10 percent, implied by each bound. For the percentiles, we report only the implied risk

premia. Focusing on the lower bounds, the main takeaway is that the households’ deductible

choices can be explained by a distribution of absolute risk aversion that has a low mean, on

the order of 10�3, and low variance, on the order of 10�6. Strikingly, the lower bound on the

25th percentile of νi corresponds to a risk premium of less than half a cent, implying that

the data are consistent with at least a quarter of households being effectively risk neutral.

30Both the AS and KMS methods entail the selection of tuning parameters. We find that our results are
robust to the choice of tuning parameters, as indicated by results available from the authors upon request.

31In Figure S3.2 in the Supplemental Material we also report a 95 percent confidence set for an outer
region of admissible probability density functions of νi.
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Table 5.1: Distribution of Absolute Risk Aversion

Implied risk premium
Mean Mean 25th pctl. 75th pctl.

LB UB LB UB LB UB LB UB

Baseline model 0.00105 0.00347 $062 $307 $000 $078 $079 $454
UR 0.00167 0.00170 $115 $117 $086 $088 $142 $145
ASR 0.00260 0.00264 $211 $216 $040 $043 $333 $340

Cohen and Einav (2007) 0.00310 $267 Not reported Not reported
Barseghyan et al. (2013) 0.00113 $068 Not reported Not reported

Notes: 95 percent confidence intervals for baseline, UR, and ASR models. LB = lower bound. UB =
upper bound. Implied risk premia for a lottery that yields a loss of $1000 with probability 10 percent.

To provide context for these results, Table 5.1 also reports 95 percent confidence intervals

for the mean, 25th percentile, and 75th percentile of νi obtained under two point-identified

expected utility models that fully specify the choice set formation process. They are:

Uniform random (UR): Utility is given by equation (4.2). Choice sets are drawn

uniformly at random from D, conditional on |Ci| � q for q ¥ κ and independent of νi.

Specifically, PrpCi � G||G| � qq � �
|D|
q

��1
for all G � D, |G| � q, q ¥ κ; and Ci K νi.

Alternative-specific random (ASR): Utility is given by equation (4.2). Alternatives

in D enter choice sets with alternative-specific probabilities, independent of one another

and νi, conditional on |Ci| ¥ κ (Manski 1977; Manzini and Mariotti 2014). Specifically,

PrpCi � G||G| ¥ κq � PrpCi � Gq{p1 �°
G�D:|G| κ PrpCi � Gqq for all G � D, where

PrpCi � Gq �±
cPG ϕpcq±cPDzGp1� ϕpcqq and ϕpcq � Prpc P Ciq; and Ci K νi.

UR and ASR are “reduced form” models that can capture a wide range of choice set for-

mation processes. For example, UR is consistent with a simultaneous search process with

a uniform prior (cf. Stigler 1961),32 and ASR may describe an advertising process in which

alternatives are marketed with different intensities in independent, non-targeted campaigns.

With dependence between ϕpcq and νi, ASR can capture an even wider range of choice set

formation processes, including, for instance, a sequential search process with free recall (e.g.,

Weitzman 1979) or an advertising process with correlated, targeted campaigns.

For additional context, Table 5.1 includes point estimates for the mean of νi reported

by Cohen and Einav (2007) and Barseghyan et al. (2013) for their CARA models. Cohen

and Einav (2007) estimate the distribution of νi in a parametric expected utility model

using data on deductible choices in Israeli auto insurance. Barseghyan et al. (2013) estimate

32With a uniform prior, the simultaneous search problem reduces to choosing the optimal number of
alternatives to search and, given this number, randomly choosing the alternatives to be searched.
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the distributions of νi and probability distortions in a parametric rank-dependent expected

utility model using data on deductible choices in U.S. auto and home insurance.

The main takeaway is that the baseline lower bounds are substantially smaller than the

lower bounds obtained under UR and ASR and the point estimate reported by Cohen and

Einav (2007).33 This suggests that if one properly allows for heterogeneity in choice sets,

the data can be explained by expected utility theory with substantially lower levels of risk

aversion than many familiar models—including some that allow for choice set heterogeneity

but perhaps misspecify the choice set formation process—would imply. A second takeaway

comes from results in Barseghyan et al. (2013). Their point estimate for the mean of νi is

only slightly larger than the baseline lower bound ($68 versus $62 in terms of implied risk

premium). However, because they allow for probability distortions, νi neither fully captures

the level of risk aversion nor solely drives risk-averse behavior in their model. Taking into

account their point estimate for probability distortions, the implied risk premium is $91.

This suggests that failing to allow for heterogeneity in choice sets may affect inferences not

only about the level of risk aversion, but also about the sources of risk-averse behavior.

5.1.1 Mixed Logit with Unobserved Heterogeneity in Choice Sets

We also compute the AS 95 percent confidence set for pEpνiq,Varpνiqq for a mixed logit spec-

ification Uipcq � ωpxic, νiq � εic, where ωpxic, νiq is the certainty equivalent of the right hand

side of equation (4.2), νi is distributed per Assumption 4.3(I), and εic is an i.i.d. disturbance

that follows a Type 1 Extreme Value distribution with scale parameter σ and is independent

of pxic, νiq. We define utility in terms of its certainty equivalent so that εic is measured in

dollars (which allows for a clear economic interpretation). Panel (b) of Figure 5.1 depicts

the confidence set for three values of σ chosen so that the standard deviation of εic is equal

to 10 percent, 25 percent, and 50 percent of the average price difference among adjacent

deductibles in D. (At zero percent, of course, the mixed logit specification reduces to the

baseline model.) As the “noise factor” increases, the confidence set expands mainly to the

“northwest,” admitting higher values of Varpνiq and lower values of Epνiq. Focusing on the

latter, the projection of the confidence set on Epνiq is essentially unchanged at a noise factor

of 10 percent. At 25 percent the lower bound is smaller but still informative. By 50 percent,

however, the confidence set effectively admits pEpνiq,Varpνiqq � p0, 0q (i.e., all households
are risk neutral) and overall is quite large. The bottom line is that the confidence set remains

informative at reasonable levels of noise. Not surprisingly, however, as the magnitude of the

noise approaches that of the variation in observable covariates, the data loses much of its

informational content about households’ preferences.

33Moreover, the UR estimates lie outside ΘI and hence this model is rejected in our application; see, e.g.,
the bounds on the 25th percentile reported in Table 5.1 and Figure S3.2 in the Supplemental Material.
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Table 5.2: Distribution of Choice Set Size

π5 π4 π3
(full) (full-1) (full-2)

LB UB LB UB LB UB

All households 0.00 0.24 0.00 0.89 0.11 1.00

Notes: KMS 95 percent confidence intervals. LB = lower
bound. UB = upper bound.

5.2 Choice Set Size

Table 5.2 reports KMS 95 percent confidence intervals for π5, π4, and π3. The interesting

quantities are the upper bounds on π5 and π4. The former is the maximum fraction of

households whose deductible choices can be rationalized with full-size choice sets, while the

latter is the maximum fraction of households whose deductible choices can be rationalized

with full-1 choice sets.34 The main result is that a large majority of households require

limited choice sets (full-1 or full-2) to explain their deductible choices. Specifically, we find

that at least 76 percent of households require limited choice sets, including at least 11 percent

who require full-2 choice sets. In the remainder of this section we discuss two drivers of this

result: suboptimal choices and violations of the law of demand.35

5.2.1 Suboptimal Choices

The first driver is the existence and frequency of suboptimal choices. In total, 16.7 percent

of households in our sample choose a deductible that is suboptimal (i.e., not first best in D)

under our empirical model at all ν P r0, 0.03s. The vast majority of these households choose

$200, which is a suboptimal alternative under the model for virtually every household in our

sample.36 In particular, $200 is dominated by $100 or $250, depending on µ. Suboptimal

alternatives, sometimes called dominated alternatives, are not uncommon in discrete choice

settings, including insurance settings (see, e.g., Handel 2013; Bhargava et al. 2017).

To see why $200 is a suboptimal alternative under the model, consider a risk-neutral

household with claim probability µ. The household prefers $200 to $100 if and only if

µ   p100�p200
200�100

, and prefers $200 to $250 if and only if µ ¡ p200�p250
250�200

. In our data p100 � p200 �
p200 � p250 for all households. For the risk-neutral household, therefore, at most one of

the foregoing inequalities holds and thus $200 is dominated by $100 or $250, depending

on the value of µ. A similar logic applies for risk-averse households with reasonable levels

34With κ � 3, the lower bounds on π5 and π4 are zero, the lower bound on π3 is one minus the upper
bound on π4, and the upper bound on π3 is one.

35In other applications, additional or different data features may reveal the presence of heterogeneous
choice sets. One example is zero shares for alternatives that are not suboptimal.

36The remainder of these households choose $1000 or $500 when $250 is optimal.
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of risk aversion—under our model or any other model in which lotteries are evaluated by

expectations over functions of final wealth (see Barseghyan et al. 2016)—and indeed for

virtually every household in our sample $200 is suboptimal at all ν P r0, 0.03s.37
Yet 15.2 percent of households in our sample choose $200. At the same time, only 1.1

percent choose $100 and 13.7 percent choose $250. Hence, the combined demand for $100

and $250 is less than the demand for $200. This pattern is even more pronounced within

certain subgroups, including households with old principal drivers and households with high

insurance scores; see Table 4.1.

Heterogeneous choice sets can readily explain these choice patterns. In our model all

that is required to rationalize a household’s choice of $200 is the absence of $100 or $250, as

the case may be, from the household’s choice set. Moreover, all that is required to explain

Prpd � 100|xq � Prpd � 250|xq   Prpd � 200|xq is a choice set distribution in which the

frequencies of $100 and $250 are sufficiently less than the frequency of $200.38

With full-size choice sets, however, our model cannot explain these choice patterns. The

reason is that, with full-size choice sets, our model satisfies a rank order property which

implies Prpd � a|xq � Prpd � b|xq ¡ Prpd � c|xq when c is dominated by a or b. Indeed,

any model that satisfies an analogous rank order property is incapable of explaining the

relative frequency of $200 in the distribution of observed deductible choices. This includes,

inter alia, the conditional logit model (McFadden 1974), the mixed logit model (McFadden

1974; McFadden and Train 2000), the multinomial probit model (e.g., Hausman and Wise

1978), and semiparametric models such as the one in Manski (1975).39 For a more complete

discussion, see Section S3.5 of the Supplemental Material.

5.2.2 Law of Demand

Violations of the law of demand are also driving our main result on choice sets. With full-size

choice sets, households’ demand for high deductibles should increase as base price increases

and should decrease as claim risk increases. If follows that, with full-size choice sets, we

should observe for all K P ÐÝK �  t$1000u, t$1000, 500u, t$1000, $500, $250u(,
Prpd P K|µ, p̄q ¡ Prpd P K|µ1, p̄1q if µ   µ1 and p̄ ¡ p̄1. (5.3)

37Evaluating equation (4.2) for all 111,890 households over a fine grid of ν, we find that the $200 deductible
is optimal in 0.001 percent of cases, all of which entail ν ¥ 0.0115.

38That said, not all heterogeneous choice set formation processes can explain these choice patterns. For
instance, UR cannot but ASR can; see Claim S3.1 in the Supplemental Material.

39This also includes the model in Barseghyan et al. (2016), which explains why they find that 13.0 percent
of the households in their data cannot be rationalized by their model.
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In our data, however, we observe multiple violations. In particular, when we compare all

pairs of hypercubes, where one hypercube has a lower average µ and a higher average p̄ than

the other, over all subsets K P ÐÝK , we find 61 violations (3 percent) of equation (5.3).40

The requirement in equation (5.3) holds generically for models in which BrUpcq�Upc1qs
Bp̄

  0

and BrUpcq�Upc1qs
Bµ

¡ 0 for all c, c1 P D, c   c1. Given the assumptions of our empirical model, the

law of demand implies a second, stronger requirement (cf. Barseghyan et al. 2020). Observe

that for any x � pµ, p̄q and any subsetK � D of adjacent deductibles, there exists an interval

SKpxq � V such that d�pD,x, νq P K if ν P SKpxq and d�pD,x, νq P DzK if ν P VzSKpxq,
where d�pD,x, νq denotes the model implied-optimal choice when the choice set has full size.

It follows that, with full-size choice sets,

Prpd P K|xq ¤ Prpd P K 1|x1q if SKpxq � SK1px1q (5.4)

for any subsets K,K 1 � D of adjacent deductibles and any x � x1. In our data, however, we

observe numerous violations of equation (5.4). In particular, when we compare all pairs of

hypercubes, where x denotes the average pµ, p̄q in one hypercube and x1 denotes the average

pµ1, p̄1q in the other, over all subsets K,K 1 � D of adjacent deductibles where each subset

contains either one, two, or three deductibles, we find 44,847 instances (15 percent) in which

SKpxq � SK1px1q but Prpd P K|xq ¡ Prpd P K 1|x1q.41
We conclude by highlighting how equation (5.4) relates to the characterization of ΘI in

Corollary 3.1. Consider whether any parameter vector with π|D| � 1 belongs to ΘI . At

that value D�
κpx, νq � td�pD,x, νqu, a singleton, and hence the inequality in equation (3.7),

evaluated at any subset K � D of adjacent deductibles and its complement DzK, implies

Prpd P K|xq �
¸
cPK

»
1pd�pD,x, τq � cqdP pτ ;γq �

»
SKpxq

dP pτ ;γq,

which in turn implies equation (5.4). Thus, a violation of equation (5.4) implies that no

parameter vector with π|D| � 1 belongs to ΘI . A similar logic applies to the choice prob-

abilities of suboptimal alternatives. In general, our method—through the inequalities in

equation (3.7)—takes into account all restrictions implied by the data and the economic

model, while accounting for finite sample uncertainty.

40We do not count violations where K contains a suboptimal alternative under the model given the
average pµ, p̄q in either hypercube.

41Again, we do not count violations where K or K 1 contains a suboptimal alternative under the model
given x or x1, respectively.
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6 Computational Tractability of Our Method

As we note in Section 3.4, there are two computational challenges in applying Theorem

3.1. The first is that, given any κ ¥ 2, the number of inequalities in equation (3.5) grows

superlinearly with the number of feasible alternatives (i.e., cardinality of D). The second

challenge is computing the inequalities, the difficulty of which increases with the dimension-

ality of unobserved heterogeneity (i.e., dimension of νi). In our empirical application these

challenges are mitigated by the fact that |D| � 5 and νi P R. Other applications, however,

may feature larger feasible sets or higher-dimensional unobserved heterogeneity.

In this section we provide simulation evidence on the computational tractability of our

method when the cardinality of D or the dimension of ν is large. Our simulations also

illustrate how the informational content of the confidence set is impacted by the size of κ

(the minimum choice set size) relative to |D| and by the dependence between the agents’

choice sets, on the one hand, and their preferences or observables, on the other.

6.1 Data Generating Processes

6.1.1 Large Feasible Set

A first set of simulations probes the computational tractability of our method when the

feasible set is large. Specifically, we assume D � t$10, $20, . . . , $1010u, so that |D| � 101.

These simulations otherwise parallel our empirical application and maintain the assumptions

of our baseline empirical model in Section 4.1, except as follows.

For each household i, we fix the probability of experiencing a claim equal to µi � 0.10 and

we set prices to be proportional to the amount of coverage (hence, there are no suboptimal

alternatives in the simulations): pic � gpcqp̄i � ζ, where gpcq � rp$1010 � cq{$1010s � $1, p̄i

is the household’s base price, and ζ ¡ 0. We assume that the household draws p̄i from a

discrete Uniform distribution with support t$10, $20, ..., $1000u. (The value of ζ is immaterial

because, with CARA utility, ζ cancels out in utility comparisons.) We further assume that

the household draws its coefficient of absolute risk aversion νi from a Uniform distribution

with support r0, 0.01s—equivalently, νi � 0.01�Betap1, 1q.
We consider two formation processes for households’ choice sets Ci � D.

FP1: Full-size choice sets: PrpCi � Dq � 1.

FP2: Limited choice sets: Prp|Ci| � qq � 1 where q � 30 or q � 70. For each q, we

run simulations with three forms of dependence:

No correlation: Ci is drawn uniformly at random from D, independent of νi and

p̄i (hence, following the UR model).
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Correlation with ν: If νi   0.005 (hence, below the median), Ci comprises the q

riskiest alternatives; if νi ¥ 0.005, Ci comprises the q safest alternatives.

Correlation with p̄: Ci comprises q adjacent alternatives, the index of the first of

which increases linearly (subject to rounding) from 1 to |D|� q�1 as p̄i increases

from $10 to $1000.

In obtaining ΘI , we assume only that Prp|Ci| ¥ κq � 1 where κ � 10, 30, 50, 70, 90 in the

case of FP1 and κ � q in the case of FP2. We use a sample size of n � 100, 000 households.

Given this structure, all possible realizations of the set D�
κpxi,νi; δq are given by adjacent

elements of D, as tcj, cj�1, . . . , cj�|D|�κq, for j � 1, . . . , κ; see Claim S1.1 in the Supplemental

Material. Accordingly, we can leverage the results set forth in Theorem S1.1 and Corollary

S1.1 in the Supplemental Material to reduce the number of inequalities that are needed to

obtain ΘI . Specifically, the number of inequalities needed here is 2pκ� 1q.
6.1.2 High-dimensional Unobserved Heterogeneity

A second set of simulations probes the computational tractability of our method when un-

observed heterogeneity is high-dimensional. These simulations are based on a mixed logit

model, Uipcq � ωpxic, νiq � εic, as in Section 5.1.1. We maintain the assumptions of the

model in Section 5.1.1, except that (i) we assume νi � 0.01 � Betap1, 1q (as in the first set

of simulations) and (ii) for all c P D, we set the standard deviation of εic equal to 10 percent

of the average price difference among adjacent alternatives in D. We also maintain the as-

sumptions on µi and pic in Section 6.1.1. We consider three feasible sets, with |D| � 7, 12, 17,

and we assume that choice sets are formed according to FP1. In obtaining ΘI , we assume

only that Prp|Ci| ¥ κq � 1 where κ � 5. We use a sample size of n � 1, 000, 000.

Our choice of |D| � 17 is motivated by the recent paper of Abaluck and Adams (2020),

who estimate a model of limited consideration using data on Medicare Part D prescription

drug plan choices. (We also consider |D| � 7, 12 to illustrate the decrease in informational

content as |D| becomes larger relative to κ.) Abaluck and Adams (2020) restrict the feasible

set to 17 plans to manage the computational burden of estimating their model’s alternative-

specific attention parameters. They find this restriction necessary even though they make

assumptions (discussed below in Section 7) to achieve point identification and their approach

involves neither moment inequalities nor random coefficients.

As we note in Section 3.4, the predicate conditions in Theorem S1.1 and Corollary S1.1

do not hold for this model, and hence we cannot apply these results to reduce the number

of inequalities characterizing ΘI (though we can and do apply Theorem S1.2 to simplify the

evaluation of the inequalities). Computationally, therefore, the problem here is harder than in

the first set of simulations. Indeed, computational difficulties in conditional and mixed logit
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Table 6.1: Computational Performance of Simulations

Execution time Total
Number of Evaluation per evaluation execution

Choice sets |D| κ Correlation inequalities points point (seconds) time (hours)

Panel A. Large D Simulations

FP1 101

10

None

1,818 32,936 0.005 0.07
30 5,858 18,593 0.017 0.12
50 9,898 11,177 0.030 0.13
70 13,938 6,640 0.044 0.12
90 17,978 3,667 0.058 0.10

101 30
None

5,858
17,784 0.017 0.12

FP2 pq � 30q With ν 47,030 0.017 0.25
With p̄ 72,416 0.012 0.28

101 70
None

13,938
6,482 0.044 0.12

FP2 pq � 70q With ν 6,809 0.044 0.12
With p̄ 7,872 0.040 0.13

Panel B. High-dimension ν Simulations

FP1
7

5 None
9,898 8,958 0.03 0.12

12 80,093 24,880 0.28 1.98
17 324,513 37,185 1.73 19.41

Notes: Total execution time includes pre-processing time.

models with unobserved heterogeneity in choice sets are pervasive even in fully parametric,

point-identified models due to the need to enumerate all subsets of the feasible set. As doing

so is often too costly in practice, it is common to resort to simulating choice sets (see, e.g.

Goeree 2008). This approach, however, requires numerous strong assumptions (including, in

particular, independence between preferences and choice sets) to obtain consistent estimates.

Under our approach, if necessary, one can resort to computing an outer region for ΘI that is

based on fewer, and possibly cheaper to evaluate, inequalities. This outer region is guaranteed

to contain all parameter values in ΘI , though it may also include some that lie outside ΘI .
42

6.2 Number of Inequalities and Computation Time

Table 6.1 reports the number of inequalities needed and the total execution time (in hours)

spent to compute the AS 95 percent confidence set for pEpνiq,Varpνiqq. It also reports the

number of evaluation points used (through an adaptive grid construction that we built) and

the execution time (in seconds) per evaluation point. Panel A covers the large D simulations,

while Panel B covers the high-dimension ν simulations. To assess the tractability of our

42It is not uncommon in the partial identification literature to resort to outer regions to preserve compu-
tational tractability (see, e.g., Ciliberto and Tamer 2009).
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Figure 6.1: AS 95 percent confidence set – large D simulations, FP1.

method from the perspective of a researcher who has access to run-of-the-mill computing

power, we run all our simulations on a single Dell Precision Tower 7910 (Dual CPU E5-

2687W v4 @ 3.00GHz with 128GB RAM). Of course, with more a powerful workstation, or

with access to computer clusters or cloud computing, one can handle larger problems (more

inequalities), reduce execution times, or both.

Panel A illustrates the power of Theorem S1.1 and Corollary S1.1. With |D| � 101

and κ ranging as high as 90, the number of inequalities never exceeds 18,000 and the total

execution time never exceeds 20 minutes. Counterintuitively, the second fastest execution

time is achieved in the case where |D| � 101 and κ � 90, despite the fact that this case has

the largest number of inequalities and hence the slowest execution time per evaluation point.

The reason is our adaptive grid: the confidence set is the smallest in this case (see Section

6.3 below), and thus the number of evaluation points is also the smallest.

Panel B illustrates the tractability of our method even when Theorem S1.1 and Corollary

S1.1 are not applicable. Even with more than 300,000 inequalities, we can test whether a

given θ belongs to ΘI in less than two seconds, and we recover the full confidence set in

less than 20 hours. The only computational challenge we encounter is inadequate memory

to utilize all 24 CPU cores when the number of inequalities becomes very large.43 But even

then, we can check a very large number of candidate values θ in a reasonable amount of

time, thus demonstrating that our method can be employed in a wide range of applications.

6.3 Simulation Results

Figures 6.1 and 6.2 depict the AS 95 percent confidence sets for pEpνiq,Varpνiqq for the largeD
simulations. Figure 6.3 depicts the confidence set for the high-dimension ν simulations. The

43We utilize all 24 CPU cores in every simulation but one: the mixed logit simulation with |D| � 17,
which entails checking more than 300,000 inequalities, utilizes 12 CPU cores.
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Figure 6.2: AS 95 percent confidence set – large D simulations, FP2.

axes of the figures represent the parameter space, and hence the depictions provide a sense

of the absolute and relative informativeness of each confidence set. As the figures show, each

confidence set includes the data generating values of the distribution of νi (0.01�Betap1, 1q).
We first comment on how the informativeness of the confidence set varies with κ, as

illustrated by Figure 6.1. Note that the inequalities used in a case with a smaller κ are a

subset of those used in a case with a larger κ.44 As a consequence, the sharp identification

region ΘI shrinks as κ increases. However, the critical values used to account for statistical

uncertainty may increase as more inequalities are used, thereby yielding an ambiguous effect

on the confidence set. Nonetheless, in our simulations the confidence sets are effectively

subsets of each other, and shrink substantially as κ increases. This illustrates the important

role of κ, and the fact that if κ is very small relative to |D|, the confidence set is substantially
less informative than when κ is closer to |D|.

We next comment on how different forms of dependence between Ci, on the one hand,

and νi or p̄i, on the other, impact the informativeness of the confidence set, as illustrated

by Figure 6.2. Panel (a) shows that when Ci is independent of νi and p̄i, the confidence set

44To conserve space, Figure 6.1 depicts the confidence set for κ � 10, 50, 90. The plots for κ � 30, 70,
which exhibit the same nesting pattern, are available from the authors upon request.
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Figure 6.3: AS 95 percent confidence set – high-dimension ν simulations.

is quite informative, even when Ci is relatively small (q � 30). Panels (b) and (c) illustrate

that the confidence set expands—mainly to the “north,” admitting higher values of Varpνiq—
when Ci is correlated with νi or p̄i, respectively, with larger expansions occurring when Ci

is smaller. We conjecture that this happens because the households’ choices are limited by

the restrictions that such dependence imposes on their choice sets. When Ci is correlated

with νi, for instance, the choice sets of households with high risk aversion do not include

high deductibles, and hence those households do not respond to increases in p̄i beyond

some level, because they cannot switch to cheaper alternatives (i.e., higher deductibles).

(By comparison, when Ci is independent of νi, all households have a positive probability of

drawing a choice set that includes high deductibles.) Put differently, there is not enough

“price elasticity” for the econometrician to (relatively precisely) trace out the distribution

of νi. Moreover, this problem becomes more severe the smaller are the households’ choice

sets. A similar logic applies when Ci is correlated with p̄i.

Finally, we comment briefly on Figure 6.3. Again, the larger is |D| relative to κ, the

larger is the confidence set. Nevertheless, despite the substantial amount of unobserved

heterogeneity captured by ν P R18, the confidence set remains informative.

7 Discussion

In what follows we provide an overview of the assumptions made in the econometrics and

applied literatures on discrete choice analysis to grapple with the identification problem

created by unobserved heterogeneity in choice sets.45 We describe four prominent approaches

45Many important papers in the theory literature—including papers on revealed preference analysis under
limited attention, limited consideration, and other forms of bounded rationality that manifest in unobserved
heterogeneity in choice sets—also grapple with the identification problem (e.g., Masatlioglu et al. 2012;
Manzini and Mariotti 2014; Caplin and Dean 2015; Lleras et al. 2017; Cattaneo et al. 2020). However,
these papers generally assume rich datasets—e.g., observed choices from every possible subset of the feasible
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and provide examples of recent papers that take each approach. We do not provide a

comprehensive review of the literature, which is vast and spans a diverse array of fields in

economics. However, our overview of the landscape enables us to situate our approach within

the literature and provides context for our contributions, which we recap at the end.

The most common approach in the discrete choice literature to the identification problem

created by unobserved choice sets is to assume that all choice sets comprise the feasible set

or a known subset of the feasible set (Swait 2001, p. 643; Honka et al. 2017, p. 615). This is

the approach taken by, for example, Berry et al. (1995) in estimating demand curves from

data on U.S. auto sales; Cohen and Einav (2007) in estimating risk preferences from data

on deductible choices in Israeli auto insurance; and Chiappori et al. (2019) in estimating

risk preferences from betting data on U.S. horse races. We also take this approach in prior

work on estimating risk preferences from data on deductible choices in U.S. auto and home

insurance (Barseghyan et al. 2011, 2013, 2016).

Papers that allow for heterogeneity in choice sets take three basic approaches to identi-

fication. The first is to rely on auxiliary information about the composition or distribution

of choice sets. For instance, Draganska and Klapper (2011), who study ground coffee sales,

use survey data on brand awareness; De los Santos et al. (2012), who study online book

purchases, use survey data on web browsing; Conlon and Mortimer (2013), who study vend-

ing machine sales, utilize periodic inventory snapshots; Honka and Chintagunta (2017), who

study auto insurance purchases, use survey data on price quotes; and Honka et al. (2017),

who study bank account openings, use survey data on brand awareness and search activity.46

The second approach is to rely on two-way exclusion restrictions—i.e., assume that certain

variables impact choice sets but not preferences and vice versa. For example, Goeree (2008)

assumes that media advertising affects the set of computers of which a consumer is aware

(and hence her choice set) but not her preferences over computers, while computer attributes

affect her preferences but not her choice set; Gaynor et al. (2016) assume that waiting

times and mortality rates directly impact a patient’s preferences over hospitals but not her

referring physician’s preferences (which determine her choice set), while distance to hospital

and hospital fixed effects directly impact her referring physician’s preferences (and hence her

choice set) but not her preferences; and Hortaçsu et al. (2017) assume that a retail electricity

customer’s decision to consider alternatives to her retailer is a function of her last period

set—that often are not available in applied work, especially outside of the laboratory. A notable exception is
Dardanoni et al. (2020), which assumes that only a single cross-section of aggregate choice shares is observed.

46For earlier papers, see, e.g., Roberts and Lattin (1991) and Ben-Akiva and Boccara (1995).
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retailer (e.g., a bad customer service experience) but not her next period retailer, while her

choice of retailer is a function of her next period retailer but not her last period retailer.47

The last approach is to rely primarily on restrictions to the choice set formation process.

Five recent papers that exemplify this approach are Abaluck and Adams (2020), Barseghyan

et al. (2020), Crawford et al. (2020), Lu (2019), and Cattaneo et al. (2020).48

Abaluck and Adams (2020) consider two models of choice set formation: a variant of the

ASR model described above and a “default specific” model in which each agent’s choice set

comprises either a single, default alternative or the entire feasible set. They show that the

restrictions imposed on choice probabilities by these models are sufficient for point identifica-

tion of preferences and choice set probabilities due to induced asymmetries in cross-attribute

responses (‘Slutsky asymmetries’), assuming that choice sets and preferences are indepen-

dent conditional on observables and that every alternative has a continuous attribute with

large support that is additively separable in utility and shifts choice set probabilities.

Barseghyan et al. (2020) study point identification of discrete choice models with un-

observed heterogeneity in preferences and choice sets. They establish conditions for point

identification of the preference distribution under generic choice set formation processes.

They also illustrate the tradeoff between the common exclusion restrictions and the restric-

tions on choice set formation required for semi-nonparametric point identification.

Crawford et al. (2020) show that with panel data (or group-homogeneous cross-section

data) and preferences in the logit family, point identification of preferences is possible, with-

out any exclusion restrictions, under the assumption that choice sets and preferences are

independent conditional on observables and with restrictions on how choice sets evolve over

time. These restrictions enable the construction of proper subsets of agents’ true choice sets

(‘sufficient sets’) that can be utilized to estimate the preference model.

Lu (2019) provides conditions for both partial and point identification of a random coef-

ficient logit model. He assumes that each agent’s unobserved choice set is bounded by two

observed sets, her largest possible choice set (e.g., the feasible set) and her smallest possible

choice set (containing a default alternative and at least one other alternative). He shows

that availability of these data, together with the assumption that agents’ choices obey Sen’s

property α, yields moment inequalities on the choice probabilities, which he uses to obtain

outer regions on the model’s preference parameters.

47Heiss et al. (2019) similarly assume that a Medicare Part D insured’s decision to consider alternatives
to her existing drug plan is triggered by past changes in her plan’s attributes (e.g., a price increase), while
her plan choice is determined by current attributes of available plans. See also Ho et al. (2017).

48Dardanoni et al. (2020) also take this approach. However, they rule out unobserved preference hetero-
geneity and focus on point identification of the choice set formation model.
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Cattaneo et al. (2020) propose a random attention model in which agents’ preferences

are homogeneous (and thus independent of choice sets) and the probability of a particular

choice set does not decrease when the number of possible choice sets decreases. Within this

framework, they provide revealed preference theory and testable implications for observable

choice probabilities, as well as partial identification results for preference orderings.

The method that we propose and apply in this paper falls into this last category. However,

it relies on fewer and weaker restrictions on the choice set formation process than any other

paper in that category. Our core model imposes—and hence our main identification result

requires—only one mild assumption on the choice set formation process, namely that choice

sets have a known minimum size greater than one. Importantly, our core model does not

assume that choice sets are independent of preferences conditional on observables (Abaluck

and Adams 2020; Crawford et al. 2020; Cattaneo et al. 2020). Nor do we impose other

restrictions on how agents’ choice sets are formed (Abaluck and Adams 2020; Barseghyan

et al. 2020) or evolve over time (Crawford et al. 2020), rely on exclusion restrictions or

large support assumptions (Abaluck and Adams 2020; Barseghyan et al. 2020), require that

the econometrician knows the composition of the smallest possible choice set for each agent

(Abaluck and Adams 2020; Lu 2019), or assume that choice sets satisfy a monotonicity or

other regularity condition (Lu 2019; Cattaneo et al. 2020).

Due to the parsimony of our method we obtain partial and not point identification of the

underlying model of preferences. Nevertheless, we demonstrate that much can be learned

about the distribution of preferences under our approach. Moreover, what is learned has more

credibility because we avoid making a host of arbitrary or unverifiable assumptions about

the choice set formation process to achieve point identification. Our primary contribution,

therefore, is that we offer a new, robust, informative, and implementable method of discrete

choice analysis when choice sets are unobserved. We show how one can use this method

to partially identify and conduct inference on the distribution of preferences as well as the

distribution of choice set size (with an additional independence assumption). Through our

empirical application we also contribute new insights to the literature on risky choice.

Appendix

A.1 Random Closed Sets

The theory of random closed sets generally applies to the space of closed subsets of a locally

compact Hausdorff second countable topological space F. For simplicity we consider here the

case F � Rk and refer to Molchanov (2017) for the general case. Denote by F (respectively,
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K) the collection of closed (compact) subsets of Rk. Denote by pΩ,F, P q the nonatomic

probability space on which all random variables and random sets are defined.

Definition A.1 (Random Closed Set): A map Y : ΩÑ F is a random closed set if for

every compact set K in Rk, Y �1pKq � tω P Ω : Y pωq XK � Hu P F.

Definition A.2 (Selection): For any random set Y, a (measurable) selection of Y is a

random vector y (taking values in Rk) such that ypωq P Y pωq, P � a.s.

Theorem A.1 (Artstein’s Theorem): A random vector y and a random set Y can be

realized on the same probability space as random elements y1 and Y 1, distributed as y and Y ,

respectively, so that P py1 P Y 1q � 1, if and only if P py P Kq ¤ P pY XK � Hq @K P K.

Because in this paper the random closed set of interest D�
κpxi,νi; δq is a subset of D, it

suffices to consider F � D; see Molchanov (2017, Example 1.1.9).

Lemma A.1: The set D�
κpxi,νi; δq in equation (3.1) is a random closed set.

Proof. Let D�
κ � D�

κpxi,νi; δq. Because D�
κ is a finite set, we have that tD�

κ X K � Hu ��
G�D:|G|�κ

 
d�i pG,xi,νi; δq P K

(
. As d�i pG,xi,νi; δq is a random variable, the result follows

(see Molchanov and Molinari 2018, Example 1.5).

A.2 Proof of Theorem 3.1

Let d�pG,x,ν; δq denote the model-implied optimal choice for an agent with attributes px,νq
and choice set G. Recall that by Assumption 2.2(II), PrpC � G|x,νq � 0 for all G � D
such that |G|   κ. Then by definition the sharp identification region ΘI is given by the set

of values θ P Θ for which there exists a distribution Fp�;x,νq such that FpG;x,νq ¥ 0 for

all G � D, FpG;x,νq � 0 if |G|   κ,
°

G�D FpG;x,νq � 1, and for all c P D

Prpd � c|xq �
»

τPV

¸
G�D

1pd�pG,x, τ ; δq � cqFpG;x, τ qdP pτ ;γq, x� a.s. (A.1)

This is because for such values θ P Θ, one can complete the model with a distribution

Fp�;x,νq so that the model-implied conditional distribution of optimal choices matches the

distribution of observed choices. We are then left to show that this set is equal to the one in

equation (3.5). Molchanov and Molinari (2018, Theorem 2.33) show that the observed vector

pd,xq is a selection of the random closed set pD�
κpx,ν; δq,xq if and only if the condition in

equation (3.5) holds x � a.s. for all K � D. Take a value θ P Θ such that there exists a

distribution FpG;x,νq under which equation (A.1) holds. By definition pd�pG,x,ν; δq,xq
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is a selection of pD�
κpx,ν; δq,xq, and by Molchanov and Molinari (2018, Theorem 2.33) the

inequality in equation (3.5) holds x � a.s. for all K � D. Conversely, take a value θ P Θ

for which the inequalities in equation (3.5) are satisfied x � a.s. for all K � D. Then, by

Theorem A.1, there exists a selection pd̃pGq,xq of pD�
κpx,ν; δq,xq such that Prpd � c|xq �

Prpd̃pGq � c|xq, x � a.s., for all c P D for some G such that |G| ¥ κ. Let FpG;x,νq equal
1 for one such set G with d̃pGq � c, and equal 0 for all other G � D. Then equation (A.1)

holds x � a.s. for all c P D. To conclude the proof, we show that if the inequalities in

equation (3.5) hold for all K � D : |K|   κ, then they hold for all K � D. Recall that the

set D�
κpx,ν; δq comprises the |D| � κ� 1 best alternatives in D. Then any K � D : |K| ¥ κ

includes at least the p|D| � κ � 1q-th best alternative for all realizations of ν in V , so that

PrpD�
κpx,ν; δq XK � Hq � 1 and the inequality in equation (3.5) holds mechanically.
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S1 Theory

S1.1 Unobserved Heterogeneity in Choice Sets as Additively
Separable Disturbances

It is possible to represent unobserved heterogeneity in choice sets through additively sepa-

rable disturbances. In a classic random utility model with Uipcq � Wipcq � εic, one may let

εic P t�8, 0u for each alternative c P D and allow εic to be correlated with εic1 for any two

alternatives c, c1 P D. One would then posit that: if κ � |D| then εic � 0 for each alternative

c P D; if κ � |D| � 1 then εic � �8 for at most one alternative in D (the identity of which

is left unspecified); if κ � |D| � 2 then εic � �8 for at most two alternatives in D (the

identities of which are left unspecified); and so forth. This model yields that alternative c is

not chosen if εic � �8, which is analogous to alternative c not being chosen when it is not

contained in the agent’s choice set.

S1.2 Positive Probability of Utility Ties

When utility ties are allowed, one can adapt the definition of D�
κpxi,νi; δq as follows:

D�
κpxi,νi; δq �

¤
G�D:|G|¥κ

!
arg max

cPG
W pxic,νi; δq

)
�

¤
G�D:|G|�κ

!
arg max

cPG
W pxic,νi; δq

)
,

(S1.1)

where again the last equality follows from Sen’s property α, and now arg maxcPGW pxic,νi; δq
may include multiple elements of D due to the possibility of utility ties. The random closed

set D�
κpxi,νi; δq contains alternatives up to the p|D| � κ � 1q-th best in D, where “best” is

defined with respect to W pxic,νi; δq. Due to the possibility of ties, |D�
κpxi,νi; δq| may be

larger than |D| � κ� 1.1

To see that our characterization in Theorem 3.1 applied with this new definition of

D�
κpxi,νi; δq remains sharp, note that the model-implied optimal choice for an agent with

attributes pxi,νiq, utility parameters δ, and choice set G is no longer unique. But this

additional multiplicity of optimal choices is incorporated into D�
κpxi,νi; δq, and all model

restrictions continue to be embedded in the requirement that di P D�
κpxi,νi; δq, almost

surely. The proof of Theorem 3.1 continues to apply, although at the price of additional

notation (a selection mechanism that determines the probability with which each optimal

choice d�i pG,xi,νi; δq P arg maxcPGW pxic,νi; δq is selected when multiple alternatives are

optimal for a realization G of Ci).

1To illustrate, consider the case |D| � 5 and κ � 4. When utility ties occur with positive probability,
for a given px,ν; δq it might be, for example, that three alternatives are tied as first best, and hence at least
one of them is in any realization of Ci and |D�

κpxi,νi; δq| � 3.
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S1.3 Computational Simplifications

We omit the subscript i on random variables and random sets throughout this section.

S1.3.1 Sufficient Collection of Test Sets K

Theorem 3.1 and Corollary 3.1 provide a characterization of ΘI as the collection of θ P Θ that

satisfy a finite number of conditional moment inequalities, indexed by the test sets K � D.

In this subsection we provide results to reduce the collection of test sets K for which to check

the inequalities from all nonempty proper subsets of D to a smaller collection.

Theorem S1.1: Let the assumptions of Theorem 3.1 hold. Then the following steps yield

a sufficient collection of sets K, denoted K, on which to check the inequalities in equation

(3.5) to verify if θ P ΘI . Initialize K � tK � D : |K|   κu. Then:

(1) For a given set K P K, if it holds that @ν P V an element of K (possibly different across

values of ν) is among the |D| � κ� 1 best alternatives in D, then set K � KzK;2

(q) Repeat the following step for q � 2, . . . , κ � 1. Take any set K P K such that K �
Kq�1 Y tcju for some Kq�1 with |Kq�1| � q � 1 and tcju P K, Kq�1 P K after Steps (1)

and (q-1). If Eν P V such that both cj and at least one element of Kq�1 are among the

|D| � κ� 1 best alternatives in D, then set K � KzK.

If the set D�
κ does not depend on δ, as in our application in Sections 4–5, the collection K

is invariant across θ P Θ.

Proof. Step (1) follows because under the stated condition, PrpD�
κpx,ν; δq XK � Hq � 1.

Step (q) follows because under the stated condition, the events tD�
κpx,ν; δqXtcju � Hu and

tD�
κpx,ν; δqXKq�1 � Hu are disjoint. This implies that the right-hand side of the inequality

in equation (3.5) is additive, and therefore that inequality evaluated at K is implied by the

ones evaluated at tcju and at Kq�1.

Depending on the structure of the realizations of the random set D�
κpx,ν; δq, Theorem

S1.1 can be further simplified. The following corollary provides an example.

Corollary S1.1: Let Assumptions 2.1 and 2.2 hold. Suppose all possible realizations of

D�
κpx,ν; δq are given by adjacent elements of D, as tcj, cj�1, . . . , cj�|D|�κu, for j � 1, . . . , κ.

2Here the notation KzK indicates that the set K is removed from the collection of sets K. In practice,
one can implement this step first on sets K : |K| � 1, and for K that satisfies the condition remove from K
all sets K 1 � K. Then repeat the procedure for the remaining sets K : |K| � 2, and so forth.
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Then the collection of test sets K in Theorem S1.1 can be initialized to

K �
!
tc1u, tc1, c2u, tc1, c2, c3u, � � � , tc1, c2, . . . , cκ�1u,

tc|D|u, tc|D|, c|D|�1u, tc|D|, c|D|�1, c|D|�2u, � � � , tc|D|, c|D|�1, . . . , c|D|�κ�2u
)
, (S1.2)

which contains 2pκ� 1q elements.

Proof. We first establish that if the inequalities in equation (3.5) are satisfied for sets of size

|K| � m, m � 1, . . . , κ � 1, comprised of adjacent alternatives (with respect to |D|), then

they are satisfied for all K � D.

Let the inequality in equation (3.5) be satisfied for K1 � tcj, cj�1, . . . , cpu, for K2 �
tcq, cq�1, . . . , ctu, with p   q�1 so that K1XK2 � H, and for K � K1Ytcp�1, . . . , cq�1uYK2

(the set that comprises all adjacent alternatives between cj and ct). We then show that the

inequality for K1 Y K2 is redundant. The same argument generalizes to sets comprised of

the union of disjoint collections of adjacent alternatives.

Consider first the case that q � p ¥ |D| � κ� 1. Then D�
κpx,ν; δq cannot intersect both

K1 and K2, and hence

P pD�
κpx,ν; δqXpK1YK2q � H;γq � P pD�

κpx,ν; δqXK1 � H;γq�P pD�
κpx,ν; δqXK2 � H;γq

and the result follows.

Consider next the case that q � p   |D| � κ� 1. We claim that in this case

D�
κpx,ν; δq XKzpK1 YK2q � H ñ D�

κpx,ν; δq X pK1 YK2q � H. (S1.3)

To establish this claim, take cs P tcp�1, . . . , cq�1u � KzpK1 YK2q. Suppose cs P D�
κpx,ν; δq.

Then either cp P D�
κpx,ν; δq or cq P D�

κpx,ν; δq, because |D�
κpx,ν; δq| � |D| � κ � 1. The

claim follows because K1 Y K2 � K, and hence Prpd P K1 Y K2|xq ¤ Prpd P K|xq, while

P pD�
κpx,ν; δq X pK1 YK2q � H;γq � P pD�

κpx,ν; δq XK � H;γq due to equation (S1.3).

Finally, we show that it suffices to verify equation (3.5) for the sets K P K as specified in

equation (S1.2). Consider first the case where |D|�κ�1 ¡ κ�1. Then for all 1   p   q   κ

and K � tcp, cp�1, . . . , cqu, it holds that |K|   κ� 1 and, denoting Kc � DzK,

P pD�
κpx,ν; δq XK � H;γq � 1� P pD�

κpx,ν; δq � Kc;γq
� 1� P pD�

κpx,ν; δq � tc1, . . . , cp�1u;γq � P pD�
κpx,ν; δq � tcq�1, . . . , cDu;γq

� 1� P pD�
κpx,ν; δq � tcq�1, . . . , cDu;γq, (S1.4)
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where the first equality follows by definition, the second follows because D�
κpx,ν; δq is com-

prised of |D| � κ � 1 adjacent alternatives, and the last follows because P pD�
κpx,ν; δq �

tc1, . . . , cp�1u;γq � 0 as |tc1, . . . , cp�1u|   κ� 1   |D| � κ� 1. On the other hand,

Prpd P tcp, . . . , cquq ¤ Prpd P tc1, . . . , cquq,

and hence if equation (3.5) is satisfied for K � tc1, . . . , cqu, it is also satisfied for K �
tcp, cp�1, . . . , cqu for all 1   p   q   κ. A similar reasoning, with appropriate modifications,

holds for sets K � tc|D|�q�1, cp�1, . . . , c|D|�p�1u.
When |D| � κ � 1 ¤ κ � 1, equation (S1.4) continues to hold as stated whenever p  

|D| � κ � 1. If p ¡ |D| � κ � 1, the result follows by the additivity in the second line of

equation (S1.4) and the additivity of probabilities, because

Prpd P K|xq ¤ P pD�
κpx,ν; δq XK � H;γq ô Prpd P Kc|xq ¥ P pD�

κpx,ν; δq � Kc;γq.

Hence, the inequality for K � tcp, . . . , cqu is implied whenever it is satisfied for K �
tc1, . . . , cpu and K � tcq, . . . , c|D|u.

The following claim establishes that Corollary S1.1 applies when ν P R and the alterna-

tives in the feasible set are vertically differentiated.

Claim S1.1: Let Assumptions 2.1 and 2.2 hold. Let D � tc1, . . . , c|D|u and ν � ν P R.

Suppose that: (I) for every pair of alternatives cj, ck P D, j   k, and given any x P X , there

exists a unique threshold ν̄j,kpxq such that for all ν ¡ ν̄j,kpxq alternative cj has greater utility

than alternative ck and for all ν   ν̄j,kpxq alternative ck has greater utility than alternative

cj; and (II) for every alternative cj P D and given any x P X , there exists a ν P R such that

cj is the first best in D. Then, given any px, νq P X � R and any κ ¥ 2, the set D�
κpx,ν; δq

comprises adjacent elements of D, as tcj, cj�1, . . . , cj�|D|�κu, for j � 1, . . . , κ.

Proof. The proof builds on Fact 4 in Barseghyan et al. (2020). Let |D| ¥ 3 (otherwise

the claim holds trivially). Take any x P X and any three alternatives cj, cj�1, cj�2 P D.

Conditions (I) and (II) imply that ν̄j,j�1pxq ¡ ν̄j,j�2pxq ¡ ν̄j�1,j�2pxq. (In particular,

ν̄j�1,j�2pxq ¡ ν̄j,j�2pxq ¡ ν̄j,j�1pxq violates condition (II) because cj�1 is not first best for

any ν P R, and every other permutation violates condition (I) due to the transitivity of

utility). In other words, the alternatives are vertically differentiated in that cj is first best

for all ν ¡ ν̄j,j�1pxq; cj�1 is first best for all ν P pν̄j�1,j�2pxq, ν̄j,j�1pxqq; and cj�2 is first

best for all ν   ν̄j�1,j�2pxq. Consequently, for all ν P R, the only possible strict utility

rankings of the three alternatives are: Upcjq ¡ Upcj�1q ¡ Upcj�2q (when ν ¡ ν̄j,j�1pxq);
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Upcj�1q ¡ Upcjq ¡ Upcj�2q (when ν̄j,j�1pxq ¡ ν ¡ ν̄j,j�2pxq); Upcj�1q ¡ Upcj�2q ¡ Upcjq
(when ν̄j,j�2pxq ¡ ν ¡ ν̄j�1,j�2pxq); and Upcj�2q ¡ Upcj�1q ¡ Upcjq (when ν   ν̄j�1,j�2pxq).
Thus, alternative cj�1 is never the third best among the three alternatives. This implies that

if cj and cj�2 both have greater utility than a fourth alternative cm, m R tj, j � 1, j � 2u,
then cj�1 also has greater utility than cm. It follows that for any px, νq P X � R, the set

D�
κpxi,νi; δq comprises adjacent elements of D, as tcj, cj�1, . . . , cj�|D|�κq, for j � 1, . . . , κ.

When Assumption 3.1 is maintained, the logic of Theorem S1.1 can be used to obtain a

collection of sufficient test sets K on which to verify the inequalities in (3.7), by applying

its Steps 2.1-2.(κ � 1) to the random sets D�
q px,ν; δq, q � κ, . . . , |D|. Further simplifica-

tions are possible when interest centers on specific projections of ΘI , using the fact that

D�
q�1pxi,νi; δq � D�

q pxi,νi; δq for all q ¥ κ. As discussed following Corollary 3.1, when As-

sumption 3.1 is maintained the projection of ΘI on rδ;γs is obtained by setting πκpx;ηq � 1

and πqpx;ηq � 0, q � κ � 1, . . . , |D|. Hence, Steps 2.1-2.(κ � 1) in Theorem S1.1 applied

only to D�
κpx,ν; δq deliver the sufficient collection of sets K on which to verify (3.7) to ob-

tain the sharp identification region for rδ;γs. On the other hand, the projection of ΘI on

πqpx;ηq, q � κ � 1, . . . , |D|, is obtained by setting πlpx;ηq � 0 for all l R tq, κu, and that

on πκpx;ηq by setting πlpx;ηq � 0 for all l � κ � 2, . . . , |D|. Hence, Steps 2.1-2.(κ � 1) in

Theorem S1.1 applied, respectively, to only D�
κpx,ν; δq and D�

q px,ν; δq deliver the sufficient

collection of sets K on which to verify (3.7) to obtain the sharp identification region for πq,

q � κ � 1, . . . , |D|, and applied only to D�
κpx,ν; δq and D�

κ�1px,ν; δq deliver the sufficient

collection of sets K on which to verify (3.7) to obtain the sharp identification region for πκ.

The two corollaries that follow illustrate the specific adaptations of Theorem S1.1 that

we use in our application in Sections 4–5. Proofs are omitted because the corollaries follow

immediately from Theorem S1.1.

Corollary S1.2: Let D � tc1, c2, c3, c4, c5u and κ � 3. Suppose that all assumptions

in Corollary 3.1 hold and that ν � ν P R with support r0, ν̄s, ν̄   8. Then the following

steps yield a sufficient collection of sets K, denoted K, on which to check the inequalities in

equation (3.7) to obtain sharp bounds on π5. Initialize K � tK : K � Du. Then:

1. For any set K � tcj, cku � D, if Eν P r0, ν̄s such that both cj and ck are among the

best 3 alternatives in D, then set K � Kztcj, cku;

2. Set K � Kztcj, ck, clu for all j, k, l P t1, 2, 3, 4, 5u.

Corollary S1.3: Let D � tc1, c2, c3, c4, c5u and κ � 3. Suppose that all assumptions

in Corollary 3.1 hold and that ν � ν P R with support r0, ν̄s, ν̄   8. Then the following
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steps yield a sufficient collection of sets K, denoted K, on which to check the inequalities in

equation (3.7) to obtain sharp bounds on π4. Initialize K � tK : K � Du. Then:

1. For any set K � tcj, cku � D, if Eν P r0, ν̄s such that both cj and ck are among the

best 3 alternatives in D, then set K � Kzttcj, cku, tDztcj, ckuuu;
2. For any set K � tcj, ck, clu � D such that tcj, cku P K after Step 1, if Eν P r0, ν̄s such

that both cl and at least one element of tcj, cku are among the best 3 alternatives in D,

then set K � Kztcj, ck, clu;
3. For any set K P K, if @ν P r0, ν̄s one element of K, possibly different across values of

ν, is among the best 2 alternatives in D, then set K � KzK.

In our application in Sections 4–5, the number of inequalities obtained through application

of the foregoing results (taking into account the 65 hypercubes on pµ, p̄qq is 6� 65 � 390 for

the sharp identification region of γ; 17 � 65 � 1, 105 for the sharp identification region of

π5; and 15� 65 � 975 for the sharp identification region of π4.

S1.4 An Equivalent Characterization Based on Convex
Optimization

The characterization in Theorem 3.1 can equivalently be written in terms of a convex opti-

mization problem.

Corollary S1.4: Let Assumptions 2.1 and 2.2 hold and let Θ � ∆� Γ. Then

ΘI �
$&%θ P Θ : max

uPR|D|:||u||¤1

��uJppxq �
»

τPV

max
d�PD�

κ px,τ ;δq

�
uJqd

�
	
dP pτ ;γq

�� � 0,x� a.s.

,.- ,

(S1.5)

where ppxq � rPrpd � c1|xq . . . Prpd � c|D||xqsJ and, for a given d� P D�
κpx,ν; δq, qd

� �
r1pd� � c1q . . . 1pd� � c|D|qsJ.

Proof. We establish the equivalence between equations (3.5) in the paper and (S1.5) here.3

Due to the positive homogeneity in u of uJppxq � ³
τPV

maxd�PD�
κ px,τ ;δq u

Jqd
�
dP pτ ;γq, we

have that

uJppxq �
»

τPV

max
d�PD�

κ px,τ ;δq
uJqd

�

dP pτ ;γq ¤ 0 (S1.6)

holds for all u : ||u|| ¤ 1 if and only if expression (S1.6) holds for all u P R|D|. Consider

the specific subset of vectors U � tu P R|D| : uj P t0, 1u, j � 1, . . . , |D|u. Each vector u P U

3The argument of proof goes through similar steps as in Molchanov and Molinari (2018, Theorem 3.28).
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uniquely corresponds to a subset Ku � tc1u1, . . . , c|D|u|D|u. For a given u, uJqd
� � 1 if

d� P Ku and uJqd
� � 0 otherwise. Hence, the corresponding inequality in (S1.6) reduces to

Prpd P Ku|xq � uJppxq ¤ E

�
max

d�PD�
κ px,τ ;δq

uJqd
� |x;γ

�
� P pD�

κpx,ν; δq XKu � H;γq.

It then follows that any θ in the set defined in equation (S1.5) belongs to the set defined in

equation (3.5) because tK : K � Du � tKu : u P Uu.
Conversely, take a θ in the set defined by equation (3.5). Then, by Theorem A.1, there

exists a selection d� of D�
κpx,ν; δq such that for all c P D and x � a.s., Prpd � c|xiq �

Prpd� � c|xiq. Hence, θ belongs to the set defined in equation (S1.5).

As the set D�
κpx,ν; δq is comprised of the |D| � κ� 1 best alternatives in D, it can have

only a finite number of realizations, as discussed in Section 3.4, which we denote D1, . . . , Dh.

Hence, the characterization in equation (S1.5) can be rewritten as

ΘI �
#
θ P Θ : max

uPR|D|:||u||¤1

�
uJppxq �

ḩ

j�1

�
max
d�PDj

uJqd
�



P pD�

κpx,ν; δq � Dj;γq
�
� 0,x� a.s.

+
.

This means that to determine whether a given θ P Θ belongs to ΘI , it suffices to maximize

an easy-to-compute superlinear, hence concave, function over a convex set, and check if the

resulting objective value vanishes. Several efficient algorithms in convex programming are

available to solve this problem; see, for example, the Matlab software for disciplined convex

programming CVX (Grant and Boyd 2010).

S1.5 Additively Separable Extreme Value Type 1 Unobserved
Heterogeneity

We now explain how to compute P pD�
κpx,ν; δq XK � H;γq when ν � pυ, pεc, c P Dqq and

W pxc,ν; δq � ωpxc,υ; δq � εc, with εc independently and identically distributed Extreme

Value Type 1 and independent of υ, as in a mixed logit (McFadden and Train 2000).

Given a realization G of the choice set and c̃ P G (and no utility ties), we have

Prpd�pG,x,ν; δq � c̃|x,υq � PrpW pxc̃,ν; δq ¥ W pxc,ν; δq @c P G|υq
� exppωpxc̃,υ; δqq°

cPG exppωpxc,υ; δqq . (S1.7)

Conditional on υ, one can leverage the closed-form expressions in equation (S1.7) to compute

P pD�
κpx,ν; δq X K � H;γq so that numerical integration is needed only for υ. The same

result applies, with q replacing κ, to compute P pD�
q px,ν; δq XK � H;γq in Corollary 3.1.
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Theorem S1.2: Suppose that ν � pυ, pεc, c P Dqq and W pxc,ν; δq � ωpxc,υ; δq � εc,

with εc independently and identically distributed Extreme Value Type 1 and independent of υ.

Conditional on υ, any P pD�
κpx,ν; δqXK � H|υ;γq can be computed as a linear combination

over different sets G of expression (S1.7). Hence, any P pD�
κpx,ν; δq X K � H;γq can be

computed as an integral with respect to the distribution of υ of linear combinations over

different sets G of expression (S1.7).

To prove this theorem, we first establish two auxiliary results. The first one states that

the probability of at least one alternative in K being preferred to all alternatives in DzK is

the sum over all elements of K that each is first best in D.

Claim S1.2: Conditional on υ, the probability that at least one alternative in a set K � D
is better than all alternatives in the set DzK is given by

Prp_c1PK W pxc1 ,ν; δq ¡ W pxc,ν; δq @c P DzK|υq �
¸
c1PK

exppωpxc1 ,υ; δqq°
cPD exppωpxc,υ; δqq .

Proof of Claim S1.2. We first establish equivalence of the following events:

tDc1 P K s.t. W pxc1 ,ν; δq ¡ W pxc,ν; δq; @c P DzKu
ðñ Yc1PKtW pxc1 ,ν; δq ¡ W pxc,ν; δq, @c P Dzc1u. (S1.8)

The right-to-left implication in (S1.8) is immediate. The left-to-right implication can be

established by contradiction, observing that the complement of the event in the right-hand

side of (S1.8) is that there exists a c P DzK that is preferred to all other alternatives. The

result then follows because the events in the right-hand side of (S1.8) are disjoint.

Next, recall that, as discussed in Section 3.4, the set D�
κpx,ν; δq can only take on a finite

number of realizations, denoted D1, . . . , Dh, with |Dj| � |D| � κ� 1 for all j � 1, . . . , h. We

show how to compute the probability of any of these realizations.

Claim S1.3: For each j � 1, . . . , h, P pD�
κpx,ν; δq � Dj|υ;γq can be computed as a

linear combination of expression (S1.7) for different sets G.

Proof of Claim S1.3. Note that

P pD�
κpx,ν; δq � Dj|υ;γq � P pW pxc1 ,ν; δq ¡ W pxc,ν; δq, @c1 P Dj, @c P DzDj|υ;γq.

Given this, the proof proceeds sequentially. Suppose |D�
κpx,ν; δq| � 1. Then the result

follows immediately (with G � D). Suppose |D�
κpx,ν; δq| � 2. Then we have Dj � tc1, c2u

8



for some c1, c2 P D, and

P ptW pxc1 ,ν; δq ¡ W pxc,ν; δqu X tW pxc2 ,ν; δq ¡ W pxc,ν; δqu @c P DzDj|υ;γq
� P pW pxc1 ,ν; δq ¡ W pxc,ν; δq @c P DzDj|υ;γq�P pW pxc2 ,ν; δq ¡ W pxc,ν; δ|υ;γq @c P DzDjq

� P ptW pxc1 ,ν; δq ¡ W pxc,ν; δqu Y tW pxc2 ,ν; δq ¡ W pxc,ν; δqu @c P DzDj|υ;γq.

The first term in this expression can be computed by applying equation (S1.7) withG � Dzc2;
the second term can be computed by applying equation (S1.7) with G � Dzc1; the last term,

by Claim S1.2, can be computed as the sum over c̃ P Dj of equation (S1.7) with G � D.

For |D�
κpx,ν; δq| ¥ 3 one can proceed iteratively using the inclusion/exclusion formula

and applying Claim S1.2.

With these results in hand, we prove Theorem S1.2.

Proof of Theorem S1.2. By Claim S1.3 we can compute P pD�
κpx,ν; δq � Dj|υ;γq for each

Dj such that |Dj| � |D|�κ�1 as a linear combination of expression (S1.7) with different sets

G. To obtain the result in Theorem S1.2, for each set K one can simply sum P pD�
κpx,ν; δq �

Dj|υ;γq over the sets Dj such that Dj XK � H.

S2 Additional Details on Statistical Inference

As explained in Section 5, we base our confidence sets for the vector θ on the Kolmogorov-

Smirnov test statistic suggested by Andrews and Shi (2013, equation (3.7) on p. 618) [here-

after, AS], which in our framework simplifies to

Tnpθq � n max
j�1,...,J ;KPK

max

"
m̄n,K,jpθq
σ̂n,K,jpθq , 0

*2

where m̄n,K,jpθq and σ̂n,K,jpθq are defined in Section 5. Our application of the method

proposed by AS computes bootstrap-based critical values to obtain a confidence set

CS � tθ P Θ : Tnpθq ¤ ĉn,1�α�ξpθq � ξu

where ξ ¡ 0 is an arbitrarily small constant which we set equal to 10�6 as suggested by AS

(p. 625). In practice, we evaluate Tnpθq and the bootstrap-based critical value ĉn,1�α�ξpθq on

a grid of values of θ designed to give good coverage of the pEpνq,Varpνqq-space to obtain a

precise description of the confidence set for this pair of parameters. To explain how this grid is

constructed, we note that given the assumption that νi � Betapγ1, γ2q with support r0, 0.03s,
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Epνq P 0.03 � p0, 1s and Varpνq P 0.0009 � p0, 0.25s. We therefore obtain a grid of values

over pγ1, γ2q comprised of 665,603 points, such that the associated grid on pEpνq,Varpνqq has

first coordinate in 0.03�r0.0005, 0.9995s with step size 0.03� 0.0005, and second coordinate

in 0.0009� p0.0005, 0.25s with step size 0.0009� 0.0005.4 The approximation of ĉn,1�α�ξpθq
is based on the bootstrap procedure detailed in AS (Section 9) and uses 1,000 bootstrap

replications.5 The procedure takes as inputs a GMS function ϕ, a GMS sequence τn such

that τn Ñ 8 as n Ñ 8, and a non-decreasing sequence of positive constants βn such that

βn{τn Ñ 0 as n Ñ 8, which together are used to determine which moment inequalities are

sufficiently close to binding to contribute to the limiting distribution of Tnpθq. We use the

GMS function proposed by AS (equation (4.10) on p. 627):6

ϕK,jpθq �
$&%0 if τ�1

n

?
nm̄n,K,jpθq{σ̂n,K,jpθq ¥ �1

�βn otherwise,

and we set τn � p0.3 lnnq1{2 and βn � p0.4 lnn{ ln lnnq1{2 as recommended by AS (p. 643).

Similar to AS, the KMS procedure takes as inputs a GMS function ϕ and a GMS sequence

τn.7 To simplify computations, we use the hard threshold GMS function:8

ϕK,jpθq �
$&%0 if τ�1

n

?
nm̄n,K,jpθq{σ̂n,K,jpθq ¥ �1

�8 otherwise.

The procedure also requires a regularization parameter ρ ¥ 0, which (like ϕ and τn) enters

the calibration of ĉfn,1�α and introduces a conservative distortion that is required to obtain

uniform coverage of projections. The smaller is the value of ρ, the larger is the conservative

distortion, but the higher is the confidence that the critical value is uniformly valid in

situations where the local geometry of ΘI makes inference especially challenging. For a

discussion, see KMS (Section 2.2). We choose the value of ρ as follows. We begin with the

recommendation in KMS (Section 2.4). To further guard against possible irregularities in

the local geometry of ΘI , we reduce the resulting value of ρ by 20 percent.

4To obtain confidence intervals on π5, π4, and π3, we first evaluate Tnpθq on a coarser grid and compare
it with the AS critical value. For each πq, q � 3, 4, 5, we then refine the grid around the extreme values of
πq that are not rejected, for a final step size of 0.01 on πq and 0.05 on each component of pγ1, γ2q.

5Compared to the description in AS (Section 9), note that our moment inequalities are of the ¤ form,
whereas AS’s are of the ¥ form.

6AS label the GMS sequence κn, but we use τn to avoid confusion with our use of κ for the (known and
fixed) minimum choice set size in Assumption 2.2.

7Our findings based on the AS and KMS methods are robust to the choice of tuning parameters, as
indicated by results available from the authors upon request.

8This function was proposed by Andrews and Soares (2010) and labeled ϕp1q on p. 131 of their article.
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S3 Additional Results

S3.1 Claim Probabilities

The claim probabilities originate from Barseghyan et al. (2018). We estimate the house-

holds’ claim probabilities using the company’s claims data. We assume that household i’s

auto collision claims in year t follow a Poisson distribution with mean λit. We also assume

that the household’s deductible choice does not influence its claim rates λit (Assumption

4.1(II)). We treat the household’s claim rate as a latent random variable and assume that

lnλit � X1
itβ � εi, where Xit is a vector of observables and exppεiq follows a Gamma distri-

bution with unit mean and variance φ. We perform a Poisson panel regression with random

effects to obtain maximum likelihood estimates of β and φ. In an effort to obtain the most

precise estimates, we use the full set of auto collision claims data, which comprises 1,349,853

household-year records. For each household, we calculate a fitted claim rate pλi conditional

on the household’s observables at the time of first purchase and its subsequent claims experi-

ence. More specifically, pλi � exppX1
i
pβqEpexppεiq|Yiq, where Yi records household i’s claims

experience after purchasing the policy and Epexppεiq|Yiq is calculated using the maximum

likelihood estimate of φ. In principle, a household may experience one or more claims during

the policy period. We assume that households disregard the possibility of experiencing more

than one claim (Assumption 4.1(I)). Given this, we transform pλi into a claim probability

µi � 1 � expp�pλiq, which follows from the Poisson probability mass function, and round it

to the nearest half percentage point. We treat µi as data.

S3.2 Deductible Choices

Table S3.1 reports the sample distribution of deductible choices by octiles of base price p̄i

and claim probability µi. The octiles are the hypercubes referenced in Sections 5 and S2

(other than the one that contains all households).

S3.3 Subgroup Results

Figure S3.1 depicts the AS 95 percent confidence set for pEpνiq,Varpνiqq for population

subgroups based on gender, age, and insurance score of the principal driver. In addition,

Table S3.2 reports (i) the KMS 95 percent confidence interval for the mean of νi and (ii) 95

percent confidence intervals for the 25th and 75th percentiles of νi based on projections of

the AS confidence set. For the mean, we report the actual confidence interval as well as the

risk premium, for a lottery that yields a loss of $1000 with probability 10 percent, implied

11



Table S3.1: Deductible Choices by Octiles of p̄ and µ

p̄ µ Percent choosing deductible
octile octile Obs. $100 $200 $250 $500 $1000

1 1 2,756 3.3 31.2 18.9 43.8 2.9
1 2 2,901 3.6 31.8 18.7 43.6 2.2
1 3 2,661 2.9 32.1 20.0 43.6 1.5
1 4 2,113 3.4 34.2 20.6 40.8 1.0
1 5 2,116 3.9 32.1 20.2 42.2 1.5
1 6 1,630 4.2 34.5 21.9 38.9 0.6
1 7 1,233 4.4 34.1 22.8 38.7 0.0
1 8 660 5.0 39.4 25.6 30.0 0.0
2 1 1,949 1.0 20.8 17.0 57.1 4.0
2 2 1,944 2.0 22.3 16.9 56.4 2.5
2 3 1,543 1.9 25.7 19.1 50.7 2.6
2 4 2,152 2.0 23.1 18.5 54.4 2.0
2 5 1,320 2.3 26.7 18.0 50.8 2.2
2 6 1,979 1.6 25.6 20.1 51.1 1.6
2 7 1,584 1.8 26.5 22.6 47.9 1.3
2 8 1,151 2.0 26.5 22.7 48.7 0.2
3 1 1,362 0.7 20.4 14.3 59.8 4.7
3 2 1,914 0.8 18.5 14.6 62.1 3.9
3 3 2,127 0.8 19.8 16.1 60.0 3.2
3 4 1,518 1.3 20.3 17.7 59.4 1.4
3 5 2,255 1.0 19.9 17.6 59.4 2.1
3 6 1,773 0.8 19.9 18.4 59.1 1.9
3 7 1,729 1.2 21.1 20.0 56.7 1.1
3 8 1,602 1.2 20.7 22.2 54.9 0.9
4 1 1,340 0.7 12.7 13.7 67.5 5.3
4 2 1,458 0.8 14.1 15.2 65.8 4.3
4 3 1,632 0.7 15.1 15.4 66.1 2.8
4 4 1,595 0.6 14.7 16.6 64.8 3.3
4 5 1,606 0.8 14.3 17.1 65.4 2.5
4 6 1,705 0.6 16.1 15.2 65.5 2.6
4 7 1,974 0.7 15.4 17.0 65.5 1.5
4 8 1,914 1.0 17.3 17.7 62.8 1.2
5 1 1,126 0.4 11.4 12.6 70.5 5.2
5 2 1,547 0.1 11.8 11.9 71.7 4.5
5 3 1,609 0.5 10.4 13.0 71.6 4.5
5 4 1,522 0.5 10.6 14.5 71.4 3.0
5 5 2,066 0.7 10.8 12.8 72.1 3.5
5 6 1,697 0.6 12.5 14.7 69.2 2.9
5 7 1,801 0.2 12.2 14.6 70.9 2.2
5 8 2,128 0.5 11.9 17.1 68.8 1.6
6 1 1,303 0.3 6.7 9.1 78.3 5.6
6 2 1,403 0.2 6.9 11.4 75.5 6.0
6 3 1,326 0.5 7.3 11.2 76.8 4.2
6 4 1,784 0.3 8.1 11.2 76.2 4.2
6 5 1,589 0.2 7.9 9.8 78.0 4.1
6 6 1,725 0.5 8.9 12.0 74.7 3.9
6 7 2,061 0.1 7.3 11.2 78.4 3.1
6 8 2,363 0.1 9.0 12.3 76.3 2.2
7 1 1,521 0.3 5.2 6.9 81.1 6.5
7 2 1,351 0.1 5.6 7.5 80.1 6.7
7 3 1,665 0.2 4.1 8.6 80.2 6.8
7 4 1,646 0.1 5.0 6.7 81.7 6.4
7 5 1,726 0.1 5.0 7.4 82.6 5.0
7 6 1,865 0.1 4.9 7.9 82.5 4.6
7 7 2,045 0.1 5.7 7.6 82.4 4.2
7 8 2,452 0.2 5.4 9.1 81.0 4.4
8 1 2,636 0.0 1.3 2.5 74.2 21.9
8 2 1,553 0.1 1.5 1.8 80.3 16.4
8 3 1,463 0.0 1.6 3.1 82.8 12.4
8 4 1,568 0.0 1.4 2.7 80.2 15.6
8 5 1,384 0.0 1.8 2.0 80.6 15.6
8 6 1,570 0.1 2.0 3.0 78.9 16.1
8 7 1,501 0.0 1.2 2.5 82.7 13.7
8 8 1,698 0.1 2.1 3.3 81.0 13.5

Notes: Analysis sample (111,890 households).
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Figure S3.1: AS 95 percent confidence sets for pEpνq,Varpνqq.

13



Table S3.2: Distribution of Absolute Risk Aversion

Implied risk premium
Mean Mean 25th pctl. 75th pctl.

LB UB LB UB LB UB LB UB

Male 0.00104 0.00321 $061 $279 $000 $073 $076 $426
Female 0.00101 0.00377 $059 $339 $000 $117 $081 $485
Young 0.00044 0.00306 $022 $263 $000 $095 $000 $407
Old 0.00107 0.00432 $063 $393 $000 $073 $095 $548
Low insurance score 0.00042 0.00315 $021 $273 $000 $073 $007 $425
High insurance score 0.00102 0.00501 $060 $452 $000 $127 $085 $591

Notes: 95 percent confidence intervals. LB = lower bound. UB = upper bound. Implied risk
premia for a lottery that yields a loss of $1000 with probability 10 percent.

by each bound. For the percentiles, we report only the implied risk premia. For the most

part, the subgroup results are comparable to the results for all households. The notable

exceptions are the lower bounds on the mean for households with young principal drivers

and households with low insurance scores. These lower bounds are on the order of 4 � 10�4

(which implies a risk premium of about $20), whereas the corresponding lower bounds for the

other subgroups and the population are on the order of 10�3 (which implies a risk premium

of about $60).9 Strikingly, the lower bounds on the 75th percentile for these two subgroups

correspond to risk premia of 17 cents and $7, respectively.

Table S3.3 reports KMS 95 percent confidence intervals for π5, π4, and π3 for the same

population subgroups. The interesting quantities are the upper bounds on π5 and π4. The

former is the maximum fraction of households whose deductible choices can be rationalized

with full size choice sets, while the latter is the maximum fraction of households whose

deductible choices can be rationalized with full-1 choice sets.10 We find, inter alia, that: (i)

at least 70 percent of households with female principal drivers require limited choice sets

to explain their deductible choices, whereas at least 74 percent of households with male

principal drivers require limited choice sets; (ii) at least 73 percent of households with old

principal drivers require limited choice sets to explain their deductible choices, whereas at

least 75 percent of households with young principal drivers require limited choice sets; and

(iii) at least 67 percent of households with low insurance scores require limited choice sets

to explain their deductible choices, whereas at least 73 percent of households with high

insurance scores require limited choice sets.11

9Because the subgroups all have different confidence sets (as well as different sample sizes), it is possible
that a result for all households is not a weighted average of the corresponding results within a subgroup.

10With κ � 3, the lower bounds on π5 and π4 are zero, the lower bound on π3 is one minus the upper
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Table S3.3: Distribution of Choice Set Size

π5 π4 π3
(full) (full-1) (full-2)

LB UB LB UB LB UB

Male 0.00 0.26 0.00 0.85 0.15 1.00
Female 0.00 0.30 0.00 0.90 0.10 1.00
Young 0.00 0.25 0.00 1.00 0.00 1.00
Old 0.00 0.27 0.00 0.96 0.04 1.00
Low insurance score 0.00 0.33 0.00 1.00 0.00 1.00
High insurance score 0.00 0.27 0.00 1.00 0.00 1.00

Notes: KMS 95 percent confidence intervals. LB = lower bound. UB
= upper bound.

S3.4 Admissible Probability Density Functions

Figure S3.2 depicts a 95 percent confidence set for an outer region of admissible probability

density functions of νi for all households. To construct the outer region (shaded in grey),

we find at each point on a grid of 101 values of νi the minimum and maximum values of

all probability density functions implied by values of θ in the AS 95 percent confidence

set. This gives us 101 points on the lower and upper envelopes of admissible probability

density functions. In other words, we obtain pointwise sharp lower and upper bounds on

the set of admissible probability density functions. Although the bounds are pointwise

sharp, the region is labeled an outer region because not all probability density functions

in it are consistent with the distribution of observed choices. The figure also superimposes

the predicted density functions of νi based on point estimates obtained under the UR and

ASR models. The UR predicted density function does not lie entirely inside the confidence

set, whereas the AR predicted density function does (although we note that this does not

necessarily imply that the true choice formation process is an ASR process).

S3.5 Suboptimal Choices

As we state in Section 5.2.1, with full size choice sets, our model cannot explain the frequency

of the $200 deductible in our data. The reason is that, with full size choice sets, our model

satisfies the following conditional rank order property, which is a generalization of the rank

order property established by Manski (1975) for random utility models that are linear in the

nonrandom parameters and feature an additive i.i.d. disturbance in the utility function.

bound on π4, and the upper bound on π3 is one.
11Because the subgroups all have different confidence sets (as well as different sample sizes), it is possible

that the upper bound on π5 for all households is not a weighted average of the upper bounds on π5 within
a subgroup. The same is true for the upper bound on π4 (and, therefore, for the lower bound on π3).
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Figure S3.2: Confidence set for outer region of admissible probability density functions of ν.

Notes: The figure depicts a 95 percent confidence set for an outer region of admissible probability
density functions of νi. It also superimposes the implied probability density functions of νi based
on point estimates obtained under the UR and ASR models.

Property S3.1 (Conditional Rank Order Property): For all c, c1 P D, Prpd � c1|x,νq ¥
Prpd � c|x,νq if and only if W pxc1 ,ν; δq ¥ W pxc,ν; δq, px,νq � a.s.

Indeed, any model that satisfies an analogous property is incapable of explaining the

relative frequency of $200 in the distribution of observed deductible choices.12 This includes,

inter alia, the conditional logit model (McFadden 1974), the mixed logit model (McFadden

1974; McFadden and Train 2000), the multinomial probit model (e.g., Hausman and Wise

1978), and semiparametric models such as the one in Manski (1975). At the same time, not

all choice set formation processes can explain the relative frequency of $200 in our data. For

instance, UR cannot but ASR can.

Claim S3.1: Take the model in Section 2. Suppose for a given c P D there exist a, b P D,

a � b � c, such that for each ν P V, W pxa,ν; δq ¡ W pxc,ν; δq or W pxb,ν; δq ¡ W pxc,ν; δq.
Then for any distribution of ν with support V:

(I) Property S3.1 implies Prpd � a|xq � Prpd � b|xq ¡ Prpd � c|xq, x� a.s.

(II) Under UR, Prpd � a|xq � Prpd � b|xq ¡ Prpd � c|xq, x� a.s.

(III) Under ASR, Prpd � a|xq � Prpd � b|xq   Prpd � c|xq is possible.

12In the case of a model with additively separable noise where ν � pυ, pεc, c P Dqq and W pxc,ν; δq �
ωpxc,υ; δq � εc, the analogous property is: For all c, c1 P D, Prpd � c1|x,υq ¥ Prpd � c|x,υq if and only if
ωpxc1 ,υ; δq ¥ ωpxc,υ; δq, px,υq � a.s.
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Proof. The implication in Claim S3.1(I) follows from Property S3.1 by integrating with

respect to the distribution of ν.

Claim S3.1(II) follows from the fact that the UR model satisfies Property S3.1. Suppose

alternative c1 is preferred to alternative c. Alternative c1 may be chosen from choice sets that

contain both c1 and c and from choice sets that contain c1 but not c. However, alternative

c may be chosen only from choice sets that contain c but not c1. Because all choice sets,

conditional on the draw of |C|, are equiprobable, c1 is chosen more frequently than c.

We can establish Claim S3.1(III) with a trivial example. Suppose ϕpaq � ϕpbq � 0

and ϕpcq � 1. Then Prpd � a|xq � Prpd � b|xq � 0 and Prpd � c|xq ¡ 0 provided

there exists a positive measure of values ν P V such that W pxc,ν; δq ¡ W pxc1 ,ν; δq for all

c1 P Dzta, bu, c1 � c. More generally, Prpd � a|xq � Prpd � b|xq   Prpd � c|xq is possible

provided ϕpaq and ϕpbq are sufficiently low, ϕpcq is sufficiently high, and c is the first best

alternative in Dzta, bu for some positive measure of values ν P V .

We emphasize that Claim S3.1 does not rely on Assumption 3.1 or the assumptions of the

empirical model in Section 4.1. It thus exemplifies a new approach to testing assumptions

on choice set formation in any random utility model under weak restrictions on the utility

function and without parametric restrictions on the distribution of preferences or choice sets.

An analogous claim holds in the case of a model with additively separable disturbances,

such as the mixed logit model in Section 5.1.1, for any distribution of υ with support Υ,

where the predicate is: Suppose for a given c P D there exist a, b P D, a � b � c, such that

for each υ P Υ, ωpxa,υ; δq ¡ ωpxc,υ; δq or ωpxb,υ; δq ¡ ωpxc,υ; δq.
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