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Abstract

This paper presents an integrative methodology for managing and stabilizing the
output of a wind/solar farm using storage devices in a cost effective and real-time man-
ner. We consider the problem where a renewable farm should decide the amount of en-
ergy charged into or withdrawn from the battery given the stochasticity and time vary-
ing nature in the renewable energy power output. Our methodology features a seamless
integration of a non-myopic decision framework and a sequential non-parametric pre-
dictive model based on functional principal component analysis. A key feature of our
algorithm is that it quantifies costs over a rolling horizon where both predictions and
decisions are updated on the fly as new data is acquired. Our technology is tested on
the California ISO dataset. The case study provides a proof-of-concept that highlights
both the benefits and ease of implementation of our forward looking framework.

Keywords: Renewable energy, Battery storage, Look-ahead optimization, Joint prediction
and prescription, Functional principal component analysis, Bayesian inference.

1 Introduction

Recently there has been considerable emphasis on replacing the generation of electric energy
from fuel-based conventional sources with renewable sources like solar and wind [1]. The
integration of renewable energy into the grid system provides an environmentally friendly
solution to reduce carbon emission from conventional power generation. Many states in the
U.S. have set goals of achieving such a switch, and these are being consistently updated.
Texas recorded 26,045 MW of electric energy generated by renewal sources in 2017, beating
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its goal for 2025 by 250% [2]. California has set the goal of 100% by 2045 up from 50%
by 2030, Massachusetts has set 55% by 2050, New Jersey has set 50% by 2030, etc [2].
Renewable energy will continue to play an important role in electricity production in the
future. Similar trends have been observed in other countries [3].

The most common sources of renewable energy are wind and solar. Despite being attrac-
tive due to their low carbon imprint and relatively low production costs, the power output
from these systems is highly volatile as it depends on the uncontrollable and time-varying
weather conditions. To cope with such volatility, grid operators often rely on expensive
ancillary services, negating some of the attractiveness of the renewables [4,5].

In addition, the solar and wind power outputs have diurnal patterns. For example,
solar output is available only during the day time. Current statistics show that on a yearly
basis, more than 30% of the electricity load in California is met by wind and solar power,
while during certain days, the renewable energy can contribute to over 50% of the demand
during the day time, but less than 20% in the evening and night [6]. The diurnal pattern
in California is called a “duck curve”, where the net load, i.e., the total electricity demand
minus the solar plus wind energy generation, is characterized by the duck shaped curve, as
shown in Figure 1 [7]. To highlight the problem, at around 2pm the solar plants produce the
large amount of energy for the day, so the net load is small. However, the sun sets and the
solar energy output quickly drops to zero at around 6pm in the evening. At the same time,
consumers increase the demand by turning on their lights and air conditioners and the total
load rises dramatically.
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Figure 1: The “Duck Curve” from California ISO (excerpted from [7])

The steep ramp up in the “duck curve” is accommodated by conventional power plants.
Because conventional plants have a limited ramping up rate, the California ISO operates
them at low levels. During noon, their low level production together with the renewable
energy exceeds the amount of total load. As a result, the California ISO often curtails



part of renewable energy generated and frequently observes curtailment of 20 to 30 percent
of the solar capacity [8]. The excess conventional plant operations and renewable energy
curtailment raise the cost of power grid operations, thus significantly decreasing its economic
value [9]. To address these challenges, grid operators increasingly rely on storage devices,
including pumped hydro, battery, and flywheels [10, 11]. For example, battery technology
is being used to stabilize the output in micro grids and even nationwide grids [10]. Tesla’s
100MW /129MWh Powerpack project in South Australia was also tested specifically for this
purpose [11].

In this paper, we propose a look-ahead dynamic optimization model to manage the
variability and intermittency problems in renewable sources through using battery devices.
Our approach is data-driven and exploits historical data to decide how much energy needs
to be stored to, or withdrawn from, energy storage devices, as well as the purchase decisions
from the electricity spot market.

Such short-term decisions are typically made at each hour (or at a shorter duration, e.g.,
every 5 minutes), after the commitment levels from renewables are decided on the day-ahead
energy market. Although our focus is to optimize short-term battery operations, we do so
via a look-ahead framework which utilizes future renewable energy pattern predictions. This
distinguishes this work from the myopic approach which optimizes a “snap-shot” operation
of the system at each decision point, without taking the future renewable generation into
consideration.

Specifically, optimal storage and energy purchase decisions are formulated as a convex
dynamic programming (DP) which minimizes costs over future steps in reference to the ex-
pected total purchase and salvage costs for the grid entities. Using historical data we then
provide a non-parametric forecasting model, based on functional principal component anal-
ysis (FPCA), that predicts the future trajectory of renewable supply whenever new data
is obtained. A salient aspect of FPCA is that, despite its non-parametricity, it features a
linear decomposition of the longitudinal signals which in turn facilitates efficient model up-
dating using an empirical Bayes procedure. Given the FPCA model, our framework updates
predictions of the future trajectory of renewable supply whenever new data is obtained and
iteratively solve a linear program for determining the battery storage policy for each period.

The main contribution of the proposed look-ahead framework is three-fold: (1) The pro-
posed objective provides a real-time solution that seamlessly integrates both a non-myopic
decision framework and a sequential non-parametric predictive model; (2) The FPCA-based
forecast provides prediction that can capture both common daily patterns and sudden
changes during a day; (3) The predictions and decisions can be updated integratively on
the fly as new data is acquired. A case study is conducted with data from California ISO
and the results illustrate the ease of implementation of our algorithm in practice and its
capability to stabilize the power output from a wind or solar farm.

The remaining paper is organized as follows. Sec. 2 reviews relevant studies. Sec. 3
presents the stochastic control program formulation. In Sec. 4, we develop the solution
procedure. In Sec. 5, we conduct a case study using data from California ISO. Sec. 8
concludes the paper.



2 Literature review

Recently, considerable attention has been paid to the application of energy storage to grid
system operations. In [12,13], an optimal control model is proposed for storage management
under the assumption that the load (demand) and renewable energy are deterministic or
perfectly known. In a dynamic and off-line setting, control strategies have been proposed to
mitigate the intermittent nature of renewable energy sources [14,15]. In particular, real-time
control and load prediction are integrated to solve scheduling problems. In these works,
load statistics are assumed along with renewable energy arrivals. Obtaining real-time strate-
gies for unknown renewable energy dynamics is challenging. Considering the integration of
batteries and renewable energy, Lyapunov optimization techniques [16] have been employed
to obtain a real-time control [17,18]. A recent study [19] proposes a multi-scale schedul-
ing model to coordinate a combined system of thermal generator, hydro pumped storage,
battery, and intermittent renewable energy sources such as wind power and photovoltaic.
Based on multi-scale ahead forecast data, the optimal power outputs are obtained by solving
a mixed-integer linear programming model. However, in these studies the uncertain sys-
tem dynamics are either assumed to be independent and identically distributed or known
beforehand, which is unrealistic in practice.

To handle the time-varying stochastic nature of the production/demand, a scenario-based
approach is often employed in the literature. This approach generates multiple scenarios,
each of which represents the future trajectory of wind and solar power output. For instance,
in [20] battery technology is studied from the perspective of the power system operator. The
authors propose a two-step framework to analyze the value of energy storage to manage
renewable resources in transmission systems. In the first stage, inspired by the approach
in [21], a stochastic unit commitment model is formulated as a mixed integer linear program
and solved using a predetermined set of renewable energy scenarios. In the second stage,
other scenarios (out-of-sample) are generated to test the day-ahead solution obtained from
the first stage, while determining a flexible operational strategy for batteries.

Similarly, in [22] and [23] optimization problems are formulated for determining the
amount of energy charged into, or discharged from, the battery for each time interval. Their
objective is to minimize the expected cost including energy purchase and investment or set-
up cost. A three-stage stochastic unit commitment model is proposed in [24] to manage
power systems with renewable energy uncertainty and thermal energy storage. The first
stage utilizes forecasts to determine the day-ahead operational decisions. Using multiple
realizations, the second stage optimizes the expected generation costs in real time and then
future operational decisions are considered in the last stage. The study in [23] investigates the
California ISO data and classifies the wind and solar energy power output into 16 scenarios.
In this scenario-based approach, when scenarios are chosen for a day or time block, they
are typically kept fixed and cannot be changed during that time block. As a result, the
scenario-based models do not have the flexibility to reflect the changes on the fly.

Another approach is to formulate the problem using stochastic control and optimization
models. For example, in [25], an approximate dynamic programming algorithm is proposed
to manage microgrids under uncertainties in real-time. The model is trained in a dynamic
fashion using multiple scenarios, which are updated as new information arrives. An adaptive
robust model is proposed in [26] to schedule energy and reserves a day-ahead, considering



bulk storage devices and wind uncertainty. The model is reformulated as a mixed-integer tri-
level programming with lower-level binary variables. The resulting formulation is then solved
via an exact nested column-and-constraint generation algorithm. In solving a wind energy
commitment problem in the presence of storage, Kim and Powell [27] derive an analytical
solution for the optimal policy under the assumption that wind follows a uniform distribution.
The studies in [28] and [29] propose an approximate dynamic programming algorithm to
manage a storage system integrated with a renewable energy source. A similar study in [30]
aims to smooth the wind or solar power output curve via a stochastic control system. When
a new wind or solar power output is observed, the control system determines the smoothed
output sent to the electricity grid and the remaining excess production or shortage is covered
by the battery system. However, the wind or solar farm does not provide the smoothed
output before the production is observed, and thus, does not provide a commitment for the
ISO/RTO where electricity generators are required to provide commitments before actual
production is observed.

In summary, existing studies provide dynamic decisions or controls, assuming predictions
are pre-determined a priori, follow a simple distribution or defined by a set of scenarios.
Consequently, when actual power outputs differ from the assumed values, resulting decisions
can significantly increase operational costs. On the contrary, we proposes a sequential scheme
that provides and updates a predictive distribution over all time points within a horizon and
exploits these functional predictions to provide forward looking decisions.

3 Problem Formulation

In an electricity grid system that generates and delivers renewable energy, we consider the
supply side of the system, i.e. a wind/solar farm which generates renewable energy and
delivers a committed amount to a distributor. The farm uses a battery to help manage the
variable renewable output of the wind/solar operator. The distributor then gathers energy
from generators and then sends them to the customers. Here we present the problem with
one renewable farm and one battery system (Figure 2). However, our approach is generic
and can be readily extended to multiple farms or battery systems.

x,(t)
Battery 1 Wind Farm/ Solar

Figure 2: Wind/Solar Farm’s Problem Considered in This Study

K(t) -
Distributor

We consider that the committed dispatch levels for the wind /solar farm is determined in
the day-ahead unit-commitment market. Let K(¢) denote the promised amount at time .
For example, assume t to be in hours, in the day-ahead market the farm commits a certain
amount of energy each hour for the next day, such that K(0),.., K(23) are determined a day
ahead. In the actual operation, the generated energy could be different than the committed
amount due to the renewable source stochasticity, therefore, the farm’s goal is to efficiently



manage operations, with the help of the battery, to deliver the promised amount of energy
to the distributor.

Figure 2 shows the flow of energy in the wind/solar farm problem. We assume a battery
is connected to the farm, named Battery 1. The amount of discharged energy of Battery 1
at time ¢ is denoted by z1(t). If z1(¢) is negative, the farm charges the battery with energy
—x1(t). Let S(t) denote the stochastic process representing the farm’s energy output at
time t. Then, the overall amount of energy which the farm can send to the distributor is
S(t) + x1(t). However, it may be higher or lower than the committed amount K (¢).

If S(t) + z1(t) < K(t), i.e. the farm cannot fulfill the promised amount, the farm must
purchase the energy difference from the electricity spot market, at a unit price of cp0t(t) per
unit (this can also be viewed as a penalty that the farm is charged). On the other hand, if
S(t) + x1(t) > K(t), i.e. the farm produces too much energy, the farm has to salvage the
excess energy at a unit price of csavage(t) per unit.

We formulate the wind/solar farm operation problem as a forward looking stochastic
convex program (SC'P) that minimizes the overall expected cost of the farm over a discretized
rolling horizon from time period (the current period) 0 to 7' (the ending period). The
objective is given as follows:

SCP: o omin 2 Zp [Coatvage (1) - E (max{0, 5y (t) — K(£)})
+ Copor(t) - E (max{0, K( ) = Si(t)})] + p" ®(B(T)), (1)
st. B(t+1)=B(t) — z,(t), 2)
Bmin S B( + ) < Bmaa:a (3)
—L<xz(t) <L, (4)

forallt=0,---,7T — 1 with
Si(t) = S(t) + a1 (1), (5)

where S1(t) and K(t), respectively, represent the overall supply and demand of the farm,
and p is the discount factor over time. Also, ®(B(T)) is the terminal cost that depends on
the final battery charge. For the terminal cost, one can simply assume it is zero for all states.
Another alternative is to use ®(B(T")) = ¢ - max{0,b — B(T")}, when there is a charge ¢ for
each unit of energy below the level b.

In the SCP above, the decision variables are {z(t) : ¢ = 0,1,---,7 — 1}; the
charged/discharged amount of energy of Battery 1. The initial energy level B(0) is known
and B(t) € [Bmin, Bmaz) Where B, and By, denote the capacity limits of Battery 1.
Finally, the constraint in (4) limits the maximal charging/discharging rate during a time
interval.

The formulation in SC'P aims to optimize battery operations through quantifying and
minimizing costs over a long-term rolling horizon. By solving this program, the farm owner
can obtain the Battery charge/discharge decisions for each time period so that the overall
expected purchase and salvage cost of the farm can be minimized.
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In practice, solving (1) is extremely challenging as S(t) is unknown over the future hori-
zon. This renders the problem extremely challenging and impractical in real-time, while in
reality z1(t) needs to be decided in an online fashion. Suppose that the current time is ¢, and
we need to decide Battery 1’s charge/discharge amount z1(tg). Now define S(t) € [0, S,qz]
and B(t) € [Bin, Bmaz) as the state space, where S,,4, is the maximal power capacity of the
wind/solar farm. Also let the current renewable energy output S(ty) = s and battery level
B(tp) = b. Using a dynamic programming approach, the value function V;,;1(s,b) under an
optimal policy at time point ¢y + 1 is given as

Vig+1 (37 b) =
S 4 Catgelt) - B (max{0, 81(0) — K (0)})
+ Copor(t) - B (max{0, K (t) — S1(t)})] + p" 7 (B(T)). (6)

With the optimal value function V;* (s, b), the SCP at time #; is solved as a stochastic
dynamic model, SDP(ty):

SDP(ty) :Vi,(s,b) =
Min  Cyaivage(to) - max{0, s + z1(ty) — K(to)}

x1 (to)

+ Cspot(to) - max{0, K (ty) —s — x1(to)}

Smﬂ..’])

*p/‘ (570 = a1 (to)pSds” (7)
s*=0

s.t. Bpin < b—1x1(to) < Bag, (8)

where pgt;i) = P(S(to + 1) = s* | S(to) = s) is the transition probability at time ¢, from
wind/solar power output s to s*. In practice these probabilities are unknown and need to
be estimated for each state s at every time t. One possible approach to obtain each pgi)*,
t=1,2,--- T —11is to assume S(t) follows a stochastic differential equation governed by a
Brownian motion, and then solve a set partial differential equation (using the Kolmogorov
forward equation [31]). Besides the independent increment assumption inherited from the
Brownian motion, this approach is not unsuitable for an online application.

Furthermore, solving SDP(t,) requires a computationally expensive and time consuming
backward dynamic procedure which computes the optimal immediate policy x(t), as a
function of the state variables S(t) and B(t) at each epoch t = T,T — 1,--- ,t3. Moreover,
during the implementation, as is usual in stochastic dynamic programming, at each epoch
t =1tg,1,---,T —1, the optimal action as a function of the states, is selected from a look-up
table and implemented. This procedure is thus not adapted to the changing circumstances
encountered during the implementation and is only valid in case the dynamic process is
stationary and homogeneous.



4 The Deterministic Solution and Stochastic alterna-
tives

We first present the linear programming formulation in Section 4.1 where we relax the prob-
lem using the Jensen’s inequality and decide the battery charging/discharging operations
given the future S(¢). Because the future S(¢) is unknown, in Section 4.2 we provide a
prediction method based on FPCA and highlight its advantages over other predictive tech-
niques. Once the prediction is made, we solve the linear problem in Section 4.1 with the
predicted S(t). In doing so, to minimize the influence of the prediction uncertainty, we only
execute the decision for time ¢ and proceed to the next epoch and update the prediction with
the most recent data. This process is repeated until we reach the last epoch. In Section 4.3
we summarize the overall framework.

4.1 Linear Programming

In this section we present a solution procedure for approximately solving the SC'P. Note that
max{0, 5 (t) — K(t)} and max{0, K(t) — Si(t)} in the SCP objective function are convex.
Therefore, we can employ the Jenson’s inequality to obtain the lower bound of the objective
function. Specifically, we obtain

Csalvage<t) B (maX{O, Sl(t) - K(t)})
+ Cspot(t) - E (max{0, K(t) — S1(t)})
Z Csalvage(t) maX{O, E(Sl (t)) - K(t)}
+ Copot(t) - max{0, K(t) — E(5:(t))}. (10)
This inequality implies that we can relax the problem by replacing the original objective

function in (1) with its lower bound and solve the problem that can minimize the bound.
Such relaxation provides us a new objective function as

S0 Cuatuage t) max{0, B(Sy (1)) — K ()}
+ Copalt) - max{0, K(8) — B(S1(t))] + 5" B(B(T)), (1)

This reformulation renders the optimization problem as a deterministic piecewise-linear
optimization, given the ‘max’ operators. Let us further define the auxiliary variables
Oeacess(t) and Ogportage(t) that represent the energy excess and shortage, respectively, at
the decision epoch t. Then we can reformulate the problem as the equivalent linear formu-
lation (LP) with linear inequality constraints of the piecewise objective. This results in the
linear minimization program over the auxiliary variables and the decision variables. Suppose
that the current time is ty. Then the LP formulation is given as follows.

T-1
LP(tO) : HHHZ ptito : [levage(t) : Oemcess(t)
t=to
+ Cspot (t> . Oshortage (t)] + pT_tO(I)(B(T)) (12)
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st Oegcess(t) = E(S(t)) + 21(t) — K(1),
Oshortage(t) = K(t) — E(S(t)) — x1(1),
Ocicess(t), Oshortage(t) > 0,

B(t+1) = B(t) — z1(t),
Boin < B(t +1) < Biaa,
— L <z(t) < L.
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for all t = to,t9g + 1,---,T — 1. Here, note that the shortage and excess functions in the
objective function in (6), which are piecewise linear and convex, have been linearized in this
formulation.

From LP(ty), we observe that we only need to estimate {E(S(t)) : t =to+1,...,T — 1}
to calculate the decision variables at each epoch. This greatly simplifies the estimation
procedure, compared to the original formulation SC'P where E (max{0,5;(t) — K(t)}) and
E (max{0, K(t) — S1(t)}) need to be estimated. In the following section we present a non-
parametric Bayesian approach, based on FPCA, that can estimate (and update) E(S(t))
and seamlessly integrate the FPCA forecasts with (12). The key advantage of the FPCA is
that E(S(t)) over the future horizon can be updated on the spot as more data is observed.
Thus, at each time epoch, predictions are updated and hence the decisions. This allows us to
refine decisions over time as more data is gathered and account for non-stationary behavior
with sudden changes in the renewable supply.

Finally we note that in (12), the LP is written as LP(tg). The reason is that, despite
the fact that solving LP(to) results in the optimal x*(t) = {xj(to), - ,2;(T — 1)}, these
decisions are updated at the next epoch as new data is observed. Thus at decision epoch t
only z7(t) is implemented. More detailed discussion will be provided in Sec. 4.3.

4.2 Real-time Functional Principal Component Analysis

Because the future movements of S(t) are unknown to the farm, and we make no assumption
on the nature of their stochastic dynamics, we propose to predict the future values of S(t)
with FPCA and use the predicted values in LP(tg). We note that any predictive approach
can be plugged (ex: Neural networks, Arima, etc.. ) into our method yet the main advantages
of our FPCA approach are:

e Non-Parametricity: The intermittency and high volatility of renewable energy makes
predictions highly vulnerable to model mis-specifications. Further, no physical equa-
tions are currently available that provide an accurate prediction for renewable energy.
Hence, we believe a non-parametric approach is suitable for such applications.

e Model Updating: A salient aspect of FPCA is that, despite non-parametricity, it fea-
tures a linear and orthogonal decomposition of longitudinal signals which in turn fa-
cilitates efficient model updating using an empirical Bayes procedure. Indeed, this
decomposition makes it viable in situations that require fast decisions (such as the
operational decision-making per every 5 minutes in our case study).

e Heterogeneity: FPCA has proven itself to be specifically competitive when functions
pose some heterogeneity. The volatility of renewable energy requires this capability.
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e Functional inference: FPCA is an operator on the functional space. It borrows the
strength across a set of functions to improve prediction performance for the function
at hand. As a result, it can provide competitive predictive capabilities for both short
and long term predictions within its predefined domain.

To achieve real-time predictions, the energy supply data is divided by day to form a
longitudinal dataset. Then, the supply for the period running from current time to the
end of current day is predicted. And, as more supply data is collected, the prediction for
the day is then updated using an empirical Bayesian approach. Specifically, without loss of
generality, consider t € [0,24), i.e. horizon spans a day which is the case in the day-ahead
unit-commitment market. Suppose that the current time is ¢, where the value of S(t), t < to
for some ty > 0 is observed. Further, suppose we start with the first prediction cycle as
day 0. Let us define S(=7)(¢) as the farm output at time ¢, j days before day 0. Therefore,
{SCD(#)|j=1,---,J,t =1--- T} forms the training data with data collected during the
past J days. Now in day 0, given the observation S(1),---,S(to), our goal is to estimate the
future values of E(S(t)) over the rolling horizon, i.e., E(S(ty + 1)), -+, E(S(T" —1)). Here
note that S(t) = S(©(¢) which denotes the supply output in the current day.

Now assume that {S7)(¢) 3-]:1 fort € T are generated from a square-integrable stochastic
process S(t) such that 7 stands for a time domain. FPCA decomposes S(t) as

S(t) = u(t) + ) &an(t) + €(t), (19)

where p(t) = E(S(t)), e(t) ~ N(0,0%) and & = [(S(t) — pu(t))d(t)dt is the functional
principal component (FPC) score associated with eigen function ¢ (t). The FPCA scores
are pairwise-independent random variables with zero mean and variance \; (i.e. F(&) = \y).
Here A denotes the Eigen values associated with the Eigen functions and are ordered by
Al > Ay > -+ > 0. As is shown in (19), heterogeneity across the population is encoded
via the different eigenfunctions and their corresponding coefficients, i.e., the eigen scores &j.
To achieve a finite representation, only the largest K eigen values are considered such that
SED(t) m pu(t)+ 30, Enr(t)+e(t) for j € {1, ..., J}. We follow standard procedures in [32]
to estimate model parameters; the mean function u(t), eigen functions ¢ (t), and variances
)\k'

Given the model above, our goal is to predict S(f) given new observations
{S(1),...,S(to)}. In particular, we aim to reflect the general trend from previous days,
but at the same time, individualize the predictions to data from the specific day under
consideration. Specifically, the curve for the estimated output for the current day (day
0) is represented as S(t) = u(t) + Zszl Eoxdr(t) + €(t), where &y, are the FPC scores of
S(t). Now the prediction of S(¢) can be achieved by estimating &y. To this end, we ex-
ploit empirical Bayesian updating scheme. Specifically, we utilize the trained )\, as prior
on & ~ N (&or; 0, \) for k = 1,..., K. This prior reflects the general trend we infer from
previous days. We then derive the posterior

P(€017"'7€0K|S(1)7 T 7S(t0)) :N(&)la "'7€OK;£*7E*)7 (20)

10



where

with

A = diag(Ay, ... Ak), d(t) = : :
o1(to) .- Px(to)
Given the posterior distribution (20), the predictive mean FE, (S(t)]|S(1),---S(to)) =S

S;: (t) and variance vary, (S(t)[S(1), -+ - S(tg)) = o (t) for time t =to+1,..,T —1 € T are
given as:

Mw

Sp (t) = p(t) + £ kon(t)
’“:1 (21)
(07, (1)) ) + Z Z Jkr s Oty () B0 () + 52 (2),
ki ko
where 67 (t) is estimated variance of y(t). The result above is key to our model as it implies

that updating predictions can be efficiently done in closed form, following the linearity (in
reference to coefficients) of the FPCA decomposition. Real-time updating in turn allows us
to refine our decisions, also in real-time, due to the efficiency of the LP construction. This
fact and the overall algorithm steps are highlighted in the following subsection. Here we
note that in the appendix we add some practical considerations for fitting FPCA.

4.3 Overall Decision Framework

As shown in Algorithm 1, at each time epoch the farm can solve the linear program LP(t)
to decide the amount of energy that should be charged into (or withdrawn from) the battery
set, z7(t). Note that solving LP(t) results in optimal decisions over the entire horizon
x*(t) = {zi(to), - ,z7(T — 1)}. If we exactly knew the future S(t) over the future horizon
then x*(t) would be optimal. However S(t) is predicted and at the next epoch the predictions
are updated and hence the decisions. As such, at time ¢ only the first optimal solution
x35(t) is implemented. The dynamic approximation algorithm for solving LP(t() is given in
Algorithm 1.

4.4 Stochastic Alternatives

One key advantage of FPCA is that it provides a full predictive distribution. This implies
that stochasticity in S(t) over the entire horizon can be accommodated for in our model. Here

11



Algorithm 1 The Dynamic Approximation Algorithm For The Wind /Solar Farm Problem

1: FPCA Training Steps:
2: Train the FPCA in (19) using previous J days’ data {SC(t) | j = 1,---,Jt =
1., T —1}.
Decision Making Steps:
fort=1to7T —1do

Observe the renewable power output at current time t: S(t).

Update the FPCA model using the observed data S(1),---,S5(t) and (20).

Predict Sf(t+1),---,S7(T — 1) using (21).

Solve the linear program LP(t) in (12) with the predicted power output.

Use the first optimal solution z7j(t) as the battery charge/discharge decision at time ¢.
10: end for

we propose two alternative solutions (i) a scenario based approach (ii) a robust optimization
approach. We will defer the robust approach to the appendix and focus on the scenario
based approach.

Recall, that our Empirical Bayes approach yields a posterior
P(&o1y s ok |S(1), -+ ,S(tg) = N(&ot, -, &ox; €F,2%) after each data point is col-
lected. Hence at any time point, a possible scenario for the evolution of S(t) over the
future horizon can be generated through sampling from N (&1, ..., &ox; €, 2*) and finding
the predictive mean in (21) over the future horizon; t € {tc + 1,...,7 — 1}. Therefore, a
stochastic alternative of our expectation approach in (12) is shown in (22).

N T-1
min > {3 0" [esauaget) - (OLeens (t) + OF (1)
i=1 t=0

upot(1) (O ptage(8) + U ()] + " (BA(T)) |, (22)

Ot(alaz)cess(t) > Sl(t) + :i‘l<t) - K(t)7
Olhortage (1) = =Si(t) = &(t) + K (1),
Oé;’)cess (t)7 o Z;L)ortage(t) 2 )

(
OV (t) > Bi(t) — x(t) — Bas,
US(t) > Byin — (Bi(t) — (1)),
0W 1), U (t) >0,
Bmin S Bz<t + 1) S Bmaxa

forallt=0,---,T—1
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A key feature of this approach is the automatic selection of relevant scenarios. By auto-
matic, we imply that FPCA can inherently update the posterior as new data comes in and
hence the posterior will reflect possible scenarios relevant to data collected at the specific time
of interest. We note that in (22), there is a general battery charging/discharging decision
variables z(t) and the scenario-based ones ;(t). x(t) is the guiding decision for all scenarios,
but it may not be feasible for a specific scenario because of the stochasticity of the energy
output. Therefore, we construct the scenario-based decision Z;(t) using decisions X (¢) that
are feasible for each scenario.

Similarly, we can also build a robust optimization approaches, whose objective function
is the largest cost among all N scenarios. The formulation and results are presented in
Appendix.

5 Case Study Preliminaries

In this section, we apply the proposed method on data from the California ISO [33]. The
dataset includes the amount of energy generated from several types of sources (i.e., wind,
solar, thermal, nuclear, and hydro) and the load. It covers a span of several years (2014-
2019), collected daily at 5-minute intervals. Table 1 shows a sample of the dataset available
in [33].

Table 1: California ISO Data Set (in Megawatts)

Date Hour | Interval | Load | Solar | Wind | Net Load
1/1/2019 0:00 1 1 22,320 0 2,862 19,458
1/1/2019 0:05 1 2 22,295 0 2,915 19,380
1/1/2019 0:10 1 3 22,204 0 2,919 19,285
1/1/2019 6:50 7 11 21,644 3 2,034 19,607
1/1/2019 6:55 7 12 21,613 | 52 2,026 19,535
1/1/2019 7:00 8 1 21,655 | 121 | 2,020 19,514

In Table 1, the “Load” column represents the actual electricity consumption during a
5-minute interval. The “Solar” and “Wind” columns show the energy production from solar
and wind farms, respectively. The “Net Load” is the actual load minus solar and wind
production. The net load is met by other energy sources, typically expensive conventional
power plants. Other columns include energy production from other sources, for example,
thermal, hydro, nuclear, imports, etc.

13



5.1 Data Exploration

We first provide illustrative examples that highlight some components of the California
ISO data. Figure 3 presents the solar plus wind power production data for each day of
a month, each represented by a different colored curve. We observe that the daily solar
and wind power production have strong commonalities and follow a similar pattern. This
observation suggests that a prediction model that captures the common diurnal pattern could
be beneficial for non-myopic decision making. On the other hand, the pattern varies day-
by-day, so the prediction model should take into consideration such variations for accurate
short-term predictions. This can be achieved via our FPCA model which starts off by a
population estimate in (19) and then individualizes the daily predictions in real-time in (20).

April 2018

15000

—~

10000

Production (MW

5000 ¢

Hours

Figure 3: Monthly Solar + Wind Production Data

Figure 4 presents the wind (in red lines) and solar (in blue lines) power production during
a specific day on April 2018. The green area represents the amount of energy curtailed by the
ISO. The solar plants generate the largest amount of energy at around noon, while producing
zero energy at night. On the other hand, the wind system generate more power at night.
We also observe that seasonally, solar power production is high in the summer and low in
the winter. Overall, the power production from the solar plants is larger than the power
generated by the wind farms in this case study. Curtailment often occurs when the power
production is unexpectedly large. For example, in April 17, 2018, about 15% of solar power
production was curtailed.

Here we note that the Duck curve in Figure (1), can be directly recovered from subtracting
wind and solar power generation from the total load, i.e., the net load. Also, we recall that
in order to supply the large rump-up of energy caused by the Duck curve (at around 3pm)
the California ISO runs conventional plants at low generation capacity at noon.
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Figure 4: A Daily Sample of Solar and Wind Production Data

5.2 Illustration of FPCA Prediction

Figure 5 presents the FPCA prediction results for wind and solar power production for April
27. The horizontal axis denotes time of day in minute scale and the vertical axis denotes
power output from the farm. The prediction is made, based on observed data within the
day. For example, in the left figure, data up to 4:10 AM (250 minute) is known and the
FPCA model uses this information to predict the days trend.

April 27th 2018, Elapsed minutes: 250 April 27th 2018, Elapsed minutes: 500
—— Observations (target day)
8 Observations (previous days) 8
S - S
D {22 precictve mean 2
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Figure 5: FPCA Prediction Results for Wind+Solar Production

We observe that FPCA can yield competitive predictions over the entire horizon. At the
4:10 AM, the trend still follows the overall population mean. This is intuitively understand-
able as few data is collected at that day. However, as more data is gathered, predictions
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are individualised and reflect better the day at hand. This can be seen from predictions
after 500 minutes elapsed throughout the day. Also notice that as more data is gathered the
predictive distribution becomes more accurate and more concentrated; hence the previously
mentioned notion of automatic selection of the relevant scenarios.

5.3 Benchmark Methods and Evaluation Metrics

For our non-myopic approach with FPCA predictions, we compare three alternatives of our
model. Those are:

e Expectation approach given in (12).
e Scenario approach given in (22).

e Robust approach given in (26).
We also benchmark with

e Non-myopic approach with perfect forecast: We assume that S(t) is fully know Vt €
{0,---, T — 1} and denote the deterministic function as S™U€(¢). We then optimize
the objective in (12) at o = 0 to obtain x*(0) = {«7(0),--- ,2z(T — 1)}. Note that no
updating is performed in this approach, since S(t) is known and thus the initial set of
decisions «*(0) are optimal.

e Myopic approach with perfect forecast: The charging/discharging decision at time ¢,
is made with only the knowledge of the farm output observation S(ty), but no future
information is taken into consideration. In other words, the problem is solved by
taking a snapshot of the system. To do this the sum notation in (12) is removed and
the “t =1y, ---T —1” in the constraints are replaced by “t = t;”.This one-period linear
programming is easy to solve. Its decision can be stated as:

— When the farm output S(to) is greater than the promised output K(ty) and the
battery is not yet full, the battery is charged until the overall output S(to)+z1(to)
equals the promised output K (to) or the battery becomes full.

— When the farm output S(ty) is less than the promised output K (ty), and if the
battery is not yet empty, the battery is discharged until the overall output S(to)+
z1(tp) equals the promised output or the battery becomes empty.

— No charging/discharging action is made if the two rules above are not satisfied.

e Myopic approach with FPCA forecast: This is similar to the prefect forecast one, but
without knowing the true observation of the farm output at ¢y. Instead FPCA is used
to predict S(tp). Note that here any of the expectation, robust or scenario approaches
can be used to obtain decisions.

A regret ratio metric is defined to compare model performance. We first define regret f € R
as the total cost incurred from excess production and shortage from time 0 to 7" — 1

—_

F = [Csatvage(t) - max{0, S"™(t) + x5 (t) — K(t)}

t

S

Il
=)
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+ Copot (t) - max{0, K (t) — S""(t) — zj(t)}]. (23)

Given, (23), it is clear that the non-myopic method under perfect forecast considers the most
accurate and largest amount of information, as it optimizes over a long-term horizon with
perfect knowledge of the supply evolution. Based on this, regret ratio is defined as

Jo
where fy denotes the cost of the reference method. Note that for simplicity of interpretation,
but without loss of generality, we use the zero terminal cost.

regret ratio =

5.4 Settings

The following parameters are set.

K(t) | 7,500 MW
BY | 1,500 MWh
B, | 15,000 MWh
Bi(1) | 7,500 MWh
Ly | 9,000 MWh
Csalvage 0.50

p 1

The spot price, cepot(t), varies over time. Usually the electricity price is high in the
early morning and evening because the demand is high and production is lower. We use the
average b-minute ahead marginal prices in the California electricity market available in [34].
Figure 6 presents the used market price.

6 Proof of Concept: Effect of Look-ahead Planning

This section presents a proof of concept that illustrates the advantage of look-ahead planning.
To this end, we only consider the non-myopic and myopic methods under perfect forecast. We
understand that the perfect forecast assumption is not realistic, but it eliminates prediction
errors so we can gain useful insights on how the proposed forward-looking approach affects
the decision-making process. Note here that since predictions are deterministic, only the
expectation approach can be used. In addition, the discounting factor is set to p = 1. As a
result, the difference between both methods is purely caused by the far-horizon information.

We consider two different scenarios on the spot price. Figure 7 depicts the results for the
non-myopic and myopic methods under the perfect forecast assumption with varying spot
prices obtained in [34], whereas Figure 8 considers a constant spot price at csp,t = 3. The
horizontal axis is time and the vertical axis is energy output. The dashed horizontal line im-
plies the committed energy by the farm (e.g., decided from the day-ahead unit-commitment).
The blue curve is the power generated from the wind/solar power plant and the red curve
represents the amount of energy withdrawn from the battery. The black curve is the farm out-
put Sy(t) which is equal to the wind/solar (S(t)) plus the battery charge/discharge amount
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Figure 7: Results with varying spot prices and no discounting factor, i.e. p = 1, under
perfect forecast

x1(t). Table 2 provides the regret ratio of the myopic approach, compared to the non-myopic
approach in Figures 7 and 8.

Table 2: Regret ratios for the myopic method under two different spot price scenarios in
Figures 7 and 8

Varying spot price | constant spot price
8.42 % 0%

18



10 April 23, 2018 w10 April 23, 2018

----- Solar+Wind Production = = =Desired Output K =====Solar+Wind Production = = =Desired Output K

Farm Output salvaged Farm Output salvaged
15 s Battery 1 Discharge x, (t) purchased 1 [ Battery 1 Discharge x, (t) purchased

Energy (MW)
Energy (MW)

05 05
1 1
0 5 10 15 20 0 5 10 15 20
Hours Hours
(a) Non-Myopic approach under perfect fore- (b) Myopic approach under perfect forecast
cast

Figure 8: Results with constant spot prices and no discounting factor, i.e. p = 1, under
perfect forecast

The curves in the figures explains how the objective function, i.e. the overall cost from
excess production and shortage, is calculated. When the black solid curve is above the black
dashed line, the overall output from the farm is higher than the committed amount, so the
farm should salvage the excess production, incurring the salvage cost. The salvaged energy
is marked in green area in each figure. On the other hand, when the black solid line is below
the black dashed line, the overall output from the farm is lower than the promised amount,
so the farm purchases energy from the electricity spot-market to fill the gap, which is marked
as yellow in each figure. To be more specific, let us split the 24 hours into three periods: (i)
before 9:00, (ii) 9:00 to 17:30, and (iii) after 17:30. In the first and the third periods, the
wind and solar output is lower than the promised amount of energy. In the second period,
the wind and solar output is higher. Therefore, We observe that battery discharging (when
red lines are above zero) occurs in periods (i) and (iii), while battery charging (when red lines
are below zero) occurs in period (ii), except to the time between 1:00 to 2:00 in Figure 7(a).

Interestingly, Figure 7(b) and Figure 8(b) are identical. It means that the spot price does
not affect the myopic method. In both subfigures, the decisions are to immediately charge
(or discharge) the battery to meet the promised output until the battery is full (or empty).
After the battery reaches zero (or full) capacity, the farm starts purchasing or salvaging
energy. The overall cost from Figure 7(b) is higher than that in Figure 8(b), simply because
the varying spot price in Figure 6 is always higher than the constant spot price cgpor = 3.

Another interesting aspect is that Figures 8(a) and 8(b) have the same overall cost,
causing 0% regret ratio, even though the shape of the curves is different. This result confirms
that if the spot cost is constant throughout the day, then myopic and non-myopic algorithms
will lead to the same cost. Despite the different shapes, the decisions in Figure 8(a) and 8(b)
share some common features: during periods (i) and (iii) the battery is discharged until it
becomes empty, and it is charged to full capacity in period (ii), because in this way the size of
yellow and green areas, which incur cost to the farm, can be minimized. Since the spot and
salvage prices are constant over time, the overall costs generated by energy purchase (shown
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as yellow areas) and energy salvage (shown as green areas) are the same in the two methods.
However, the difference is that, because the non-myopic method in Figure 8(a) considers
information in the far horizon, it averages the remaining energy (or the remaining capacity)
in the battery to the whole period. Therefore, the curves in Figure 8(a) are smoother when
compared to those in Figure 8(b).

Lastly, Figures 7(a) and 8(a) share identical results in period (ii), because the salvage
costs are the same (and constant) in both subfigures. However, the decisions in period (i)
and (iii) are different. In Figure 7(a), because the spot price is varying, the non-myopic
method purchases less (or more) energy when the spot price is high (or low). As we can
observe, battery is discharged and no energy is purchased during 0:00 to 1:00, 5:00 to 9:00,
and 19:00 to 22:00, when the spot price is relatively high. When the spot price is low, energy
is purchased through the spot market to fulfill the committed energy output. During 1:00
to 2:00, because the spot price is low, the farm decides to purchase energy and charge them
into the battery. On the other hand, in Figure 8(a), because the spot price is constant, the
farm has the same cost whenever it purchases energy.

From the above discussions, we can understand the differences between both approaches
and the benefits of the non-myopic approach. In summary, during periods (i) and (iii) the
decision in Figure 7(a) incurs much less cost because the non-myopic method considers the
future information and price changes. In period (ii), the curves in Figure 7(a) are smoother
because of the non-myopic property and the constant salvage price. On the other hand, when
the spot and salvage prices are all constant, both the non-myopic and myopic approaches
incur the same cost even though the decision over time differ, as shown in Figures 8(a) and
8(b). These results suggest that the non-myopic property can help decrease the farm’s cost
if the unit cost of purchasing or salvaging energy is changing in the future.

7 Case Study Results

The proof of concept was done under perfect predictions. Here we observe the results in a
real-life setting where FPCA forecasts are used to obtain predictions. Tables 3, 4, 5 and
6 compare the regret ratios for non-myopic and myopic methods (expectation, robust and
scenario based methods) under varying spot prices and p = 0.999. The results are shown in
terms of regret ratios over multiple days in April 2018. As the load pattern during week-
days are different from that on weekends, we focus our implementation on weekdays, so
the analysis for weekends (e.g., April 21, 22, 28 and 29) are omitted. In addition, Table 7
summarizes the running time of each approach using a standard desktop computer. An illus-
tration of the expectation method performance with varying spot prices with a discounting
factor p = 0.999 is given in Figure 9.
Many interesting insights can be derived from the Tables:

e First and most importantly, no matter which optimization formulation is used, a non-
myopic framework can significantly decrease regret and hence operational costs. This in
turn confirms the advantageous properties of our dynamic and non-myopic framework
that can be applied under different inference procedures.

e Second, interestingly, we observe that the scenario-based approach is able to slightly
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Energy (MW)

outperform the expectation-based approach when the number of scenarios is large. This
is intuitively understandable because it can account for prediction uncertainty with
multiple scenarios (rather than using one expected trajectory in the expectation-based
approach) within our decision framework. The caveat, however, is that accounting for
such uncertainty comes at the expense of increase computational times. For instance,
the running time to make storage decisions increases from around 2.4 minutes to 28
minutes (refer to Table 7) when switching from expectation-based formulation to the
scenario-based formulation with 10 scenarios. For the 5-min time interval considered
in this study, Scenario-10 is hence an unfeasible option. We can also imagine that the
scenarios-based approach is not scalable to solve large-scale problems with multiple
renewables and batteries.

Third, the Robust approach leads to worst case regret. This is expected, as we are
taking decisions under worst case supply scenarios. The Robust approach provides
very conservative decisions, increasing operational costs.

Finally, from these results, while the proposed framework is flexible enough to include
different optimization formulations, the expectation approach appears to be most ad-
equate in terms of operational cost and running time.

Figure 9 also echoes our results. Through comparing subfigures 9(a) and 9(b), we observe
the benefit of far-horizon planning where in period (i), the farm purchases more energy when
the spot price is low and uses it when the spot price is high. This results in a smaller regret
(or cost), compared to the myopic approach (see Tables 3 and 4). Also, in comparison
with the non-myopic approach under perfect forecast (Figure 7(a)), we find that the major
difference happens in period (ii), where the salvaging happens only in the later part of the
period in Figure 9(a). This difference is due to the use of a discount factor in this setting.
Since, the unit cost of salvaged energy is pt_tocsalmge, which is decreasing over time ¢. Thus,
in period (ii), the farm prefers to salvage its excess energy later , when the unit cost is lower.

2 «10% April 23,2018 5 %104 April 23,2018
Solar+Wind Production —— —-Desired Output K Solar+Wind Production —— —-Desired Output K
Farm Output salvaged Farm Output salvaged
15 Battery 1 Discharge x1(t) purchased ] 151 Battery 1 Discharge x1(t) purchased
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(a) Non-Myopic expectation approach with (b)  Myopic expectation approach with
FPCA Forecast FPCA Forecast

Figure 9: Results with varying spot prices and a discounting factor p = 0.999
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8 Conclusion

This paper presents a practical and easy to implement methodology for managing the output
of a wind/solar farm in a cost effective and real-time manner. Our problem aims at deciding
the amount of energy charged into or withdrawn from a battery, considering the time-varying
nature in the renewable energy output. A salient aspect of our formulation is that it enables
real-time updating of a joint predictive-prescriptive model where forecasts of energy outputs
over the future horizon are used to update decisions. This scheme is enabled via FPCA
which accounts for data heterogeneity, safeguards against model mis-specification via non-
parametric predictions and features a linear decomposition which in turn enables efficient
real-time updating. We show that our scheme is flexible to different optimization schemes;
be it stochastic, robust or even a deterministic approach. Our technology is then tested on
the California ISO data set [33]. This case study provided a proof-of-concept that highlights
both the benefits and ease of implementation of our forward looking framework.

Our model can be extended in various directions. For instance, one may consider the
battery degradation over time by providing a predictive model to update the capacity limits,
much like how FPCA is predicting supply. In addition, planning decisions for optimal needed
battery capacity is an important problem, in particular, with large penetration of volatile
renewable energy in the electricity market. Such a problem might benefit from a non-myopic
approach such as ours, especially since FPCA can hand both short and long term predictions
as long as all historical and to be-predicted functions share the same domain. We hope to
work on such challenges in the future.
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A Robust Approach

T-1

min e { 3 01 [catnage (8) - (OLns(8) + O 1)
t=0
spot(8) - (Ofomtage(t) + U (0)] + " @(BA(T)) | (25)
In LP formulation,
min F,

!

-1
st F>S 0 [Coatvage(t) - (09 .(£) + OV (1)

o

teaat®) - (0% () + UL ()] + 77 O(B(T)) (26)

Other constraints remain the same as scenario-based approach (22).

B FPCA considerations

Functional regression methods are often vulnerable in outliers [35]. Our FPCA model can
also exhibit sensitivity when data contains outliers. For example, the Bayesian updating
scheme above may lead to inaccurate predictions if recent observations stray away from the
previously observed trends. To deal with this issue, we adopt a simple strategy. First, we
smoothen the curves to alleviate local fluctuations. We used a Gaussian kernel smoother
in our numerical study, but other smoothers can be employed. Next, if an observation lies
outside our 3-sigma prediction interval, we ignore it and wait until the next observation to
update our model. If h consecutive recent observations are out of the 3-sigma limits we relax
this restriction.
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C Results

Table 3: Non-myopic approach: regret ratio with varying spot prices and discounting factor

(p = 0.999)

Table 4: Myopic approach: regret ratio with varying spot prices and discounting factor

(p = 0.999)

Non-myopic | Expectation | Scenario | Scenario | Scenario
approach 2 5 10
Apr 17, 2018 9.35% 10.62% 9.34% 7.93%
Apr 18, 2018 1.76% 1.75% 1.39% 1.26%
Apr 19, 2018 15.01% 16.79% | 13.77% | 12.98%
Apr 20, 2018 12.16% 13.12% | 10.80% | 10.38%
Apr 23, 2018 3.65% 4.08% 3.42% 3.37%
Apr 24, 2018 6.01% 6.57% 5.21% 5.11%
Apr 25, 2018 7.11% 8.30% 6.22% 6.17%
Apr 26, 2018 6.22% 9.88% 7.15% 5.31%
Apr 27, 2018 6.45% 10.25% 7.60% 5.92%
Apr 30, 2018 4.38% 7.06% 5.67% 4.93%

Average |  721% | 884% | 7.06% | 6.34%

Myopic Expectation | Scenario | Scenario | Scenario
approach 2 5 10
Apr 17, 2018 10.46% 10.36% | 10.36% | 10.36%
Apr 18, 2018 9.70% 10.03% 9.77% 9.70%
Apr 19, 2018 14.53% 14.81% | 14.59% | 14.56%
Apr 20, 2018 18.34% 18.61% | 18.42% | 18.52%
Apr 23, 2018 9.47% 9.56% 9.48% 9.53%
Apr 24, 2018 13.13% 12.94% | 12.90% | 13.01%
Apr 25, 2018 10.56% 10.56% | 10.53% | 10.53%
Apr 26, 2018 11.08% 11.37% | 11.17% | 11.18%
Apr 27, 2018 10.11% 10.34% | 10.02% | 10.20%
Apr 30, 2018 10.69% 10.74% | 10.77% | 10.73%

Average 11.81% | 11.93% | 11.82% | 11.83%
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Table 5: Non-myopic approach: regret ratio with varying spot prices and discounting factor

(p = 0.999)

Table 6: Myopic approach: regret ratio with varying

(p = 0.999)

Non-myopic | Expectation | Robust | Robust | Robust
approach 2 5) 10
Apr 17, 2018 9.35% 10.48% | 10.49% | 10.45%
Apr 18, 2018 1.76% 10.05% | 10.05% | 10.24%
Apr 19, 2018 15.01% 14.61% | 14.82% | 14.81%
Apr 20, 2018 12.16% 18.64% | 18.55% | 18.82%
Apr 23, 2018 3.65% 9.53% | 9.73% | 9.71%
Apr 24, 2018 6.01% 13.10% | 13.54% | 13.51%
Apr 25, 2018 7.11% 10.27% | 10.65% | 10.77%
Apr 26, 2018 6.22% 11.34% | 11.65% | 11.74%
Apr 27, 2018 6.45% 10.33% | 10.53% | 10.56%
Apr 30, 2018 4.38% 10.81% | 10.85% | 10.91%

Average |  721% | 11.95% | 12.09% | 12.15%

spot prices and discounting factor

Muyopic Expectation | Robust | Robust | Robust
approach 2 5 10
Apr 17, 2018 10.46% 10.42% | 10.57% | 10.53%
Apr 18, 2018 9.70% 9.86% | 9.76% | 9.82%
Apr 19, 2018 14.53% 14.48% | 14.40% | 14.37%
Apr 20, 2018 18.34% 18.69% | 18.61% | 18.57%
Apr 23, 2018 9.47% 9.45% | 9.48% | 9.48%
Apr 24, 2018 13.13% 12.84% | 12.88% | 12.91%
Apr 25, 2018 10.56% 10.54% | 10.50% | 10.56%
Apr 26, 2018 11.08% 11.06% | 11.07% | 11.07%
Apr 27, 2018 10.11% 10.19% | 10.18% | 10.16%
Apr 30, 2018 10.69% 10.68% | 10.72% | 10.69%

Average | 11.81% | 11.82% | 11.82% | 11.82%

27



Table 7: Average Computational time for all approaches

Proposed Methods

Running time (sec)

Myopic | Non-Myopic

Expectation 0.001 145.21
Scenario 2 2.07 60.16
Scenario 5 2.10 332.92
Scenario 10 2.37 1676.10
Robust 2 2.26 73.85
Robust 5 2.42 428.36
Robust 10 2.66 2199.4

28



