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Abstract—Extreme quantiles are important measures in reli-
ability analysis. At the system design stage, quantiles are often
estimated via stochastic simulations. This study aims to quantify
quantile estimation uncertainties by constructing confidence in-
tervals using importance sampling when quantiles are estimated
via stochastic computer models. We validate the asymptotic
normality for the importance sampling quantile estimator and
construct a theoretically valid confidence interval in a closed
form. A drawback of the theoretical confidence interval is
that it needs to consistently estimate a variance parameter. To
resolve the limitation of the theoretical confidence interval, we
present batching-based approaches which are also built upon the
asymptotic normality of the quantile estimator. We compare the
estimation performance of studied methods and other alternative
methods using numerical examples and wind turbine case study.

Index Terms—Batching, confidence interval, importance sam-
pling, reliability, sectioning, variance reduction

ACRONYMS AND ABBREVIATIONS

UuQ uncertainty quantification

CDF cumulative density function

PDF probability density function

IEC International Electrotechnical Commission
NREL  National Renewable Energy Laboratory
MCS Monte Carlo sampling

CMC crude Monte Carlo

SIS stochastic importance sampling

CI confidence interval

CLT central limit theorem

POE probability of exceedance

DLC design load case

I. INTRODUCTION

This study considers uncertainty quantification (UQ) in
estimating quantiles via stochastic computer models. Quantiles
are important measures in the reliability analysis for physical
and engineering systems, or risk analysis for social, envi-
ronmental, and financial systems [1]. Consider a continuous
random variable Y with its cumulative density function (CDF)
Fy(y) = P(Y < y). The upper a-quantile (called a-
quantile in this paper) is defined as the constant y, such that
Fy (ya) = 1 — a. In the reliability analysis, y,, is also known
as a resistance level [2].
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NOTATION
Y response variable
Fy CDF of Y
fy PDF of YV
« probability that Y~ exceeds the resistance level
Yo upper a-quantile of Y
X input vector
x pdf of X
Qx support of fx
ax importance sampling density
n sample size
P, failure probability estimator
qx optimal importance sampling density with stochastic
black box computer models
Cy normalizing constant
s conditional failure probability given X = x
s metamodel of s
Ja,n  -quantile estimator

Dy failure probability

Pu(y) failure probability estimator

05 asymptotic variance of \/nPp (y)

Ry, Ril remainders in Taylor expansion

I3 random vector embedded inside a computer model
fxe joint pdf of X and £

feix conditional pdf of &, given X =z

qxe joint importance sampling density of X and &
L likelihood ratio

hn bandwidth parameter

b number of batches

r batch size

ﬁr,k Failure probability estimator at the k% batch
Dour ks quantile estimator at the k*" batch

Ja,b,bat  Sample average of batch quantile estimates
Sl?.ba : sample variance in batching

Sg;sec sample variance in sectioning

In particular, we consider a system that operates under
stochastic conditions. When the reliability of such systems
is assessed at the design stage, system manufacturers may
conduct a field measurement campaign during a short period
of time [3]. However, when real operating data is scarce,
field data is usually not sufficient due to rare occurrences
of extreme events. To supplement data scarcity, simulation
models are often employed. For example, in the wind in-
dustry, estimating extreme load responses becomes increas-
ingly crucial for determining design parameters of large-scale
wind turbines. Accordingly, the International Electrotechnical
Commission (IEC)’s design standard [4] requires wind turbine
designers to estimate the extreme load response associated
with a pre-specified small failure probability. In response,
aeroelastic simulators have been developed in the wind energy
community. For instance, the U.S Department of Energy’s
National Renewable Energy Laboratory (NREL) developed a
set of simulators to generate load response data for a turbine
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operating under stochastic operating environment [5], [6].

There are two major approaches for extreme quantile es-
timation with simulation models. The first approach is to
develop an emulator that can approximate the simulation
model and estimate the quantile with the resulting emulator.
For example, the Gaussian process has been widely used in
the computer experiment literature [7], [8]. For estimating
extreme load responses in a wind turbine, statistical models
based on extreme value distribution have been studied in [3],
[9]. However, the main purpose of such emulators is to
estimate general characteristics of the response surface over
the input area. Such approaches often show poor estimation
for analyzing tail probability [2], [10].

Another approach is to use Monte Carlo sampling (MCS)
that generates data via simulation [11]. The most brute-force
MCS method is a so-called crude Monte Carlo (CMC) that
uses the original input distribution to run the simulation.
However it has been well-known that CMC typically requires
extensive computational resources for extreme quantile es-
timation and its estimation variance is high [2], [12]. To
address these issues, various variance reduction techniques
have been studied in the literature, among which importance
sampling has been proven to be a powerful tool [13]. Most
studies in importance sampling consider simulation models,
which are called deterministic computer models in this study,
which generate a deterministic output given the same input.
Recently, in an attempt to resemble actual stochastic systems
more realistically, some modern simulators employ stochastic
computer models where random outputs are generated even at
the same input. The NREL simulator is one example of such
stochastic computer models.

Choe et al. [14] developed an importance sampling method
that can reduce the variance for failure probability estimation
using stochastic computer models, referred to as stochastic
importance sampling (SIS). The SIS method was applied to
the NREL simulator for estimating extreme load responses
in a wind turbine in [2], showing great advantages of SIS
over CMC, in terms of both computational efficiency and
variance reduction. Both studies in [2], [14] focused on point
estimations of the failure probability and quantile.

In the reliability analysis, UQ is as important as the point
estimation for evaluating the estimation accuracy [15]. In
general, UQ can be done by establishing a confidence interval
(CD) of an estimator, which is typically constructed based on
the central limit theorem (CLT). For example, Choe et al. [16]
derived the CLT and asymptotic CI of the failure probability
when SIS is applied to stochastic computer models.

Typically, CLT can be driven for the estimator in the form of
the sample average. Deriving CLT for the quantile estimator
is, however, nontrivial because it does not take the form of
sample average. In the literature, Sun and Hong [17] stud-
ied the asymptotic normality of the quantile estimator when
importance sampling is used. But the resulting CI includes
an unknown variance parameter, which prevents one from
implementing it in practice. Chu and Nakayama [12] further
advanced the theoretical results and present certain conditions
where the CLT for a quantile estimator hold. Asumussen
and Glynn [18] introduced the batching-based approach to

construct a quantile CI. Based on the asymptotic normality
of the quantile estimator established in [12], Nakayama [19]
also constructed several batching-based approaches, including
batching, sectioning and sectioning-batching, using variance
reduction techniques under certain conditions. The CIs devel-
oped in these studies, however, have been generally applied to
deterministic computer models.

The main contribution of this study is to derive the asymp-
totic normality of the quantile estimator when quantile is
estimated using stochastic computer models (Figure 1). The
resulting validity allows us to develop an asymptotic quantile
CI in a closed-form. It also provides a theoretical foundation
to construct CIs with batching-based approaches. Built upon
the asymptotic result, we show that the batching, sectioning
and sectioning-batching approaches [19] can be applicable for
obtaining quantile CIs with stochastic computer models. To the
best of our knowledge, this is the first study that constructs
quantile CIs with stochastic computer models.

Theoretical
Asymptotic normality of al
quantile estimator with Batching CI
stochastic computer models
Batching- Sectioning Cl
based Cl
Sectioning-
batching Cl

Fig. 1: Proposed quantile CI construction, based on the
asymptotic normality property of the quantile estimator with
stochastic computer models

We implement the CIs from the theoretical approach and
batching-based approaches through a numerical example and
case study. The CI performance of these approaches are
compared with other alternatives, including bootstrapping and
Jackknife. The results suggest that the batching-based ap-
proach provides stable results. Specifically, the sectioning-
batching generates narrow confidence intervals with high cov-
erage rates in most cases.

The remaining of the paper is structured as follows. Sec-
tion II provides background and reviews the importance
sampling for stochastic computer models. Section III theo-
retically derives the quantile CI and presents the Cls from
three batching-based approaches. Section IV compares the CIs
from different methods with a numerical example. Section V
presents a wind turbine case study using the NREL simulators.
Section VI concludes the paper.

II. REVIEW OF IMPORTANCE SAMPLING FOR STOCHASTIC
COMPUTER MODELS

This paper considers reliability against extreme shocks (or
extreme loads). Let X € R? denote a random input vector with
its pdf fx(z) that represents stochastic operating condition.
For the system operating under stochastic operating condition,
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the failure probability, or probability of exceedance (POE), is
typically defined as

PO >y = |

Qx

PY >y | X =) fx(x)dz, (1)

where Q2x represents the support of the input density fx, i.e.,
Ox = {z | fx(z) > 0}, and y is a resistance level (or thresh-
old level). This failure probability is the same as the counter
cumulative distribution function of Y, that is, 1 — Fy (y).

The a-quantile, denoted by y,, is the value y that satisfies
P(Y > y,) = . Mathematically, it can be defined as

Yo =inf{y e R: P(Y > y) < a}. (2)

To estimate y,, one can use CMC that draws the input
X from fx to run the simulator and obtain the output Y.
However, when « is small, one needs a large number of
simulation runs to observe the exceedance event {Y > y,}
sufficiently many times, so as to get an accurate estimate of
Yo- As a result, CMC is usually computationally inefficient,
leading to large estimation variance when the computational
resource is limited.

On the contrary, importance sampling draws the input from
a biased density, so that more sampling effort can be allocated
to the input area that generates the event of interest. Consider a
biased importance sampling density ¢x. Let X;, i =1,--- ,n,
be a sample generated from ¢x and Y; denote the simulation
output at each X;. The failure probability estimator, or the
POE estimator, becomes

5 RS [x(X3)

Paly) = — ;H(m >ilXi=a) S O
where fx(X;)/qx(X;;y) is used to recover unbiasness of
Pn(y) because X; is drawn from gx.

Importance sampling has been widely applied to determinis-
tic computer models where the output is uniquely determined
at a fixed input. Recently, Choe et al. [14] developed its
stochastic counterpart and derived the optimal importance
sampling density ¢% that minimizes the variance of P, (y).
The optimal SIS density g% that minimizes the variance of
Pn(y) evaluated at iy = g is given by

G 90) = o Fx(2) V(). @

qx*

where Cy, = fo fx(x)\/s(x; yo)dx (> 0) is the normalizing
constant satisfying Cy. > 0 and s(z;yo) is the conditional
POE at z,

s(z;y0) = P(Y >yo | X = ). ®)

In reality, s(x; yo) is unknown when the simulator is treated
as a black-box. Choe et al. [14] suggest using a metamodel
$(z;yo) that approximates s(x;yo). With §(x; yo), the impor-
tance sampler becomes

ax(z;90) = Cifx(x) V'8(7590), (6)

q

where C; = fo fx(x)\/5(x;yo)dx (> 0) is the normalizing
constant for ¢(z;yg). Here, to make the POE estimator un-
biased, the support of §(x;yo) should include the support of

s(x;y0) = P(Y > yo | X = z). This condition can be readily
satisfied when §(z;yo) is strictly positive in Qx [16].

Then one can sample X;, ¢ =1,2,--- ,n, from ¢x and run
simulation at each X; to obtain Y;. Once the data is collected,
the a-quantile estimator [2] can be obtained by

ga,n = lﬂf{y 2 Yo : Pn(y) S a}~ (7)

It has been shown that the POE estimator P, (y) in (3) obeys
the CLT as follows [16], [20].

P 0) = ) S N(0.1), ®
where p, denotes P(Y > y) in (1) and 02 is the asymptotic
variance of \/ﬁf?n (y) [16], [20].

The CLT for ]5n(y) is built upon the average of independent
samples, as shown in (3). However, the quantile estimator
Ya,n 10 (7) does not have such a natural sample average form.
Section III derives the CLT for 9, , and various types of the
quantile CI.

As a remark, Choe et al. [14] considered a more general
POE estimator that allowed multiple runs at each sampled Xj.
Specifically, this general framework runs simulation n,; times
at each X;. The POE estimator in (3) and the importance sam-
pler in (6) is a special case by setting n; = 1. When multiple
runs are allowed, the resulting output samples are correlated,
which makes the CI derivation extremely challenging. In this
study we consider the case where we run simulation once at
each input and estimate the extreme quantile using (7) with
the POE defined in (3).

III. METHODOLOGY

This section establishes the CLT for the SIS quantile estima-
tor to construct the CIs of extreme quantiles. We first derive a
theoretically valid asymptotic CI in an explicit form and then
present batching-based approaches.

A. Theoretical CI

Building a theoretical CI of some unknown quantity
typically requires that its associated estimator takes the form of
sample average and obeys the CLT. As discussed earlier, one
of the difficulties in constructing a CI of a quantile is rooted
from the fact that the quantile estimator does not take a form
of sample average. However, by applying Taylor’s expansion
on the POE, we can relate the CLT for the quantile estimator
to the CLT for the POE estimator.

Specifically, it holds

P(Y > ga,n) :P(Y > ya) + fY(ya)(ga,n - ya) + R;l
=+ fY(ya)(:goz,n - ya) + R;w &)

for ga,n > Yo, where R] denotes a remainder. For large
sample size n, by the Glivenko-Cantelli Theorem [21] we
obtain

Po(ya) —
fY(ya)

Here R,, is a remainder. Note that we use a diffeArent remainder
due to the replacement of P(Y > ¢, ) with P, (yo) [12].

Jayn + R, (10)

= Ya —
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Recall that P, (1) asymptotically obeys the CLT under the
SIS method, as shown in (8). Therefore, linking the probability
estimation with the quantile estimation, Equation (10) implies
that the quantile estimator g, can also follow the CLT if the
remainder R,, vanishes for n sufficiently large. In particular,
considering the CLT in (8), we need the following condition
for R,

ViR, %0, (11)

where % denotes the convergence in distribution. Equa-
tions (10) and (11) together are called a weak Bahadur
representation in the literature [12], [19].

It has been shown that the Bahadur representation holds
when the importance sampling density satisfies the condition
E 1Y > yo — 0)L3] < oo for some § > 0 and € > 0
where the likelihood ratio Ly is defined in the domain of
Y (see Theorems 3.1, 3.2 and 4.1 in [12]). In deterministic
computer models that generate the same output Y given the
same input X, it is straightforward to extend the result to
show that the similar condition E,[1(Y > y, —0)L% ] < oo
with Lx denoting a likelihood ratio of the input vector X
guarantees the Bahadur representation.

The challenge in our case is that the simulation with
stochastic computer models takes the two-level simulation (or
nested simulation) procedure where the input X is sampled
in the first level and then the output Y is randomly generated
from the black box computer model, given X [16]. The reason
of observing random outputs is that a random vector & is
embedded inside the computer model [14]. Unlike the input
X which has a known pdf fx(x), the density f¢x(£|z) of
&, given X = z, is unknown, due to the simulator’s black
box nature (Figure 2). In other words, the density f¢|x (£]z),
which generates &, is hidden inside the computer model.

Stochastic black box Stochastic output
X~fy —> computer model Y
§lx~fex (§1X)

Fig. 2: Two-level simulation with stochastic black box com-
puter model

Although we cannot sample & from f¢x(£[2), we note
that the output Y becomes fixed, given = and . Therefore,
a stochastic computer model can be viewed as a special
case of deterministic computer models with controllable input
X and non-controllable hidden input £. With this insight,
we will show that the condition for satisfying the Bahadur
representation, which is E,[1(Y > y, — 6)L*T¢] < oo for
some § > 0 and € > 0, holds with the SIS density under some
mild condition, where L is the likelihood ratio of the entire
input vector X and £ in this case.

With the two types of inputs, E,[1(Y > y, — §)L**]

becomes

EQ[I(Y > Ya

=[] s s
ax J9.

where fx¢(z, &) is the original joint density of X and £, while
gxe(x, &) denotes the joint importance sampling density.

Under the importance sampling scheme, the likelihood
in (12) becomes

fxe(@, &) fagx@la)fx(x)  fx(x)

(JXg(xaf) fg|X(§\x)CIX(9C; o) qx (; yo).
Here, because f5| x 1s unknown, we cannot bias the conditional
density. Instead we can bias the density of X only. So, at each
x sampled from ¢x, the simulator randomly generates £ with
fejx which is hidden inside the black box computer model.
This is why the joint importance sampling density gxe¢(z, &)
in the denominator becomes f¢|x (§]2)qx (3 o).

Using the likelihood ratio in (13) and g¢xe(z,§) =

feix (€lw)ax (23 90), we get

E[I(Y > yo — 6)L*T

/Qx /Qf (Y > yo —dlz,8) (qx(af y) ))2+€ feix (€|w)d€

—0)L*T)

fX§ (CL‘, 5) ) 2+e€
(12)

(13)

qx (z;y0)dx (14)
:/Qx (/Qg I(Y > yo — 6|z, &) fe x (&|x)dE )
/QXP(Y>yQ5|x)(m (16)

_ fx(@) \'
= PY >yo—6|z)fx(x) | —— dz, (17)
Qx CIX(IL”,yo)
for some 6 > 0 and € > 0, where ()¢ denotes the support of

Jex-

Next we show that E[I(Y > y, — 6)L*"¢] is finite when
the SIS density is used. We plug the SIS density gx (z;yo)
defined in (6) into fx(z)/qx(x;yo) to obtain

Ix@) Gy (18)
ax (;90) $(x;90)
From (18), the condition becomes
E[I(Y > yo — 6)L*"] (19)
1+e
= / P(Y >yq —6|z)fx(z) ——da (20)
Qx S(x7y0> 2
<Ot | fx(@)d(asyo) F d, @1)
Qx

where the last inequality holds because of P(Y > y, — § |
x) < 1. Considering that the normalizing constant Cy is finite,
E[I(Y >y, — §)L?*%¢] is bounded if

Ix(@)s(z;590)”

Qx

e < oo, 22)
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for some € > 0.

The condition in (22) can be easily satisfied in practice. We
present a couple of cases where the condition can be met. The
first case is when (2x is bounded and closed (i.e., compact set)
and §(x; yo) is strictly positive and continuous. This condition
is satisfied in the wind turbine application case study (to be
detailed in Section V). When 2x is bounded and closed and
$(x; yo) is strictly positive and continuous, the minimum value
of §(x;yo), denoted by §,,in, can be defined as

Amin = in § ] . 23
5 min 3(z; y0) (23)
We then get
1te _ 1+e
Ix(x)3(z;90)” 2 do < 8,2 fx(x)dz (24)
Qx Qx
1+
= Smin (25)
< 0, (26)

for some € > 0.

Second, without imposing any assumptions on {)x, the
condition in (22) can be met as long as $(x;yo) is bounded
above some positive constant. To make $(x;yo) strictly posi-
tive everywhere, a small number so(> 0) can be added to the
metamodel. Let §'(z;yo) denote an original matamodel that
approximates s(x; o). Then, §(x;yo) can be defined as

§(x;90) = 8 (x5 90) + S0 (27)

Here it should be noted that, although §(z;yo) can possibly
exceeds 1 in (27), the importance sampler in (6) can be still
well-defined thanks to the normalizing constant C,. Then,
because of s(x;yg) > soVax € Qx, the condition in (22) is
satisfied by following a procedure similar to (24)-(26).

In either case, the Bahadur representation holds, i.e.,
VnR, 4 0 holds. Accordingly, the CLT of the probability
estimation in (8) is translated to the CLT of the quantile esti-
mation, making the asymptotic normality of the SIS quantile
estimator valid. Consequently, from (10) with the \/nR, i> 0,
we obtain

Iy (Ya) - \/ﬁ@a,n — Ya)

Oy

4 N(0,1). (28)

By setting ko = ¢a,n - 0y, With ¢o =1/ fy(ya), we get

Y (G — ) 5 N(0,1). (29)

(0%

Note that the pdf fy(y,) of Y at y, and the asymptotic
variance afm in (29) are unknown. Therefore, we need to
find consistent estimators of ¢, and Uza to obtain the CI of
a quantile. First, to handle ¢,, several consistent estimators
have been suggested in the literature. One of the most widely
employed estimators is the finite difference estimator, defined

as

n ya-i-h N ga—h n
an hn — "> "> , 30
B () » 60)
where h,, > 0 is called the bandwidth parameter [19], [22].
It has been shown that ¢, (h,) with h,, satisfying 1/h,, =
O(y/n) is a consistent estimator of ¢q y (hy,) [12]. In defining

hy, Chu and Nakayama [12] use h,, = cn™", where c is

a positive constant. Several variants of the finite difference

estimator are also discussed in [12]. Instead of using the finite

difference estimator, a kernel estimator can be used [23], [24].
Next, according to the studies in [12], [16], [20], Jga can

be consistently estimated by

5’;@ = ! Z(H (YZ > ga,n|Xi = xi) L; — Pn(fga,n))2-

n—1
(31

i=1

Then the product of ¢, and o, in (29) can be consistently
estimated by & = q@an(hn) . 6?3& by Slutsky’s theorem, which
make the CLT for g, , in (29) hold. Consequently, assuming
fy(ya) > 0, the CLT for g, holds under the condition

in (22). That is,
vn
Ra
where A, = (ﬁa,n(hn) -Gy, With gzgan(hn) defined in (30) for

hy, satisfying 1/h, = O(y/n) and 67, defined in (31). Lastly,
the asymptotically valid 100(1 — 8)% CI of y, is given by

We summarize the implementation procedure in Algo-
rithm 1.

(Gam — Ya) = N(0,1), (32)

Algorithm 1 Procedure for constructing a theoretical CI

1: Set input parameters: g, C, V.

2: Sample x; from g(z;yo) in (6) and run simulation at each
x; to generate y;, 1 =1, -+ ,n.

3: Sort y; from the smallest to the largest. Let y(;) denote
the i*" smallest output among n outputs.

4: Compute the POE estimate Pn(y(i)) in (3) at each y;.

5: Obtain the a-quantile estimate g, in (7).

6: Obtain Ao = Gan(hn) - 6y, With @an(h,) and 62,
defined in (30) and (31), respectively.

7. Compute the a-quantile CI in (33).

In the first step of the algorithm, yy needs to be pre-specified
for defining the importance sampler gx in (6). To get the
unbiased estimation, yo should be smaller than, or equal to,
the target unknown extreme quantile y, [2]. To set such g,
one can use domain knowledge. Alternatively, the metamodel
§(z;y) can be used to get a rough estimate for yo. The value
of y affects the estimation efficiency in SIS. Properly defining
its value is out of the scope of this paper, rather it is a subject
of our future research.

For v in the first step, to satisfy the condition for h,,, which
is 1/h, = O(y/n), we use v = 0.5 in our implementation.
Deciding the appropriate value for ¢ will be discussed in
Sections IV and V. In the second step, for drawing samples
from ¢(z;yo), the acceptance-rejection sampling method can
be used [18].

Although the proposed asymptotic CI is theoretically valid
and takes a closed form, the result is highly sensitive to
the choice of h,. A good choice of h, depends on several
factors, including the distribution of Y and «. Similar issues
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arise with other finite difference estimators and the kernel
estimator [19], [25], [26]. Our numerical experience indicates
that even with carefully tuned h,, the resulting asymptotic
CI tends to be overly conservative with a large width. Due to
the difficulty in finding an appropriate bandwidth parameter in
the theoretical CI, we consider alternative approaches in the
following section.

B. Batching-Based Approaches

Batching-based approaches have wide applicability
thanks to their simple procedure [19]. However, their Cls
are valid only when the normality assumption is satisfied. In
our case, the asymptotic normality of the quantile estimator
discussed in the previous section provides a theoretical basis
for constructing batching-based Cls (Figure 1). This section
presents the three batching-based CI procedures, namely,
batching, sectioning and sectioning-batching [19].

First, batching randomly divides n output samples into b
non-overlapping batches. The asymptotic justification of the
batching-based CI is from the fact that SIS quantile estimator
Jo,n, obeys CLT, as shown in (32). Let » = n/b be the sample
size of each batch. Here we consider equal-size batches for
notation simplicity. When 7 is not integer, we can make small
adjustment in our notations.

From each batch we obtain the SIS a-quantile estimator
using r samples. Specifically, let P,.,k(ya) represent the SIS
POE estimator with r samples from the k" batch, ie.,

A fx(Xik)
P ya - ]I i,k > Yo Xz k) ) (34)
kl ; | ax (Xix)
where X ; and Y j, respectively, represent the it" input and

output in the k" batch. Similar to (7), we can obtain the SIS
quantile estimator, denoted by ., 4, from the k" batch as

Gk = inf{y € R: Prp(y) < a}. (35)

Based on the asymptotic normality of g, ,, each batch
quantile estimator o rk, & = 1,2,---,b, is also asymp-
totically normally distributed when the batch sample size r
is sufficiently large (Figure 3). Therefore, the average of b
batch quantile estimators is also asymptotically normal. Such
property allows us to use the following sample mean and
variance of quantile estimates from b batches as the point and
variance estimates, respectively, in constructing a CIL.

b
. 1
Ya,b,bat = E Z Ya,rks (36)
k=1
1 b
SbQ,bat 1 Z ya,r,k} - ga,b7bat)2~ (37)
k=1

Because the bias in 9§, ppe+ diminishes as 7 gets large,

(Jopat — Ya)/ (Sb,bat/ V/b) asymptotically follows the ¢ dis-
tribution with b — 1 degrees of freedom. That is,

.ﬁa,bat — Ya

(38)
Sy pat/ Vb

~tp_1

6
for large batch size 7. Accordingly we obtain the 100(1— 3)%
batching CI of y, as
X Sb,ba
Clypar = (ya,b,bat tty_1,8/2 f/bgt> . (39)

The accuracy of batching CI highly depends on the batch
size. Recall that the batching CI relies on the asymptotic
normality of each batch’s quantile estimator ¢, , , Whose bias
vanishes when the batch size » = n/b is large. As such, a large
batch size is required for ensuring the CLT. When r is small,
the estimation bias could be significant, possibly causing poor
CI coverage. To circumvent the limitation of batching when the
batch size is small, sectioning modifies batching by replacing
the batching point estimator §q 4 pq: With the overall quantile
estimator §q,,. Specifically, we replace §o ppat With Jq , in
both (36) and (37) to obtain the sectioning 100(1 — 8)% CI
as

. S
Clysee = <ya,n £ty 180 %) (40)
with
1 b
Shoee =357 ;(@a,r,k ~ Jan)’. (1)

Note that the sectioning CI uses ¢, in (40) and (41), whereas
the batching CI uses §,,ppqt in both central position and
sample variance.

Because ., is a quantile estimator with a larger sample
size, the sectioning approach can reduce the estimation bias,
compared to batching. However, it has a drawback that its CI
could be much wider than the batching CI when the individual
batching estimator g, 1, ¥ = 1,2,--- b, is largely different
from the overall estimator g, .

To address the limitations of batching (large bias) and
sectioning (large variance), sectioning-batching combines both
sectioning and batching by taking the advantages of both
approaches. Specifically, it uses 9, , as the CI center point

Overall point estimate s
Yy, ¥y Vun~ Normal

asymp.

asymp. H
y,”b ~ Normal 3

U D~ Normal

‘ = : ! ] ,,,,,,

Batching point estimate l

: asymp. :
i Jar2 ~ Normal :

asymp.
Ya,ppat ~ Normal

Fig. 3: Overview of batching (each batching quantile estimator
Ya,rks k=1,2,---,b, is asymptotically normally distributed
when the batch size r is large, due to the CLT result discussed
in Section II1.A)
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as in sectioning, while employing the batching sample vari-
ance Yq.b,bat as in batching. The resulting sectioning-batching
100(1 — 8)% Cl is

R Sb ba
CIb,secfbat = (ya,n =+ tb—l,B/Q o t> . (42)

Vb

Under the condition in (22), E,[1(Y > y, — ) L*T¢(Y)] <
oo holds and thus, the coverage rate of quantile Cls
in (39), (40) and (42) converge to the theoretical target
coverage rate [19], that is,

Plya €CI) = 1-5 (43)
as r — oo with b fixed for the CI being Clpyy, Clgee or
Clsec—patr in (39), (40), and (42), respectively.

Algorithm 2 summarizes the implementation procedure for
constructing the batching CI. The algorithms for the sectioning

CI and sectioning-batching CI can be stated in a similar
manner, but they are omitted to save space.

Algorithm 2 Procedure for constructing a batching CI

1: Set input parameter yo.
2: Sample z;, i = 1,--- ,n, from g(x;yp) in (6) and run

simulation at each x; to generate y; (: = 1,--- ,n).
3: Randomly divide the outputs into b batches as
<y1,17 e 7yT,1)’ <y1,27 e ay’l‘,2)’ ) (yl,ba e 7y7“,b)'

4: Obtain a-quantile estimate ¢/, . 1, in (35) in each k" batch,
k=1,2,---,b.
5: Obtain the batching CI in (39).

IV. NUMERICAL EXAMPLE

To evaluate the performance of proposed approaches, we
slightly modify the numerical example presented in [14] and
use the following data generating structure

Y[X ~ N(u(X),0*(X)) (44)
with p(X) = 0.95X2(1 + 0.5co0s(10X) + 0.5 cos(20X))
and o(X) = 1+ 0.7|X] + 0.4 cos(X) + 0.3cos(14X) and
X following a truncated standard normal distribution in [-
100,100]. In this example, it is assumed that we know the
conditional POE s(x;yo) with u(X) and o(X) with yg = 3
for defining the importance sampler ¢x. In Section V, we
estimate the conditional POE using a metamodel.

We first evaluate the CI estimation performance with n =
1,000. Later we conduct sensitivity analysis with different
sample sizes. In constructing the theoretical CI, we need to
set ¢ and v for defining the bandwidth h,, = en™" in (30).
To satisfy 1/h, = O(y/n), we use v = 0.5, as in [19]. For
¢, ¢ = 0.1 is used in [19]. However, it generates overly large
ClIs, so we use different ¢ values (to be discussed later). In
batching-based approaches, we first use b = 10 and investigate
how the performance changes with different batch sizes.

A. Alternative approaches

We compare the theoretical and batching-based ap-
proaches with two alternative methods, bootstrapping and
Jackknife [18]. First, bootstrapping resamples data from the
original set {y;}_; with replacement and constructs a CI
by finding estimates for A; and As, such that P(A; <
Jon — Yo < Ag) =1— 3 holds. Then [§o,n — A2, Ja,n — A1]
becomes the (1 — $)100% confidence interval for g .

Suppose T sets of bootstrapping samples are generated. Let
gjgs” denote the quantile estimator for the ' bootstrapped
set of samples of size s, t =1,2,--- ,T. Typically s is set to
be equal to n. Let Ay and A, be the 8 /2 lower and upper
quantiles of {5, ; — fa,n}t=1,.., 7. respectively. Then the
bootstrapping confidence interval is given by

OIbsp = [ga,n - AQv ga,n - Al] (45)

In our implementation we use 1" = 100.

The asymptotic property of the CI of quantile from the
bootstrapping approach has not been well studied. Liu and
Yang [27] established the asymptotic distribution for boot-
strapping extreme quantile variance estimation in importance
sampling when the likelihood ratio function has a specific ex-
ponential form. However, theoretical results under the general
form of importance sampling framework have not been fully
developed in the literature.

Unlike the bootstrapping that resamples the output samples,
Jackknife leaves one sample out and obtains the point quantile
estimator as

I
J== Ji, 46
- ; (46)
with
Ji = n@a;ﬂ - (n - 1)?)04,(1')7 (47)
where ;) is called a “leave-the-i*-sample-out”
estimate, 1i.e., the quantile estimate with samples
Yi,--,Yi_1,Yi41,---,Y,. Then the sample variance
estimate in Jackknife is
sz -1 Z (J; = J)° (48)
Jac n—1 ¢ '

i=1
Finally, the Jackknife 100(1 — 8)% CI has the form of

2

T S'ac
CIjac = J £ Z/g/g jT (49)

It has been known that Jackknife can reduce the estimation
bias and thus, its asymptotic bias is smaller than the bias of
the general quantile estimator [18]. However, the main issue
is that its sample variance estimator is not consistent, because
the Jackknife samples J;’s are highly correlated. In particular,
J;’s can be similar in different ¢’s, so the sample variance tends
to be unduly underestimated, resulting in a narrow CI width
with a low coverage rate. We will discuss the performance of
these methods in details, as compared to the theoretical CI and
batching-based ClIs, in the next section.
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B. Implementation results

Table I summarizes the results for the 95% CI from 1,000
independent experiments, including the average estimation
error, average half CI width and coverage rate. The average
estimation error is the averaged difference between the center
value in the CI and the true quantile. Because the true quantile
is unknown, we get 105 CMC samples and obtain the true
quantiles for three different values of o, a = 0.1,0.05,0.01,
as yo.1 = 3.77,y0.05 = 5.11 and yg.01 = 8.82, respectively.
The coverage rate is the proportion of the 1,000 CIs including
the true quantile. Ideally, the coverage rate should be close to
the normal coverage rate 95%.

TABLE I: Average point estimation error (Error), average
half width (Half-width) and coverage rate (Coverage) of 95%
quantile CI from 1,000 experiments

L o
Method Criteria 01 0.05 001

Error 0.026 -0.095 -0.058

Theoretical approach | Half-width 2.691 1.831 0.810

Coverage 99.9% 97.5% | 96.6%

Error 0.091 0.083 0.240

Batching Half-width 0.177 0.204 0.508

Coverage 92.4% 98.6% | 97.7%

Error 0.026 -0.095 -0.058

Sectioning Half-width 0.555 0.743 1.675

Coverage 100.0% | 100.0% | 98.9%

Error 0.026 -0.095 -0.058

Sectioning-batching Half-width 0.177 0.204 0.508

Coverage 99.8% | 100.0% | 97.8%

Error 0.006 -0.240 -0.055

Bootstrapping Half-width 0.066 0.150 0.018

Coverage | 100.0% 0.1% 0.4%

Error 0.023 -0.096 -0.059

Jackknife Half-width 0.006 0.002 0.003

Coverage 9.0% 0.3% 0.0%

The theoretical CI performance appears sensitive to the
choice of h,, = cn™" in (30), in particular, the value for c¢ (the
results do not change significantly with different values of v).
When we use ¢ = 0.1 as in [19], the resulting CIs are 13-27
times larger than those in the batching CI, depending on «.
Therefore, we investigate the CI performance with different
values of h, in a wide range of 107°> — 10~! and obtain
narrower CI widths when ¢ is 107#,107* and 5 x 1073 for
o = 0.1, 0.05 and 0.01, respectively. Note that the chosen ¢
values do not exhibit any systematic trend. The third to fifth
rows of Table I report the theoretical CI results with the chosen
c values. We also investigate other approaches for defining the
bandwidth, including the weighted sum of the forward and
central finite difference estimators [12], but do not get better
results in constructing the theoretical Cls.

We summarize the comparison results among different ap-
proaches as follows.

o Theoretical CI: The coverage rate of the asymptotic CI
is close to the nominal rate. However, even with the
tuned bandwidth parameters, the asymptotic CI widths
are wider, compared with those from other approaches,
which are less informative.

« Batching: Overall, batching provides reasonable coverage
rates, but its estimation error is generally larger than that

from sectioning. In this example, batching uses r = 100
data points in each batch. As a result, the batch point
estimator §j, p pet tends to yield a larger bias, compared to
the overall quantile estimator that uses n = 1,000. Such
larger bias causes slightly lower coverage rates, compared
to sectioning and sectioning-batching CIs.

« Sectioning: Sectioning uses the overall quantile estimator
Ja,n in both center point and sample variance. It provides
more accurate point estimates, because it uses a large
number of samples, compared to batching. However, it
yields larger sample variances, resulting in wider CIs. In
this example, the sectioning CI is about three times wider
than the batching CI. It is because each batch estimator
Ya,b,bat 18 largely different from the overall estimator

« Sectioning-batching: Sectioning-batching generally out-
performs the other two batching-based methods by em-
ploying the point quantile estimator from sectioning and
sample variance estimator from batching. Its CI widths
are the same as those from batching, but its coverage
rates are higher. This result indicates that the sectioning-
batching overcomes the limitations of batching and sec-
tioning.

« Bootstrapping: Bootstrapping does not provide consistent
results. It generates a narrow CI width with a high
coverage rate for a = 0.1. However, for other « values,
its performance rapidly deteriorates. For a« = 0.05, it
generates a large estimation error, whereas its narrow
CI width makes its coverage rate greatly decrease for
o = 0.01.

o Jackknife: Jackknife’s point estimation error is small, but
its CI is overly narrow, causing poor coverage rates. This
is likely due to the fact that the Jackknife samples are
highly correlated.

It is also interesting to compare the patterns of CI width with
different v values. As we estimate more extreme quantiles with
smaller o, the estimation uncertainty increases and thus, the CI
width is expected to increase. The batching-based approaches
show such increasing pattern. However, the theoretical CI,
bootstrapping and Jackknife do not show any specific trend.
The width of the theoretical CI depends on the bandwidth
parameter. Because we use different bandwidth parameters
to attain reasonable CI widths, no trend is observed. In
bootstrapping, the difference from the bootstrapping quantile
estimate and the overall estimate does not necessary increase
as « gets smaller. Rather, it depends on data in each bootstrap,
which are resampled from original outputs. Similarly, the
sampling variance of J;’s in Jackknife does not necessarily
increase as « gets smaller.

In summary, among different approaches for constructing
the CIs of quantiles, the batching and sectioning-batching
methods outperform other methods in terms of the CI width
and coverage rate. Between these two methods, the sectioning-
batching provides smaller point estimation errors and slightly
higher coverage rates, while its CI width remains the same as
the batching’s CI width.
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C. Sensitivity Analysis

This section performs sensitivity analysis with different
settings. Specifically, we investigate the CI performance with
different sample sizes in all methods and with different batch
sizes in batching-based methods.

First, Table II shows the 95% CI results with n =
500,1,000 and 5,000 for « = 0.01, obtained from 1,000
independent experiments. In constructing the theoretical CI,
we tune ¢ values and use 7 x 1073, 5 x 1073, 3 x 1072
for n = 500, 1,000 and 5,000, respectively, for identifying
the appropriate bandwidth h,,. Nevertheless, the theoretical CI
widths are wider in all different n’s, compared with other
approaches. Moreover, the CI width does not necessarily
get narrower with a larger n, because different bandwidth
parameters are used for different n’s to attain narrow CIs in
our implementation.

TABLE II: Sensitivity analysis with different sample sizes for
a=0.05

. Sample size (n)

Method Criteria 300 1,000 5.000
Error -0.144 -0.095 0.009

Theoretical approach | Half-width 3.996 1.831 10.636
Coverage 95.9% 97.5% | 100.0%

Error 0.189 0.083 0.045

Batching Half-width 0.490 0.204 0.173
Coverage 99.6% 98.6% | 100.0%

Error -0.144 -0.095 0.009

Sectioning Half-width 1.667 0.743 0.526
Coverage | 100.0% | 100.0% | 100.0%

Error -0.144 -0.095 0.009

Sectioning-batching Half-width 0.490 0.204 0.173
Coverage 94.8% | 100.0% | 100.0%

Error -0.303 -0.240 -0.012

Bootstrapping Half-width 0.180 0.150 0.000
Coverage 0.0% 0.1% 0.0%

Error -0.148 -0.096 0.006

Jackknife Half-width 0.007 0.002 0.005
Coverage 1.1% 0.3% 15.8%

On the contrary, the CI width gets narrower in batching-
based approaches as n increases, implying that uncertainty can
be reduced with a larger sample size. The CI coverage rates
are generally close to the nominal value, 95%, with different
n’s, although they are slightly larger than 95% in most cases.
Among them, the sectioning-batching method provides the
narrow CI width while maintaining its coverage rate close to
the nominal rate.

When bootstrapping is used, its estimation error is large
when n is small (e.g., n = 500 and 1,000). Moreover, its
CI widths are narrower than those from sectioning-batching
in all cases. As a result, it produces very low coverage rates.
Similarly, Jackknife CI has the lowest coverage rate in all n
values, because the sample variance estimation is overly small,
leading to a very narrow CIL.

Next, Table III shows the 95% CI estimation results for
o = 0.05 using batching-based approaches with different
batch sizes. We note that the coverage rate of batching slightly
gets deteriorated when b increases. This is because each batch
contains a smaller number of data points with a larger b,
leading to higher bias in the batch quantile estimator. With

b = 20, the batching estimation error gets three times larger
than that with b = 10. Unlike batching, the CI coverage rate in
sectioning-batching does not deteriorate with a larger b. This
is because, by using the overall point quantile estimate as the
center point in the CI, the bias in sectioning-batching is not
affected by the number of batches.

TABLE III: Sensitivity analysis with different batch sizes for
a = 0.05

L Number of batches (b)
Method Criteria 10 [ 20

Error 0.083 0.240

Batching Half-width 0.204 0.355
Coverage 98.6% 94.7%

Error -0.095 -0.095

Sectioning Half-width 0.743 1.707
Coverage | 100.0% 100.0%

Error -0.095 -0.095

Sectioning-batching | Half-width 0.204 0.355
Coverage | 100.0% 99.0%

In sectioning, the CI width increases greatly as b increases,
whereas the changes are less significant in batching and
sectioning-batching. Recall that sectioning uses the overall
point estimate when calculating the sample variance. With
a large number of batches, the quantile estimate from each
small-size batch can substantially deviate from the overall
quantile point estimate, leading to an increased sample vari-
ance in sectioning. On the contrary, in batching and sectioning-
batching, the sample variance of quantile estimators from the
batches is more stable with different b’s. As a result, the
CI widths in batching and sectioning-batching do not change
significantly.

In summary, among all studied methods, sectioning-
batching generates most satisfactory results. Its performance
is robust to the sample size and batch size.

V. CASE STUDY

We apply the studied methods to construct the Cls of
extreme load responses in a wind turbine. In this case study,
we use the NREL’s aeroelastic simulators, TurbSim [5] and
FAST [6]. Specifically, we use 10-minute average wind speed
as a simulation input. Among several design load cases (DLCs)
in IEC 61400-1 [4], DLC 1.1 specifies the input wind condition
between the cut-in and cut-out wind speeds under which
a turbine normally operates. According to the IEC design
standard [4], we employ a truncated Rayleigh distribution on
[3,25] (m/s) with the scale parameter of /2/7 - 10.

After feeding the sampled wind speed into TurbSim [5],
TurbSim generates time series of wind profile and passes this
profile into FAST [6] to generate stochastic load responses.
Each simulation run takes about 1 minute. In this study,
we consider flapwise bending moment as simulation output
response, which is considered to be an important load type in
the wind turbine reliability analysis [28], [29].

Because the simulators are treated as black box computer
models, the conditional POE s(x;yo) is unknown. We estimate
s(x;yp) by fitting a non-homogeneous generalized extreme
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value (GEV) distribution with a small pilot sample consist-
ing of 600 samples where its location and scale parameter
functions are modeled with cubic smoothing spline functions,
so §(x;yp) is strictly positive and continuous. The detailed
procedure of obtaining 5(x;yo) is available in [2], [14].

In this case study, {2x is bounded and closed in [3, 25] and
the metamodel with the nonhomogeneous GEV distribution is
strictly continuous and positive, satisfying the condition for
holding the Bahadur representation. Other types of metamod-
eling techniques with different parametric or non-parametric
functions can be alternatively used to obtain §(z;yo) [30].
Because §(x;yo) represents the estimated conditional failure
probability, it can be easily formulated as a strictly positive
and continuous function.

In our implementation we use n = 30,000 sample to build
the CI of extreme load at = 1/1,000,1/3,000 and 1/5,000
level. In defining the SIS density in (6), we use yo = 14, 600.
In obtaining the theoretical CIs, we tune the values of ¢ in
the bandwidth to get narrow CI widths. In batching-based
approaches we use b = 10 as in the numerical example,
whereas we use 7" = 100 in bootstrapping.

A. Implementation results

Table IV shows the results for 95% CIs obtained from
25 independent experiments. In the numerical example, we
estimate the true quantile from 106 CMC samples and compute
the coverage from 1,000 experiments. In this case study, we
cannot perform such extensive experiments due to the limited
computational resource available to us. In Table IV, we report
the average point estimates and half widths obtained from 25
independent experiments.

TABLE IV: Implementation results for 95% CI of flapwise
bending moment (unit: kNm)

. . o
Method Criteria } 1/1,000 | 173,000 | 1/5,000 %

Theoretical approach Point Estvimate 15,000 15,233 15,370

Half-width 8,103 4,922 3,687

Batching Point Est.imate 14,959 15,286 15,384
Half-width 63 109 139

Sectioning Point ‘Est.imate 15,000 15,233 15,370
Half-width 214 352 424

Sectioning-batching Point Est.imate 15,000 15,233 15,370
Half-width 63 109 139

Bootstrapping Point Est‘imate 15,071 15,268 15,403
’ Half-width 54 62 119

Jackknife Point Est.imate 15,000 15,225 15,340
Half-width 0 16 59

Overall we obtain narrow CI widths in all methods except
the theoretical CI. It is because we use a large sample size,
n = 30,000, in this case study. However, even with this large
sample size, the theoretical CI widths are overly large for all
a values. To choose appropriate bandwidths, from the wide
range of ¢, we choose ¢ =7 x 1072, 1 x 1073, and 2 x 1073
for « = 1/1,000, 1/3,000 and 1/5,000, respectively. Even
with these tuned bandwidths, the theoretical CI widths are still
much larger than those from other approaches.

Even though we do not know the exact quantile value y,,
in this case study, sectioning and sectioning-batching may

provide more accurate point estimates, because they use the
overall quantile estimate as the CI center value. Moreover,
their point estimates are close to Jackknife’s. Considering
Jackknife provides a small estimation bias, the bias of sec-
tioning and sectioning-batching is likely smaller than the bias
of batching. However, the sectioning CI widths are larger than
those of batching, whereas sectioning-batching reduces the CI
width by using the batching sampling variance. Bootstrapping
has narrower CI widths in this case, however, according to
the analysis in the numerical example, it does not guarantee
a good CI coverage in general. Jackknife has very narrow CI
widths, which unlikely produce reasonable and stable coverage
rates.

In summary, the results in this case study echo what we
observe in the numerical example in Section I'V. Sectioning-
batching appears to provide the most stable results among all
studied approaches. In addition, bootstrapping and Jackknife
are computationally expensive with a large sample size.

B. Comparison with CMC

We further compare the CI from SIS with that from CMC.
In CMC we sample input from the original distribution, i.e.,
truncated Rayleigh distribution in this case study. We use the
same computational resource of n = 30,000 in CMC as in
SIS. In both SIS and CMC, we use sectioning-batching to
obtain Cls. Figure 4 demonstrates the 95% sectioning-batching
CI using SIS (darker area) and CMC (lighter area). The CI
from SIS sectioning-batching lies inside the CMC’s with much
narrower width across different o values in the y-axis. In
general, the CMC’s CI width for the flapwise bending moment
is about 2 times wider than that from SIS, indicating that SIS
can reduce extreme load estimation uncertainties.

Moreover, with the same computational resource, SIS can
estimate the CI of the extreme load response at smaller « levels
than CMC. For example, with n = 30,000 and b = 10, the
sectioning-batching with CMC can obtain the CI of a equal
to, or larger than, 1/3000, while SIS can obtain the CI of the
extreme quantile associated with o = 2 X 10~%, as shown in
Figure 4.

It should be noted that the sample size n should be large
enough to obtain the quantile estimate (i.e, g,y in the theoret-
ical approach, or g, in the batching-based approaches). If
the quantile estimate is not obtained due to the small sample
size, additional computational runs are needed. For example, to
obtain a quantile estimate and its CI at o smaller than 2x 10~4
in our case study, we need to increase the sample size n.

However, the required sample size for getting quantile
estimates in SIS is less than that in CMC. For example, to
get the quantile estimate at o = 2 x 10™* with sectioning-
batching, CMC needs at least 50,000(= b/(2 x 107%)) runs
for b = 10. Even with n = 50, 000, the resulting CI from CMC
would be much wider than that from the proposed approach.
The computational advantage of SIS is due to the fact that the
input vectors are sampled from the region where ¢x is high.
When fx and ¢gx are substantially different, the likelihood
ratio fx/gx becomes smaller than 1 in most sampled inputs,
which allows us to obtain smaller POE [2].
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Fig. 4: 95% CI of extreme quantile for wind turbine flapwise
bending moment (unit: kNm) using sectioning-batching in SIS
and CMC (x-axis: y,, y-axis: a)

VI. SUMMARY

This study examines multiple approaches for constructing
the quantile CI when importance sampling is applied to
stochastic computer models. We verify the asymptotic normal-
ity of the SIS quantile estimator under some mild condition
and derive an explicit formula for the theoretical CI in a closed
form. The theoretical validity of the quantile estimator allows
us to build the CIs from the three batching-based approaches,
namely, batching, sectioning, sectioning-batching.

The CI estimation performance of the studied approaches
is examined through the numerical example and wind turbine
case study. The results consistently show that sectioning-
batching outperforms other approaches. Compared with the
theoretical method, batching-based approaches avoid the ne-
cessity of parameter tuning. In particular, the sectioning-
batching method takes advantage of both sectioning and
batching and thus, gives better CI performance than the other
methods. Our implementation results also demonstrate that SIS
can greatly reduce estimation uncertainty over CMC and that
it can construct the CI of more extreme quantiles associated
with smaller failure probability, compared to CMC.

In the future, we will investigate alternative procedures
for estimating the variance constant in the theoretical CI.
Compared to the batching-based approaches, the theoretical
approach can construct the CI of the extreme quantile at
smaller « levels, because it uses a larger number of samples.
As such, a well-tuned theoretical CI could be more beneficial.
Another possible approach is to apply the Knight’s identity
to our problem [31]. The Knight’s identity has been used for
deriving the convergence property of the regression parameters
in a quantile regression where the conditional quantile of y
given X is of interest [32]. Noting that the failure probability
estimator takes the form of sample average, we will explore
the possibility of using the Knight identity by exploiting the
relationship between the probability estimation and quantile
estimation.

Moreover, we plan to extend the SIS method to combine
with other variance reduction techniques such as stratified sam-
pling and control variate. Even though the sectioning-batching
provides satisfactory results, its coverage rate is higher than the
nominal rate in most cases, which indicates that its CI width
could be further reduced. By combining with other variance
reduction techniques, we hope to further reduce the estimation

uncertainty. Finally, the current form of the SIS density may
face challenges for problems with high dimensional inputs,
because it is hard, if not impossible, to find a good metamodel
and to sample directly from g¢x. We will study alternative
methods, such as cross-entropy method [33], [34] and non-
parametric approach [30].
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