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Abstract—The volatile nature of wind power generation creates
challenges in achieving secure power grid operations. It is,
therefore, necessary to accurately predict wind power and its un-
certainty quantification. Wind power forecasting usually depends
on wind speed prediction and the wind-to-power conversion
process. However, most current wind power prediction models
only consider portions of the uncertainty. This paper develops
an integrative framework for predicting wind power density,
considering uncertainties arising from both wind speed prediction
and the wind-to-power conversion process. Specifically, we model
wind speed using the inhomogeneous Geometric Brownian Mo-
tion and convert the wind speed prediction density into the wind
power density in a closed-form. The resulting wind power density
allows quantifying prediction uncertainties through prediction
intervals. To forecast the power output, we minimize the expected
prediction cost with (unequal) penalties on the overestimation and
underestimation. We show the predictive power of the proposed
approach using data from multiple operating wind farms located
at different sites.

Index Terms—Inhomogeneous Geometric Brownian Motion,
nonstationary process, power curve, wind farm

I. INTRODUCTION

Unlike traditional fossil-based energy sources, wind power
generation is severely affected by stochastic weather condi-
tions [1], posing significant challenges in achieving secure
power grid operations [2]. Thus, accurate forecasting of wind
power generation and its uncertainty quantification becomes
a critical component in several decision-making processes
including unit commitment, economic dispatch, and reserve
determination [3]. Wind power generation forecasts have been
widely investigated in the literature (e.g., [4], [5]). Interest-
ingly, many studies focus on generating point forecasts of wind
power. However, due to the highly volatile and intermittent
nature of wind power, probabilistic density forecasts become
more crucial for decision-making, e.g., energy storage system
sizing, in power system operations under large uncertainties
(4], [6].

In providing probabilistic density forecasts, prediction un-
certainties should be fully recognized [7]. Wind power depends
heavily on wind speed and wind-to-power relationship called
the power curve shown in Figure 1. Therefore, two major
uncertainty sources need to be considered. The first is the
uncertainty in predicting future wind speed, whereas the
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second uncertainty arises when the wind speed is converted
to the wind power. Figure 1 illustrates the impact of uncer-
tainties in both wind speed forecast and conversion process on
the probabilistic density prediction. Due to the nonlinearity
of power curves, the predictive wind speed distribution is
not linearly translated into the probabilistic characteristics of
wind power prediction. Such nonlinearity causes challenges in
quantifying uncertainties in wind power predictions.

In this paper we devise a new integrative methodology
for the wind power density forecast by translating the whole
predictive wind speed density into the predictive power density
forecast. In particular, we formulate the wind speed as a
continuous stochastic process based on the inhomogeneous
Geometric Brownian Motion (GBM). The inhomogeneous
GBM is flexible in capturing nonstationary and highly volatile
wind characteristics. We dynamically update the time-varying
parameters in the inhomogeneous GBM model with the dual
Kalman Filtering in order to characterize the nonstationary
nature of wind speed. By applying the Ito’s lemma [8] to the
stochastic power curve, we then convert the predictive wind
speed density to the predictive distribution of wind power.

The resulting closed-form density provides a comprehensive
characterization of prediction uncertainties, including predic-
tive intervals and quantiles. Besides, the predictive density
allows us to assign different weights on overestimating and
underestimating future generation. For example, wind farm op-
erators may prefer to avoid penalties due to unsatisfied demand
(or unsatisfied commitment) and thus, prefer underestimation
to overestimation of future wind power outputs, while others
may prefer overestimation to prevent salvage of excessively
generated power [9], [10]. To accommodate such unequal
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penalties, we formulate an optimization problem to obtain
the optimal point prediction that can minimize the expected
prediction cost caused by over/underestimation, according to
the operator’s preference.

We summarize the main contributions as follows.

(1) We provide an integrative framework for wind power
density forecast, incorporating uncertainties in both wind
speed and the conversion process.

(2) The model parameters are adaptive to changes in the
environment and in the power conversion process.

(3) The resulting predictive density takes a closed-form,
providing rich information for probabilistic forecasting. It
allows us to obtain the optimal prediction that can mini-
mize the average prediction cost when the overestimation
and underestimation penalties are different.

We apply the proposed approach to three datasets collected
from actual operating wind farms. Our implementation results
indicate that the proposed approach can successfully character-
ize the stochastic wind power process and provide prediction
results in accordance with the wind farm operator’s preference.

The remainder of this paper is organized as follows. Sec-
tion II reviews relevant studies. Section III presents the pro-
posed approach. Section IV shows the computational results
on real datasets. Finally, we summarize the paper in Section V.

II. LITERATURE REVIEW

The fast increase in computational capabilities and data
storage capacity has attracted much attention to data-driven
prediction models. Several studies focus on wind speed
forecasting using various statistical and machine learning
methods, including time-series models such as the Auto-
Regressive Moving Average (ARMA), Auto-Regressive Gen-
eralized Autoregressive with Conditional Heteroscedasticity
(AR-GARCH) model, and Neural Networks (NN) [11], [12].
In [13], a continuous differential equation is developed to
estimate spatially correlated wind speeds at multiple turbines
in a wind farm. Then the obtained wind speed at each turbine is
converted to wind power though a pre-specified power curve.
Another commonly used model is the persistent model. It is
a simple yet effective model that assumes that the next wind
speed is similar to the current speed. Despite its simplicity,
the persistent model provides promising prediction accuracy
at some wind sites [9].

Various methods study the power curve estimation problem,
using polynomial regression, splines, nonparametric regres-
sion, NNs, and support vector machines [14], [15], [16].
However, these studies do not consider wind speed forecast-
ing uncertainties. Further, some recent studies provide point
wind power forecasting. Abedinia et al. [17] propose a two-
dimensional convolution NN to forecast wind power. Their
model is trained based on particle swarm optimization. In
[18], wind measurements are decomposed using an improved
version of empirical mode decomposition. These decomposed
measurements are fed into a forecasting model composed of
a bagging NN combined with K-means clustering.

To provide probabilistic wind power forecasting, a number
of studies simulate wind speed from the predictive density and

convert the sampled wind speed to the power output using
a static power curve. Taylor et al. [5] integrate wind speed
predictions generated from multiple physics-based forecast
models with different scenarios via ensemble forecasts. These
forecasts are then used for providing wind speed density
forecast. Recently, stochastic differential equations (SDEs)
have been used to forecast wind power [19]. In [20], an
SDE is developed to model the random variations of power
processes, where an Ornstein-Uhlenbeck process is employed
for modeling wind spend and memory less transformation.
Loukatou et al. [21] describe the continuous-time wind speed
with the Ornstein-Uhlenbeck GBM model to simulate the wind
power trajectory using a deterministic power curve. Although
this approach considers the uncertainties in predicting the
wind speed, probabilistic characteristics and uncertainties in
converting the wind speed to wind power are not addressed.
Furthermore, as discussed in Section I, due to the nonlinearity
in the wind-to-power conversion process, this approach does
not provide the predictive wind power distribution in a closed-
form.

Alternatively, some studies take wind historical information
as covariates (or inputs) to estimate probabilistic characteris-
tics of wind power [22], [23]. Based on NNs, Sideratos and
Hatziargyriou [4] estimate quantiles of future wind power,
whereas prediction intervals of wind power generation are
constructed in [24]. In [25], a linear quantile regression with
spline bases is employed to estimate quantiles of the forecast
errors. In many of these studies, the predictive wind speed
density is not used as input, but the point wind speed forecast
and/or past observations are treated as covariates. Therefore,
the prediction uncertainties of wind speed are not fully cap-
tured in these studies.

The last approach is to design a probabilistic wind power
forecasting using wind power outputs only. Studies in this
category employ various methods, such as quantile regres-
sion, lower upper bound estimation, Bayesian models, and
kernel density estimation [26]. In [27], multivariate distribution
modeling and probabilistic forecasts are integrated, while
introducing an advanced method based on R-vine copula.

While these studies consider forecasting uncertainties to
some extent, they have limited capabilities for quantifying
complete probabilistic characteristics of future wind power.
They account for portions of uncertainties or provide partial
probabilistic information, such as quantiles or prediction inter-
vals, instead of estimating the complete probabilistic density
of future wind power. In this research, we fill the gap in
the literature by collectively accounting for the uncertainties
arising in both wind speed prediction and stochastic power
conversion process and providing a predictive density of wind
power in a closed-form.

III. METHODOLOGY

In this section, we first formulate the dynamics of the
wind speed process and the wind-to-power conversion process.
Next, we provide an optimization framework to forecast the
future wind power output based on wind farm operator’s
preference on over- and underestimation, and finally present
the implementation procedure.



A. Modeling Wind Speed Process

Considering the highly volatile and time-varying wind be-
havior, we characterize the dynamics of wind speed using the
inhomogeneous GBM model [28]. Let S(¢) denote the true
wind speed at time ¢. We model the stochastic process of S(t)
as

dS(t) = ps(t)S(t)dt + Us(t)S(t)dWS(t), €))]

where pg(t) and og(t) capture the drift and volatility of the
stochastic process, respectively, and both are time-dependent.
Ws(t) denotes a standard Brownian process with independent
increments AWg(t) = Wg(t+At)—Wg(t). These increments
are normally distributed with mean O and variance At.

Let X(t) denote In S(t), i.e., X(¢) = InS(t). Given the
underlying dynamics of S(¢) in (1), the dynamics of X ()
can be represented as

d(X ()] = [usa) - iaéw} di 4 os(AW (D). @)

The detailed derivation of X (¢) is available in [8, Chap. 5].

Solving the SDE in (2) analytically is complicated but can
be approximated by numerical discretization. By applying the
Wagner-Platen expansion and the Euler discretization scheme
[29] to (2), we obtain

X(t+ At) = X(t) + [us(t) - %U%(t)} At +os(t)AW(t). (3)

Then, it immediately follows that X (¢ + At) in (3) follows
a normal distribution as

X(t+At)~ N (X (t) + [us(t) - %aé(t)} Atmé(t)At) G
which implies that wind speed is log-normally distributed as

In(S(t + At)) &)
~N (ln(S(t)) + [Ms(t) - ;aga)} At,a@(t)At) .

Note that the wind speed distribution in (5) characterizes
the stochastic dynamics of wind speed through the time-
varying parameters, ug(t) and og(t). To estimate ug(t) and
os(t), one should use wind measurements collected from a
meteorological tower or turbine anemometers. However, the
collected wind speed may have measurement errors and/or
can be perturbed by disturbances such as wake effects [16].
Therefore, the true wind speed S(t) is unobserved in practice.
To incorporate such errors and disturbances, assume that the
measured wind speed is a linear function of the unobserved
true speed. Let WS(t) denote the measured wind speed at
time ¢ and Y (¢t) = In(WS(t)). Letting X (¢)(= In(S(t)) be
a state variable perturbed by a normally distributed error term
z ~ N(0,02) as follows.

Y(t) = X(t) + 2 (6)

Note that the dynamics of X (t), governed by the linear SDE
representation in (3), can be rewritten as

X(t+At)=X(t)+ A0(t) + w(t), @)

where A = (At, —1At), 6(t) = (us(t),02(t))", and w(t) ~
N(0,0%(t)At) is the process noise.

The equations in (6) and (7) together represent the linear
state space model. Among several ways to estimate the model
parameters in the linear state space model, we employ the
Kalman filter due to its flexibility and strong performance in
many applications [30], [31].

In particular, we employee the dual Kalman filtering pro-
cedure to estimate parameter vector 6(¢) and state X (¢) [32].
To model the time-varying parameter 6(¢), we assume that it
drifts according to a two-dimensional Gaussian random walk
process with covariance @), i.e.,

O(t + At) = 0(t) + e, ®)

where € ~ N(0,Q). We include the detailed procedure to
update the parameters 6(¢) and state X (¢) in Appendix.

B. Modeling Wind-to-Power Conversion Process

This section discusses how to convert the wind speed
dynamics into the dynamics of wind power process. The
relationship between the wind speed and the power generation
can be quantified by the power curve function. A common
approach to build the power curve is to include wind speed
as a covariate. However, a recent study in [33] discusses the
temporal correlation issue, implying that, in addition to wind
speed, previous power output also need to be incorporated
to better define the power curve. Let F(t,S(t), P(t — At)))
denote the power curve at time ¢, given the speed S(t) and
power P(t — At). Here, F(t,S(t), P(t — At))) can represent
the power curve from a whole wind farm or a stand-alone
turbine.

We model the power curve function F'(¢, 5(t), P(t—At)) as
a function of ¢ (as well as S(¢) and P(t— At)) to incorporate
the time-varying nature of power generation efficiency. This is
because, in addition to the wind speed, the wind power output
depends on many other environmental factors such as wind
direction, humidity, and ambient temperature [15]. Moreover,
turbines’ age and degradation states of their components (e.g.,
blade, gearbox) also affect the generation efficiency. Including
all of these additional factors, if not impossible, would make
the power curve model overly complicated, and more impor-
tantly, it also needs to characterize the dynamics of each factor,
as we did for wind speed in Section III-A. Instead, we consider
the power curve as a function of wind speed and previous
power output and let the power curve function itself time-
varying. Our approach in modeling the power curve is flexible
enough to employ a time-invariant power curve that only de-
pends on inputs; in this case, the power curve function can be
simply reduced to F(t, S(t), P(t—At)) = F(S(t), P(t—At)).

In modeling F'(t, S(t), P(t — At)), any type of functions,
e.g., parametric, semi-parametric such as splines [34], or
nonparametric function [35], [36], can be employed as long as
F(t,S(t), P(t— At)) satisfies some weak conditions. Suppose
that F'(t, S(t), P(t — At)) is twice differentiable over ¢, S(t),

and P(t — At).
The power output P(t) at time ¢ is given by
P(t) - F(ta S(t),P(t - At)) + e(t)v 9

where e(t) is a random noise in the wind-to-power conver-
sion process. We assume that Ae(t) = e(t + At) — e(t)



follows the normal distribution with mean O and variance
0% Fs(t,S(t), P(t — At))At, where Fs(t,S(t), P(t — At))
represents the first derivative of F(t,S(t), P(t — At))
over S(t). In formulating the noise variance, we include
Fs(t,S(t), P(t — At)), because the power conversion vari-
ability tends to be high when the power curve changes rapidly,
which is mostly in the mid-speed range. For notational brevity,
we will use Fs as an abbreviation of Fs(t,S(t), P(t — At))
in the subsequent discussion.

We first model the dynamics of the wind power pro-
cess with any power curve function F'(¢,S(t), P(t — At)).
Then, we derive the dynamics with a specific form for
F(t,S(t), P(t — At)) to illustrate our approach.

1) Dynamics of Wind Power Process with General Power
Curve Function: Given the wind speed process S(t) in (1),
the wind power process also follows the inhomogeneous GBM
and its dynamics is modeled by

dP(t) = pp(t)P(t)dt + op(t)P(t)dWp(t)  (10)
with

Fy + ps(t)S(H)Fs + 305(1)S(t)*Fss
pp(t) = P

N 1oh(t — At)P(t — At)?Fpp
P(t)

(it — Atl)DJ(Dt()t ~ APy )

op(t) =

Vos()2S()2F2 + o4 (t) Fs+o2(t — At)P2(t — 1)F2
P(t) ’

12)

where Wp(t) denotes a standard Brownian process, F}; rep-
resents the first derivative of F' over ¢, Fgg is the second
derivative of I over S, and Fpp is the second derivative of
F over P. Also, S, jus, and og denote S(t), ps(t), and og(t)
in (1), respectively. We derive (10)-(12) using Ito’s Lemma in
[8, Chap. 4]. The detailed derivation is included in Appendix.

Note that pp(t) and op(t) in (11) and (12), respectively,
depend on the parameters in S(¢) (i.e., us, og) and the
power curve related functions (i.e., F}, Fs, Fss, Fp, Fpp),
quantifying the integrated temporal correlation structure from
the uncertainties in the wind speed process and wind-to-power
conversion process. This result indicates that the stochastic
dynamics of wind speed S(t), together with the power curve
function, is translated into the dynamics of power generation
P(t).

Following the similar procedure in (1)-(5), one can derive
the distribution of wind power in a closed-form. Specifically,
the power output P(t + At) at time ¢ + At is log-normally
distributed as

In(P(t + At))

~ N (W(PW) + |np(t) — So3)| AtoB()AL) .
(mceen+ | 0] )

13)

2) Dynamics of Wind Power Process with Nonparametric
Power Curve Function: As discussed earlier, the power curve

F(t,S(t), P(t — At)) can be flexibly modeled using various
functional forms. To illustrate, we employ the nonparametric
adaptive power curve model [36] in our analysis. We explain
only an outline of the nonparametric adaptive model in this
study. For more detailed procedure, the reader is referred to
[36].

In the nonparametric approach, the covariates are mapped
into a feature space through a nonlinear mapping (S(t), P(t—
At)) — ¢(S(t), P(t — At)). Then P(t) can be modeled by

P(t) = F(t,S(t), P(t — At)) + e(t)
= wl(S(t), P(t — At)) + e(t), (14)

where w; is a nonparametric regression coefficient vector at
period t.

The coefficient vector w; is time-varying, so that the power
curve F'(t,S(t), P(t — At)) can be updated whenever a new
sample is observed. Suppose that w;_a; was estimated by
Wi at time t — At and we obtain newly observed data
at time ¢t. Then we estimate w; by solving the following
optimization problem.

5)
(16)

min L = 1||(,u,g — @pne]? + %’Ye(t)z
sit. P(t) =wl¢(S(t), P(t — At)) + e(t).

Here the first term in the objective function represents the
change of the coefficient from ¢t — At to t. The second
term regularizes the amount of update with the regularization
parameter -y, balancing the coefficient change and quality of
model fitting.

The inner product of ¢()’s is called a kernel function.
Among many choices of the kernel function, we employ the
Gaussian kernel due to its flexibility. Let k(S(¢;), S(¢;)) =
cap{~[(S(t:) — S(t;)/(2065)} and k(P(t;), P(t;) =
exp{—[(P(t;) — P(t;)]?/(26p)} denote the inner products of
¢(S(t;)) and ¢(S(t;)) and ¢(P(¢;)) and ¢(P(t;)), respec-
tively, where §s and dp denote the parameters in the Gaussian
kernel. Suppose there are n observations up to time ¢. Then

F(t,S(t), P(t — At)) is updated by
F(t,S(t), P(t — At)) z ik (S(t), S(t — (n —i)At))
x k(P(t — At), (t—(n—z—l)At)), (17

where )\; is Lagrange multiplier corresponding to the equality
constraint in (16).

Then the estimated power curve, F(t,S(t), P(t — At))
in (17), can be plugged into the predictive distribution for
P(t+ At) in (13). Specifically, to estimate pp(t) and op(t)
in (11) and (12), respectively, we need to estimate F}, Fg,
Fsg,Fp,Fpp and o, First, F; can be estimated by taking
the finite difference as

- oF
Ft = E
E(t,8(t), P(t — At)) — F(t — At, S(t), P(t — At))
B At
(18)
_ NK(S(0), S@)R(P(t — Ab), P(t — At) 19)

At



Next, F's and Fgg, which are the first and second derivatives
of F' over S, respectively, can be estimated by

. OF
F —

= — 2
s =33 (20)

dk(S(t), S(t — (n — i)At))

= Z Aik(P(t — At), P(t — (n — i — 1)AL))

=2

a8

= i Aik(P(t — At), P(t — (n — i — 1)AL))K(S(£), St — (n — i) At))
=2

i=

_ (7 S(t) — S(t—(n— i)At))y o

ds
and

n

2
Fgg = %5 = Z;)\ik(P(t — At), P(t — (n — i — 1)At))

2k(S(t), S(t — (n — i)At))
' d52

= znj Nik(P(t — At), P(t — (n — i — 1) At)k(S(t), S(t — (n — i) At))
=2

St) —St—(n—9)At)2 1
.<<<> <5§( >>>_5$>7 .

Similarly, F'p and Fpp, which are the first and second
l[;artial derivatives of F' over P, respectively, can be estimated
y

b _ OF

P=25 23)

(Pt — At), P(t — (n — i — 1)At))

[
M=

Aik(S(t), S(t — (n — i) AL))
- P

.
I|

Xek(S(t), S(t — (n — ) At)k(P(t — At), P(t — (n — i — 1)At))

Il

S
Il
N

' (_ P(t— At) — P(t — (n—i— 1)At))7 o

dp
and

n

2
Fpp = % = ; Aik(S(t), S(t — (n — i)At))

O?k(P(t — At), P(t — (n —i)At — 1))
' op?

= Eﬂ: Ak(S(t), S(t — (n — ) At))k(P(t — At), P(t — (n — i — 1)AL))
=2

(25)

. <(P(tAt)P(t (n—i—1)At))2 1)

82, p
Finally, to estimate o5 in Ae; ~ N(0,0%Fs(t,S(t), P(t—

At))At), we use the sample standard deviation with the first
n data points as follows.

O —

1 Z": AP(iAt) — AF(iAt, S(iAt), P((i — 1)At))
V Fs(iat, SGADP((i — 1)AHAL

(26)
where AP(iAt) = P(iAt) — P((i — 1)At) and
AF(iAt, S(iAt), P((i — 1)At))
= F(iAt, S(iAt), P((i — 1)At))
— F((i —1)At, S((i — 1)At, P((i — 2)A1))))  (27)

By plugging the estimated parameters, F, F,, Fs, Fsg,
Fp, Fpp, and 65 in (17)-(26) to pup(t) and op(t) in (11)
and (12), we obtain the predictive distribution of power at
t + At in (13). Recall that other parameters associated with
wind speed dynamics, i.e., g and og, are estimated from the
dual Kalman filtering process discussed in Section III-A.

C. Uncertainty Quantification and Wind Power Prediction

The closed-form predictive distribution of wind power out-
put in (13) provides comprehensive information to characterize
prediction uncertainties such as the prediction interval and
quantiles. Following the procedure discussed in [37], the
(1 — B8)100% prediction interval for the power generation at
time ¢ + At is given by

lexp(i' + o' A), exp(i’ + o' B))] (28)

where 1/ = In(P(t) + [pp(t) — Loh(t)] At and o/ =
op(t)VAt, and A and B are the solution of
®(B)—-P(A)=1-
(B) - @(4) =1- 4, 09)
A+ B=-20".
Here ®(-) denotes the cumulative distribution function of a
standard normal distribution.
The a-quantile Q,, such that Pr(P(t + At) < Q,) = a is
obtained by

Qo = eap(p' + '@~ (). (30)

In particular, the median of P(t+ At) is given by exp(u’) for
a = 0.5.

The quantile information is critical in determining the pre-
diction value. In time series analysis, quantities that represent
a central tendency, e.g., mean or median, are typically used
as a point forecast. Such forecast might not be accurate when
the cost of underestimation and overestimation are different,
as in wind power operations [9], [38]. Given the quantile, the
power is flexibly estimated by penalizing under/overestimation
differently.

Let p denote the predicted power output at time ¢ + At. Let
f () is the probability density function (pdf) of the log-normal
distribution described in (13) of the power output at ¢ + Af.
The expected amount of underestimation and overestimation,
denoted by u(p;t + At) and o(p;t + At), respectively, are
given by

u(p;t + At) = Ep(4ar)[max{0, P(t + At) — p}]

+oo
[ st G31)
p
o(p;t + At) = Ep(ar[max{0,p — P(t + At)}]
) = /p xf(z)de. (32)

To predict the power output, one can minimize the expected
cost due to possible under/overestimation. Therefore, the op-
timal p, denoted by p*, is obtained by solving the following
unconstrained optimization problem.

p* = argmin (a - u(p;t + At) + (1 — a) - o(p; t + At))
P
(33)



where « € [0, 1] represents the penalty to the underestimation.
When the underestimation (overestimation) is more costly,
o greater (less than) than 0.5 can be used. By taking the
derivative of (33) with u(p; t+At) and o(p; ¢+ At) and setting
it equal to zero, it can be easily shown that the optimal value
p* is the ath quantile, i.e., p* = Q. The second derivative is
positive, ensuring its optimality.
We provide the overview of the proposed approach in Fig. 2.
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Figure 2: Overview of the proposed approach

D. Implementation Details

Algorithm 1 summarizes the procedure. In our implemen-
tation, we divide each wind farm dataset into training and
testing sets. Let Ny denote the number of observations in
the training set. The parameters og(t) and pg(t) in the wind
speed process, the error parameters (of in (6) and @ in (8)) in
the dual Kalman filtering, and the power curve are initialized
using the Ny observations in the training set. In particular,
to set the error parameters in the kalman filtering, we apply
the validation technique to the Ny data points and choose
the values that minimize the prediction error [39]. Moreover,
considering that [n(S(¢t + At)) is normally distributed as
shown in (9), we use the sample mean and sample standard
deviation of the measured wind speeds to initialize pg(No)
and og(Np) (see the lines #6-#8 in the algorithm).

The testing set contains 100 observations for each wind farm
and is used for evaluating the prediction performance in each
wind farm. In this prediction step we update (or filter) the
model parameters whenever a new observation is obtained. In
Algorithm 1, pug(t+1|¢), os(t+1]t), and S(t+1|¢) in
line #12 denote the prior estimates of pg(t + 1), og(t + 1),
and S(t+ 1), respectively, from the Kalman filtering, whereas
st +1|t+1),05(t+1]|t+1)and St+1]|t+1)in
the filtering step (lines #15-#18), correspond to their posterior
estimates after observing wind speed WS(¢ + 1) and power

Algorithm 1 Proposed Algorithm

Initialization

Initialize ag and @ in (6) and in (8), respectively.

for £k = 2 to Ng do
r(k) < In (WS(k))/In (WS(k — 1)).

end for

Obtain initial estimates of the og and pg from (5) as follows:

os(No) « std(r).

s (No) < mean(r) + o%(No)/2.

Initialize the power curve function, F'(No, WS(Ny)), P(Nog — 1)), as

discussed in [36].

10: for t = Ng to co do

11: Prediction step

12: Calculate pus(t +1 | t), og(t+1 | ¢), and S(t+ 1 | t) from
(36)-39)

13: Use (11)-(12) to get pup(t, P) and op(t, P).

14: Solve (33) to predict the one-step ahead power output

15: Filtering step

16: Observe WS(t + 1) and P(t + 1).

17: Compute pg(t+1|t+1),05(t+1|t+1),and S(t+1|t+1)
from (40)-(45).

18: Update the power curve function F'(¢+1,S(t+1 | t+1), P(t | t)).

19: end for

VRN E LN

P(t 4+ 1) at time ¢ + 1; more detailed dual Kalman filtering
procedures are included in Appendix.

IV. CASE STUDIES

We apply the proposed approach to real datasets collected
from three operating wind farms, WF1, WF2, and WF3, sum-
marized in Table I. Due to the data confidentiality required by
the data providers, detailed information regarding each wind
farm is omitted. Each dataset includes wind measurements and
power outputs from the whole wind farm. In all wind farms,
the power outputs are scaled to [0, 100]. In our implementation,
we use 10-minute average wind speed and 10-minute average
wind power as the only input and output, respectively.

Table I: Wind Farms Information

Dataset H WF1 [ [ WF2 [ [ WF3
Terrain offshore land-based onshore
Number of turbines about 35 240+ about 10

Total data size 1000 1000 650
Temporal resolution 10 minute 10 minute 10minute

A. Implementation Results

Figure 3 depicts the 50% and 90% prediction intervals in
WF 1 testing set. Note that the upper bound is capped at 100
(the maximum normalized power output). The majority of the
observations fall inside the prediction intervals, indicating that
our approach can successfully capture the uncertainties. We
can also observe that in general the more volatile the power
output (i.e., when the power output changes rapidly), the wider
the prediction intervals. For example, when ¢ is about 95, the
power output changes rapidly and the prediction intervals are
wider, which represents larger prediction uncertainties. On the
other hand, when the output is less volatile, e.g., when ¢ is
between 40 and 80, we obtain narrower intervals. We observe
similar patterns in other wind farms but omit the results to
save space.
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Figure 3: Power Output Prediction Intervals on WF1 Dataset

B. Comparison with Alternative Methods

We compare our approach with other alternative methods,
including the persistent model, ARIMA, AR-GARCH model,
NN with long short-term memory (LSTM) layers. In both
ARIMA and AR-GARCH methods, the wind speed is assumed
to follow a normal distribution. In implementing ARIMA, AR-
GARCH, and LSTM NN, we use built-in functions in Matlab.
We further consider the end-to-end process that formulates
the wind power process directly without considering the wind
speed forecasting and the conversion process. In the end-to-end
process, the wind power is assumed to follow inhomogeneous
GBM.

Each model order (or number of parameters) is chosen such
that the Bayesian information criterion (BIC) is minimized.
To determine the structure of LSTM, including the number of
layers and the number of neurons, we apply the following
validation technique. The networks are trained using 50%
of the whole data set in each wind farm and the prediction
performance is evaluated using the validation set consisting of
20% of the data set. We choose the best network structure
with the lowest prediction error in the validation set. The
models in these alternative methods are re-trained when a
new observation is obtained. Once the wind speed at time
t+ At is predicted using these approaches, the predicted wind
speed is plugged into the power curve to get P(t+ At). In all
alternative methods except the end-to-end process, we apply
the same adaptive non-parametric power curve discussed in
Section III-B.

We first compare the point prediction results with the
root mean squared error (RMSE) and mean absolute error
(MAE). Table II summarizes the results in the testing sets,
in comparison with other alternative methods. Overall, our
proposed model yields superior performance compared to al-
ternative approaches. For WF3 dataset, the end-to-end process
provides slightly lower RMSE than our approach, however,
the difference is insignificant.

Next, we evaluate the probabilistic prediction performance
with multiple metrics. In order to see how different penalties
on the overestimation and underestimation affect the predic-
tion quality, we compute the following power curve error

Table II: Summary of RMSEs and MAEs."

WFI1 [ WE2 [ WE3

[ RMSE | MAE | RMSE | MAE | RMSE | MAE

Proposed Approach 3.02 1.86 1.72 1.30 4.58 2.90

Persistent 3.40 2.34 2.34 1.83 6.26 4.33

ARIMA 4.76 3.65 4.00 3.02 6.77 4.67

AR-GARCH 4.56 3.24 3.13 2.39 6.07 4.14

LSTM NN 4.68 3.42 3.27 2.51 6.23 4.23

End-to-End Process 3.24 1.91 1.86 1.38 449 292
* Boldfaced values indicate the best performance.

(PCE) [10], also referred to as the pinball loss.
PCE(P(t), P(t)) = (34)

if P(t) < P(t)
otherwise.

(1= a)(P(t) — P(1)),

where P(t) is the observed power at time ¢ and P(t) is its
predicted power from each method. Recall that in the proposed
approach, we use the a-quantile of the predictive power output
density as discussed in Section III. For fair comparison for
probabilistic forecasting, in ARIMA and AR-GARCH, we also
use the a-quantile of their predictive wind speed densities and
plug the resulting a-quantile estimates to the power curve [9].
Note that the forecast values do not change with different
« values in the persistent and LSTM NN method, because
they do not provide predictive densities but only provide point
predictions. Thus, we plug the point wind speed forecast into
the power curve in these methods.

Table III summarizes the average PCE computed from mul-
tiple « values, a = 0.05, 0.10, - - -, 0.95, for each method. The
AR-GARCH generates lower PCEs than ARIMA, because it
takes time-varying variance of wind speed into consideration.
But PCEs from AR-GARCH are still higher than the proposed
approach in all datasets. The LSTM NN also generates about
two times higher PCEs than the proposed approach. Our
approach consistently produces the lowest PCEs in all cases,
indicating that our approach is superior in reflecting wind
farm operators’ prediction preference on overestimation and
underestimation.

{a(P(t) ~ P(1)),



Table III: Average PCEs across Multiple Quantiles with o =
0.05, 0.10, - -+, 0.95"

Proposed | Persis- | ARI- AR- LSTM | End-to-End

Approach tent MA GARCH NN Process
WF1 0.75 1.17 1.40 1.25 1.71 0.84
WE2 0.51 0.91 1.20 0.92 1.27 0.63
WF3 1.17 2.16 1.97 1.72 2.11 1.22

* Boldfaced values indicate the best performance.

To further assess probabilistic estimation performance, we
employ the reliability measure [40]. To compute reliability, an
indicator variable that compares an actual wind power P(t)
with its a-quantile forecast P(t) is obtained as

I(t):{ 1, if P(t) < P(t)

0, if P(t)> P(t), (35)

Then, we take the average of I(t) in the dataset. Figure 4
depicts the reliability diagrams obtained from the predictive
distributions of the proposed and alternative methods. The
diagrams assess a number of quantiles in the testing data,
where the x-axis represents the nominal probabilities of quan-
tile forecasts. Each curve shows the deviation from “perfect
reliability” as represented by the dash-dot line. Note that we
do not include reliability diagrams from persistent and LSTM
NN, because they do not provide the probabilistic forecasting.
The curve corresponding to the proposed method is the close
to the perfect reliability line. This result indicates that the
proposed method generates the well-calibrated probabilistic
performance. The end-to-end process also generate reasonably
good reliability diagrams. However, as we will show in the
subsequent discussion and Figure 5, its sharpness is much
larger than ours.

Figure 5 shows the box plots of widths of 90% prediction
intervals to evaluate sharpness of each method for the three
wind farms. Here, sharpness assesses the quality of the predic-
tion interval [41]. Small sharpness value is preferred, which
implies narrow prediction intervals [42]. While ARIMA and
AR-GARCH overall generate narrower prediction intervals
than the proposed approach, their poor reliability diagrams
in Figure 4 indicate that their probabilistic forecasting is not
accurate. Notably, the proposed method provides more con-
centrated predictive distributions resulting in sharper forecasts,
compared to the end-to-end process.
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Overall, the proposed approach and end-to-end process
show better point and probabilistic performance than other
approaches. These results support the use of inhomeogenous
GBM in capturing the volatile wind speed and power pro-
cesses. Among these two, our approach leads to smaller point
forecasting errors in terms of RMSE and MAE, smaller PCEs,
and sharper forecasts. It reveals that both uncertainties in wind
speed process and wind-to-power process contribute to the
overall model performance.

C. Multi-step ahead forecasting

The focus of this study is to capture uncertainties in highly
volatile wind process. In doing so, we update our parameters
whenever new observation arrives. Thus, our approach is
designed mainly for 1-step ahead forecasting. However, it
would have been interesting to explore multi-ahead prediction
and here, we describe the possibility for multi-step ahead
prediction by simply modifying the proposed approach.

For the 2-step ahead forecasting, we train the model using
every other data points, S(t — 4),S(t — 2),5(t),---. With
this set of observations, 2-step ahead prediction is estimated
by applying our proposed method as if we are making one-
step ahead prediction. The intuition behind this procedure is
that observations can can be collected at longer time intervals
as our model is continuous in nature. That is, our model
captures the dynamics of longer jumps by only considering
such observations. Longer term forecasting can be conducted
in a similar manner.

We compare our proposed procedure with alternative meth-
ods for the 2-step ahead prediction in Table IV. Our approach
provides the lowest 2-step ahead prediction errors in most
cases.

Table IV: Two-Step ahead prediction results.”

Proposed  Persis-  ARI- AR- LSTM  End-to-End
| Approach tent MA  GARCH NN Process
RMSE 4.17 5.42 5.33 5.32 4.80 421
WF1 | MAE 3.00 3.82 4.10 4.04 3.50 2.83
RMSE 3.30 3.84 4.43 4.13 3.59 3.54
WE2 | MAE 2.46 2.92 3.36 3.11 2.71 2.75
RMSE 6.83 8.48 8.06 7.78 7.52 7.25
WF3 | MAE 4.70 5.90 5.76 5.56 5.23 4.71

* Boldfaced values indicate the best performance.

However, for three-step ahead forecasting, our approach
generates worse results than LSTM NN. It is possibly due
to the fact that our approach is highly adaptive to a volatile
process and thus, for longer horizon forecasting, its strong
adaptivity does not show advantage. Improving forecasting
capability for longer horizon is left for future research.

V. SUMMARY

We present a new integrative methodology for predicting
the wind power density. The proposed approach collectively
accounts for the uncertainties in wind speed process and wind-
to-power conversion process and provides rich information for
the probabilistic forecast through its closed-form prediction
density. The closed-form density allows us to extract diverse

information and to determine forecast, depending on the wind
farm operator’s preference on the overestimation and under-
estimation of future wind power outputs. This framework can
minimize the overall costs associated with prediction errors.

Our approach is flexible enough to include other relevant
information for prediction. For instance, it is known that purely
data-driven approaches, which rely on temporal correlation
with past data only, do not provide accurate predictions for
medium-term forecasting, ranging from hours to days [9]. In
such cases, numeric weather prediction (NWP) models can
be employed. However, NWP models have inherent biases
and require appropriate initial and boundary conditions [40].
We plan to extend our approach to adjust the bias of NWP
projections and provide improved wind speed forecasting.

Further, this study does not consider spatial correlation
(either turbine-to-turbine, or wind farm-to-wind farm corre-
lation) [40], [43], [44]. We plan to extend our analysis to
incorporate spatial correlations to make forecasts at multiple
sites.

We believe that our approach could potentially benefit
power grid operations. In the future, we will incorporate our
prediction results into the optimization framework for solving
decision-making problems such as economic dispatch. We also
plan to apply the approach to predict the mechanical and
structural load responses in the wind turbine system for the
reliability analysis and maintenance optimization [45], [46].
The proposed methodology is also applicable to other engi-
neering systems subject to nonstationary operating conditions,
such as solar power systems [47].
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VI. APPENDIX

Dual Kalman Filtering Procedure
Recall that the parameter vector is 6(t) = [us(t), 0% (t)]”

and state is X (¢). We use 65(t) for o%(t). Let X(¢ | t) and
X (t+ At | t) denote the posterior and prior estimates of state
variable X (¢) with their associated estimation error variances
Px(t | t) and Px(t 4+ At | t), respectively. Similarly, 6(¢ |
t) and (t + At | t), respectively, denote the posterior and
prior estimates of the parameter vector 6(t) and Py(t | t)
and Py(t + At | t) represent the corresponding estimation
error covariance matrices. We let Kx(t) and Kpy(t) denote
the Kalman gain associated with state and parameters filters
at time ¢, respectively. Then the dual Kalman filtering proceeds
as follows:
o Parameters prediction:

Ot + At | t) =0(t | t), (36)
Pyt + At | t) = Pa(t|t) + Q. (37)
o State prediction:
Xt+At|t)=X(|t)+ A0+ At | 1), (38)
Px(t+At|t) = Px(t|t)+ Ata(t + At |t). (39
o State filtering:
Kx(t+At) = Px(t+ At |t) [Px(t+At|t)+02]7, 40)
X+ At|t+At)=X(t+At|t) (41)
+ Kx(t+ At) [Y(t+ At) — X (¢ + At | )],
Px(t+ At |t+ At) = [I — Kx(t+ At)] Px(t+ At | t). (42)
o Parameters filtering:
Ko(t+ At) =
Py(t+ At | t) AT [APy(t + At | t) AT + o271, 43)

Ot + At |t + At) = O(t + At | 1)
+ Ko(t+Ab) [Y(t+At) — X(t+ At | 1)], @4
Py(t+ At [t + At) = [I — Ko(t + At) A] Py(t + At | t). (45)

Then X (t + At | t), which is the posterior estimate of X (t),

is used to estimate X (t) and similarly, 6(t + At | t) for
estimating p15(t) and o%(t) in (5).

Derivation of dP(t) in (10)
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Based on Ito’s Lemma [8, chap. 4] and assuming that
P(t — 1) follows GBM, we obtain

dF(t,S(t), P(t — 1)) = Fidt + FsdS(t) + FpdP(t — 1) + Fs5(dS(t))?
+ FspdS(t)dP(t — 1) + Fpp(dP(t — 1))> = Fy + ps(t)S(t) Fs

+ pp(t — At)P(t — At)Fp + %ag(t)S(tFFSS + %U%(t — AP (t — A
+ op(t)FsS(t)dWs (t) + op(t — At)P(t — 1) FpdWp(t — At)

Note that during time ¢ to t 4+ At, the jump value is given
by
AP(t) = P(t + At) — P(t)

= F(t+ At, S(t + At), P(t)) — F(t, S(t), P(t — At)) + e(t + At) — e(t)

= AF(t,S(t), P(t — At)) + Aey,

where Ae; is assumed to follow the normal distribution with
mean 0 and variance 02 Fs(t, S(t), P(t— At))At, ie., Ae; ~

N(0,0%Fs(t,S(t), P(t — At))At). Or equivalently,
de(t) = op/Fs(t,S(t), P(t — At))dW,(t),

where dW,(t) denotes a standard Brownian process. Taking
the errors in the power curve into account, we have AP(t) =
AF(t,S(t), P(t — At) + Ae; with Aey ~ N(0,0%F2(t)At).
Therefore, the dynamic of P(¢) becomes

dP(t) = dF(t, S(t), P(t — At)) + de(t)

PLACE
PHOTO
HERE

_ F+ps(t)S(t)Fs + 303(1)S(1)*Fss + up(t — A)P(t — At)Fp
- P(t)

10%(t — At)P(t — At)2Fpp
P(t)

P(t)dt + o5(t)S(t) FsdWs (1)

top(t— APt — A)FpdWp(t — At) + op/Fs(t, S(b), P(t — AL))dWe(t),

where Wp(t — 1), Ws(t) and W,(t) are three independent

P(t)dt

Brownian motions, which leads to
dP(t) = pp(t, P)P(t)dt + op(t, P)P(t)dWp(t),
where pp(t) and op(t) are, respectively, given by

Fy + ps(t)S(t)Fs + 50%(t)S(t)*Fss
P(t)
1o4(t— A)P(t — At)2Fpp  pp(t — At)P(t — At)Fp

pp(t) =

+
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P(t) P(t)
\/ag(t)S(tﬂFg + 02 (t) Fs+od (t — At)P2(t — 1)F2
P(t) '

O'P(t) =
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