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We present a new algorithm to quickly generate high-performance GPU implementations of complex imaging
and vision pipelines, directly from high-level Halide algorithm code. It is fully automatic, requiring no schedule
templates or hand-optimized kernels. We address the scalability challenge of extending search-based automatic
scheduling to map large real-world programs to the deep hierarchies of memory and parallelism on GPU
architectures in reasonable compile time. We achieve this using (1) a two-phase search algorithm that �rst
‘freezes’ decisions for the lowest cost sections of a program, allowing relatively more time to be spent on
the important stages, (2) a hierarchical sampling strategy that groups schedules based on their structural
similarity, then samples representatives to be evaluated, allowing us to explore a large space with few samples,
and (3) memoization of repeated partial schedules, amortizing their cost over all their occurrences. We guide
the process with an e�cient cost model combining machine learning, program analysis, and GPU architecture
knowledge.

We evaluate our method’s performance on a diverse suite of real-world imaging and vision pipelines. Our
scalability optimizations lead to average compile time speedups of 49⇥ (up to 530⇥). We �nd schedules that
are on average 1.7⇥ faster than existing automatic solutions (up to 5⇥), and competitive with what the best
human experts were able to achieve in an active e�ort to beat our automatic results.
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1 INTRODUCTION
There is an increasing demand for high-performance imaging and vision algorithms, but imple-
menting these programs on GPUs involves making optimization choices from a large space of
options (e.g., splitting and reordering loops and assigning them to GPU blocks and threads, fusing

Authors’ addresses: Luke Anderson, Massachusetts Institute of Technology, USA, lukea@mit.edu; Andrew Adams, Adobe,
USA; Karima Ma, Massachusetts Institute of Technology, USA; Tzu-Mao Li, Massachusetts Institute of Technology &
University of California, San Diego, USA; Tian Jin, Massachusetts Institute of Technology, USA; Jonathan Ragan-Kelley,
Massachusetts Institute of Technology, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2021 Copyright held by the owner/author(s).
2475-1421/2021/10-ART109
https://doi.org/10.1145/3485486

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 109. Publication date: October 2021.

https://doi.org/10.1145/3485486
https://doi.org/10.1145/3485486


109:2 L. Anderson, A. Adams, K. Ma, T.-M. Li, T. Jin, and J. Ragan-Kelley

di�erent stages into single GPU kernels, and caching intermediate results in shared memory). Imag-
ing and vision programs require particular attention to long-range fusion and trading redundant
recomputation for reduced bandwidth and greater locality [Ragan-Kelley et al. 2013]. Manually
exploring these options is time-consuming, and it is di�cult to predict ahead of time whether a
change will help or hurt performance.
Our goal is to automatically optimize these programs. We build on Halide, a domain-speci�c

compiler that decouples the algorithm – what to compute – from the the schedule – how to compute
it. This separation makes it easier to explore di�erent schedules for a given algorithm, but �nding
high-performance schedules remains a challenge. The space of possible schedules for a given
program is combinatorially large, so it is not feasible to compile and benchmark all of them. Instead,
we seek a solution that can explore a large search space e�ciently, and can evaluate the performance
of potential options without needing to compile and benchmark every choice.
Previous approaches have focused largely on two disparate domains — neural networks and

imaging — and developed specialized techniques for each. Tensor compilers (e.g., [Chen et al. 2018b;
Jia et al. 2019; Vasilache et al. 2018; Zheng et al. 2020a,b]) focus on neural networks, which are
dominated by dense, high arithmetic intensity kernels. These computations can be broken up
into small components (such as a convolution layer or ResNet block) and the scheduling space
within each operator explored independently. However, as we show in Sec. 2.2, this technique is a
poor �t for imaging pipelines, which must schedule tens or hundreds of stages jointly, applying
long-range fusion for high performance. At the same time, existing autoschedulers for imaging
pipelines have achieved impressive results for some programs and target architectures, but face a
scalability problem when applied directly to the larger scheduling space required to achieve peak
performance on GPUs [Adams et al. 2019; Sioutas et al. 2020].

We aim to e�ciently explore a rich space of GPU schedules and achieve high performance on a
broad range of imaging and vision applications. To achieve this in a scalable way, we develop three
complementary strategies:

(1) We factor autoscheduling into a pre-pass, where the program is scheduled with a restricted
set of search options and the cheapest stages of computation have their schedule options
‘frozen’ accordingly. The remainder of the autoscheduling process spends relatively more
time performing a more expansive search on just the important parts of the program.

(2) We introduce a hierarchical sampling strategy which uses a structural hash to group similar
schedules and evaluate only representatives of each group. This allows us to e�ectively
explore a large space of possible schedules while only considering a small subset of options.

(3) We recognize and exploit repeated substructure within the space of schedules, memoizing
the analysis of partial schedules to amortize the cost over many occurrences.

These optimizations signi�cantly reduce the number of states evaluated, leading to an average
compile time speedup of 49⇥ (up to 530⇥). At the same time, they also better stratify the search
space, yielding schedules that are on average 1.2⇥ faster than with the optimizations disabled.

Even with all three optimizations, there are still orders of magnitude too many choices to compile
and benchmark each one. We extend the method of Adams et al. [Adams et al. 2019] and use a
learned cost model to guide our search for the best schedule. To balance precision, generality,
and computational cost, our cost model combines program analysis and machine learning: we
extract program features that capture the architectural intricacies required to predict performance
of GPU programs, and provide these features as input to a lightweight neural network that predicts
performance. It evaluates tens of thousands of schedules per second, vs. seconds or minutes to
compile and benchmark a single one. Our autoscheduler then o�ers a spectrum of compile time –
performance tradeo�s, from a one-shot mode which relies exclusively on the cost model to schedule
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input intermed output

Fig. 1. A small Stencil Chain with two 3⇥3 Stencils. Each point of the output accesses a 3⇥3 window of
intermed, each point of which in turns accesses a 3⇥3 window of the input. Neighboring points of each stage
access overlapping points of the preceding stage, which can lead to redundant recomputation or reloading of
shared values, depending on the schedule. Implementing this pipeline e�iciently requires balancing recompute
against parallelism and memory locality when mapping to GPU resources in space and time.

a program as quickly as possible, to an autotuning loop which iteratively samples and benchmarks
promising candidates, �ne-tuning the model as it does.

This paper contributes:

• A new automatic scheduling algorithm that scales orders of magnitude better than prior
work, making it possible to e�ciently explore a large, rich space of GPU schedules. It delivers
state of the art performance on a suite of real world imaging and vision pipelines, with a
geomean speedup of up to 1.7⇥ over the prior state of the art GPU autoscheduler [Sioutas
et al. 2020], and competitive (0.95⇥) with what the best human experts were able to achieve
in an active e�ort to beat our automatic results.

• A set of schedule features that capture the architectural intricacies required to predict perfor-
mance of GPU programs.

• A GPU cost model that combines the schedule features from program analysis with machine
learning. We train the model on a large set of random pipelines and a hold-one-out set of
real world application programs.

2 WHY IS THERE A SCALABILITY PROBLEM?
Consider a program consisting of a chain of stencils, where each point to be computed depends on
a stencil of points from a previous stage of the program (Figure 1). This computation pattern is
common in image processing algorithms, physics simulation, and deep learning architectures (e.g.,
a sequence of depthwise separable convolution layers). How would you implement this program
for high performance on the GPU? Any implementation will need to balance the trade o� between
memory locality, redundant recomputation, and parallelism.

Separate Kernels. The simplest approach is to schedule each stage of the chain in a separate
kernel. In this case, both intermed and output will be computed in separate kernels:

allocate intermed

for col, row in intermed.W, intermed.H @blocks

compute intermed

allocate output

for col, row in output.W, output.H @blocks

compute output
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Every point of intermed will be computed �rst, and stored in global memory, then every point
of output will be computed, loading them. As written, this implementation is ine�cient. It uses
parallelism at the block level but makes no use of thread parallelism.

Tiling the Blocks. A more e�cient implementation would tile the blocks by splitting the outer
loops into outer block loops and inner thread loops:
allocate intermed

for col_o, row_o in ?, ? @blocks

for col_i, row_i in ?, ? @threads

compute intermed

allocate output

for col_o, row_o in ?, ? @blocks

for col_i, row_i in ?, ? @threads

compute output

But we now have choices for how big the tiles of each stage should be. As we consider more complex
schedules, these choices will a�ect things like locality and redundant computation, but for now
they mostly impact parallelism: Small tiles produce many blocks, but few threads per block—plenty
of parallelism across streaming multiprocessors (SMs), but potentially too little thread parallelism
within each to keep it busy. Large tiles make the opposite tradeo�: less (block) parallelism across
SMs, and more (threads) within each one. 16, 32, and 64 are typical choices for the innermost thread
dimension, while powers of 2 are common choices for the remaining dimensions.
Importantly, by introducing block tiling, we have created $ ()3 ) possible options to consider

(where ) is the number of tile sizes and 3 is the number of dimensions to tile, in this case 2). If the
size of the iteration domain is small, the number of options is smaller. Larger arrays, especially if
they have multiple dimensions, will have many more options. Large three- and four-dimensional
tensor operations are common in image processing. Even for this seemingly straightforward
implementation, there are still many possibilities to consider.

Tiling the Threads. A further optimization we can consider is tiling the thread level, as well:
allocate intermed

for col_o, row_o in ?, ? @blocks

for col_i, row_i in ?, ? @threads

for col_ii, row_ii in ?, ? @serial, unrolled

compute intermed

allocate output

for col_o, row_o in ?, ? @blocks

for col_i, row_i in ?, ? @threads

for col_ii, row_ii in ?, ? @serial, unrolled

compute output

Each thread is then responsible for computing a sub-tile’s worth of points, instead of just one. This
gives coarser-grained parallel tasks, and provides opportunities to exploit input reuse (fetching
shared values once and reusing them in registers) and instruction-level parallelism, especially if the
serial sub-tiles are unrolled. But it also comes with tradeo�s: it reduces parallelism at the block and
thread levels, and may increase the stride of memory accesses across threads, reducing bandwidth
e�ciency.
Typical choices for thread tiling options are small constants, and the loops are often unrolled.

Critically, these tiling options compound with the choices at the block level, creating a space of
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nested decisions to consider. Attempting to exploit this nested parallelism introduces the major
challenge of enumerating schedule options for GPUs: scalability.

Even for a modest number of tiling options and a small number of dimensions, this total quickly
grows into the hundreds or thousands – and these are only options for a single stage of the program.
Real applications can have 100s of stages, many with 4 or more dimensions. For example, a 3
dimension stencil chain with input size 1536x2560x8 can generate almost 3 million possible options,
even for a chain of length 14. And computing each stage in its own kernel is hardly the only option
we need to consider to achieve high performance.

Fusion Options. The options we considered so far all exhibit poormemory locality: all intermediate
values produced by intermed are computed and stored to slow global memory before any are used
to compute output, at which point they have likely fallen out of cache. An alternative is to move
(or fuse) the computation of intermed inside the loop nest of output:
allocate output

for col_o, row_o in ?, ? @blocks

allocate intermed @shared_mem

for col_i, row_i in ?, ? @threads

for col_ii, row_ii in ?, ? @serial, unrolled

compute intermed

for col_i, row_i in ?, ? @threads

for col_ii, row_ii in ?, ? @serial, unrolled

compute output

In doing so we improve memory locality, and the smaller intermediate working set can be stored in
faster local memories – shared memory if fused at the block level like here, or registers if fused one
step further, all the way inside the thread level:
allocate output

for col_o, row_o in ?, ? @blocks

for col_i, row_i in ?, ? @threads

allocate intermed @registers

for col_ii, row_ii in ?, ? @serial, unrolled

compute intermed

for col_ii, row_ii in ?, ? @serial, unrolled

compute output

However, these fusion choices come at the cost of redundant recomputation of all the points in
intermed where the the stencil needed by output overlaps from one tile to the next (the orange
region in Figure 1). Fusion introduces additional choices for the level in the loop nest at which to
fuse each stage, and additional tiling options within those fused blocks, further exacerbating the
scalability problem.

2.1 The Cost of Evaluating an Option
The space of choices we have to consider to optimize a program like this for the GPU is large,
rapidly reaching into the millions for real programs. Fully compiling and benchmarking each choice
is prohibitive, as it can take tens of seconds to minutes per choice. We therefore rely on a cheaper,
but still rich cost model (Sec. 5.2) to more quickly evaluate choices. But even this is far from free:
to accurately predict the performance of complex programs on complex hardware, it applies both
a wide array of static analyses to extract performance-relevant features of a given choice, and
a small deep neural network to compute the nonlinear mapping from these features to ultimate
performance. Our cost model is highly optimized, but it still often takes tens of microseconds to
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evaluate – orders of magnitude more than simply enumerating a choice. And the cost function
introduces an additional scalability challenge: the number of choices to evaluate grows with the
number of stages in the program =, but the cost of evaluating the cost model also grows with =. In
all, this makes it infeasible to directly optimize GPU schedules using the tree search techniques
introduced by prior work [Adams et al. 2019], since autoschedule times increase substantially as
programs grow.

2.2 Limitations of Graph Partitioning
Tensor compilers also face scalability challenges, given the large size of neural networks. They often
address this by �rst partitioning large programs into smaller components that can be scheduled
independently. This works well for neural networks, where individual layers have high arithmetic
intensity and dense connectivity, so long-range fusion is not necessary to achieve high performance.
The imaging and vision pipelines we target, however, consist primarily of numerous relatively low
arithmetic intensity operations, interconnected more sparsely, and therefore require scheduling
many stages together, often making complex recompute vs. storage tradeo�s, to optimize locality.
Heuristic graph partitioning achieves scalability only by preventing a detailed schedule search
from exploring such optimizations which are essential to our domain.
We studied this issue empirically by analyzing the behavior of TVM’s state of the art Ansor

autoscheduler [Zheng et al. 2020a] on the stencil chain pipeline discussed earlier in this section.
When scheduling a stencil chain pipeline, the graph partitioner maximally decomposes the program
into = independent single stencil stages, allowing no cross-layer optimization (fusion), and causing
a 2.5⇥ slowdown relative to the best known schedule.

We additionally performed the same experiments while bypassing the graph partitioner. We �nd
that the compilation time increases exponentially with the number of layers, while the performance
of the discovered schedules also decreases exponentially. This pathology can be attributed to a
heuristic optimization rule that, when triggered, inlines computation of a producer into its con-
sumers. When applied to all producers, this rule causes exponential slowdown of both compilation
and execution of the compiled program. While this design is likely sensible for optimizing neural
network models, we �nd that many domain-speci�c assumptions underpinning the design of such
optimization rules do not transfer readily to the domain of imaging and vision pipelines.

3 OVERVIEW OF THE AUTOSCHEDULER
Our algorithm extends Adams et al. [Adams et al. 2019]’s autoscheduler. Crucially, our newly
introduced hierarchical sampling, decision freezing, and memoization allow it to e�ectively explore
a larger space of schedules, providing signi�cant compile time speedup compared to with them
disabled. Like Adams et al. [Adams et al. 2019]’s method, our autoscheduler consists of 3 major
components. First, we enumerate a large space of plausible GPU schedules for a given Halide
program. Second, we featurize the schedules and provide them to a learned cost model that predicts
program run time. And third, we use a variant of beam search to explore the space of possible
schedules. The beam search uses our hierarchical sampling strategy to make the search space
exploration scalable and is guided by the cost model to search for the best performing programs.
Our algorithm supports di�erent modes of operation. It can be used to schedule a program quickly
in a one-shot fashion, without any compiling or benchmarking. It can also be used for autotuning:
we can generate many possible schedules, compile and benchmark them on the target GPU and
use these programs to retrain the cost model, improving its ability to accurately predict program
run times. This process can be repeated as desired.
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Beam to expand
(Top k)

for y, x @blocks:
  for yi, xi @threads:
    ...

Enumerate choices for next stage

Fig. 2. Our Hierarchical Sampling Strategy. A large, rich space of candidate options are enumerated. They
are then grouped into buckets based on their structural similarity. We sample ;>62 (⌫) representatives from
each bucket. The representatives from each bucket become the final candidate states.

3.1 Hierarchically Sampling the Search Space
The space of options we want to consider is too large to feasibly explore and evaluate in its
entirety. How can we e�ciently explore the space without featurizing and evaluating the cost
model for all the possible states? Our key idea is that the search space can be partitioned into
buckets based on structural similarity, and it is su�cient to randomly select candidates from within
each as representatives to be featurized and evaluated by the cost model (Figure 2). Intuitively, the
representatives chosen from each group should give some sense of the expected performance of
the group as a whole i.e. the expected performance of a schedule with that same structural layout.
This approach strati�es the search space based on fundamental structural changes to the program’s
schedule.
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Fig. 3. Structural Hashing: we hash options up to a given depth to stratify our search. Here, two di�erent
schedules have the same structure at depth 1 (which only considers block-level choices), but di�erent structure
at depth 2 (which considers both block- and thread-level choices). Equal hashes at low depth indicate at least
coarse grained structural similarity. Equal hashes at high depth values indicate more fine grained structural
similarity.

We compute the hash of each option up to a given depth (Fig. 3), where the depth considered
increases as the search process continues [Adams et al. 2019] (Sec. 4.5). For example, all options
that have the same functions computed in their own kernels will have the same hash at depth 0,
regardless of which other computations are fused into their kernels. But those same schedules may
have di�erent hash values at depth 1 if they have di�erent computations at their block levels. At
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greater depth values, the hash function will take into account more levels of fusion: it becomes more
�ne grained and more buckets result. Intuitively, this allows us to control the amount of variation
amongst the options in each bucket: low depth values mean few buckets where the options may
only share coarse structural similarity and greater depth values mean many buckets where the
options share more �ne grained structural similarity. We use this to create a hierarchical sampling
process. Early on in the search, low depth values help to identify promising coarse grained structure
(the compute locations for each stage of the pipeline) for candidate schedules. Then later in the
search, higher depth values help to re�ne these coarse grained structures (the actual tile sizes to
use at increasing depths).
When selecting representatives, we randomly choose only ;>62 (⌫) options from each bucket

(where ⌫ is the number of schedules within the bucket) to be featurized and evaluated by the cost
model.

3.2 Freezing Low Cost Stages
Inspired by how human experts approach scheduling by focusing their attention on the parts of
the program they think will be the most costly, the second thing we do to improve scalability is to
‘freeze’ the lowest cost stages of the program and focus our attention on the higher cost stages.
During a pre-pass that only considers options that compute stages in their own kernels or inline, we
enumerate options as normal, using the hierarchical sampling strategy. For the resulting schedule
produced, we examine the lowest cost stages according to the cost model and ‘freeze’ the options
that were chosen for them. We then schedule the unfrozen stages without restriction. We ‘freeze’
all but log2 (# ) stages, improving the scalability for programs with many stages.
This technique serves a purpose similar to that of graph partitioning. It makes coarse grained

decisions about the structure of a schedule, but it still considers all scheduling options (including
fusion decisions) for the more important parts of the pipeline. In addition, instead of using heuristics,
it relies on a data driven, learned approach since it is guided by the cost model.

3.3 Memoization of Partial Schedules
During the autoscheduling process, themost expensive operation performed on a candidate schedule
is featurization. While these candidate schedules are unlikely to be identical, importantly, amongst
them there will likely be many that exhibit some common sub-structure.

Instead of recomputing the featurization for each sub-structure every time it occurs, we instead
memoize it when it is �rst computed and reuse it later, amortizing its cost over all its occurrences
(Fig. 4). The features for a stage fused into its consumer’s kernel are not impacted by stages fused
into a di�erent kernel so we memoize on a per-kernel granularity. Two schedules that produce
the same kernel can reuse the featurization for all the stages fused into that kernel. If a new stage
is fused into that particular kernel, the features for all those stages will potentially be impacted,
so the featurization is at that time recomputed. As a result, schedules that include many fusion
decisions will frequently need to recompute featurizations. So memoization has most impact on
programs that favor schedules with separate kernels and minimal fusion.

The autoscheduler memoizes a schedule’s featurization but not its cost model evaluation. Some
components of the featurization change based on which other stages allocate memory outside its
kernel. The set of these stages can change, so these components always need to be re-computed,
even if the rest of the featurization is unchanged. And since these components will change, the
featurization as a whole will also change, so a schedule’s cost model evaluation also needs to be
re-computed.
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Fig. 4. We memoize features on a per-kernel granularity. In the original schedule (le�), output is computed
in its own kernel and its features will be memoized. When generating successor schedules, output’s features
can be reused if its kernel remains unchanged (Candidate Successor 1) but will be recomputed if another
Func is fused into it (Candidate Successor 2).

4 OUR SEARCH ALGORITHM
We use a variant of beam search to guide the process of enumerating options, selecting them using
hierarchical sampling for evaluation by the cost model. It can be run for multiple passes, during
which it uses information from previous passes to prioritize states to explore during the current
pass. It maintains a priority queue of : candidate states, each representing a partially scheduled
loop nest. The beam search operates in 2 phases for each Func.

To help illustrate this process, we introduce a Halide pipeline based on our previous stencil chain
example (simpli�ed to use a 1D stencil across columns):
Func intermed, output;

intermed(x, y) = input(x-1, y) + input(x, y) + input(x+1, y);

output(x, y) = intermed(x-1, y) + intermed(x, y) + intermed(x+1, y);

Halide represents this algorithm as a directed acyclic graph of Funcs, where output is a consumer
of producer intermed, which in turn is a consumer of in.

The search begins with a completely unscheduled pipeline and makes decisions for each Func in
the program in sequence, starting from the output. The schedule during this process is represented
as a loop nest structure, where each level of the loop nest represents a given tiling. Every scheduling
decision our algorithm makes transforms this loop nest, so we refer to this structure throughout as
a natural way of describing this process. Di�erent levels of the loop nest are labelled according to
the type of parallelism they provide. The outer loops correspond to blocks. Immediately inside the
outer block loops are thread loops, inside of which are serial loops.

At this point we start enumerating possible options but none of them are actually evaluated by
the cost model until they are chosen by our hierarchical sampling.
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For each Func we make 2 decisions:

(1) Where in the currently scheduled loop nest should we compute this Func?
(2) How should we tile this Func?

In the �rst phase of the search process, we start by making decision 1. As described in Sec. 2, the
options include computing the Func in its own kernel, fusing it into one of its consumers, or inlining
it, all of which introduce a tradeo� between parallelism, locality, and redundant computation.
The coarsest granularity is to compute it at the root level of the loop nest. This corresponds to

launching the Func in its own separate kernel. It requires no redundant recomputation but will
likely exhibit poor memory locality. Its allocation will be stored in global memory, which is slow,
and launching a separate kernel will incur some overhead. For Func output this is the only option,
since it is the output of the program.

For Funcs that are not outputs of the program (intermed), they can also be computed at the root
level but there are additional options. Each of these Funcs can be computed at the block level of
their consumer for better memory locality, since output can access a tile of intermed right after
they are computed. We further place the allocation in shared memory, which is faster than global
memory and L2 cache. However, as demonstrated in Section 2, fusing may introduce redundant
recompute. There is also a hardware limit on the amount of shared memory available. If a Func is
scheduled at this level, its loops will become thread loops.
We can also compute the Func inside the thread level of its consumer. This further improves

memory locality. Its allocation will be stored at the register level, which is the fastest type of
memory. But this option may introduce signi�cant redundant recompute and sacri�ces parallelism
since it will be computed serially by a single thread. Register memory is a very limited resource
and large and/or dynamic allocations at this level may introduce costly local memory spilling.
The �nal option is to inline the Func directly into its consumers. This option avoids storing

memory altogether so exhibits the best memory locality but can easily introduce unacceptable levels
of redundant recompute. If a Func consists of a single stage and is called point-wise by its consumer,
we always inline it. If a Func is cheap to compute, it will always be considered for inlining but may
be rejected later if our featurization determines that the state requires excessive recomputation.

Inline options and Funcs fused inside their producer’s thread loop are not considered for tiling.
Next, we need to make decision 2 of tiling the functions. Funcs stored at the block level of their

producer will be tiled immediately, since their tiling choice will have a signi�cant impact on the
featurization and cost of their producer and other siblings that are fused at the same block. For
them we enumerate serial loop sizes so they become a set of thread loops outside serial loops.

4.1 Choosing Serial Loops
First, we enumerate inner serial loop options. These options allow loaded points to be stored in
registers for faster accesses and the goal is for them to be unrolled so inputs can be reused across
the unrolled loops. We do not want them to be too large because they would then reduce the
amount of parallelism available at the block and thread levels and potentially increase the stride of
memory accesses, which can negatively impact memory e�ciency by decreasing global memory
coalescing and/or increasing shared memory bank con�icts. We enumerate serial tile sizes that are
small powers of 2: 1, 2, 4, and 8 in each dimension. We also consider small odd tilings (3, 5, 7) if
they will enable the resulting thread loop’s extent to be a multiple of the warp size (e.g. tiling an
extent of 96 with a serial loop of size 3 would enable a thread loop of 32).

At this point, the compute location has been chosen and candidates scheduled at their producer’s
block have been tiled.
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If we decide to compute the Func in its own kernel, we defer its tiling to the second phase of the
search to reduce the number of options to be enumerated in a single phase. At that point, it will be
tiled into 3 levels. First, serial loops are chosen as above.

4.2 Choosing Thread Loops
After enumerating the serial loop options, we then enumerate thread loop options. Our goal in
this step is to make e�ective use of thread parallelism while also ensuring an adequate number of
blocks at the outer level. We enumerate thread loop sizes that encourage favourable warp sizes:
16, 32, 64 in the innermost loop dimension, and powers of 2 up to 16 in the other dimensions. We
select as the innermost loop dimension the �rst dimension with extent >= 16. If there are none, we
use the �rst dimension.

4.3 Block Loops
The remaining loop extents after choosing thread sizes will become the outer block loops. A good
schedule should aim to have su�cient parallelism (at least 2x the number of SMs on the GPU) to
keep all the SMs busy and a balanced number of blocks that does not leave too many SMs idle.
Tiling decisions are made depending on the Func’s chosen compute location. If computed at

the root level, we enumerate all serial and thread loop options. If computed at the block level, we
enumerate all serial loop options only: the outer loop after tiling becomes a thread loop and there
is no need to tile it because it is already surrounded by a block loop. And if computed inside the
thread loops, tilings are not enumerated: the resulting bounds of the Func are likely too small to
make tiling worthwhile.

4.4 Hierarchical Sampling
At the end of each phase, once we have enumerated the search space options for a given Func, we
want to featurize and evaluate them with the cost model. But as described in Section 2, it’s not
feasible to evaluate them all. Instead we apply our hierachical sampling strategy (Section 3.1).
Before featurizing and evaluating the cost model, we organize all the enumerated options into

buckets based on a structural hash of their loop nest. We randomly sample representatives from
each bucket. These �nal selected options are then featurized and evaluated by the cost model and
added to the beam.

4.5 Avoiding Known Bad States
The search algorithm can be run in multiple passes. During each pass, as candidate options are
taken from the beam, we �rst compute their structural hash up to the depth dictated by the current
pass. If we have previously seen that hash and the cost model informed us that it’s not a promising
state, we apply a cost penalty and move it back in the priority queue. Intuitively, this helps us
avoid wasting time not just on the exact state under consideration, but all states that have the same
hash. If we previously sampled a state as a representative during hierarchical sampling and it is
evaluated poorly by the cost model, it will serve as a negative example for all the other members of
its structural hash bucket and help guide us towards structural hashes that either show promise or
have not yet been explored. When computing the hash, we use the pass index as the depth (Fig. 3).
This means that during earlier passes an equal hash value will indicate that 2 options have at least
coarse grained structural similarity. During later passes, the depth increases and an equal hash
value indicates more �ne grained similarity. Intuitively, in the earlier passes, we explore considering
only coarse structure, then in later stages start to look at more �ne grained di�erences between
options. Our results use samples with beam search (beam size 32 with 5 passes), which will consider
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hashes up to depth 5, as well as greedy samples (beam size 1 with 1 pass), which will only consider
hashes up to depth 1, i.e. the block level.

4.6 Pruning
The goal when enumerating the search space is to include as many plausibly good states as possible.
We want to ensure we include serial tilings because register blocking and input reuse is an important
optimization on some applications. We also want to ensure there are enough blocks to keep the SMs
busy, while avoiding con�gurations that leave SMs idle, and enough warps to promote adequate
latency hiding, while avoiding states that leave excess warp lanes idle. We prune states in the
following situations:

• States with excessive recompute, usually caused by inlining
• States that leave too many SMs idle
• States that exhibit poor warp lane utilization
• States that have serial extents that are too large to be unrolled
• States with allocations at the thread level that are dynamic in size or too large and likely
cannot be promoted from local memory to registers

• States that exceed the GPU’s hardware limits, including states that use too many threads or
too much shared memory.

4.7 Lowering Optimizations
Once a pipeline is fully scheduled, it is ready to be lowered to a concrete implementation.

We apply two optimizations:
• We stage producers (including ones inlined) at the thread level of their consumer. Their
loaded points will be staged in an intermediate bu�er, which will become register storage,
allowing for faster reuse.

• Any serial loops that have total extent less than 16 will be unrolled.

5 EVALUATING SCHEDULES
We design an e�cient cost model for evaluating the performance of a schedule on GPU. The cost
model takes a set of features generated from a program, and feeds them into a light-weight neural
network. We then train the cost model to predict the performance.
We build our cost model on top of Adams et al.’s work [Adams et al. 2019]. We compute both

algorithm speci�c features and schedule speci�c features. We inherit Adams et al.’s algorithm
speci�c features, which are histograms of various arithmetic and memory operations over the
entire algorithm.

5.1 Features
We extend Adams et al.’s schedule speci�c featurization to capture important characteristics of
GPU architectures. These include features for capturing how the schedule uses the di�erent types
of memory available on the GPU, how e�ectively it utilizes the GPU’s parallelism at the block and
thread levels, and the level of occupancy it achieves. In Halide, a Func can have multiple update
stages that write to the same memory bu�er. The features are computed for each update stage of
the computation.

Memory access. We analyze the memory access pattern by looking at the strides of the array index
access with respect to loop parameters. A suboptimal stride will typically result in poor coalescing
at the global memory level or bank con�icts at the shared memory level. We use the stride to
compute the number of global memory transactions or shared memory transactions required for
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each stage of the pipeline. We do this once for a representative regular warp of the stage and once
again if there is a tail warp (when the loop size is not divisible by the warp size), which may exhibit
di�erent memory access behavior because its lanes might be underutilized. These memory access
counts account for amortized loads that can be reused across unrolled inner serial loops and stores
that can be moved outside the block of unrolled serial loops. In addition, we have a feature for
the e�ciency of loads and stores at both the global and shared levels. The e�ciency is de�ned as
the ratio of bytes used to bytes actually loaded or stored. We also compute the memory footprint
accessed at various levels of a given loop nest, including per iteration of the innermost serial loop,
per thread, and per block. These footprints are delineated by memory type (global, shared, register).
In the case of global and register memory, the memory footprint gives a hint to the cost model as
to expected cache behavior and register pressure.

E�ective Parallelism. To capture how e�ectively the GPU’s parallelism is used, we compute its
number of blocks, number of warps per block, and number of threads. We compute each stage’s
warp utilization, which measures how many threads of a stage’s warps are idle as a percentage of
the number of threads in use across all stages computed at the block level. A low warp utilization
indicates that a stage is fused alongside another stage at the block level in a way that sacri�ces
thread parallelism. We also compute the number of threads that are idle as a percentage of the total
number of threads made available by the hardware.

Occupancy. We compute for each stage warp, block, and shared memory occupancy. We compute
the ratio of maximum active warps to the maximum number of active warps hardware limit and
the ratio of maximum active blocks to the maximum number of active blocks hardware limit. We
also compute the ratio of shared memory to the hardware shared memory limit. We use this to
compute how much block occupancy is impacted by shared memory usage.

A complete list of our features is available in Appendix A.

5.2 Cost Model
Once we have the features for each stage in the computation, we feed the features for each stage
into a small neural network to predict a vector of coe�cients. We then use these coe�cients along
with our features in a cost model to predict the performance per stage and sum over all stages. We
inherit our cost model design from Adams et al.’s autoscheduler [Adams et al. 2019], but with more
GPU-speci�c features and cost model components.
Our network accepts as input the algorithm-speci�c and schedule-speci�c features, takes the

logarithm of the schedule-speci�c features to compress the dynamic range, and feeds both of them
into a fully-connected network to produce two embedding vectors. These two embeddings are then
stacked together and passed into a fully-connected network to produce a vector of positive weights.
These features and weights are then used for computing the following costs: compute, load,

store, parallelism and working set. The compute cost accounts for the number of points computed
and how e�ectively the warp lanes and SMs are utilized to compute them. The load and store
costs di�erentiate between the di�erent types of memory (global, shared, register). They take into
account memory access patterns and the footprints of memory loaded and stored at various levels
of the loop nests. The parallelism cost estimates the number of kernels and blocks launched. The
working set cost captures register pressure and cache usage. The learned coe�cients are applied as
weights to each of these cost components. Full details are available in Appendix B.

5.3 Training Procedure
We train our cost model on a combination of random pipelines constructed from common image
processing and machine learning operation building blocks [Adams et al. 2019]. Additionally, for
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One Shot:

Top 5:

Autotuned:

Fig. 5. We test our autoscheduler in three di�erent modes, which trade increased compile time and the need
to take ground-truth benchmarks for increased performance. One Shot uses the cost model alone to rank
choices. Top 5 compiles and benchmarks the top 5 choices as ranked by the cost model. Autotuned iteratively
compiles and benchmarks sampled programs, fine-tuning the cost model to the specific application as it goes.

each app in our test suite we train in a hold-one-out fashion: every other app contributes samples
to the target app’s training set.

6 RESULTS
We evaluate our autoscheduler on a diverse set of 17 imaging and vision programs (Fig. 6), including
15 applications from the Halide repository: bilateral grid, local laplacian, non-local means, lens
blur, camera pipe, a 32-stage stencil chain, Harris corner detection, histogram equalize, max �lter,
unsharp mask, interpolate, a neural network conv layer with ReLU activation, SGEMM (Single �oat
precision General Matrix Multiply), an IIR blur, BGU (bilateral guided upsampling). To this we
added a depthwise-separable convolution [Vanhoucke 2014], and a learned demosaicing algorithm.

We compare our autoscheduler against the best Halide schedules experts are capable of writing
by hand, using the entire scheduling language. Our experts iteratively improved these schedules
during the course of this work using the best runtimes found by the autoscheduler as a target to beat
(but without looking at the generated schedules), so they represent a very high bar. In many cases
these human schedules substantially improve on the ones found in the Halide repository, which
were used as-is by prior work. We also compare to the best existing Halide GPU autoscheduler
from Sioutas et al. [Sioutas et al. 2020]. We use our technique in 3 di�erent modes of operation,
which trade o� compile time and the ability to benchmark for quality of results:
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One Shot. For each application, we generate 80 samples using a cost model trained on random
pipelines and all applications beside the one being tested. We take the schedule ranked best by
the cost model. No benchmarking is involved in selecting the schedule. This approach is directly
comparable to Sioutas et al. [Sioutas et al. 2020]’s autoscheduler, and can run in seconds.

Top 5. Same as One Shot, but we consider the top 5 schedules according to the cost model, compile
and benchmark them, and take the best. This is more representative of what a human might do –
construct and benchmark several promising candidates – and it takes on the order of a minute.

Autotuning. We tune each application for 20 iterations, with 80 samples per iteration. All 80
samples are compiled, benchmarked, and then used to retrain the model. This mode starts from
random weights, so it does not bene�t from transfer learning from other applications or random
pipelines, and is in fact slower than the above two modes on one application. A total of 1600 samples
are generated for each application. We take the fastest schedule found during this process. This
takes from 9 minutes to 71 minutes, depending on the program (Table 4).
In all 3 modes of operation, we generate batches with 1 beam search sample (beam size = 32, 5

passes) and 79 greedy samples (beam size = 1, 1 pass).

6.1 Post-Compile Filtering
For the One Shot and Top 5 cases, we apply additional post-compile �ltering: any samples that spill
registers to local memory are removed from consideration. This performance cli� is hard to predict
pre-compilation, because it depends on the vagaries of the underlying PTX compiler, which issues
a warning when this happens. In one case (lens blur), all samples experienced register spilling. In
this case we took the best sample that was within 50% of the least spilling.
All our results were generated on an IBM AC922 with 2⇥20 core Power9 CPUs and 4⇥NVIDIA

V100 SXM2 cards with 32GB of memory. While this is an unusual processor, in no case was the
time spent on the CPU a signi�cant fraction of total runtime. All benchmarks were performed on a
single V100 in isolation.

6.2 Analysis
We achieve a geomean speedup over Sioutas et al.’s Halide GPU autoscheduler [Sioutas et al. 2020]
of 1.07⇥ in the One Shot case, 1.30⇥ in the Top 5 case, and 1.66⇥ in the autotuning case. Our
autotuned results are on par with our best known manual schedules (0.95⇥).
Sioutas et al. generate code that fails to run on the conv layer, and performs poorly on several

apps, especially those outside its test set (BGU, depthwise separable conv, and learned demosaic).
Its single largest weakness is a search space issue with workloads that include matrix multiply
or conv layer. A fast matrix multiplication contains an inner unrolled block over a tile of $ ("# )
accumulators, which share the$ (" +# ) loads required to compute each term. Sioutas et al. do not
consider this form of unrolling. On BGU, Sioutas et al. launch every step of a per-pixel 4x4 matrix
solve as its own kernel. We suspect this is due to a weakness in the manually-designed cost model.

6.3 Impact of Hierarchical Sampling, Freezing, and Memoization
Our optimization strategies signi�cantly reduce the compile time thanks to the reduced number of
states evaluated, while making the scheduled programs faster since they strategy the search.

6.3.1 States Evaluated. The use of hierarchical sampling and freezing signi�cantly reduces the
number of states that are evaluated (Table 1) during a beam search. With both sampling and freezing
enabled, it evaluates on average only 5.19% of the total states, and in the best case — for bilateral
grid — only 0.69%.
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Sioutas 2020 One Shot Top 5 Autotuned Human ExpertOurs:
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Fig. 6. Throughput of our technique at three levels of compile time budget (from one shot with no benchmark-
ing, to autotuning 1600 samples) relative to the prior state-of-the-art GPU autoscheduler [Sioutas et al. 2020]
and highly tuned human expert schedules. The benchmarks are a super-set of those in prior work [Adams
et al. 2019; Sioutas et al. 2020], and span a diverse set of imaging and learning programs from a few to around
one hundred stages. For the One Shot and Top 5 modes, the results presented are the median time over 100
independent trials. In all modes, our technique outperforms the prior state-of-the-art on average, and with
full autotuning it matches the best human experts. Some of the human expert schedules (IIR blur, conv layer,
depthwise separable conv) use scheduling options that are outside the autoscheduler’s search space.

One Shot:         Sampling ON / Freezing ON         Sampling ON / Freezing OFF         Sampling OFF / Freezing ON         Sampling OFF / Freezing OFF

Top 5:               Sampling ON / Freezing ON         Sampling ON / Freezing OFF         Sampling OFF / Freezing ON         Sampling OFF / Freezing OFF
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Fig. 7. Our optimization strategies improve the performance of the found programs, since they stratify the
search. Here we show the throughput of our One Shot and Top 5 modes for all configurations of hierarchical
sampling and freezing on and o�, relative to Top 5 with sampling and freezing on. For both modes, sampling
and freezing enabled on average outperforms sampling and freezing disabled. For One Shot mode, the speedup
is 1.22⇥ and for Top 5 1.27⇥. All results are the median time obtained from 100 independent trials.
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Table 1. The number of states evaluated by the autoscheduler during a beam search, for all configurations of
hierarchical sampling and freezing on and o�. In parentheses is the percentage of the states evaluated relative
to the configuration with both hierarchical sampling and freezing o�. We highlight the lowest numbers in
each row in bold. With both on, the autoscheduler evaluates on average 5.19% of the states that would have
been evaluated with both o�. In the best case (bilateral grid), 0.69% of the states are evaluated.

Number of States Evaluated (Percentage Relative to OFF / OFF) — Lower is Better
Sampling ON ON OFF OFF
Freezing ON OFF ON OFF
bilateral grid 4019 (0.69%) 164617 (28.44%) 200976 (34.72%) 578876 (100%)
local laplacian 34145 (3.18%) 436254 (40.67%) 201263 (18.76%) 1072715 (100%)
non-local means 67750 (15.22%) 182066 (40.90%) 443744 (99.69%) 445128 (100%)
lens blur 39268 (0.83%) 2222985 (46.93%) 1248771 (26.36%) 4736690 (100%)
camera pipe 15345 (4.87%) 159561 (50.67%) 139640 (44.35%) 314883 (100%)
stencil chain 22384 (8.84%) 209394 (82.71%) 227875 (90.01%) 253153 (100%)
harris 12538 (30.56%) 12340 (30.07%) 55267 (134.69%) 41034 (100%)
hist. equalize 10360 (13.13%) 30912 (39.18%) 45620 (57.82%) 78904 (100%)
max �lter 12160 (17.32%) 36707 (52.29%) 58098 (82.77%) 70196 (100%)
unsharp mask 2988 (12.47%) 9662 (40.34%) 19216 (80.22%) 23953 (100%)
interpolate 17808 (2.52%) 307447 (43.56%) 154711 (21.92%) 705827 (100%)
conv layer 7706 (1.29%) 230170 (38.60%) 111690 (18.73%) 596341 (100%)
matrix multiply 698 (18.38%) 1853 (48.79%) 6783 (178.59%) 3798 (100%)
IIR blur 3150 (8.26%) 13464 (35.31%) 14974 (39.26%) 38136 (100%)
BGU 28333 (3.21%) 425325 (48.20%) 295303 (33.46%) 882435 (100%)
dep. sep. conv 5984 (1.78%) 121769 (36.31%) 245637 (73.25%) 335338 (100%)
learned demosaic 50488 (4.83%) 353843 (33.85%) 1000740 (95.73%) 1045372 (100%)
geomean 11740 (5.19%) 95092 (42.02%) 121008 (53.47%) 226311 (100%)

6.3.2 Compile Times. By evaluating many fewer states, compile times are also signi�cantly reduced
(Table 2). With hierarchical sampling, freezing, and memoization enabled, compile times are reduced
on average from 370s to 7.6s for a speedup of 49⇥ (in the best case 530⇥) (Table 3).

We also compare compile times for our method against Sioutas et al. (Table 4).

6.3.3 Throughput. In Figure 7, we compare the relative throughput in One Shot and Top 5 modes
of operation for all con�gurations of hierarchical sampling and freezing on and o�. In both modes,
hierarchical sampling and freezing enabled on average outperforms hierarchical sampling and
freezing disabled. For One Shot mode, the speedup is 1.22⇥ and for Top 5 1.27⇥. This is despite
the fact that with both enabled, the autoscheduler evaluates many fewer states within the search
space and compiles much faster. This suggests that by stratifying the search space, it can more
quickly �nd promising candidates. In Top 5 mode, hierarchical sampling and freezing enabled is
on average the best performing con�guration. In One Shot, hierarchical sampling and freezing
enabled is slightly worse then sampling enabled and freezing disabled, trading a small amount of
performance for faster compile times.

6.3.4 Memory Usage. In Table 5 we compare the memory usage of the autoscheduler with memo-
ization both on and o�. Memoization uses signi�cant memory but reduces compile times (Table 2).
We currently do not evict saved memoizations, but this functionality could be added.
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Table 2. Beam search compile times for all configurations of memoization, hierarchical sampling, and freezing
on and o�. We highlight the lowest number in each row in bold. Our optimizations, when used in conjunction,
significantly improve compile times. In general, they have more impact on pipelines that favor schedules
with many compute_root stages, and less impact on pipelines that favor fusion, for example, camera pipe.

Beam Search Compile Time (s) – Lower is Better
Memoization ON ON ON ON OFF OFF OFF OFF
Sampling ON ON OFF OFF ON ON OFF OFF
Freezing ON OFF ON OFF ON OFF ON OFF
bilateral grid 2.94 16.51 7.87 27.95 9.96 212.86 338.45 682.42
local laplacian 110.09 432 131.47 509.91 418.45 7918.44 3996.33 14568.95
nl means 11.16 23.04 26.61 34.85 45.77 201.11 269.01 536.12
lens blur 111.21 674.67 273.73 960.84 394.15 23379.77 15588.4 59085.78
camera pipe 42.91 719.92 463.62 1287.87 42.29 712.76 468.96 1280.13
stencil chain 52.9 183.35 74.1 216.81 225.45 2334.77 2238.13 2633.46
harris 4.52 13.73 8.67 20.3 32.92 14.94 149.88 57.73
hist. equalize 2.06 5.28 4.38 8.69 11.08 28.32 45.78 71.06
max �lter 1.77 4.48 3 5.89 7.56 17.78 24.57 38.77
unsharp mask 2.56 8.04 2.12 10.26 5.47 8.88 17.52 17.99
interpolate 25.75 138.35 42.16 178.68 89.18 3170.35 1253.08 5211.48
conv layer 1.1 12.69 4.44 18.52 3.79 93.59 41.2 214.92
matrix multiply 0.08 0.24 0.22 0.48 0.1 0.27 1.36 0.57
IIR blur 0.6 1.51 1.08 2.05 2.43 8.18 8.51 20.26
BGU 89.39 246.48 146.15 272.64 388.56 2431.77 1836.45 3578.3
dep. sep. conv 4 10.52 11.72 15.74 8.43 73.49 113.41 175.68
l. demosaic 54.24 89.64 157.99 181.49 173.37 702.62 2589.62 2034.93
geomean 7.61 28.61 16.92 41.78 24.78 168.74 217.94 372.06

6.4 Cost Model Evaluation
In Fig. 8, we show the cost model’s predictions on each application. For most of the applications,
without retraining (when run in One Shot mode), the cost model is only weakly predictive of
actual run times. In spite of this, the schedule selected by One Shot mode (the best schedule
according to the cost model’s predictions) is on average (geomean) within 48% of the actual fastest
schedule (for comparison, the average schedule in the batch is within 106%). If we exclude bilateral
grid, the selected schedule is on average within 33% of the actual fastest schedule (the average
schedule is within 84%). This suggests that while the cost model’s predictions are only weakly
correlated, it makes reasonable predictions for the faster schedules in the batch. After retraining,
the prediction accuracy improves signi�cantly. Regardless, improving the cost model’s predictions
before retraining is an important avenue for future work.

6.5 Manual Schedules Outside the Search Space
The manual schedules outperform our autoscheduler in several instances. For all of conv layer,
IIR blur, and depthwise separable conv, the expert schedules split and unroll the reduction loops.
In BGU and histogram equalize the manual schedules use atomic �oating point adds to memory
to expose more data parallelism. In conv layer, IIR blur, learned demosaic, and matrix multiply,
the manual schedule uses warp-shu�e instructions to share data between the threads in a warp
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Fig. 8. Cost model predicted run times (x-axis) against actual run times (y-axis) for a single batch of data
on each application, in two scenarios. We generate 20 batches of data for each application – 19 are used
as a training set and 1 as a test set (the points displayed in the plots). In blue, the plots show the test set
predictions before retraining. These are the predictions that would be used by the autoscheduler in One Shot
mode: the cost model has never been trained on any schedules from the individual application. In orange, the
plots show the test set predictions a�er retraining the model on the training set, similar to how Autotuning
mode works. The cost model has not been trained on the test set in either scenario. The red star in each plot
is the best predicted schedule before retraining i.e. the schedule that One Shot mode will produce. The purple
star is the best actual schedule. One Shot mode works best when the red star is at the bo�om of the samples
i.e. when it minimizes the vertical distance between it and the purple star.
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Table 3. Beam search compile time speedup for all configurations of memoization, hierarchical sampling,
and freezing on and o�, over the configuration with all o�. We highlight the highest number in each row in
bold. With all on, there is a compile time speed up on average of 49⇥ and in the best case of 530⇥.

Beam Search Compile Time Speedup – Higher is Better
Memoization ON ON ON ON OFF OFF OFF OFF
Hierarchical Sampling ON ON OFF OFF ON ON OFF OFF
Freezing ON OFF ON OFF ON OFF ON OFF
bilateral grid 232.32 41.33 86.66 24.41 68.53 3.21 2.02 1
local laplacian 132.33 33.72 110.82 28.57 34.82 1.84 3.65 1
nl means 48.03 23.26 20.15 15.39 11.71 2.67 1.99 1
lens blur 531.32 87.58 215.85 61.49 149.91 2.53 3.79 1
camera pipe 29.83 1.78 2.76 0.99 30.27 1.8 2.73 1
stencil chain 49.79 14.36 35.54 12.15 11.68 1.13 1.18 1
harris 12.77 4.2 6.66 2.84 1.75 3.86 0.39 1
histogram equalize 34.47 13.46 16.22 8.18 6.41 2.51 1.55 1
max �lter 21.95 8.66 12.91 6.58 5.13 2.18 1.58 1
unsharp mask 7.04 2.24 8.47 1.75 3.29 2.03 1.03 1
interpolate 202.37 37.67 123.62 29.17 58.44 1.64 4.16 1
conv layer 195.76 16.94 48.39 11.6 56.67 2.3 5.22 1
matrix multiply 7.55 2.32 2.56 1.19 5.73 2.09 0.42 1
IIR blur 33.67 13.42 18.82 9.88 8.33 2.48 2.38 1
BGU 40.03 14.52 24.48 13.12 9.21 1.47 1.95 1
depthwise separable conv 43.95 16.7 14.99 11.16 20.83 2.39 1.55 1
learned demosaic 37.51 22.7 12.88 11.21 11.74 2.9 0.79 1
geomean 48.92 13.01 21.99 8.9 15.01 2.2 1.71 1

without requiring a full barrier across the entire thread block. These transformations can have
signi�cant performance advantages but are not currently in the search space of our autoscheduler.
Other common patterns in the manual schedules not exploited by our autoscheduler are SIMD
vectorization of load instructions to reduce the total number of memory transactions, and pre-
staging of stencil inputs into shared memory and/or registers to reduce the total number of loads
to device memory.
Despite operating without all of these features, the autoscheduler was able to beat the manual

schedules the majority of the time, and has geomean performance on par with a human expert
making their best e�ort to beat our results. In some cases, e.g. for depthwise separable conv, the
expert spent days of focused e�ort re-optimizing the manual schedule after the autoscheduler’s
results were �nalized. The large gains come in the most complex, heterogeneous applications,
which are intractably di�cult for humans to schedule.

7 RELATEDWORK
Earlier work on automatic array program optimization focused on a�ne transformations of loop
nests (e.g., PLUTO [Bondhugula et al. 2008], Polly [Grosser et al. 2012], and PPCG [Verdoolaege
et al. 2013]). These works proposed that loop nests could be treated as polyhedra, and a�ne loop
transformations could be treated as transformations on the polyhedra. This abstraction allows them
to concisely express and explore many di�erent loop optimizations, often in the form of solving an
integer linear programming problem to minimize a simple cost function related to parallelism and
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Table 4. Compile time comparison between our One Shot, Top 5, and Autotuned modes against Sioutas et al.
[Sioutas et al. 2020]. The times for One Shot and Top 5 are the median of 20 independent trials. For One Shot
mode and Sioutas et al., autoscheduling times (i.e. compile time excluding code generation time) are given in
parentheses.

Compile Time (s) – Ours vs. Sioutas et al. [Sioutas et al. 2020] – Lower is Better
Sioutas et al. One Shot Top 5 Autotuning

bilateral grid 52 (43.8) 23.5 (9.6) 34 677
local laplacian 61 (47.8) 149.7 (121.8) 149.7 3627
nl means 57 (49.3) 55.7 (41.9) 55.7 1104
lens blur 85 (71) 186.2 (149.1) 186.2 4248
camera pipe 59 (58) 69 (57.5) 70 1609
stencil chain 100 (86.2) 111.1 (80.1) 113.5 2431
harris 6 (4.3) 22.1 (12.6) 34 715
histogram equalize 6 (5.3) 16.6 (3.3) 32 667
max �lter 32 (22.7) 19.3 (7.6) 33 685
unsharp mask 4 (3.1) 16 (3.2) 33 680
interpolate 28 (18.8) 50.1 (36.8) 51 1180
conv layer 3 (1.2) 16.9 (4.8) 31 620
matrix multiply 7 (0.7) 12.6 (0.1) 29 561
IIR blur 5 (4) 15.7 (2.7) 33 682
BGU 78 (56.7) 165.4 (131.4) 165.4 4046
depthwise sep. conv 10 (2.3) 23.5 (12.7) 41 808
learned demosaic 8 (1.8) 98.5 (82.2) 98.5 2006
geomean 18.6 (11.3) 40.3 (15.7) 55.8 1186.7

locality. Recent work on autoscheduling [Baghdadi et al. 2021] the polyhedral compiler, Tiramisu,
uses an algorithm similar to ours and Adams et al. but it attempts to learn program features from
loop nest representations, so its focus is di�erent and it is CPU only.
Halide [Ragan-Kelley et al. 2012, 2013] takes a di�erent approach by de�ning a set of domain

speci�c rewrites to a loop nest. This allows Halide to handle a generalized form of loop fusion
(called compute_at and store_at in Halide), which is essential, but was di�cult to express in prior
polyhedral optimizers. Early automatic schedulers in Halide used genetic algorithms over randomly
generated schedules [Ansel et al. 2014; Ragan-Kelley et al. 2013]. PolyMage [Mullapudi et al. 2015]
combines ideas from the polyhedral literature and Halide, and develops an automatic scheduling
technique using a heuristic cost model and a greedy stage grouping algorithm. It then compiles and
benchmarks over di�erent tile sizes. This was later extended with a richer cost model and better
search algorithms [Jangda and Bondhugula 2018]. A parallel line of work uses a similar heuristic
cost model and greedy stage grouping to handle a broader range of algorithms and schedules in
Halide [Mullapudi et al. 2016; Sioutas et al. 2019]. Sioutas et al. [Sioutas et al. 2020] uses the same
search algorithm but extends it to support the GPU with an expanded search space and a hand
designed GPU cost model. It runs quickly without any benchmarking, but its search space is smaller
compared to ours among other reasons because it only supports a single level of tiling, and as
we discuss in Section 6.2, this excludes a number of high performance schedules. Li et al. also
developed a Halide GPU autoscheduler specialized to gradient code [Li et al. 2018], but it only
considers trivial loop fusion.
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Table 5. Memory usage with memoization both on and o�, for a single beam search schedule, a single
greedy schedule, and a full batch of 80 schedules. The numbers for One Shot and Top 5 are the median of 20
independent trials.

Memoization Memory Usage (MB)
Memoization ON OFF

Beam Search Greedy Batch Beam Search Greedy Batch
bilateral grid 113 110 8814 112 110 8799
local laplacian 419 126 10369 148 125 10023
nl means 1142 112 9969 269 110 8996
lens blur 691 165 13740 292 157 12719
camera pipe 118 112 8986 118 112 9001
stencil chain 144 136 10863 113 135 10760
harris 115 111 8862 115 111 8857
histogram equalize 113 111 8891 115 111 8882
max �lter 154 111 8926 115 111 8887
unsharp mask 112 111 8854 112 111 8854
interpolate 166 113 9079 120 113 9034
conv layer 111 109 8722 112 109 8732
matrix multiply 108 103 8213 108 103 8213
IIR blur 111 109 8702 111 109 8706
BGU 18957 1590 144558 3861 1536 125210
depthwise sep. conv 520 110 9171 225 110 8891
learned demosaic 912 168 14214 275 151 12208

Adams et al. [Adams et al. 2019] noted that most previous approaches to automatically scheduling
Halide programs focused on a restricted set of rewrites, and the heuristic cost models do not capture
well the complexity of real machines. Adams et al. design a general search algorithm that can
handle a broad set of scheduling options, while developing a hybrid-manual-learning-based cost
model that can learn the complexity of modern hardware while remaining e�cient. Unfortunately,
as we discussed throughout the paper, Adams et al.’s approach does not scale well to handle
the nested parallel tiling options of GPU architectures. It does not use any of our 3 scalability
strategies (freezing, hierarchical sampling, memoization) and it also lacks GPU-speci�c features
and a GPU search space and pruning techniques. Adams et al. report preliminary GPU results
that are 29%-33% faster than a baseline [Li et al. 2018] that has been superseded by Sioutas et al.’s
autoscheduler [Sioutas et al. 2020], which reports a 2⇥ improvement over it. Steiner et al. [Steiner
et al. 2021] proposed an improved cost model that includes the prediction of the unscheduled stages
of the pipeline, but it is for CPU only.

Recent tensor frameworks such as TensorFlow [Abadi et al. 2015] and TVM [Chen et al. 2018a]
are equipped with graph rewrite systems to optimize the composition of coarse-grained operators.
XLA [Team 2017] applies a set of template rewrites to the computation graph using heuristic rules.
TASO [Jia et al. 2019] takes a superoptimization approach to this problem, and generates a large
collection of graph rewrites from a small set of tensor relation axioms, and formally veri�es them.
Others approach the problem using reinforcement learning agents [Paliwal et al. 2020; Zhou et al.
2020]. These techniques focus on coarse-grained rewrites of large graphs, and not the detailed
decisions of how to schedule the many dimensions within each coarse-grained operator or operator
group.
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Complementary work focuses on optimizing individual tensor operators (or, equivalently, small
local clusters as output by a higher-level graph rewriter). AutoTVM [Chen et al. 2018b] automatically
searches over parameters of hand-written schedule templates, using a reinforcement learning
algorithm with a statistical cost model with gradient boosted trees or tree-based recurrent neural
networks. FlexTensor [Zheng et al. 2020b] and Ansor [Zheng et al. 2020a] relax the need to manually
specify templates by directly enumerating them from a set of Halide-like program rewrites. Tensor
Comprehensions [Vasilache et al. 2018] employs polyhedral rewrites and autotuned tile sizes.
Because these systems focus on neural network workloads, dominated by individual high arithmetic
intensity kernels with limited opportunity for long-range fusion due to very large stencils in the
channel dimensions, they are able to focus separately on small local computation graphs where
scalability is less of a challenge, while relying on simpler heuristics to partition the graph [Zheng
et al. 2020a]. In contrast, we aim to schedule a broader set of programs made up of many, more
diverse, and lower arithmetic intensity operations (such as the stencil chain). Fusing and jointly
scheduling stages over long ranges is crucial to performance in these cases, but as described in
Sec. 2.2, these choices are excluded by Ansor’s graph partitioner.

Related to our hierarchical sampling, Chameleon [Ahn et al. 2020] employs k-means clustering
over the tile size parameters to adaptively sample from the candidate schedules. In contrast, we
perform the clustering in a hierarchical manner to adapt to the nested loop structures Sec. 3.1.

Some previous work uses machine learning for compiler optimizations (e.g., [Ashouri et al. 2018;
Haj-Ali et al. 2020; Mendis et al. 2019]). In contrast to most approaches in this domain, our cost
model operates on a more abstract loop representation, leverages explicit program analysis and
GPU architecture knowledge.

8 LIMITATIONS & FUTUREWORK
Even though we consider a large space of schedules, the space of all Halide schedules is much
larger still. We currently make tiling decisions on a per-Func basis, but could make those decisions
for all the update stages in a Halide function. This would allow us to tile and unroll reduction
variables (sequential loops that are not directly parallelizable) in update stages, which has proven
an important optimization on applications like conv layer and IIR blur. Making tiling decisions on a
per-stage basis is likely also necessary to support parallelizing reductions (including the Halide
scheduling options rfactor and atomic), which is an important optimization on histogram equalize.

Register spilling often has a large performance impact on the GPU, but the spilling behavior of
the downstream PTX compiler can be unpredictable. Our cost model captures factors that estimate
register pressure, but can sometimes fail to predict machine-assembly-level optimizations. In our
One Shot mode, we include a post-processing pass to remove programs with excessive register
spilling. It would be useful to extend our cost model to predict register spilling more accurately.

9 CONCLUSION
We present a system for automatically scheduling Halide programs on GPUs that scales to a large
set of scheduling options and complex pipelines. It generates code that matches experts’ best
e�ort to beat it with unconstrained manual schedules, and signi�cantly outperforms the current
state-of-the-art Halide GPU autoscheduler. We believe the key concepts of our method are likely
useful for other array compilers outside of Halide.

ACKNOWLEDGMENTS
This work was partially funded by Toyota Research Institute, NSF awards CCF-1723445 and CCF-
1846502, and DARPA agreement HR00112090017.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 109. Publication date: October 2021.



109:24 L. Anderson, A. Adams, K. Ma, T.-M. Li, T. Jin, and J. Ragan-Kelley

A FEATURIZATION
We use the following GPU speci�c features (basic features e.g. number of productions, total points
computed, etc. are reused from [Adams et al. 2019]):

num_scalars The total product of the loop extents
points_computed_per_thread The number of points of this stage computed by each thread.

The product of the inner serial loops for this stage
unique_global_bytes_read_per_realization Number of unique bytes loaded from global

memory to compute a single realization of this stage
unique_shared_bytes_read_per_realization Number of unique bytes loaded from shared

memory to compute a single realization of this stage
unique_register_bytes_read_per_realization Number of unique bytes loaded from register

memory to compute a single realization of this stage
unique_global_lines_read_per_realization Number of contiguous lines loaded from global

memory to compute a single realization of this stage
unique_shared_lines_read_per_realization Number of contiguous lines loaded from shared

memory to compute a single realization of this stage
unique_register_lines_read_per_realization Number of contiguous lines loaded from reg-

ister memory to compute a single realization of this stage
unique_global_bytes_read_per_thread Number of unique bytes loaded from global memory

to compute a single thread of this stage
unique_shared_bytes_read_per_thread Number of unique bytes loaded from shared mem-

ory to compute a single thread of this stage
unique_register_bytes_read_per_thread Number of unique bytes loaded from registermem-

ory to compute a single thread of this stage
unique_global_lines_read_per_thread Number of contiguous lines loaded from global mem-

ory to compute a single thread of this stage
unique_shared_lines_read_per_thread Number of contiguous lines loaded from shared

memory to compute a single thread of this stage
unique_register_lines_read_per_thread Number of contiguous lines loaded from register

memory to compute a single thread of this stage
global_allocation_bytes_read_per_realization Total sum of globalmemory allocation bytes

accessed compute a single realization of this stage
shared_allocation_bytes_read_per_realization Total sum of shared memory allocation

bytes accessed compute a single realization of this stage
register_allocation_bytes_read_per_realization Total sum of register memory allocation

bytes accessed compute a single realization of this stage
global_bytes_at_task Number of bytes written by this stage to global memory per block
shared_bytes_at_task Number of bytes written by this stage to shared memory per block
register_bytes_at_task Number of bytes written by this stage to register memory per block
global_innermost_bytes_at_task Number of bytes written by this stage to global memory

per block, along the innermost storage dimension
shared_innermost_bytes_at_task Number of bytes written by this stage to shared memory

per block, along the innermost storage dimension
register_innermost_bytes_at_task Number of bytes written by this stage to register memory

per block, along the innermost storage dimension
num_blocks Number of blocks used when computing this stage
num_warps_per_block Total number of warps per block for this stage
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num_active_warps_per_block Number of warps per block for which this stage has at least
1 active thread

num_threads_per_block Number of threads per block that are used for computing this stage
expr_branching This stage’s Strahler number: the minimum number of registers required to

evaluate this stage’s computation
block_occupancy Ratio of number of threads used to the hardware thread limit
warp_lane_utilization The ratio of active threads used by this stage to the total number of

active threads available (32 ⇥ number of active warps)
idle_lane_wastage The ratio of idle threads in active warps to the hardware thread limit
num_shared_mem_loads_per_block Number of shared memory load transactions issued

per block. Accounts for the number of bank con�icts of the access
num_global_mem_loads_per_block Number of global memory loads transactions issued

per block. Accounts for the coalescing of the access
num_shared_mem_stores_per_block Number of shared memory stores transactions issued

per block. Accounts for the bank con�icts of the access
num_global_mem_stores_per_block Number of global memory stores transactions issued

per block. Accounts for the coaleascing of the access
shared_mem_store_e�ciency Ratio of bytes stored to shared memory to total bytes trans-

ferred by shared memory store transactions
shared_mem_load_e�ciency Ratio of bytes needed by the stage from shared memory to

total bytes transferred by shared memory load transactions
global_mem_store_e�ciency Ratio of bytes stored to global memory to total bytes trans-

ferred by global memory store transactions
global_mem_load_e�ciency Ratio of bytes needed by the stage from global memory to total

bytes transferred by global memory load transactions
working_set_at_thread Sum of the allocation sizes at the thread level. Hint as to register

pressure
shared_mem_occupancy For compute_ stages, ratio of total shared memory allocated at this

stage’s block level to shared memory hardware limit
shared_mem_block_limit_factor Ratio ofmaximum active blocks allowablewith the amount

of shared memory allocated to the maximum active block hardware limit
max_warp_occupancy Ratio of maximum active warps to maximum active warp hardware

limit
max_block_occupancy Ratio of maximum active blocks to maximum active block hardware

limit

B COST MODEL COMPONENTS
In the following 28 represents the 8th coe�cient predicted by the neural network.

Let select(cond, t, f) = if cond then t else f;

compute_cost = select(inlined_calls == 0,

num_scalars * c1,

num_scalars * c3);

num_threads = num_blocks * num_threads_per_block;

points_computed = num_threads *

points_computed_per_thread;
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compute_cost += select(inlined_calls == 0,

(points_computed * c19),

(points_computed * c4));

idle_core_wastage = ceil(num_tasks / num_cores)

/ max(1, tasks_per_core);

compute_cost *= idle_core_wastage;

compute_cost /= select(inlined_calls == 0,

1 - idle_lane_wastage, 1.f);

load_cost = num_realizations *

(c5 * unique_global_lines_read_per_realization

+ c16 * unique_shared_lines_read_per_realization

+ c8 * unique_register_lines_read_per_realization

+ c6 * unique_global_bytes_read_per_realization

+ c20 * unique_shared_bytes_read_per_realization

+ c7 * unique_register_bytes_read_per_realization

+ c18 * unique_global_lines_read_per_thread

+ c17 * unique_shared_lines_read_per_thread

+ c2 * unique_register_lines_read_per_thread

+ c13 * unique_global_bytes_read_per_thread

+ c11 * unique_shared_bytes_read_per_thread

+ c0 * unique_register_bytes_read_per_thread)

+ c10 * num_scalars * unique_bytes_read_per_point

+ c12 * num_scalars * unique_lines_read_per_point

+ c14 * num_tasks * unique_bytes_read_per_task

+ c15 * num_tasks * unique_lines_read_per_task;

global_mem_load_cost = num_blocks *

num_global_mem_loads_per_block;

global_mem_load_cost *= select(inlined_calls == 0,

1.f / global_mem_load_efficiency, 1);

shared_mem_load_cost = num_blocks *

num_shared_mem_loads_per_block;

shared_mem_load_cost *= select(inlined_calls == 0,

1.f / shared_mem_load_efficiency, 1);

load_cost += global_mem_load_cost

+ shared_mem_load_cost;

shared_mem_store_cost = c29 * num_blocks *

num_shared_mem_stores_per_block;

global_mem_store_cost = c21 * num_blocks *

num_global_mem_stores_per_block;

global_mem_store_cost *= select(inlined_calls == 0,

1.f / global_mem_store_efficiency, 1);

store_cost = shared_mem_store_cost

+ global_mem_store_cost;

cost_of_false_sharing = select(inner_parallelism > 1,
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c22 * (num_scalars) /

max(1, global_innermost_bytes_at_task), 0.0f);

store_cost += cost_of_false_sharing;

cost_of_malloc = c24 * num_realizations;

cost_of_parallel_launches = num_productions *

select(inner_parallelism > 1, c25, 0.0f);

cost_of_parallel_tasks = num_productions *

(inner_parallelism - 1) * c26;

cost_of_parallelism = cost_of_parallel_tasks

+ cost_of_parallel_launches;

cost_of_working_set = working_set * c9;

cost = compute_cost + store_cost + load_cost +

cost_of_malloc + cost_of_parallelism +

cost_of_working_set;
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