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Data-driven algorithms for inverse design
of polymers

Kianoosh Sattari, a Yunchao Xie*a and Jian Lin *ab

The ever-increasing demand for novel polymers with superior properties requires a deeper under-

standing and exploration of the chemical space. Recently, data-driven approaches to explore

the chemical space for polymer design have emerged. Among them, inverse design strategies for

designing polymers with specific properties have evolved to be a significant materials informatics

platform by learning hidden knowledge from materials data as well as smartly navigating the chemical

space in an optimized way. In this review, we first summarize the progress in the representation of

polymers, a prerequisite step for the inverse design of polymers. Then, we systematically introduce three

data-driven strategies implemented for the inverse design of polymers, i.e., high-throughput virtual

screening, global optimization, and generative models. Finally, we discuss the challenges and

opportunities of the data-driven strategies as well as optimization algorithms employed in the inverse

design of polymers.

1. Introduction

Polymers have become deeply integrated into both human daily
life and high technology due to a plethora of attractive physical,
chemical, and electrical properties. These ubiquitous and
highly tunable properties of polymers mainly arise from

extraordinary diversity at both micro- and macroscales.1–4

Although only containing few elements in the periodic table,
polymers exhibit versatile functionality via fine-tuning of the
atomic-level connectivity, chain packing, crystallinity, phases, and
morphology. Benefitting from these properties, polymers have
found widespread applications including biology, medicine, and
engineering.5

The design of novel polymer materials has gone through
three stages of development. In the first stage, scientists rely on
experimentally-driven trial-and-error approaches to inventmaterials,
such as penicillin, Vaseline, and Teflon.6 A trial-and-error approach
involves significant domain knowledge. It starts from defining a
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problem or hypothesis, followed by testing with a proposed
solution, finally learning from failure for the next iteration.7 Using
the domain knowledge, the scientists narrow down the design space
to a limited amount of candidates for validation. However, the
involved strategy in this stage has limitations, such as by-chance
discovery and preparation from common chemical compounds
found in nature, thus limiting their potential for the next
innovations. Moreover, they are extremely time-, labor-, and
cost-consuming.8–11 In the second stage, researchers adopt
high-throughput experiments or virtual screening to determine
the relevant properties of enormous targets, and they choose
the best ones for further optimization.12–15 Even though these
approaches have been improved by high-throughput simulations,16

high-performance computing (HPC),17 and GPU accelerated
modules,18 such a research strategy still lags the pace of the
ever-increasing demands on the polymers with superior properties.
Even for small molecules, the number of structures is estimated to
be in the order of 1060, making an efficient and thorough search
impossible by traditional experiment- and computation-based
approaches.19 Hence, it is urgent to solve these problems to
accelerate the design of polymers to meet the ever-increasing
demands. In the third stage, a research paradigm tackles the
‘materials–property’ problem in an ‘inverted’ manner, which
approaches the ‘desired properties-to-appropriate materials’ pro-
cedure, or called ‘‘inverse design’’, instead of a forward ‘structure-
to-property’ procedure. With advances in machine learning (ML)
and deep learning (DL), inverse design, a new research paradigm,
has emerged as an efficient tool to navigate the design space. AI is
being used for predicting the properties of polymers, seeking a
mapping function relating a structure to the property of
choice.6,20–28 Deep generative models seek to learn the underlying
probability distribution of structures and their corresponding
properties for connecting them in a nonlinear way.6 The DL
algorithms can also act as the recommender systems for
hypothesis generation about experimental conditions that are
likely to produce polymers,29,30 which, however, is not the focus
of this review.

For polymers, stochastic macromolecules, establishing the exact
recipes of polymer chains, especially those possessing cross-links or
network interpenetration, is impractical. Indeed, defining all the
atoms in complex polymers is not practical since the input
representations are computationally expensive. Instead of directly
using all sequenced atoms in a polymer chain as the source of
feature representations, alternatives, such as chemical com-
pounds or functional groups, can be more efficient to represent
polymers.29 Even for complicated polymers, one needs to start
with designing monomers or building blocks since many char-
acteristics of polymers are transferred by their building blocks.
There exist several studies on inverse molecule design using
different architectures,31–35 as well as thorough reviews in this
area.6,36,37 Polymer inverse design, however, is still in its infancy
and will bring up increased attention like other complex materials
such as crystalline porous materials in the future.38 Ferguson and
Ranganathan reviewed improvements in data-driven protein design,
another member of macromolecules, which can be useful for
polymer design studies.30 Sherman et al. reviewed recent advances
in inverse design of soft materials.39 They particularly addressed
methodological limitations and computational challenges that con-
strain the size and complexity of materials that can be designed.

A typical flowchart of inverse design of polymers using DL
can be described in the following four steps. (1) Data prepara-
tion. In polymer research, it is still a challenge to find or
generate a sufficient volume of data. Such data can be obtained
from experiments. Also high throughput computations using
first-principles theory, density functional theory (DFT), classical
MD, and coarse-grained (CG) modeling can be also used to
generate polymer data.17,40,41 Webb et al. used CG modeling to
simulate polymers to construct a database for developing
machine learning models.41 Another source of data can be
mined from the scientific literature or publicly available
patents.40 For instance, PoLyInfo, an open-source database,
includes information of different polymers, homopolymers,
copolymers, and polymer blends.42 (2) Polymer representations.
Followed by data collection is the numerical representation of
both structures and properties of polymers. Representations can
use the approaches from a complex and expensive one such as
3D coordinates to a compact and cheap string-based one such
as SMILES. (3) Development of the DL algorithms for inverse
design. ML-based prediction models can be used in the inverse
design process to direct the generator toward the best candidates.
(4) Validation. Validation of the best candidates can be through
computation, experiment or both. Computational validations in
different scales are faster and cost less compared to experimental
evaluation. After validation with simulation, one can choose the
best candidates for experimental evaluation.

We will mainly focus on the state-of-the-art data-driven
algorithms for inverse design of polymers, reviewing several
promising case studies and elaborating future opportunities in
chemical, biomedical, and materials science fields. The review
focuses on Steps 2 and 3 from the mentioned workflow.
Although the importance of the predictors in the inverse design
process cannot be overemphasized, in this review, we mainly
focus on deep learning and optimization algorithms that
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can efficiently navigate the design space. Their correlation is
schematically represented in Fig. 1 The schematic shows two
different directions of forward and inverse design. One may
transfer knowledge that is obtained from well-studied ML and
DL algorithms for molecular property prediction and inverse
molecular design to the polymer field. If successful, a new
research paradigm for complex polymer design can be shifted
from an intuitive one to an on-demand and determinative one.

2. Search/design space

As human researchers, we can operate in an unconstrained
design space.43 The design space can be defined by discrete or
continuous variables.43 To realize the goal of inverse material
design, one needs to define the design space by deciding both
the input representation (descriptors or features as defined in
Section 3) and a model family (e.g. deep neural networks as
discussed in Section 4). If all possible input parameters were
considered, the design space would be massive, while, in most
cases, the final model is only restricted to a defined space trained
from random initialization. Thus, defining an appropriate design
space would influence both the search process and results.44

Algorithms that can efficiently navigate the design space are very
desired, especially for polymer design which involves massive
possibilities, making the exhaustive testing not practical.43 In the
following sections, we will explain how researchers define the
design space for specific problems and discuss applications of
data-driven algorithms in inverse polymer design.

3. Representations and fingerprints of
polymers

The prerequisite for inverse design of polymers is to numeri-
cally represent the polymers to be read and processed by
computers. These fingerprints, called descriptors, should
possess adequate chemo-structural information of the mate-
rials while satisfying computational rules with as small size as
possible.45 Since the total energy of a molecule is constant
with rotations, translations, and symmetry operations such
as mirror reflections of a molecule in a 3D space, a valid
representation should be invariant to these operations. When
chosen appropriately, representations can accurately corre-
late structures to properties.27

Application of the representations developed for molecules
to polymer or macromolecular systems is not straightforward
because of the chemical, topological, and morphological com-
plexities of the polymers.41 In two recently published works,
Lengeling and Guzik6 and Elton et al.36 reviewed various
molecular representations that can be used. Dong et al. created
a freely available web-based platform, called ChemDes, to integrate
multiple state-of-the-art packages (i.e., Pybel,46 CDK,47 RDKit,48

BlueDesc,49 Chemopy,50 PaDEL,51 and jCompoundMapper52) for
computing molecular descriptors and fingerprints.53 ChemDes
provides a friendly web interface to relieve users from tedious
programming work as well as offers three useful tools
for format conversion, MOPAC optimization, and fingerprint
similarity calculation.53 Molecular Orbital PACkage (MOPAC) is
a program for implementing semi-empirical quantum chemistry

Fig. 1 Schematic of forward and inverse materials design. Experiment and simulation from direct design mapping of the structures to the properties.
Inverse design starts with desired properties and generates candidates. Polymer representation is used to numerically introduce the polymers for
ML-based models.
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computations. MOPAC is mostly used with a graphical user inter-
face.54 When 3D molecular descriptors are used in the calculations,
MOPAC can optimize the chemical structures to obtain relaxed 3D
coordinates.53 In a study of ML-assisted design of high-performance
organic photovoltaic materials, Sun et al. employed ChemDes to
extract various descriptors and fingerprints for their ML models to
identify the best choice of representation.24 This kind of integrated
web-based platform for polymer descriptors and fingerprint com-
putations is much needed.

This review focuses on representations that are specific to
polymers and macromolecules. They have been used as input
for DL models in inverse design and virtual high-throughput
screening tasks. As emphasized by Chen et al., designing
polymer fingerprints that convey both chemical and morpho-
logical information, as well as their synthesis information, is
an open challenge.40 With the fast development of new chem-
istry, materials informatics, and data-driven algorithms, a uni-
versally applicable polymer representation system is becoming
urgent.45

3.1. String-based representations from 2D graphs

A system of molecules with atoms and bonds can be considered
as graphs with edges and vertices.36 Obviously, such graphs
cannot transfer information about 3D conformations and bond
angles and lengths. However, for most of the properties of the
structures, such 3D information is not needed. Thus, most
generative models have not employed 3D coordinates
but instead worked with 2D graphs. After a polymer structure
is designed, the most energetically favorable conformation
can be extracted using classical forcefields or quantum
mechanical approaches.36 There are several string-based methods
to represent graphs for ML/DL-based models that will be reviewed
in this review.

Simplified molecular-input line-entry system (SMILES)55 is
widely used to represent molecules and polymers.45,56,57 After
representing atoms and bonds by SMILES symbols, one needs
to represent raw characters as one-hot encode matrices to
perform computations. The first step for that transformation
is tokenization from natural language, dividing the whole string
into characters. The second step is to use one-hot encoding to
represent each character. After deciding the dataset, one needs
to extract a pool of unique characters that are present in SMILES
sequences, and then assign a numerical value to each character
within a sequence. To make the SMILES representations com-
patible with ML models, one needs to encode the assigned
values to one-hot vectors, although the one-hot encoded vectors
are larger and increase the computational cost.24 As an example,
if we assign 5 to ‘‘C’’ representing carbon and 6 to ‘‘O’’
representing oxygen, a machine learning model needs to assign
a natural ordering between the characters. However, in the case
of the SMILES representations, there is no ordinal relationship
between the characters, making one-hot encoding easier. Tech-
nically, all strings should be represented by the same length in
MLmodels. For that, researchers add special characters at the end
of the stings to have the same size for all the inputs.24 Atom and
bond matrices can be extracted from SMILES representations.58

An atommatrix represents the atoms with their atomic numbers
and can be one-hot-encoded. A bond matrix is usually a 4th
order tensor showing information of structures with no, single,
double, or triple bonds between atoms. These matrices are
sometimes named the adjacency matrices and contain the same
information as represented by SMILES.

SMILES can be extended to polymers by representing the
repeat units of polymers and specifying the connecting points
of those repeat units.21,26 The transition from molecule to
polymer representations can be challenging due largely to
increased complexity. For degree-1 polymers (i.e., monomers),
the regular SMILES representation can be used with small
modifications. Unlike common SMILES strings for small mole-
cules, these degree-1 polymer-SMILES strings contain distinct
symbols of ‘‘*’’ to indicate the polymerization points of mono-
mers, which is used for the wildcard atom in the molecule
representation.59 For relatively simple polymers such as linear
chain polymers with two connecting points or ladder polymers
with four connecting points in each repeat unit, Tran et al. used
SMILES to represent these two groups of polymers.21

The major challenge in using SMILES for DL-based inverse
design algorithms is that a large fraction of string combinations
does not correspond to valid representations. Invalidity can be
syntactic or semantic. In molecule representations, Guzik and
colleagues represented a modified version of SMILES with a
100% validity, a representation named SELFIES.60 Employing
derivation rules, SELFIES uses different characters from the
ones that are used in SMILES to show chains and branches in
molecules. The derivation of a single symbol depends on the
state of the derivation. They tried SELFIES in the molecule
inverse design models.6,61 All the generated SELFIES were valid.
One sample molecule is shown in both SMILES and SELFIES in
Fig. 2. Thiede et al. employed the SELFIES representation
in their curiosity algorithm powered by deep reinforcement
learning for efficient exploration of the chemical space to find

Fig. 2 String-based representation of a molecular graph. A small organic
molecule, 3,4-methylenedioxymethamphetamine, is used as an example.
(A) SMILES representation. The main line of atoms in green is completed
with branches (opening and closing brackets) and rings (unique numbers
after the atoms that are connected). If there is an open parenthesis without
closing or only one number for a ring, it would be an invalid structure.
(B) SELFIES representation. A set of rules that restrict any of the strings
from avoiding chemical rules were used (refer to the original paper for
details). Reproduced from ref. 60 published under the terms of Creative
Commons Attribution 4.0 license.
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new molecules.62 Utilizing a predictor inside their framework,
they use the error of the prediction to reward the generator to
explore more unknown candidates.

Proposed by O’Boyle and Dalke, DeepSMILES is another
modification of SMILES in a way to improve the validity of
the generated strings. Unlike SELFIES, DeepSMILES does not pro-
vide 100% validity, but it provides a higher validity than the original
SMILES.63 There is an opportunity for future studies on string-based
polymer representations that are valid for any combinations.

Ramprasad and co-workers employed modified SMILES for
polymers, in which endpoints or connection points of repeat
units were represented using special symbols.21,26 As shown in
Fig. 3, they used [*] to represent connecting points between the
repeat units.21 The polymer chain, repeat unit, and SMILES of
two polymers from linear and ladder groups are shown in
Fig. 3. Although low-level representations such as SMILES can
depict explicit polymer structures, the strings have large
lengths and are hard to parse. To represent polyurethane with
a chain length of 30 for example, one needs 600 characters,
which is computationally expensive.64 Thus, low-level SMILES-
based representation is not suitable for large polymers.64

Trying to modify the SMILES to fit polymers, Lin et al.
introduced BigSMILES as a compact yet structurally robust
identifier or a representation system.45 As shown in Fig. 4,
BigSMILES can be used for different organic materials, includ-
ing homopolymers, random copolymers, and block copolymers
with various molecular connectivities ranging from linear and
ring polymers to branched polymers.45 They used two types of
bonding descriptors. The first type is AA type bonding that can
happen between any two bonding moieties. In the second type
of bonding, AB bonding, like DNA rules, a bonding moiety
cannot connect directly to another from the same group but
can connect to one from a different conjugate group. This is
the situation in monomers polymerized via condensation
reactions.45 Besides using all the strings in SMILES, BigSMILES
uses extra strings to handle the stochastic nature of polymers.
There are many details about their descriptors, which can be
referred in their paper.45 They proposed a descriptor system to
represent many kinds of polymers, but they did not test it for

developing ML/DL for materials design. Trying this representation
in a DL-based inverse design is an opportunity for future research.
However, as this representation approach relies on the predefined
fragments extracted from a training dataset, the fragments of a
generated structure is limited to the predefined ones. Although no
implementation of SELFIES and DeepSMILES in representing
polymers is reported, they can be modified in the same way as
BigSMILES was modified from SMILES for polymer representa-
tions. Unlike low-level representations such as SMILES, high-level
approaches such as BigSMILES are suitable for large polymers.
However, they are so high-level that they cannot convey explicit
information about the complete polymer structures.64

Guo et al. recently reported PolyGrammar, a parametric
context-sensitive grammar (CSG), to solve the limitations of
SMILES and BigSMILES for polymer representations.64 CSG is a
formal grammar that defines how to build strings from a
language’s alphabet obeying a set of production rules (see the
left side of Fig. 5).64 PolyGrammar represents a molecular chain
structure as a string of symbols, each of which refers to a
particular molecular fragment in the polymer chain. The genera-
tion process begins with an initial symbol. At each iteration, each
non-terminal symbol in the string is replaced by a successor whose
predecessor matches the symbol until the string does not have any
non-terminal symbols (see Fig. 5, center). The hypergraph is used
to translate the resulting symbol string to a polymer chain (see the
right side of Fig. 5). In an ordinary hypergraph, nodes and edges
between the nodes represent atoms and bonds, respectively.65 The
hypergraph allows individual nodes to join any other nodes.

Fig. 3 Polymer chains, repeat units, and SMILES representations of a linear
polymer, poly(isobutylene), and a ladder polymer, poly(naphthalene-2,3 :6,7-
tetrayl-6,7-dimethylene). The connection points are shownwith ‘‘*’’. Reproduced
from ref. 21 with permission from AIP publishing.

Fig. 4 Schematic of BigSMILES. Curly brackets separate repeat units that
include multiple monomers. Reproduced from ref. 45. Copyright 2019,
American Chemical Society.

Fig. 5 Schematic of the chemistry design model PolyGrammar. In the
centre, the molecular chain structure as a string of symbols is shown.
PolyGrammar has a set of production rules shown on the left. The
generation process begins with an initial symbol x and substitutes each
non-terminal symbol (h, s or x) at each iteration by the successor of a
production rule whose predecessor matches the symbol. The process
stops when there is no non-terminal symbol. Reproduced from ref. 64
with permission.
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An edge that connects a subset of the nodes in the hypergraph
is called a hyperedge.66 These production rules make them
appropriate to represent many classes of polymers for valid
structural generation. In their studies, polyurethane was tested
as a proof-of-concept. Nevertheless, further studies are needed
to make PolyGrammar generable to generate valid strings of
more classes of polymers.

All the mentioned string-based representations mainly con-
sidered the element composition and simplified structures of
the polymers. They have not considered architectures, stochastic
nature (PDI), and the processing history of the polymers. These
are critical factors in determining their properties. Thermal
conductivity, for example, can be significantly different in the
same type of a polymer but processed into different forms, such
as laminated films or spun fibers due to anisotropic molecular
orientation.67 Wu et al. found that the thermal conductivity
significantly depends on the processing history of the polymers.
As such information has not been experimentally reported, they
failed to derive a predictive model for thermal conductivity
directly from the given data. Thus, they considered proxy
properties—related to thermal conductivity—such as glass
transition temperatures and melting temperatures—as the
alternative targets.

3.2. 2D/3D information

The Hohenberg–Kohn theorem of DFT proves that the electro-
nic charge density of a system is a universal representation with
complete information about the system.68 The material finger-
prints can be chemo-structural descriptors or as fundamental
as electronic charge density.28 Using electronic charge density is
the most accurate way to represent a system but it is not feasible
for large systems such as polymers. Pilania et al. conducted a
similarity-based machine learning model to extract fingerprints
to replace the complicated and cumbersome rule based on
Schrödinger’s equation or Kohn–Sham equations.28

Using SMILES as the input, polymers are either directly
fingerprinted by employing hierarchical polymer fingerprints21,26

or represented by molecular fingerprints.67,69 Usual kernels extract
features of the molecules, hash those features, and utilize the
hashed features to determine bits that should be set. Generally,
kernels are functions that take two objects (data points, structures)
as the input and assign a scalar output value to compare the
similarity of the two objects.70 Typical fingerprint sizes are between
1k and 4k bits. Barnett et al. utilized a Daylight-like fingerprinting
algorithm from the RDKit package48 in their ML-based framework
to design exceptional polymer membranes for gas separation.69

Daylight is a software that delivers state-of-the-art chemical
information processing. Daylight molecular fingerprints con-
tain (a) a pattern representing each atom and its closest
neighbors and the bonds that connect them and (b) a pattern
corresponding to each group of atoms and bonds connected
by paths up to seven bonds. Their topology-based approach
analyzes the various fragments of a molecule consisting of a
certain number of bonds and hashes each fragment to a binary
fingerprint.69 They broke a polymer’s repeat unit down into
fragments containing between 1 and 7 units and the structure

was hashed into a 2048-bit fingerprint to encode all the
possible connectivity pathways of the monomer.69

Another promising way named hierarchical fingerprints to
represent polymers has been introduced by Kim et al. in an
ML-model for polymer property prediction.26 They introduced
three levels of descriptors at different length scales (Fig. 6). At
the atomic-scale level, the existence of a fixed set of atomic
fragments or motifs is tracked. As an example, a triplet of
‘‘O1–C3–C4’’ shows an oxygen connected to one atom, a carbon
connected to three atoms, and another carbon connected to
4 atoms in the same order. They extracted 108 such compo-
nents from the dataset they used.26 Next, in a larger level from
an RDKit Python library,48 they used van der Waals surface
area,71 the topological polar surface area (TPSA),72 the ratio of
atoms in rings to the total atoms, and the fraction of rotatable
bonds.26 Each of the mentioned descriptors in QSPR is crucial
for accurately predicting properties. For example, TPSA is the
sum of surfaces of polar atoms in the molecule that is a key
descriptor for Tg and density. Lastly, the ‘‘morphological descrip-
tor’’, the highest length-scale descriptor, includes descriptors such
as the shortest topological distance between rings and the length
of the largest side-chain.26 They also considered a recursive feature
elimination (RFE) algorithm to remove the least important
features. Lightstone et al. utilized this hierarchical fingerprint
system to build an ML model for predicting the refractive index of
polymers.22 This hierarchical fingerprint system can also be used
in generative models. Very recently, Kuenneth et al. modified this
approach to represent copolymers, an attempt to extend the
polymer informatics beyond homopolymers.73 To do this, first,
fingerprints of the repetitive units of a copolymer were extracted.
After that, these fingerprints were weighed according to the ratio of
the monomers in the copolymer. For instance, C1 and C2 are the
ratios of each monomer (unit) in a two-monomer copolymer. If
one of the ratios is zero, it indicates a homopolymer.73

In another recently published study, Ramprasad and co-workers
introduced a general atomic neighborhood fingerprint method
to represent polymers.74 They incorporated basic components,
rotational invariants, and structural features in the representa-
tion system. To represent basic components, they employed a
grid-based representation for the local atomic environment, which
includes a hierarchy of features capturing various aspects of the
atomic neighborhood (semi-local). To fingerprint rotationally

Fig. 6 A hierarchical fingerprint system. This classifies descriptors according
to the physical scale and chemical characteristics and RFE process to remove
unnecessary features. Reproduced from ref. 26 with permission. Copyright
2018, American Chemical Society.
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invariant components, they considered some transformation of
basic components to make them rotationally invariant to cover
cases involving directionless quantities.74 Finally, they con-
ducted structural fingerprints from predefined components.
Based on the application, one can increase the sophistication of
the proposed fingerprint to obtain a desired level of accuracy.
As an example, Huan et al. investigated the use of just the
vector components from the basic component category to
develop force fields for elemental Al, Cu, C, and more.75

After fingerprinting polymers, one can define a suitable
measure of chemical distance to quantify the degree of (dis)-
similarity between two defined fingerprints for developing an
ML model with high accuracy, which was demonstrated in the
work of Pilania et al.28 For example, Kernel Ridge Regression
(KRR) is a non-linear regression model that can determine the
similarity of input objects.76 KRR combines ridge regression
and classification with kernel machines.77 Kernel machines are
a class of models originally developed for pattern analysis. They
require a user-defined kernel and a similarity function to per-
form the tasks of clustering, ranking, and regression.78 Using
the hierarchical fingerprint system for developing ML-based
models for polymer property prediction is quite successful.21,26

However, introduction of the fingerprints needs extraction of a
pool of components that make the distinguished fragments of
polymers. This process requires pre-processing of training
datasets. A disadvantage of this method is that one needs to
define the pool for each dataset, which makes it not generable
and not possible be used for generating new polymers consisting
of fragments outside the existing pool.

3.3. Group contribution

A group contribution approach was demonstrated by Van
Krevelen and co-workers, where a polymer is broken down into
its fragments (groups). From these fragments, the properties of the
polymer can be predicted.79 The group contribution methods
assume any property as a sum of contributions from building
blocks that are independent of each other. This is referred to as the
quantitative structure–property relationship (QSPR).10,27,79 The
group of representations are fast and easy to be interpreted.27

However, since this approach relies on the available fragment
library, for truly novel polymers (outside the predefined library)
that are generated by inverse design, group contribution techni-
ques are powerless.40 Thus, the group contribution methods may
not be optimal for new materials discovery but can be useful for
feature extraction and property prediction of many polymers.10

They can also be used to generate low-fidelity data, which,
although noisy, can be combined with high-fidelity data by
multi-fidelity information fusion schemes such as multi-fidelity
co-kriging.80

Using the group contribution techniques, researchers finger-
print the predefined building blocks of polymers.38 Webb et al.
employed a hybrid approach, by which all polymers are con-
structed from four possible coarse-grained (CG) beads (a, b, d,
and g). a and b were used to form the backbone of the polymers,
while d and g were used to form pendant groups that adorn the
backbone.41 They defined 10 different building blocks out of

these beads. Within this defined chemical space, they defined
three different classes of polymers. Class (I) includes regular
polymers with up to four building blocks. Class (II) includes
random copolymers with up to four unique building blocks in
the polymer sequence. Class (III) is similar to Class (I) but with
up to eight building blocks.41 All the bead types and topologies
of polymers are represented in Fig. 7A. They considered three
classes of polymers created from these building blocks (Fig. 7B).
They then used one-hot encoding (OHE) and property coloring
that reflects polymer compositions to extract feature vectors.
These vectors were later fed to a deep neural network (DNN)
model. To extract property features, the polymer was encoded as
an image with each bead of the polymer represented by a pixel
(Fig. 7C). The coloring of the markers represents the polymer
composition. In this way, the application of the data-driven
models was extended from homopolymers to copolymers.

4. Strategies for inverse design of
materials

The traditional materials research paradigm heavily relies on a
forward design principle where the properties of materials are
predicted from the given structures. However, this process is
time- and labor-intensive and cannot meet the ever-increasing
demands of developing novel materials cost-effectively and
speedily. Inverse design, on the other hand, inverts this para-
digm by receiving the desired functionality or properties as
inputs for generating the desired structures.6 This process can
be done in two different ways. The first way is called the high
throughput virtual screening (HTVS), one of the earliest efforts
in inverse design.7 HTVS can narrow the hypothesized chemical
space to find the best candidates possessing the targeted
properties.7 The second way includes smart searching algo-
rithms, i.e., global optimization (GO), to navigate the chemical

Fig. 7 Schematic of the CG polymer presentation and property coloring
featurization. (A) Bead types and topologies of polymers. a and b are the
backbone, while g and d are pendant beads that can form 10 different
building blocks (BBs). (B) Three classes of polymers. Class I represents
regular copolymers with four BBs. Class II shows random polymers with
four BBs. Class III represents regular polymers with a repeat pattern of
eight BBs. (C) Filters are used to produce a convolved image which is then
flattered to a feature vector. Reproduced from ref. 41 with permission.
Copyright 2020, AAAS.
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space and DL-based generative models (GMs) to learn hidden
knowledge from the training data.

4.1. High throughput virtual screening (HTVS)

By high throughput virtual screening approaches, one needs to
narrow the chemical space by defining specific building blocks
and bonding rules. The model can then make hypothesized
candidates, and those candidates can be tested with the help of an
ML-based predictor or high-throughput simulations, such as DFT
and MD.81 Here, the user defines the inputs and ensures that any
combination of these inputs (fragments or building blocks of
polymers) is valid. Although HTVS seems like a version of the
direct approach for materials design, its core philosophy is
different.7,13 First, it focuses on the data-driven discovery that
includes automation and time-critical performance.7 Second,
HTVS possesses a computational funnel with promising candi-
dates assessed by more expensive methodologies.7 The feedback
between theory and experiment is a crucial ingredient. It is true
that the validity of the generated structures by HTVS is higher than
that of the ones generated from GM, but the generation is limited
to the hypothesized chemical space.14,81

To generate novel polyimides (PIs) with exceptional refractive
indexes (RIs), Afzal et al. defined 29 building blocks for PIs’ core
structures.81 The definitions of the 29 building blocks (see
Fig. 8B) and their bonding rules are shown in Fig. 8A. They
initially generated 6.6 billion compounds. To restrict the search
among a more manageable number of candidates, they chose
only the most promising 100 R1 and 100 R2 with high RI values,
resulting in 10 000 PI candidates. R1 and R2 are arranged in the
polyimide structures (Fig. 8A). The possible molecular building
blocks used to create R1 and R2 are represented in Fig. 8B. R1,
shown by green shapes, represents linkers and can be chosen
from 6 possible linkers in the polyimide structure. R2, shown by

blue shapes, represents moieties and can be chosen from 23
possible hetero-aromatic moieties in the polyimide structures.
Also, R in the molecular building blocks (in Fig. 8B) defines
allowed sites for linking. Finally, they utilized the HTVS approach
to screen them for the best candidates with the highest IR.

Moreover, we can employ simulation results to provide feed-
back for chosen candidates. Accordingly, inspired by a high
throughput hierarchal modeling scheme that involves combina-
torial exploration based on DFT followed by successive screening,
Treich et al. synthesized novel dielectric materials with a high
energy density for film capacitors. They considered the organic
polymers that were formed by linear combinations of seven basic
chemical building blocks.82

When experienced chemists have hypotheses that can define
a narrowed screening space, they employ HTVS to exploit the
space.83 Manually performing a HTVS is computationally
expensive and even impossible for many cases as it requires
computational capabilities that allow a large number of calculations
to run parallelly.13 Going beyond the existing hypotheses and
broadening the search space need more intelligent approaches. As
proposed by Knapp et al., automation is a potential solution.13 In
the next section, we review some advanced algorithms, i.e., GO and
GMs, for the inverse design of polymers. They can catch hidden
information from a structure–property-paired database for gene-
rating novel structures that do not exist in the database.

4.2. Global optimization (GO)

GO, including but not limited to Bayesian optimization (BO),
particle swarm optimization (PSO), and genetic algorithm (GA),
finds an optimal solution of the target objective function and
can be employed in the inverse design of polymers.83 Multi-
objective optimization needs a fitness function to consider how
the global objective is created by the individual objectives. The
evaluation of polymer candidates to check whether they meet
the desired property objectives, i.e., computation of a fitness
function, is a crucial component of GO-based algorithms.84

One consideration when defining a fitness function is to
normalize the objectives to minimize their differences.

4.2.1. Bayesian optimization (BO). Bayesian optimization
(BO) is a sequential design strategy without assumption of any
functional forms. Many material tasks can be considered as the
optimization problems where controllable parameters must be
updated to reach desired objectives. A proper optimization
algorithm should be noise-tolerant, global, and convergent
with as few inputs as possible. Satisfying these requirements,
BO is a systematic approach to find a global optimum of an
unknown function f which is expensive to be evaluated.85–88

BO is constructed by Bayes’ theorem where a joint distribu-
tion can be decomposed hierarchically into a product of con-
ditional and marginal distributions in the following formula:

Pposterior(S|Y A U) p Plikelihood (Y A U|S)Pprior(S) (1)

where Pposterior(S|Y) is the posterior probability of a model,
hypothesis, or theory S given input data (observations) Y.
It is proportional to the likelihood of Y given S multiplied by
the prior probability of S.89 When specifically applied to the

Fig. 8 General polyimide structure and molecular building blocks. (A) A
polyimide (PI) core structure with residues R1 and R2. (B) Molecular building
blocks used for R1 and R2. R in building blocks shows the allowed sites for
linking. (B1–B6) are linkers marked in green and blue ones. B7–B29 are
hetero-aromatic moieties. Reproduced from ref. 81 with permission.
Copyright 2019, American Chemical Society.
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polymer design, S can be a polymer structure for which the
polymeric properties Y lie in a desired region U.67 With a
desired region U given Y, it affords Plikelihood (Y A U|S), the
probability that defines the goodness of fit of S with respect to
the property requirement. Pprior(S) can be used to reduce the
occurrence of chemically unfavorable or unrealistic structures
and then assign a lower probability to them.

Wang et al. proposed an ML-assisted coarse-grained molecular
dynamic (CGMD) model to design highly conductive polymer
electrolytes.87 They created a continuous high-dimensional design
space from a discrete chemical space by coarse-graining the
chemical species (Step 1 and Step 2 shown in Fig. 9). They then
employed a BO algorithm to efficiently explore this space via
autonomous CGMD simulations to predict the relationships
between the transport properties and the associated CG para-
meters (Step 2 and Step 3 shown in Fig. 9). The constructed design
space and the corresponding material properties served as the
input and output of the model, respectively. They then employed a
BO algorithm to efficiently explore this space via autonomous
CGMD simulations to predict the relationships between the
transport properties and the associated CG parameters (from 2
to 3 in Fig. 9). The constructed design space is the input and the
target material property is the output of the model.

The procedure of running the BO algorithm includes the
following steps: (1) select a prior for the possible space of
function f; (2) estimate the posterior given the prior and current
simulation data; (3) employ the posterior to decide the next
calculation to evaluate according to an acquisition function;
(4) obtain the new data from the simulation. They iterated
2–4 steps to explore the CG design space until convergence.

Accessing large high-quality data in polymer research is still
a big challenge, sometimes making it difficult to simply use just
one GO for inverse polymer design. To tackle this challenge,
Wu et al. employed a combination of BO and a sequential
Monte Carlo (SMC) method for the discovery of polymers with
high thermal conductivity.67 Their model creates a chemical
space S (encoded by SMILES symbols) consisting of polymer
repeat units (monomers), for which nth polymeric properties
Y = (Y1,. . .Yn) lie in a desired region U. They then employed Bayes’
law to invert the forward model (S - Y) to obtain a backward
model p (S|Y A U)(Y - S). They then used a sequential Monte
Carlo (SMC) method to draw random samples represented by the
SMILES strings (S) from high-probability regions of the backward
model. Since the experimental thermal conductivity data were

limited, when constructing the BO model, they considered the
proxy properties of glass transition temperature (Tg) and melting
temperature (Tm) which are in correlation with the thermal
conductivity as the alternative targets. In addition, they use
extended connectivity fingerprints of the SMILES as the input
of their prediction model. They designed the monomers but with
smaller training datasets compared to other molecular generative
models using the standard SMILES representation.31,35,90

4.2.2. Particle swarm optimization (PSO). In PSO, a bunch
of optimizers (particles or agents) move in a D-dimensional
search space. Each agent is composed of four vectors, namely
position, velocity, the best position found by itself based on the
objective function, and the best position found by its neighbors.

Multiblock polymers are a class of soft materials with
spontaneous self-assembly into a variety of ordered mesophases
at the nanoscale.91 Khadilkar et al. employed PSO as a global
optimizer combined with a forward prediction engine to the
inverse design of polymers that have target bulk morphologies.91

The relevant variables are the polymer architecture parameters,
namely chain block fractions, blend fractions, and interaction
strength. They employed PSO in multicomponent search spaces.
They used PSO for homopolymers and diblock copolymers. The
4-dimensional search space is restricted to only the block
fraction of the diblocks. One can refer to their paper for the
details on the optimization approach and parameter selection.
One way to broaden the use of PSO is by directly targeting
properties instead of through structures as conducted in their
research. Kumar et al. conducted high-accuracy tuning of the
poly(2-oxazoline) cloud point via machine learning techniques.
They defined a design space of four repeating units and a range
of molecular masses.92 They performed inverse design via
PSO with design selection using a group of neural networks,
designing, and synthesizing 17 polymers at 4 target cloud points
from 37 to 80 1C.

4.2.3. Genetic algorithm (GA). Genetic algorithm (GA) is an
evolution-based search algorithm that can tackle the problem
of inverse polymer design. It uses the idea of natural selection
with the steps of crossover, mutation, and selection. GA is a
type of evolutionary algorithm that mimics the ‘‘survival of the
fittest’’ to design or optimize a desired structure with target
properties.93 Meenakshisundaram et al. used a GA to design
sequence-specific copolymers from the data generated by molecular
dynamics (MD) simulations.93 The copolymers consist of 20 repeti-
tive units of two types of monomers, which are represented by the
binary numbers 0 and 1. The GA determined the fitness of each
candidate by analyzing the results calculated from the MD
simulations.

Kim et al. combined GA with ML-based predictive models to
design polymers possessing useful property criteria.84 To do this,
first, they used hierarchical polymer fingerprinting (explained in
the representation part) to represent the polymers, followed by a
Gaussian process regression to map the structures to properties.86

They then used GA to evolve generations of polymer candidates
toward targeted objectives. To design polymers with target
properties of a glass transition temperature (Tg) of 4500 K
and a bandgap (Eg) of 4 6 eV, Tg and Eg are included in the

Fig. 9 Illustration of a CGMD-BO framework. A coarse-graining process
transforms the chemical space to a continuous space composed of CG
parameters (from 1 to 2). The BO algorithm explores the space to predict
the properties with the given CG parameters (from 2 to 3). Reproduced
from ref. 87 Copyright 2020, American Chemical Society.
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fitness function. Later, the ML-based predictive models can
check the candidates from this fitness function. The GA process
follows three steps.

(1) Beginning with randomly generated polymer candidates,
they used crossover and mutation to produce new polymer
candidates by changing the chemical building blocks and their
sequence (Fig. 10A). They extracted 3045 building blocks with
1 to 4 endpoints from B12 000 reference polymers (Fig. 10B).
Endpoints represented by ‘‘*’’ act as a connection between chemical
building blocks.84 For example, one homopolymer has a monomer
with two endpoints. They initiated 100 polymers consisting of
8 building blocks in their repeat units. During crossover, offspring
were generated from two parent polymers with one random
segment. The mutation was also utilized to diversify the ‘‘gene
pool’’. During the evolution, offspring polymers that do not follow
chemical rules or polymer assembling rules were removed.

(2) The ML models were used to predict the properties of the
generated candidates and evaluate their fitness outcome from
the proposed fitness function.

(3) The best candidates as parent polymers in each generation
were kept for the next-iteration evolution.

The mentioned steps were iterated until enough polymer
candidates with desired properties were generated. They used

two properties Tg and Eg for evaluation purposes (shown in
Fig. 10C).

GA starts with a randomly generated initial population with
no prior knowledge, while they can improve the generated
candidates with the feedback from ML-based prediction
models.84 Obviously, the prediction models need labeled data
to learn how to map the structures to specific properties. To
accelerate the optimizations and evolutions, one can bias the
initial population towards the favorable building blocks with
the assistance of prior knowledge to narrow the search space.84

Although GAs are general-purpose, stochastic, evolutionary
search and optimize strategies, there is no guarantee of their
convergence.94 Moreover, their performance depends on the
internal parameters that need trial and error to be tuned.95

4.3. Generative models (GMs)

Recent advances in ML have introduced powerful probabilistic
generative models (GMs) capable of generating realistic synthetic
samples after being trained on real samples.6 From a statistical
point of view, with an observable variable X and a target variable Y,
a GM estimates a joint probability distribution of X and Y, P(X, Y).
P(X, Y) can later be used to generate new data similar to the
existing data.96 GMs can encode the high-dimensional chemical
space into the continuous latent space with a lower dimension-
ality, from which the new data are generated.6 In this section, we
summarize the state-of-the-art deep learning approaches that
have been used for inversely designing polymers with targeted
properties. Fig. 11 represents the schemes of four DL-based
GMs, namely recurrent neural networks (RNNs), variational
autoencoders (VAEs), reinforcement learning (RL), and generative
adversarial networks (GANs).

4.3.1. Recurrent neural networks (RNNs). A recurrent neural
network (RNN) is designed to predict the future event based on the
current and past information, as shown in Fig. 11.97 Unlike other
feed-forward networks that need static input data, RNNs can
handle arbitrary input sequences.98 The current input vector, x(t),
and the past knowledge, h(t�1), are concatenated to a complete
input vector at the time step t. Learning the information from the
previous iterations makes RNNs suitable for generating sequen-
tial data, where the information about the future is highly
conditioned on the past information and current input.59,99,100

RNNs have been widely and successfully employed in molecular
drug design.99,101–104

One challenge of applying RNNs to the polymer design is the
large size of the polymer sequence. Polymers have long,
complex structures. For a generative model, it should enable
capturing the long-term temporal dependencies during the genera-
tion procedure. RNNs can remember previous information such as
previous characters if polymer chains are represented by SMILES, to
learn dynamic behavior for the future generation steps. The
original vanilla RNNs (Fig. 10), however, suffer from issues of
vanishing and exploding gradients, limiting their ability in
learning long-term temporal dependencies.105 The gradients
include information used to update the parameters of the
RNNs. Vanishing gradients happen when the updates are
insignificant, resulting in no real learning. Exploding gradients,

Fig. 10 A GA framework for polymer design. (A) Iterative evolution
of polymer generation. (B) Demonstration of polymers with four chemical
building blocks (fragments) through crossover andmutation. (C) Improvement
of the generated polymers possessing a combination of higher Eg and Tg. Ten
of the best offspring polymers kept as parents for the next iteration.
Reproduced from ref. 84 with permission. Copyright 2020, Elsevier.
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on the other hand, happen when the updated parameters are
too large, making the model unstable.

By applying a gradient clipping technique, one can limit the
magnitude of gradients to prevent exploding gradients, while the
problem of vanishing gradients can be addressed by several gating
mechanisms.105 These mechanisms are implemented in two well-
known variants of RNNs: long short-termmemory (LSTM)106 and a
gated recurrent unit (GRU).101,102 An LSTMnetwork has three gates
to regulate the flow of information, namely the forget gate, input
gate, and output gate.106 Given the new information, the forget
gate decides what information the cell state should forget. The
input gate determines the newly encoded information from the
new inputs. Finally, the output gate controls what information
should be sent to the next step.106 The cell state derivative prevents
the LSTM gradients from being vanished. A GRU has a similar
mechanism to the LSTM but with only two gates: the update gate
and the reset gate.98 These two gates decide which hidden state
information should be updated. In both LSTM and GRU, the
networks learn to skip irrelevant temporary information. Cheng
et al. provided an in-depth discussion of LSTM and GRU by
empirically comparing their performance.102

LSTM and GRU have been used to predict protein functions
with given sequences as well as the aqueous solubility of drug-like

compounds.105 Popova et al. employed a Stack-RNN with a newly
defined cell structure added to the regular GRU cell to learn
long-term interdependencies with a target of designing new
molecules.107 With the development of LSTM and GRU, RNNs
have shown increased power for polymer design. Ma and Luo
employed an RNN for the generation of 1-degree polymers (i.e.,
monomers) using SMILES representations.59 As shown in
Fig. 12, the future output (o-cell) is the result of the hidden
state (h-state) using the previous step (memory about the past)
and the current step (present input).59 They repeat the loop for
many iterations, and the performance of an RNN in each
iteration is assessed by the ratio of the valid samples. However,
their work has two limitations. First, it can only be used for
generating simple polymers (i.e., monomers). Second, their
generation process is not considered inverse design since they
did not target any property in advance.

4.3.2. Variational autoencoders (VAEs). A variational auto-
encoder (VAE) proposed by Kingma et al.108 employs a variational
inference framework to estimate the input data distribution p(x)
and can be trained with gradient-based methods.97 It uses an
encoder–decoder architecture to reconstruct the input features (or
material representations) x and the output x̂ via a two-step process
(Fig. 11).6 The encoder constructs a continuous vector in the latent
space from the input features, while the decoder converts these
continuous vectors back to the input features. A continuous
representation allows better usage of powerful gradient-based
optimization models to decode random vectors and interpolate
structures. Then novel and valid chemical structures can be
generated by simple operations in the latent space, such as
interpolating between the sampled random vectors of the chemical
structures.6 Furthermore, a continuous representation allows the
usage of powerful gradient-based optimization approaches to
decode random vectors and interpolate structures more smartly.6

Bombarelli et al. employed the VAE framework to ensure that

Fig. 11 DL-based algorithms for GMs. From top to bottom: Recurrent
neural network (RNN), variational autoencoder (VAE), reinforcement learning
(RL), and generative adversarial network (GAN).

Fig. 12 An RNN architecture for the generation of homopolymers. In an
RNN, the O-cell generates the future output, while the h-cell (hidden
state) is memory about the past, and the X-cell is the present input, where
U, V, and W are parameters. Reproduced from ref. 59 with permission.
Copyright 2020, American Chemical Society.
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samples in the latent space correspond to valid and novel
molecular structures.6

VAEs can be utilized for the inverse design of materials as
they bridge the gap between neural networks and probability
models for a large and complicated dataset.105 Jørgensen et al.
proposed a grammar variational autoencoder (GrammarVAE)
for inverse design of a class of donor–acceptor polymers.109

They used SMILES representations combined with grammar
rules to increase the validity of the generated SMILES. The
grammar rules are changed by the decoder so that it can only
generate syntactically valid strings.

Batra et al. utilized a syntax-directed VAE combined with
Gaussian process regression (GPR) predictive models to discover
polymers with targeted properties. In this work, they introduced
crucial modifications in SMILES grammar and polymer-specific
semantics to increase the validity of the generated structures.110

To do this, they first converted the SMILES strings to parse trees.
They then utilized context-free-grammar parse trees as the input
for the encoder to convert them to continuous latent vectors.
The derived latent vectors containing chemical and structural
information help to build accurate predictive models for property
predictions. To design innovative polymers possessing targeted
properties, they employed simple enumeration, followed by a
generative interpolation approach.

4.3.3. Reinforcement learning (RL). Reinforcement learning
(RL), designed to tackle dynamic decision challenges,107 includes
the analysis of possible actions and approximation of the statistical
relationship between the actions and possible outcomes. They are
reinforced by the determination of a treatment regime that is
optimized towards the most desirable outcomes.111 Very recently,
RL achieved better performance than humans in the game of
Go,112 which has the complexity of 10140 possibilities.113 It is
analogous to the complexity of chemical space, which makes
RL-based networks suitable to be applied for the inverse design of
materials.107

As an example of the most successful works in RL for
materials design,62,114,115 Popova et al. proposed a deep RL
(DRL) for generating chemical compounds with desired physical,
chemical, and activity properties (see Fig. 13).107 They combined
two deep neural networks (a generative model (G) and a

predictive model (P)) in the DRL framework. Playing the role
of an agent, G generates novel molecules. Playing the role of a
critic, P outputs the properties of the novel structures and
assigns a numerical reward/penalty to the candidates. G learns
to maximize the reward by improving the generated structures
with properties close to desired ones.

4.3.4. Generative adversarial networks. A generative adver-
sarial network (GAN) includes two competing networks of a
generator and a discriminator.116 The generator generates
sample data from random noise, while the discriminator
examines the data to judge whether it is synthesized (fake) or
sampled from the training dataset (real).116 Competition of the
generator and the discriminator improves both networks in
such a way that the generator can generate so real data that the
discriminator cannot distinguish them.97 GANs are well known
for their ability to learn complex high dimensional data and
reproduce them by following similar distributions.61 Among
various DL algorithms, GANs bring in a breakthrough for
materials discovery.117 GANs can utilize different architectures
such as CNNs,34 AEs, and RNNs to implement the algorithms.61

Meanwhile, GANs also suffer from a serious issue of mode
collapse. Among various solutions, minibatch discrimination
and feature mapping have been introduced to solve this
issue.118 Another way to avoid mode collapse is to penalize
the model if it generates repetitive (non-unique) sequences.61

Although fully-connected networks have been used for the
original GAN model,116 recent studies have utilized different
architectures such as CNNs,34 AEs, and RNNs.61

To enable on-demand data generation, the unsupervised
GAN model can be modified by adding labeled information as
the input condition, which is named the conditional GAN
(CGAN).119 Following CGAN, auxiliary classifier GAN (ACGAN)
adopted discrete and qualitative labels in the objective function
for training the ACGAN, which makes the model suitable for
discrete and qualitative labels.120 Improving ACGAN, a semi-
supervised reg-GAN was developed for generating images from
quantitative labels. However, the reg-GAN distinguishes the
synthesized data from the real data by predicting the label first
and then compares the difference between the predicted and
the desired ones. To do this, a pre-set range of numbers is
needed, which requires human intervention. Since their birth,
GANs have transformed various fields ranging from image
through speech to materials science.121 Nevertheless, these
aforementioned GANs do not meet the criteria for generating
material structures with explicitly given properties (represented
by continuous labels) due to the lack of a mechanism of
generating data in a regressional and conditional manner. In
a study proposed by Dong et al.,34 to overcome the limitations
in previous GANs, they demonstrated a regressional and con-
ditional GAN (RCGAN), which meets two criteria for inverse
design of materials: (1) it generates distinguished structures
from the real structures used for training; (2) it can accurately
perform a generation task based on input quantitative labels.
RCGAN can be potentially used for inversely designing molecules
and polymers. As RCGAN uses a convolutional neural network
(CNN) architecture, the generator generates all structures at once.

Fig. 13 The workflow of an RL algorithm for compound generation.
Reproduced with permission from ref. 107, AAAS.
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But in an RNN architecture that has been employed in most GANs
for molecular inverse design, the generator generates a single
character of a SMILES string at once. CNN-based GANs are more
suitable for bigger systems such as polymers. Although RNN-based
models may generate structures with higher validity, they are
much more expensive for computing polymeric systems.

4.3.5. Hybrid architectures. Some hybrid architectures that
combine GANs with other algorithms, e.g., RL, to tackle the
challenge of inverse design of polymers have been proposed.
Although GANs have been widely employed in drug and mole-
cule inverse design, their application in polymer design faces
major obstacles.26 First, even with a properly defined polymer
representation, the input data are larger and more computationally
expensive than those of molecules. Second, one needs to consider
the polymer architecture that defines the way of branching or
networking of the polymer chains.122 With a longer sequence of
data, one needs to modify the architecture of a generator to handle
this challenge.94,95 For a GANmodel, for example, it ismore difficult
for the generator to mimic the real data in a way that the
discriminator cannot distinguish them from the real structures.97

RLs, on the other hand, can be used to tune the properties of the
generated samples toward desired values. Researchers combined
various GAN structures with RL components in a way to direct the
generator to generate molecules with targeted properties (see the
ORGANIC framework in Fig. 14).35,61,123 The RL components add a
reward to the discriminator to bias the employed RNN generator to
create structures with a single or a set of target properties. The focus
of this kind of hybrid model (combination of GANs and RL) is to
generate a bunch of samples that follow a targeted range of
properties (a proper distribution). So far, the mentioned hybrid
models were employed in molecule design. It is envisioned that
such hybrid architectures will emerge for inverse polymer design.

5. Conclusion

In this review, we systematically surveyed the recent progress
in the inverse design of polymers. First, the prerequisite, i.e.,
numerical representations of polymers that save as much
structural and topological information, was summarized. Then,
three mainstream data-driven algorithms including HTVS, GO,
and GMs for inverse design were outlined and their advantages
and disadvantages were discussed. Although the inverse design

has been advanced in the past decade, many challenges remain
to be addressed. Two main ones given in the following are
considered as the most interesting and pressing.

5.1. From homopolymers to complex polymers

Polymer informatics tools have been recently growing for efficiently
designing new polymers possessing targeted properties. However, as
we discussed in the previous sections, most of the data-driven
algorithms focus on molecules or homopolymers.73 With simple
modifications, molecular representations, such as SMILES, can be
used to represent homopolymers.104,124,125 However, for more
complex polymers such as copolymers, polymer blends, and
polymers with additives, the simple extension may not be
applicable.40 Very recently, Kuenneth et al. attempted to address
the issue by developing new representations for predicting the
properties of copolymers, which opens a new route to developing
state-of-the-art deep learning algorithms for copolymer design.

Most of the computational data for polymers are based on
DFT calculations of their monomers or small oligomeric species.4,14

Polymers as macromolecules, however, contain more structural and
conformational information. Direct first-principle calculations of
the whole macromolecule chains are not possible. Webb et al.
proposed a targeted sequence design for copolymers in an attempt
to use coarse-grained (CG) classical modeling for data generation.41

They predefined building blocks and employed feature extraction
approaches to build the input representations for their deep
learning model, which afforded quite impressive results.

5.2. Architectures of polymers

Defining the design space of polymers is critical for polymer
design. In most studies of inverse polymer design, researchers
consider a simplified and restricted design space while ignoring the
structural complexity of polymers such as their architectures.122

Architectural features such as branches, stars, and bottlebrushes of
polymers can largely affect their physical properties, including
solubility in different solvents and glass transition temperature.
They can be even crucial for some biopolymers such as DNA
polymerized from four different monomers. Srinivasan et al.
employed a genetic algorithm (GA) to design DNA-grafted particles
that self-assemble into desired crystalline structures.94 The
employed GA framework initiates the DNA-grafted particle
population for predicting superstructures formed using these
building blocks.

5.3. Active learning

One significant challenge of applying data-driven algorithms of
inverse materials design is the lack of sufficient high-quality
and labeled data. To tackle this challenge, one can employ
active learning, a paradigm in which the ML models direct the
learning procedure themselves through dynamic suggestions
for the next iteration of operation.126,127 Kim et al. employed
active learning for the discovery of polymers with high glass
transition temperatures (Tg). Starting with an initial small
dataset of polymers, they use an ML-based predictive model
in conjunction with an active-learning framework to iteratively
add the new candidates. The active learning model decides the

Fig. 14 Schematic of the hybrid architecture of ORGANIC, with three
fundamental components: a generator, a discriminator, and a reinforce-
ment metric. Reproduced from ref. 35.
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range of exploitation and exploration for selecting the next
experiment. In this design, having an accurate predictive model
is important. In addition, employing a suitable representation
system for polymers is crucial. Active learning for inverse design
of polymers begins with utilizing hybrid GMs, elaborated in
previous sections, to generate candidates possessing targeted
properties. Then an active learning architecture can be used to
provide feedback to guide the model to generate innovative
structures with properties outside the range of the training
dataset. This can be a method of performing extrapolation.
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