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Porous carbon (PC) has been widely regarded as one of the most promising absorbents for methane storage.
Studies show that its uptake capacity and selectivity highly depend on textural structures. Although much effort
has been made, unveiling their detailed structure-performance relationship remains a challenge. Here, we pro-
pose an innovative study where, with the assistance of machine learning, the hidden relationship of the textural
structures of PC with the methane uptake and separation can be derived from existing data in material literature.
Machine learning models were trained by the data, including specific surface area, micropore volume, mesopore
volume, temperature, and pressure as the input variables and methane uptake as the output variable for pre-
diction. Among the tested models, the multilayer perceptron (MLP) shows the highest accuracy in predicting the
methane uptake. In addition, the model enables to automatically construct a uptake performance map in terms of
micropore volume and mesopore volume. The obtained MLP model was also extended to explore the CO5/CHy
selectivity by retraining it with the data collected from literature of PC for the CO, uptake. The constructed 2D

selectivity map shows that the high selectivity can be achieved in the low CHy4 uptake region.

1. Introduction

As one of the most attractive clean fuels, natural gas (NG), consisting
of >90% methane, is much cheaper than petroleum derived gasoline and
diesel fuels [1]. Meanwhile, the high H/C ratio of methane betokens a
high energy per mass as well as a high energy conversion efficiency [2].
Motivated by these advantages, methane has been successfully used as a
vehicular fuel on a large scale [3]. However, its volumetric energy
density under standard temperature and pressure conditions is only
0.12% of that of the gasoline, resulting in a very low mileage per unit
volume of the tank. Thus, storage of adequate amount of NG in an on-
board fuel tank remains a grand challenge. It can be usually solved by
two possible strategies. One is to store NG under a high pressure (>20
MPa) or liquefy it under a low temperature (<112 K). The other one is to
store it in porous sorbents at substantially lower pressures (3.5-6.5 MPa)
and room temperature [4]. This strategy demands less energy and

capital inputs, thus offering a more cost-effective and safer way to store
NG at an acceptable gas density [5].

So far, various porous materials such as metal-organic framework
(MOFs) [6] zeolites [7] organic polymer [8] and silicas [9] and activated
carbons [10,11] have been intensively studied for methane storage.
Among them, porous carbon (PC) has been widely regarded as one of the
most promising absorbents due to its great uptake performance, low
cost, facile production, and suitable textural structures [12-14].
Although much progress has been continuously made, deep under-
standing of the structure-performance relationship is still lacking,
because their relationship is usually hidden in the high-dimensional data
space. Delineation of such relationship calls for novel data analysis
methods as well as provision of abundant high-quality data. However,
usually, a very limited number of samples were synthesized, charac-
terized and reported in each published paper. Such data deficiency
would pose a challenge to unveil a comprehensive picture, although
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these papers may catch a glimpse on the relationship between the
textural structures of PC and uptake performance. It is worth mentioning
that so far hundreds of papers if not thousands have been published on
this research topic. The accumulated data in these material literatures
would offer a unique opportunity to fill this knowledge gap if a novel
method can be developed.

In recent years, emerging data-driven methods based on statistics,
machine learning (ML) has gained enormous attention in both industry
and academy due to huge amount of accumulated data, continuously
optimized algorithms, and exponential growth in computation capa-
bility [15]. Besides its applications in self-driving vehicles, image
recognition and healthcare, ML has been rapidly introduced to the
material science fields [16-18]. Recently, our group has successfully
demonstrated that ML models can predict properties of 2D materials
[19] perform inverse material design [20] assist material synthesis,
extract chemical intuition from historic experimental data [21] and
identify materials from their characterization data [22]. Despite the
progress, to the best of our knowledge, using ML to disclose the quan-
titative relationship between the textural structures of PC and its CHy
uptake performance has not been reported in literature. In addition, as
the kinetic diameter and polarizability of CO5 (3.30 10\, 26.3 x 10°%° cm®
are quite close to those of CHy (3.80 A, 26.0 x 107%%) [23] using PC, a
typical sorbent material, to separate CO, from CHy is still challenging.
Although tuning the textural structures of PC is believed as a useful
strategy to improve the CO5/CHy4 selectivity [24] establishment of their
relationship still relies on a trial-and-error process, which is time-
consuming and very inefficient. Capability of ML in quantifying the
relationship among different variables would make it potentially a new
tool to study CO,/CHy selectivity in PC.

Herein, without additional experimentation or simulation, we suc-
cessfully demonstrated a ML based method to revisit methane uptake
mechanism in PC by mining the data collected from published material
literature. Contributions of this work can be summarized as follows.
First, two well-trained ML models can accurately predict the CH4 uptake
of PC when specific surface area, micropore volume, mesopore volume
serve as the input structural variables to train the models. Second, a
structure-performance relationship map in terms of textural structures
and CH4 uptake is constructed via the assistance of ML models. This map
would provide a direct tool for on-demand synthesis of next-generation
PC for methane uptake. Third, the optimized multilayer perceptron
(MLP) was further employed to provide new insights into the CO5/CHy
selectivity in PC. Finally, this innovative data-driven methodology offers
a general platform for wide data extraction from material literature and
intensive data exploration by the ML algorithms, which is invaluable to
derive new knowledge for PC development, thus laying solid foundation
for applications in supercapacitors [25] catalysis [26] and batteries [27]
as well as for development of new advanced materials.

2. Methods

All MLPs were trained in the Python 3.7, Tensorflow 1.15.0 and
Keras 2.3.1 environment. The MLP models for predicting the CH4 and
CO4 uptake all consist of an input layer, three hidden layers, and an
output layer (Fig. S1). The MLP model for predicting SSAs with Vp,; and
Ve as the input variables consists of an input layer, three hidden layers
with 64, 32 and 16 neurons, respectively, and an output layer. The epoch
for training all the MLP models was set as 1000. 1774 datasets for the
CH4 uptake were collected from 40 previously published papers
(Table S1), while 1020 datasets for the CO, uptake were referenced to
the previous work [28]. In general, all these data collected for CH4 and
CO, is based on pure carbon without heteroatom N doping, since N has
proved to have great influence on the gas adsorption and separation,
especially for CH4 [29] and CO3 [30,31]. These datasets were randomly
split to training and testing sets with a ratio of 4:1 for five times. All ML
models were trained on the training datasets, and performance was
evaluated on the testing set. After the training was finished, evaluation
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metrics were summarized in Table S3. Details about the remaining four
ML models that were used in this study can be found in SI.

3. Results and discussion

Fig. 1a shows the flow chart of exploring the structure-performance
relationship of PC with the assistance of ML via mining the material
literature. Based on existing scientific understanding, we first identified
a total of 5 input features, or called the chemical descriptors, which may
govern the uptake performance of CH4. In addition to temperature (T)
and pressure (P), three textural structures including specific surface area
(SSA), micropore volume (Vp,;), and mesopore volume (Vy,e) are also
taken into account. Previous studies have proved that these textural
structures have great influence on the CHy4 storage capacity [32,33].
Meanwhile, the corresponding CHy4 uptake serves as the output predic-
tion of the models. In this work, a total of 1974 experimentation data-
points including input and output data were mined from tables and
adsorption isotherms in 40 papers to build a database. All these
extracted data is based on pure porous carbon, since nitrogen doping has
been proven to affect the gas uptake and selectivity [30]. Meanwhile,
these papers cover PCs produced from various precursors and by various
fabrication methods (Table S1). In addition, the produced PCs possess a
wide range of textural characteristics (Fig. S2), while, the frequency
distribution of methane uptake is shown in Fig. S3. The histogram in
Fig. S3 depicts that methane uptake has right-skewed distribution. Then,
all the datasets were first randomly shuffled and split into training and
testing datasets with a ratio of 4:1 (Fig. S4). Then, the training datasets
were standardized to rescale the range of inputs within 0 and 1. After
that, a series of widely used ML models, including random forest (RF),
support vector machine (SVM), elastic network (EN), least absolute
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Fig. 1. (a) A flow chart of exploring the structure-performance relationship of
PC for methane storage and separation by mining data from material literature.
(b) RMSE:s of predicted CH4 uptake from various ML models.
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shrinkage and selection operator (LASSO), and MLP were trained. The
objective of investigating various ML models is to find a model with the
highest prediction accuracy. Their hyperparameters after these models
were tested and optimized were summarized in Table S2. Detailed
explanation of these ML models can be found in Supporting Information.
The evaluation metrics including root-mean-square error (RMSE), mean
absolute error (MAE) and mean absolute percentage error (MAPE) were
calculated from these models and summarized in Table S3. Here, RMSE
was adopted to compare different models due to its capability of
reflecting prediction accuracy. As shown in Fig. 1b, RF and MLP
generate relatively smaller RMSEs in both training and testing datasets,
indicating that both models outperform others in predicting the CHy
uptake of PC.

These two models, RF and MLP, which provided the second highest
and the highest prediction accuracy, respectively, were further
compared. Fig. 2a-b show that both models exhibit strong linear corre-
lation between the predicted values (Npy) and experimental ones (Ney).
The correlation factors (Rz) of testing data and the predicted values from
the RF and MLP models are both 0.99. As quantitative evaluation and
comparison, the relative error between Ny, and Ney, was calculated as |
Npy — Ney |[/Ney. As shown in Fig. 2c-d, compared with RF which gen-
erates possibility of ~57% when predicting methane uptake within a
relative error of < 10%, MLP offers a higher possibility of ~75% to
achieve the same prediction error. This number increases to ~90% if the
predicted uptake is within a relative error of 20%. This high prediction
accuracy provided by both models indicates that the selected input
features are reasonable for model development, and they all affect the
uptake to some extent.

In order to disclose the role of SSA, Vy,; and Vy,e—the features that
are closely related to the intrinsic physical properties of PC—in deter-
mining the CH4 uptake, quantification of the relative importance of each
input is necessary, while it is still challenging to be achieved via tradi-
tional analysis methods. It should be noted that most ML algorithms
including MLP have difficulty in providing an explanation of the
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predicted results owing to their so-called “black-box” nature [21]. But,
the decision tree based ones, like RF, provide an out-of-box method that
can export the weight of each input feature in determining the output
prediction [34]. As shown in Fig. 3, among the three structural features,
SSA is the dominant one in determining the CH4 uptake. This result is
well accepted in the field [35]. For example, Gu et al. found that a larger
SSA is favorable to CHy4 uptake after studying adsorption properties of a
series of granular activated carbons with similar properties but different
pore structures [36]. In addition, it has been shown that for small gas
molecules (e.g. CHy), absorption mainly takes place in the micropores
[29]. This conclusion is also supported by the result shown in Fig. 3,
which indicates that Vy,; is the second dominant factor that contributes
greatly to the CH4 uptake [37,38].

Another power of the ML algorithms is that they can generate new
data by learning the patterns formed by the historic data. These newly
generated data can cover the data points which are not reported in
previous experiments. By this way, a comprehensive contour map that
shows the methane uptake as a function of the corresponding textural
structures can be obtained to further elucidate the structure-uptake
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Fig. 3. Feature importance of each input descriptor derived from the RF model.
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Fig. 2. Measured data of CH, uptake vs. predicted uptake value from two ML models: (a) RF and (b) MLP. The unit is mmol/g for the uptake. Error distribution of
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relationship. In other words, this map can not only explicitly show the
effect of individual textural structure of PC on the CH,4 uptake, but also
reveal the optimized PC structures. However, it is possible that the
models may also generate some data points with extreme values that are
contradictory to real situations, for instance, a high SSA with almost zero
Vi and Ve [39]. Therefore, prior to the map construction, we explored
the possibility to reduce the input feature SSA. Herein, we trained
another MLP model that can predict the SSA with given experimental
Vi and Vi, ranging from 0.2 to 1 em®/ g. As SSA is closely related to Vp;
and Ve, we expect that the model trained with experimentally obtained
Vmi and Ve would result in reasonable SSA. The predicted SSA vs. the
testing SSA is shown in Fig. S5a. High R? of 0.81 for the testing dataset
suggests that SSA has strong correlation with Vy,; and V. Fig. S5b
shows a contour map of predicted SSA as a function of Vy,; and Vie. As
expected, the high SSA appears in the region enclosed by large Vy,; and
Vme. For instance, when V,;is 1.0 cm’/ g, increase of V. from 0.2 cm®/ g
to 1.0 cm®/g results in the increase of SSA from ~2454 m?/g to ~3168
m?/g. These results suggested that SSA as an input feature for predicting
CH4 uptake could be reduced, as its information could be indirectly
reflected by Vi and Vige.

Then we retrained the MLP model for CH4 uptake with only Vi, Vine,
T and P as input features. As we expect, it stills shows a good linear
relationship between predicted value and measured one (Fig. S6a),
although, the prediction accuracy of retrained model is not as good as
the one with SSA as input features due to the input feature reduction
(Fig. S6Db). It provides an opportunity to reflect the CH4 uptake in terms
of Vi and Vpe under specific T and P. Then, we generated a series of
different hypothetical combinations of Vp,; and Ve ranging from 0.2 to
1.0 cm®/g. After that the retained MLP is used to predict the corre-
sponding CHy4 uptake value to further construct the performance maps at
25 °C under pressures of 1 bar, 5 bar, 10 bar and 20 bar, respectively as
shown in Fig. 4. At 1 bar, the highest CH4 uptake (2.6 mmol/g) appears
in a region enclosed by large Vi (0.82 ~ 1 cm®/g) and medium Ve
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(0.51 ~ 0.64 cmB/g) (Fig. 4a). This result is in good agreement with
previous studies showing that the CH4 uptake is primary governed by
Vi under ambient conditions [40]. As the pressure increases, the dis-
tribution of CH4 uptake region is varied. For instance, when the pressure
is elevated to 5 bar, the area of high uptake region increases and moves.
Specifically, Vi and Vi shift to 0.6 ~ 0.95 cms/g and 0.47 ~ 1 cm3/g,
respectively. Our findings are in consistent with the experimental
observation that hierarchical porous carbon has higher gas adsorption
than microporous carbon does at high pressure [41]. Similarly, Cai et al.
analyzed a series of porous carbon and concluded that mesopore also
contributes the CH4 uptake at elevated pressure due to the condensation
effect [35]. It is also believed that the existence of mesopores can
facilitate the diffusion of the gas molecules into the micropores at high
pressure, leading to the enhancement of the CH4 adsorption [42].
Meanwhile, the area of region corresponding to low methane uptake
moved to low Vp,; and low Ve region, as marked by dash lines in Fig. 4b.
However, such a distribution change for high uptake region becomes
less prominent as the pressure is further increased. As shown in Fig. 4c,
when the pressure is further increased to 10 bar, the high methane up-
take region is enclosed by Vi of 0.54 ~ 0.81 cm?/ gand Vipe 0f 0.64 ~ 1
cm?®/g, which is similar to the one obtained at 5 bar. Meanwhile, it
should be noted that another region with Vy; of 0.54 ~ 0.65 cm3/g and
Ve 0f 0.55 ~ 0.77 cm®/g corresponding to high uptake at 5 bar changed
into moderate uptake when pressure is at 10 bar. This trend continues as
the pressure is further elevated to 20 bar, the resulting distribution of
high and moderate uptake regions (Fig. 4d) are almost as the same as the
ones shown in Fig. 4c. Furthermore, from the derived performance map
the effect of Ve on the CHy uptake is further disclosed that Vi,e plays a
more and more important role in contributing the CH4 uptake as pres-
sure increases. For instance, if the uptake of PC with Vy,; of 0.65 cmg/g is
measured at 20 bar (Fig. 4d), the increase of Ve from 0.2 cm3/g to1l
cm®/g increases the uptake capacity from 7 mmol/g to 11.4 mmol/g.
While, no matter under what pressures, a relatively high Vp,; (>0.6 em®/
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Fig. 4. Contour maps of CH4 adsorption capacities (mmol/g) as functions of V,; and Vy,e at 25 °C and 1 bar (a), 5 bar (b), 10 bar (c) and 20 bar (d), respectively. The
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g) is always needed to achieve a high uptake capacity. This result is in
line with the result shown in Fig. 3 that Vy,; is more important than Vpe.

This methodology enabled by the ML models offers a new avenue to
reveal the correlation between textural structures of pristine PC and
their corresponding CH4 uptake. Such success inspires us to look into
other gases, e.g. COo, with a goal of studying the gas selectivity of PC for
CH4 and COs, separation. With the same input descriptors (Vpi, Vime, T
and P) and 1020 datasets collected from a previous work [28] a MLP
model trained for a CO, uptake results in a high prediction accuracy
with R? of 0.99 for the testing dataset (Fig. S6¢). The error distribution of
these predicted CO, uptake values shows that >55% of predicted values
has <10% of relative errors (Fig. S6d). The accuracy can be further
improved with the size of database increases. By following the same
procedure of obtaining Fig. 4, a performance map showing the relation
of the CO, uptake performance as a function of Vy,; and Ve at 1 bar was
constructed (Fig. 5a). It shows that the maximum CO; uptake (4.5
mmol/g) appears in a region enclosed by high Vi (0.65 ~ 0.88 cm®/g)
and medium Ve (0.2 ~ 0.4 cm®/g), which is in a good agreement with
previous studies [28,43]. For example, Zhang et al. reported that mi-
cropores are preferred for achieving high CO5 adsorption at ambient
conditions [28]. Moreover, Govind Sethia et al. synthesized a series of
strictly microporous nitrogen doped activated carbon and found that
micropores, especially ultra-micropores has a significant impact on the
CO adsorption [43].

Then by assuming a 50:50 mixture of CO5/CHg4, a typical volume
ratio in landfill gas, the selectivity map was calculated based on the ideal
absorbed solution theory (IAST) [44]. The IAST-derived selectivity is
defined by using the equation of Sco2/cr4 = (Nco2/Pco2)/(Ncu4/Pcua),
where ncoy and ncpy are the predicted CO5 uptake and CHy4 uptake at
0.5 bar and at 0.5 bar, respectively. ngo2 and ncpy are directly obtained
from Fig. 5b-c. Fig. 5d shows the corresponding calculated selectivity
map. And it shows that the region with the highest selectivity (>5) is
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enclosed by Vy,; in the range from 0.63 to 0.72 cm3/g and Ve in the
range from 0.5 to 0.6 cm®/g which is also located in the region corre-
sponding to low CH4 uptake region as shown in Fig. 5b. Such result
indicates that the high selectivity region is determined by the low CH4
uptake region instead of high CO, uptake region, which elucidates the
direction of potential interest for future experimental synthesis. Fig. 5
also suggests that a high Vy,; of microporous carbon may not favor the
separation of the CO5/CH,4 gas mixtures at atmospheric pressure which
agrees well with a recent experiment study [45]. In that work, they
systematically investigated the roles of pore characteristics in terms of
SSA, Vi, and Ve on the separation of CO,/CHy. They found that at
atmospheric pressure, high SSA and Vp; led to relative low separation
efficiency. In contrast, mesopores promoted the gas separation. Such
effect is more profound when pressure increases [45]. It is worth
mentioning that this positive role of mesopore in gas separation has also
been reported in CO3/N, gas mixtures [46].

4. Conclusion

In summary, a general platform of ML algorithms for mining data
from material literature was developed to revisit methane uptake
mechanism and selectivity in PC. The well-trained ML models enable the
prediction of methane uptake and offer new data for constructing per-
formance and selectivity maps that help to unveil the underlying
structure-performance relationship. They not only offer high prediction
accuracy but also disclose a clear role of Vy,e in the CH4 uptake, which is
obtained by the data-driven approach. Moreover, we found that the
textural structures of pristine PC with the high CO, and CHy4 uptake lead
to moderate COy/CHjy selectivity. To achieve a CO2/CHy4 selectivity of >
5, synthesis of PC with suitable textural structures is essential and
doable. Such rediscovered knowledge is beneficial to future develop-
ment of advanced PC for gas absorption and separation. Finally, this ML
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assisted methodology can be extended to other applications of PC such
as energy storages and conversion and applied to develop new advanced
materials.
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