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In this paper, we introduce an RME-based (Freudenthal, 1991) task sequence intended to 

support the guided reinvention of the linear algebra topic of vector spaces. We also share the 

results of a paired teaching experiment (Steffe & Thompson, 2000) with two students. The results 

show how students can leverage their work in the problem context to develop more general 

notions of Null Space. This work informs further revisions to the task statements for using these 

materials in a whole-class setting. 
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Linear Algebra is a critical course for many majors in Science, Technology, Engineering, and 
Mathematics: students learn important computational methods, as well as begin to work with 
mathematical definitions, proofs, and theory. A survey of research on the teaching and learning 
of linear algebra identified significant bodies of recent research in the areas of span, linear 
independence, basis, and eigentheory (Stewart et al., 2019). Notably less work has been done in 
the importantly related areas of vector spaces and subspaces such as null and column spaces.  

Literature Review 
Researchers who have written about student learning related to the topic of vector spaces and 

subspaces have highlighted the challenges inherent and somewhat unique to teaching the topic, 
which was “not introduced to solve a specific open problem but rather to solve different 
problems with the same tools in an economic formal way” (Grenier-Boley, 2014, p. 439). A 
central theme in this literature focuses on the importance of how students reason about sets, 
binary operations, closure, and linear combinations of vectors (Britton & Henderson, 2009; 
Maracci, 2008; Mutambara & Bansilal, 2018; Parraguez & Oktac, 2010; Wawro et al., 2011). 
This is perhaps unsurprising when one considers vector spaces to basically be sets of vectors that 
are closed under linear combinations. In our work, we follow the recommendations of the Linear 
Algebra Curriculum Study Groups in not taking on an abstract treatment of vector spaces as a 
focus for a topic in a first course, but rather focus on subspaces of Rn (Carlson et al., 1993; 
Stewart et al, 2021).  

Our curricula are based on Realistic Mathematics Education (RME), a curriculum design 
theory that relies on design heuristics, specifically, didactical phenomenology, guided 
reinvention, and emergent models (Freudenthal, 1991; Gravemeijer, 1999; Van den Heuvel-
Panhuizen, 2020). In this paper, we describe our development of a sequence of tasks designed to 
support students’ reinvention of vector spaces and present results from a paired teaching 
experiment implementing those tasks. Consistent with the RME design heuristic of didactical 
phenomenology, during our development of the tasks, we identified key conceptual goals for 
supporting students’ conceptualization of vector spaces: understanding vector spaces and 
subspaces as spans of sets of vectors and understanding vector spaces and subspaces as sets 
closed under linear combinations.  

2021 Research in Undergraduate Mathematics Education Reports 222



We also sought to identify an approach to these views of vector space and subspace that 
connected to students’ prior experiences in the Inquiry-Oriented Linear Algebra [IOLA] 
materials. Accordingly, we identified null spaces and column spaces of linear transformations as 
appropriate entry points into reasoning about vector spaces and subspaces as sets closed under 
linear combinations (or, equivalently, as the span of a set of vectors).  

With this in hand, our general strategy for these materials is to approach the content 
objectives of Subspaces of Rn via an exploration of null spaces and column spaces. In this unit, 
students’ solutions to problems will benefit from the development of special sets of vectors 
(which correspond to null spaces), which we anticipate generalizing to the broader notion of 
subspaces as: (a) sets that are closed under scalar multiples and vector addition and (b) sets that 
can be written as the span of some subset of Rn. Our development team identified a problem 
context and iteratively refined a task sequence to support core conceptualizations for null spaces 
that we saw as promising because: (a) it would extend closed loops reasoning about linear 
dependence from prior tasks for making sense of null spaces in a new context and (b) this 
reasoning might then be extended to identify generalized solutions for non-homogeneous 
systems within the problem context (affine spaces). Our team conjectured that the notion of 
closure under linear combinations and closed loop reasoning would be useful for students, but 
we were unsure if and how they would engage in that reasoning. Given this approach to the 
guided reinvention of vector spaces and our current iteration of the task sequence, we developed 
the following Research Question:  
 
What meanings do students develop for null spaces and subspaces from their engagement in the 

task sequence that we designed? 

Methods 
This study was conducted as part of a broader NSF-funded grant focused on expanding 

research-based curricula for inquiry-oriented linear algebra. Our data is in the context of 
subspaces of Rn, with particular emphasis on the idea of null spaces. Our paired teaching 
experiment (PTE; Steffe & Thompson, 2000), or experiment involving interviews with one 
teacher-researcher and two participants, was organized around a sequence of four central tasks. 
PTEs can be helpful in seeing how students learn and reason about a concept. The teacher-
researcher’s role is to elicit and test participants’ ideas. This approach is also helpful in designing 
and refining tasks; in this case, the task sequence leverages hallway closures in a school to better 
understand subspaces (null spaces), which we will detail in a following section. PTEs can be 
useful regarding guided reinvention (e.g., Lockwood & Purdy, 2019; Swinyard, 2011), where the 
goal of our PTE was for students to reinvent ways of organizing or thinking about subspaces. 

Participants, Data Sources, and Analysis Methods 
The participants in this study were two white male undergraduate students (which we have 

given the pseudonyms Carson and Drew) at a predominantly minority public institution in the 
Southeastern United States. All students who completed this class were invited to participate. 
However, Carson and Drew were the only students to volunteer at the end of the semester who 
also met the age constraints of the IRB protocol. Both Carson and Drew had just successfully 
completed a semester of inquiry-oriented linear algebra that did not include explicit instruction 
about subspaces. The course content did include the topics of span, linear independence, matrices 
as linear transformations, composition and inverses, eigenvectors, and eigenvalues. The two 
students participated as a pair in four, 90-minute problem-solving sessions that took place across 

2021 Research in Undergraduate Mathematics Education Reports 223



four different days within a one-week timeframe. The first author was the instructor for the 
course as well as the teacher-researcher for the interviews.  

The sessions were conducted and video recorded via Microsoft Teams, with the interviewer 
screen sharing a presentation of problem statements, annotating student ideas on that shared 
screen, and students typing additional work, responses, and ideas into the chat or holding their 
written work up to their cameras. During each interview session, a second member of the 
research team was present to ask additional questions about the participants’ thinking, to witness 
student work, and to provide additional insight into how to plan for subsequent interviews. After 
each interview, the teacher-researcher, the observing team member, and at least one other 
research team member met virtually to discuss the day’s progress and revise the planned 
materials for the next interview session. 

In addition to the audio-video recordings of the meetings and collection of participant work 
and responses, the team members kept concurrent notes of the interview sessions and recorded 
thoughts shared during the debriefing sessions after each interview. Through this process, we 
developed areas of focus for better understanding the participants’ reasoning as they worked 
through each task in the interviews. We specifically identified one key construct that continually 
emerged throughout the participants’ discussions. Based on these conversations, we identified 
instances of the participants using the construct throughout the recordings and documented the 
evolution of how the students leveraged the construct from each task to the next. The field notes, 
post-interview discussions, and recordings provide triangulation to support the construct’s 
importance throughout the series of interviews. 

Task Sequence 
Drawing on the design heuristic of didactical phenomenology (Freudenthal, 1991; Van den 

Heuvel-Panhuizen, 2020), the research team worked to identify a context to draw out aspects of 
subspaces, especially considering students’ anticipated mathematics at the point in the semester 
at which these materials are planned to be implemented. As an entire research team, we have 
organized the instructional units so that these tasks would occur after students have learned about 
linear in/dependence, span, solving systems of equations, and matrices as linear transformations, 
including composition and inverses of linear transformations. The authors of this paper 
developed the following task sequence based on the idea of One-Way Hallways, which we think 
provides an experientially real starting point that is consistent with directed graphs, or graphs 
made of edges and vertices where the edges have an associated direction to specific vertices 
(Figure 1). Students are first presented with a diagram of the west wing of Ida B. Wells High 
School, with an arrow drawn along each corridor and an explanation of the diagram.  

 
Figure 1. The setup for the first task in the sequence. 
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Task 1. The task sequence begins by focusing on one individual student’s possible paths 
between two rooms and from one room, back to that same room. Students are asked to represent 
paths with column vectors that show how many times a student passed by a camera in each of the 
five hallways. So, for instance, the vector <1, 1, 0, 0, 0> represents a student passing by camera 1 
and camera 2, but no other cameras. Students are first asked to identify all routes that a student 
could possibly take to start a journey in Room A and end the journey in Room C and write these 
possibilities as efficiently as possible. There are an infinite number of such paths if the student in 
the task repeats their trip down some of the hallways. For instance, the journeys described by the 
vectors <3,3,1,1,1> and <17,17,12,5,12> would also result in the student traveling from Room A 
to Room C. After this, students are asked to find routes that describe all journeys one student 
could take from Room C back to Room C while also considering the change in populations for 
each room. Students then are asked to consider both journeys (from A to C and from C to C) for 
5 students traveling the hallways, once again also considering the population changes for each 
room. At the end of the task, students are prompted to consider the set of vectors they have 
developed for each of the four trips and any comparisons they can make between the trips. 

Tasks 2. Task 2 is intended to extend the students’ reasoning toward an understanding in 
which the hallway diagram encodes a mapping from “camera vectors” (5-tuples in which the kth 
entry is the number of students who pass the kth camera) to “classroom change vectors” (4-tuples, 
in which the first, second, third, and fourth entry is the change in student population for room A, 
B, C, and D, respectively). To promote this shift, we ask students to consider the effect that given 
“camera vectors” would have on classroom populations as well as identify possible “camera 
vectors” that would result in given changes in the four classrooms. This activity builds from the 
first activity by abstracting the vectors from being associated with any specific journey within 
the problem context and instead focuses on the input/output relationship between the camera 
vectors and classroom vectors. Specifically, Task 2 presents students with a room capacity 
constraint that requires none of the room populations change throughout the day. This anticipates 
a homogeneous system within this problem context.  

Task 3. In Task 3, students are asked to develop a matrix that corresponds to the mapping 
defined by the hallway diagram and extend their reasoning about the input/output relationship by 
connecting it to their existing understanding of linear transformations. This task then asks 
students to reason about the set of vectors that result in no change in room populations as well as 
the set of all possible vectors that could describe changes in the room populations. In other 
words, this task leverages the problem context to prompt students to reason about the null space 
and column space of the linear transformation. Specifically, students are asked whether these sets 
are closed under scalar multiplication and whether they are closed under linear combinations. At 
this point, an instructor using these materials would define vector spaces and subspaces as sets of 
vectors that are closed under both operations and, equivalently, as sets of vectors that can be 
described as the span of some subset of the set.  

Task 4. To generalize students’ activity up to this point, Task 4 presents them with the 
matrix in Figure 2. This matrix represents students passing through hallways to a different set of 
classrooms in another wing of the school (the East Wing). Students are first asked to identify 
how many hallways and classrooms must be in the East Wing. Students are then prompted to 
figure out all possible hallway flows that would leave the populations unchanged, all possible 
hallway flows resulting in a particular vector, and all possible changes in population for each 
classroom in this wing. At the end of the task, students must decide if this latter set of vectors is a 
subspace of R5. The goal of the last part of this task is to formalize ideas in the context by having 
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students think about them in terms of a matrix equation and set of vectors, while also linking 
these to the concept of subspaces. 

 

 
Figure 2. A matrix representing students passing through hallways of the East Wing of Ida B. Wells High School. 

Results and Discussion 
As conjectured, Carson and Drew developed robust reasoning during the initial task that 

extended into the later tasks. Specifically, the two participants identified closed loops within the 
hallway diagram as a helpful construct to make sense of multiple solutions within the problem 
context. The participants relied on this loop reasoning when discussing solutions to the 
homogeneous system as well as to non-homogeneous systems. Stated formally, this 
conceptualization of the problem allowed the participants to reason about the null space as well 
as an affine space that mapped to a non-zero vector.  

When solving the Task 1, Carson and Drew took time to make sense of the given diagram 
and the vector <1,1,0,0,0>. The participants discussed how to interpret the vector as a journey 
through the hallways, eventually agreeing that the vector did represent a path from classroom A, 
down the hallway containing camera 1, past classroom B, and down the hallway containing 
camera 2 to arrive at classroom C. Following this discussion, the teacher-researcher asked the 
participants, “Can you think of another vector that might show a path from A to C?” Drew 
responded by saying, 

 
Well, the only other way you could get a path from A to C is if you go back to A from C 
and then you could just have like a loop going. So you could have it where it's like 221 - 
or no, 2201 [sic]. So it goes through that 4th camera goes through that 4th hallway 
diagonally and then back up and to the right and back to C. 
 
The teacher-researcher asked Drew to clarify what he meant by the description, which 

prompted Drew to trace a triangle in the air while describing the journey, adding, “And then you 
can repeat that as many times as you want.” When asked to explain his last point, Drew said, 
“Yeah, so you could put a scalar before the vector and you can make it whatever you want and 
you would still get you to A or - from A to C every time.” 

The teacher-researcher then asked the two participants to each write their understanding of 
what Drew had just described. Rather than writing anything, Carson stated that Drew was just 
describing going in a bunch of loops around A, B, and C. Then Carson said, “What's like, it's 
kind of like the homogeneous vector you go back to where you are. When we talk about linear 
transformations - that's basically what you're doing. You're going, you're go in an entire loop 
where you go somewhere, and then you go back.” This imagery references existing IOLA 
materials, specifically the “Getting Back Home” task (Unit 1 Task 3 of IOLA materials), which 
is reasonable considering that Drew and Carson had recently completed those materials.  
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At this point, the second researcher in the interview asked the participants to provide two 
different vectors that they though would be in that set. The teacher-researcher then elaborated on 
this by suggesting the participants provide generic vectors or other solutions. In response to this, 
Carson explained that he could see another path, but did not know how to describe that as a 
vector, saying, “You can go A, B, C, D and then back to A.” In this description, Carson is 
identifying a different loop than the one Drew suggested before. Meanwhile, Drew had typed 
into the meeting chat the vector expressions “x<1,1,1,0,1> + <1,1,0,0,0>” and “x<1,1,0,1,0> + 
<1,1,0,0,0>,” adding that his first expression represented the journey that Carson described. The 
two participants eventually determined that both loops could be used in combination to describe 
all possible journeys of one student traveling from room A to room C.  

Throughout the remainder of the task and, indeed, the subsequent sessions of the teaching 
experiment, the participants continually referred to the loops as ways to generate additional 
solutions to problems in which they were asked to identify paths that would result in given room 
changes. This included later in the first interview when they were asked to find all possible 
journeys that would result in one student traveling from room C back to room C, five students 
traveling from room A to room C, and five students traveling from room C back to room C. This 
culminated in the development of four sets of solutions, which the participants compared. Drew 
and Carson correctly identified that the set of solutions for one student passing from Room C 
back to Room C was equivalent to the set of solutions for five students passing from Room C 
back to Room C. Similarly, the participants identified parallels for the affine sets they had found 
for the 1-person and 5-person journeys from A to C, noticing that the constant vector <1,1,0,0,0> 
would be scaled by 5 for the 5-person journey, but any combination of loops could be used. 

During Tasks 2 and 3, the participants extended this loop reasoning to apply to any 
relationship between camera vectors and room change vectors. They also developed the 
appropriate matrix that is consistent with the vector mapping from R5 to R4 and explored the 
row-reduced echelon form of that matrix to further reason about solutions both for given camera 
vectors and for given room change vectors. We further identified an interesting result in response 
to Task 4 when the participants described and subsequently completed two different solution 
approaches to making sense of the East Wing matrix. Carson suggested row-reducing the matrix 
to identify solutions to the system. Drew, on the other hand, suggested constructing a map of the 
East Wing based on the given matrix and identifying loops in that diagram to find solutions to 
specific systems. Throughout the task sequence, the participants’ loop reasoning continually 
proved useful, including when considering new systems. In future implementations of the task, 
we anticipate further revising the materials to better support these conceptualizations. We are 
also transitioning to generating instructor support materials that will incorporate results from this 
PTEs as well as planned whole-class implementations.  
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