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Abstract—As the market for autonomous vehicles advances, a
need for robust safety protocols also increases. Autonomous
vehicles rely on sensors to understand their operating envi-
ronment. Active sensors such as camera, LiDAR, ultrasonic,
and radar are vulnerable to physical channel attacks. One way
to counter these attacks is to pattern match the sensor data
with its own unique physical distortions, commonly referred
to as a fingerprint. This fingerprint exists because of how the
sensor was manufactured, and it can be used to determine
the transmitting sensor from the received waveform. In this
paper, using an ultrasonic sensor, we establish that there exists
a specific distortion profile in the transmitted waveform called
physical fingerprint that can be attributed to their intrinsic
characteristics. We propose a joint time-frequency analysis-
based framework for ultrasonic sensor fingerprint extraction
and use it as a feature to train a Naive Bayes classifier. The
trained model is used for transmitter identification from the
received physical waveform.

1. Introduction

Active sensors [1] such as ultrasonic sensors and many
others have been employed within autonomous vehicles
in order to perceive and localize themselves within their
surrounding environment. Within a vehicle, all information,
including sensory data for localization, is passed between
Electronic Control Units (ECUs) over the Controller Area
Network (CAN). These ECUs typically control an electrical
subsystem within a vehicle, such as the Powertrain Con-
trol Module (PCM), Transmission Control Module (TCM),
Brake Control Module (BCM) and so on.

Once data arrives at an ECU over the CAN network, that
particular ECU utilizes the data to control the subsystem it
pertains to and ultimately allows for the vehicle to operate.
As 1is, there is no validation of data transmitted over the
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CAN network [2] or between ECUs and microcontroller
units (MCUs) within an Advanced Driver Assistance System
(ADAS) [3]. There is also not known to be any security
measures being taken on the sensor level before data is
sent to various ECUs or aforementioned CAN and ADAS
systems. The absence of a secure protocol for recording
sensor data and transferring data between ECUs in a vehicle
creates a hesitance towards pushing autonomous vehicles
to market. In an autonomous vehicle, corrupted data or
false sensor readings could be the difference between life
or death.

This paper focuses on extracting sensor intrinsic proper-
ties called fingerprints that can serve as a potential coun-
termeasure for two physical signal level attacks, which are
attacks categorized by manipulating the environment in such
a way to cause incorrect ultrasonic sensor measurements.

Fingerprints are formed due to microscopic imperfec-
tions and dissimilarities in the sensor manufacturing process.
They are physical features prevalent in a multitude of Cyber-
Physical Systems (CPS) and other hardware devices that
arise in specific waveform characteristics. Sensor finger-
prints can be represented as a function of the material
properties which make up a sensor or a piece of hardware
and fabrication process. These imperfections are assumed
to be unique to a specific sensor and random in nature.
The concept of physical fingerprinting has been used for
RF transmitter identification [4] and hardware validation for
sensors used in non-automotive applications [5]. In case of
ultrasonic sensors, this fingerprint manifests in the form of
random noise in the transmitted pulse sequence from the
sensor which can be observed in the sensor transmissions.

1.1. Motivation

The motivation for this work lies in the innovation of
self-driving vehicles that utilize various sensors to perceive
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Figure 1: Block-diagram of the system model

their environment. For this technology to become more
prevalent, it must be safe and robust to malicious attacks.
Ultrasonic sensors are already common in modern vehicles
for close-range object detection, such as in the Tesla Model
S, which relies on ultrasonic sensors to achieve its “Smart
Summon” feature. It has been successfully demonstrated in
[6] that these sensors are vulnerable to attack and can have
fatal outcomes. Other modern vehicles rely on ultrasonic
sensors to assist drivers when parking. When an ultrasonic
sensor is attacked employing jamming and spoofing, it can
perceive an object that is not truly there (false positive), or
cause the sensor not to perceive an object that truly is there
(false negative) as shown in [7]. These incorrect readings
can cause damage to a vehicle, building, and human life.
This work serves as one of the initial steps in securing
the technology used in autonomous vehicles, so it becomes
resistant to attacks.

1.2. Principal Contribution

Our method of fingerprint generation and implemen-
tation is novel in the amount of data that is required to
establish a reliable fingerprint, the accuracy of the classifier
due to our decision for identifying fingerprints, distance in-
variability of our fingerprint as well as what features we take
into consideration for our classifier. In theory, it is mathe-
matically impossible to spoof a signal with the same random
noise pattern. The other proposed methods are theoretically
more vulnerable to attacks because a knowledgeable attacker
can listen and craft ultrasonic pulses with similar amplitude,
resonance frequency and phase. It does not rely on time-
domain statistical measures of the transmitted waveform as
in [7] and [5]. Our method also does not require any rigorous
modification to an existing sensor system or require us to
handcraft our own pulses as in [7]. Our work differs from [5]
and [7] in that our system performs with equivalent or better
accuracy (Tab 1) when identifying sensors via a significantly
smaller feature vector. Our feature extraction algorithm uses
adaptive filtering to remove irrelevant frequencies and only
generates feature vectors for a specific bandwidth which is

also novel and attributes to the accuracy of our classifier.
Our algorithm computes the fingerprint of a given sensor
by analyzing the energy component around the resonance
frequency ( 42kHz in our case) where the energy is highest.
We propose a method to extract the sensor fingerprints
by observing the spectrogram for each sensor at multiple
distances to determine each sensor’s respective resonance
frequency (Fig 3). Once we have determined the resonance
frequency for a sensor, our algorithm extracts data from the
necessary frequencies which will create a frequency profile
used for training our classifier. By applying a band-pass filter
to our data, our classifier ignores irrelevant data and is in
turn more accurate. Each frequency bin in our spectrogram
over the desired interval acts as a feature vector later for
our classifier and essentially contains the fingerprinting in-
formation of a given sensor. As mentioned, pattern matching
a fingerprint to a specific sensor based on spectral content
is extremely robust, since it is infeasible for an attacker to
generate and transmit an ultrasonic waveform with the same
fingerprint or random noise profile, even if the attacker has
sophisticated knowledge of our implementation. In the case
an attack was to occur, our classification method can be
extended using a Support Vector Machine (SVM) to classify
an input that does not belong to any classes the model is
trained on. However, this is not implemented in this paper.
We train a simple, computationally light machine learning
model with this feature to demonstrate that the transmitting
sensor can be identified through physical fingerprint.

2. Related Work

Recently, research efforts have been focused on leverag-
ing physical signal features to detect malicious attacks [5],
[71, [8]. In [7], single-sensor-based physical shift authentica-
tion and multiple-sensor consistency checks were employed
to verify signals on a system level. In the first method of
countering sensor attacks, physical aspects of the transmitted
waveform were altered, such as amplitude, frequency and
phase. At the receiver, a correlation function is applied to
the received echo and transmitted signal. If the correlation
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value exceeded a threshold, then the received waveform is
accepted by the system. Multiple-sensor consistency checks
utilize the time of flight (TOF) of each received pulse and
compare them to each other. If a discrepancy exists which
exceeds the tolerance, then an attack most likely occurred.
If an attack occurred but the TOF for each echo are very
closely related, then the attack is not a threat to the system.
This method for attack detection is different from ours, since
we use a machine learning approach where no manipulation
of the waveform characteristics is necessary to detect sensor
attacks.

In [5], researchers again worked to find ways of coun-
tering ultrasonic sensor attack. Data was collected for ul-
trasonic sensors on stationary objects. Data chunks were
formed and both time domain and frequency domain fea-
tures were used to determine whether or not an attack
had occurred. The features used in order to detect attacks
were the mean, standard deviation, mean average deviation
and kurtosis of the time domain signal as well as spectral
standard deviation, spectral centroid and DC component of
the spectral signal. Hardware fingerprints were shown to
exist in a few lower-cost HC-SR04 ultrasonic sensors using
the aforementioned features. Our work wishes to expound
on this by using more expensive ultrasonic sensors which
are expected to have less variance due to manufacturing
processes and higher-grade materials. Also, our work wishes
to be able to identify from what sensor and at what specific
distance an ultrasonic waveform traveled simply by feature
extraction and classification.

Work has also been done in [8] to prevent the vulner-
ability of ultrasonic sensors to malicious attacks by using
hardware fingerprints in water level monitoring applications.
Noise patterns were created by the process of the filling
of water containment vessels, measuring a distance with
the ultrasonic sensor and comparing to the ground truth
values (the flow rate was known). After several runs were
recorded, a pattern was established. If the noise pattern of
an ultrasonic sensor differed from the amount expected at a
specific fill rate, then an attack was detected. This method
is robust but differs from ours since we are proposing a
method for hardware fingerprinting which relies on a time-
frequency analysis of the actual signal and not the received
measurement.

As you can see, ultrasonic sensor security has a wide
range of applications which all aim to increase safety, pro-
tect against human life, and reduce the financial loss of being
victim to an attack.

3. System Model

The system model assumes an ultrasonic sensor system
on chip devices commonly used in automotive applications
[9]. The sensor does the signal conditioning and processing
for the transducer echo signals and transmits the distance
to the obstacle and other parameters over the chosen inter-
face like CAN, LIN. The on-board ECU allows complete
configurability for the end applications.

The proposed fingerprint extraction happens on the sen-
sor itself, during an initial calibration phase where the sensor
learns the fingerprint and trains a model to identify its own
echo and differentiate it from others. This model can be
used at a later stage to identify if the sensor is under attack.
Shown in Fig 1 is the block-diagram of the system model.
During the calibration phase, the system learns its echo and
trains the model which is then used to determine authenticity
of the received signal. Specifically, the received signal is
analyzed for fingerprint extraction in the background while
the data gets processed to detect obstacles. The output from
the sensor includes a validity flag along with the data to
assure that the data is authentic and not subject to phys-
ical attacks. In the proposed framework, we use a power
spectrum coefficients as features and a simple Gaussian
Naive Bayes classifier to perform supervised learning and
classification of labeled data. As the Naive Bayes classifier
supports multi-class classification, it will not only allow our
system to accurately detect when an attack occurs but also
on what sensor, since most vehicles which utilize ultrasonic
sensors use more than one.

Our system for combating attacks launched by the ad-
versary is under the assumption that the time in which we
detect an attack is not a leading factor in the success of
our model. In real-time applications, ADAS systems have
stringent safety requirements such as brake engagement that
have a maximum latency of 0.1 seconds [10].

3.1. Data Model

Our data model assumes that the data inputs have the
following characteristics as noted in [7] except we define the
transmitted and received signals with the inclusion of noise
characteristics emitted by the transducer due to a hardware
fingerprint. We can describe the transmitted waveform of
our ultrasonic sensor as an ideal sinusoidal signal

s(t) = Acos(wet), te[0, 0] (1)

Where in Eq(1), A is the amplitude of the signal, ¢ is
the time and w, is the radial frequency of the carrier signal.

In reality, the transmitted signal will have some noise
component to it as a result of the hardware fingerprint

sp(t) = Acos(wct) +n(t),  tef0, 00 ()

Where in Eq(2), n,(¢) denotes the noise of the transmitted
signal due to the hardware fingerprint.
At the receiver, the transmitted signal appears as

r(t) = acos((wet+wp)(t—7)+0)+n.(t)+n(t), te]0, o]
3)
Where in Eq(3), a represents the attenuated amplitude

of the transmitted signal, wp is the Doppler velocity, 7 is the
time delay (time for the echoed signal to reach the receiver),
0 is the phase shift, and n(t) is the additive noise component.
We expect n,.(t) to be centered at the resonance frequency
of our sensors since ultrasonic sensors transmit pulses by
exciting a piezoelectric transducer [11]. This transducer will
vibrate acoustically at the same frequency as the AC voltage

Authorized licensed use limited to: UNIVERSITY OF MICHIGAN - DEARBORN. Downloaded on October 02,2021 at 02:24:33 UTC from IEEE Xplore. Restrictions apply.



Frequency (kHz)
Frequency (kHz)

Frequency (kHz)
Frequency (kHz)

Time (secs)

Frequency (kHz)

Time (secs)

Time (secs)

Figure 2: Spectrograms of sensor transmissions generated using 8 ms window size, 25% overlap, and Hanning weight

window

that is applied to it. Noise due to microscopic hardware
imperfections will be exacerbated around the resonance
frequency of the sensor. Signals of this type will be analyzed
and used as input to our classifier.

3.2. Threat Model

While evaluating the security of our model, it is im-
portant first to identify what possible adversaries we must
defend against and what types of attacks they can employ.
We identified these main physical channel attacks on the
ultrasonic sensors. It is assumed that the attacker will be
able to perform these three types of attacks and for launching
these attacks, the assumption is made that the attacker will
have a know-how of all the information of our system,
such as what sensors are used, the frequency at which data
is recorded, and even our method for defending against
malicious attacks.

i) Jamming Attacks: The attacker will be able to perform
jamming attacks [12], where the transducer of an ultrasonic
sensor is always excited with ultrasound in such a way
that it cannot measure the echo of its own transmitted
ultrasonic waves and therefore cannot accurately perceive
its surroundings.

i) Spoofing Attacks: The attacker will be able to generate
ultrasonic pulses to excite the transducer of an ultrasonic
sensor such that a “phantom object” can be perceived by
the sensor when it is not truly there. This is the case
when an ultrasonic wave is spoofed to the transducer of

an ultrasonic sensor before the echo of its own transmitted
wave can return, resulting in the sensor perceiving a non-
existent object. Although this is difficult to perform while
a sensor is in motion due to timing dependencies, it has
been implemented on stationary sensors used in automobiles
in [6] in the case where the attacker has knowledge of the
frequency of ultrasonic sensor readings, which fits this threat
model.

iii) Sensor Damage & Replacement: In addition to jam-
ming and spoofing attacks, the adversary may also perform
an attack that requires physical contact with the sensor. This
is the case when the adversary damages [13] the sensor or
replaces it entirely. It is assumed that the adversary is able
to do this stealthily, such that visually it is not possible to
tell whether or not a sensor has been physically damaged,
replaced, or altered in any way.

The proposed framework can handle jamming and spoof-
ing attacks along with the sensor damage contact-based
attacks. Since we assume a smart sensor that runs the data-
processing on-board, we cannot detect the sensor replace-
ment contact-based attack.

4. Fingerprint Extraction

To extract and localize the hardware-specific finger-
prints, we chose time-frequency analysis method. As spec-
trograms give the time-frequency distribution of time series
data, we started with spectrogram analysis of the sensors
under test. In Fig 2, the spectrograms of the five sensors
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Figure 3: Power spectrum of sensors under test at 25 cm distance measurement

under test are shown. With the reduced window size of 8
ms, the frequency distribution of each sensor is visually
distinguishable, although minutely, and laid the first step
towards our claim towards the presence of an intrinsic
sensor fingerprint. As a next step we focused on the spectral
components at central frequency of operation of the sensors.
We obtained the power spectrum of the ultrasonic sensor
signal around the operating frequency of 40 KHz with a
timing resolution of 250 ms and a frequency resolution of
1 KHz. The power spectrum is generated with persistence
option to visualize the percentage of time that a particular
frequency component is present in the input signal. The
results as shown in Fig. 3, display a distinct feature in the
form of the power spectrum peak location that can be used
to identify each sensor. The power spectrum peak and the
corresponding peak shape profile occurred at different fre-
quencies for different sensors under test. It can be observed
from the Fig. 3, that the spectral peaks for sensors under test,
A,B,C,D & E occurred at 40.91, 40.36, 40.45, 41.03, 40.65
KHz respectively. The peak locations of any two sensors
were separated with a 100 Hz frequency resolution and the
peak roll off rates for different sensors are different as-well.
Given the fact that our sensors under test are from same
manufacturer, of same grade and data collection conditions
are same across multiple experiment runs, the variation in
the location of peak for power spectral components can
definitely be considered as a unique fingerprint for each
sensor. We used this variation in the peak location and
the shape profile information as our main feature for the
classification of the sensors. Though it can be argued that

as the number of sensors increases drastically the frequency
resolution might not be sufficient to distinguish different
sensors based on the just the spectral peak location, for our
end application of supporting Advanced Driver Assistance
System (ADAS) or Automated Driving (AD) features, the
number of ultrasonic sensors used in a vehicle is usually
less than 15. For instance, Tesla autopilot advanced sensor
coverage has the 12 ultrasonic sensors [14]. We observed
similar trends in power spectrum peak location and shape
profile at different distances as shown in Fig. 4. The power
spectrum visualization in Fig. 4 shown in a table form with
each row displaying the power spectra of a single sensor
collected at different distances and similarly the columns
represent the power spectra of different sensors at a given
distance. While the peak location was a good feature to clas-
sify different sensors at a given distance it did not generate
good results for distance agnostic sensor classification. It can
be observed that for distance agnostic sensor classification
feature the peak roll off rate and the shape profiles need to
be used and modeled. This is considered as future extension
of this research.

4.1. Dataset

In order to use fingerprinting as a means to classify
which ultrasonic sensor a given waveform originated from,
data from multiple sensors must be collected. As shown in
the Fig. 5, an anechoic chamber was built out of acoustic
foam in order to reduce reflections off of the surrounding
environment from being recorded by the high-frequency
microphone. The acoustic foam used has a high absorption
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Figure 4: Power spectrum of all sensors under test at differ-
ent distances

coefficient, which allows it to reduce the number of reflected
sound waves that contact it. By reducing reflections of
ultrasonic signals at the microphone, we can isolate singular
pulses for comparison and analysis for our system. The
ultrasonic sensor, microphone, and power circuit needed to
operate the ultrasonic sensor were placed across from each
other inside of the anechoic chamber on top of 3D-printed
mounts, which were also covered in acoustic foam. Once the
recordings began, they were left to run for ten minutes. The
first thirty seconds and last thirty seconds of each recording
were removed to ensure no audio from external sources was
recorded by the microphone because of operators leaving
and entering the room where the chamber was located. Five
MB1013 HLRV Max Sonar sensors were analyzed and used
for fingerprint classification. Data was captured at specific
distances of 25cm, 50cm, 75c¢m, and 100cm.

4.2. Feature Vector Generation

Feature vector generation was done automatically by our
own program via MATLAB. Our algorithm takes in time-
series sensory data and analyses its time varying frequency
content as in Fig 2. Since we are using a Gaussian Naive
Bayes classifier, we anticipate that our feature vectors will
have a normal distribution. We will consider a feature vector
being the energy of a given frequency bin over the sampling
time. For example, a feature vector could be the energy in
the 40KHz frequency “’bin” over time, since it will have a

normal distribution and that distribution will later be proved
to be different between sensors. However, the distribution
in a low energy frequency interval will have very little
variation and be similar between sensors. At some point, the
amount of feature vectors, or frequency bins considered will
have diminishing returns if too large. The amount of feature
vectors which maximizes the accuracy of our classifier is
an optimization problem. Using the optimization toolbox in
MATLAB, where the goal was to maximize our testing ac-
curacy under the constraint that the accuracy must be at least
90%, we found that the amount of feature vectors does not
vary with distance and is approximately 161 vectors. This
corresponds to + 1kHz above and below the determined
resonance frequency.

With this frequency profile, the vectors used as input
to our algorithm are related to the frequency distribution
displayed in Fig 3. To ensure that the distribution of energy
in each frequency bin was discernible between sensors as
we hypothesized, we plotted these distributions for each
frequency bin. Fig 6 proves such distributions exhibit the
desirable features.

Algorithm 1 Feature Extraction algorithm (MATLAB)

: procedure FEATURE(S) > .wav files for n sensors

1

2 Fy = 256kHz

3 fori=1:ndo

4: A; = audioread(S;)

5 M; = abs(spectrogram(A;))

6 Nrows = size(M;,1)

7 Peak = maz(M;(1 : Nrows),[],2) > Peak of
each frequency bin

8: MaxPeak = maz(Peak)

9: index; = find(M; == MaxPeak)

10: PeakBin = round(avg(index))
11: UBound = PeakBin + a
12: LBound = PeakBin — a

13: for i=1:n do

14: M, = M;,(LB:UP,:)

15: Result = [MlMg...Mn] > Horizontal
Concatenation

16: return Result

4.3. Classification

The Gaussian Naive Bayes classifier works by using
Bayes Theorem [15] which explains the conditional prob-
ability of an event occurring based on the existence of
features or other events being present. Mathematically, this
is stated as

P(y)P(x1,...;xs|y)
Plx—1,...,2,)

where y is the class variable and the feature vector is
described as x.

The Naive Bayes classifier assumes conditional indepen-
dence of features, hence we can say

“)

P(ylxy,...,xn) =
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P(zily, x1, .y o1, Tig1, ooy Tn) = P(23y) Q)
In regards to all feature vectors, this reduces to
_ Pl Plaily)
P(xy,..., %)

The denominator of this equation can be assumed con-
stant given the input data and the classification becomes

P(ylzy, ..., ) (6)

P(ylar,..,zn) a Ply) [ Pzily) (7)
i=1
Where alpha denotes proportionality. Using the Maxi-
mum A Posteriori [16] estimation, we can identify which
class maximizes the classification rule, and our decision
becomes

n

7 = arg mazyP(y) H P(zily) (8)

i=1

In a Gaussian Naive Bayes classifier, the probability
of a feature vector being present given a class variable is

expressed as
)2

exp [ — 5
\/2mo? 20y

Where o and g are maximum likelihood estimation
parameters.

In our implementation, the class variable y represents
the five different sensors whose fingerprints were extracted.

Plaily) =
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The feature vectors for each of the sensors is the amount of
energy in a frequency bin over the duration of our ten-minute
audio samples. Our hypothesis is that the Naive Bayes clas-
sifier will prove effective in differentiating between sensors
because the existence of a hardware fingerprint will emerge
in minuscule variations in transmitted signal strength in
various bins. Our reasoning is supported by histograms for
the energy distributions in different frequency bins for the
five sensors. From the spectrograms in Fig. ??, we can see
that most of the energy content is around 40 kHz. When
analyzing the energy distributions of the five sensors in
the 40 kHz frequency bin 6, we can see the dissimilarity
between distributions motivates the idea that a Gaussian
Naive Bayes classifier will prove effective when several
frequency bins are added as feature vectors for our classifier.

A MATLAB script was written to find the energy bin
with the maximum energy content. From there, the fre-
quency bins corresponding to 2kHz above and below the
maximum energy bin were used as feature vectors for our
classifier. In total, 161 feature vectors were used. Using the
bins with the highest energy content filtered out low energy
bins where the distribution (mean and standard deviation)
of energy was very similar between sensors.

5. Experiments & Results

The first step in building a system model to counter
the physical attacks on an ultrasonic sensor is to establish
that different ultrasonic sensors generate fingerprints in their
transmissions unique to the host and this finger print can be
used to identify the host sensor. To prove this point, we set-
up an experiment as shown in Fig. 5. The microphone placed
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at various distances from an ultrasonic sensor captures the
sensor transmissions and records them.

This recorded data is then used to generate feature
vectors from spectrograms. After generating the scattering
features for each ultrasonic sensor under test, the Gaussian
Naive Bayes model is trained with the training dataset.

The Gaussian Naive Bayes classifier also had promising
results. Data used from the same experiment shown in Fig. 5.
was input to our classifier. One benefit of the Gaussian NB
method is that only 10 percent of the data was needed for
training to achieve high accuracy classification.

Table 1: ACCURACY - GAUSSIAN NB

Distance (cm) Training Size Test Size  Accuracy
25 10% 90% 99.67%
50 10% 90% 96.68%
75 10% 90% 95.42%
100 10% 90% 99.66%
Mixed Distances 10% 90% 91.72%

As an extension, we decided to synthetically saturate
the received signal of our ultrasonic sensor by adding a
percentage of the peak noise values seen graphically in Fig 2
as a DC component to the signal before the spectrogram
is applied. By synthetically adding gaussian white noise
[17], the discernibly of the fingerprint was diminished. The
goal of this was to experiment with pseudo-jamming to
see at what point our classifier would no longer be able
to successfully identify a sensor.

To recursively add noise until the fingerprint was no
longer identifiable, we let the amount of saturation be pro-
portional to some value of the peak value.

N.[n] = z[n] + ao,N|[n] (10)

Where z(n) is the received digital signal, o, is the
standard deviation of the original signal, « is a saturation
coefficient and N[n] is a noise signal with standard normal
mean and standard deviation and N,.[n] is our total satura-
tion which is added to the entire time-domain signal. Fig 7
shows the affect different values of a have on the spectrum
of the received signal.

Sensor A: a =0 Sensor A: a =05

Frequency (kHz)

5 10 15 20 25 3 35 40 45 50 5
“Time (secs)

5 10 15 20 25 % 3B 40 & 0 5
Time (secs)

Figure 7: Saturation of Received Signal - Spectrogram Vi-
sual

The classifier performed reasonably well for values of
0 < a < 0.539 The table below shows the accuracy of the
classifier for different values of o for a single sensor
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Table 2: ACCURACY - SATURATED GAUSSIAN NB

Distance (cm) Qmax Accuracy
25 0.539 91.41%
50 0.4179 93.38%
75 0.4009 92.59%
100 0.394 90.33%
Mixed Distances 0.2154 91.72%

6. Conclusion and Future Work

In this paper, we presented the concept of using the
host sensor’s inherent characteristics or distortions called
fingerprints to identify itself. Using the ultrasonic sensor set,
we demonstrated that the proposed fingerprint extractor and
the classifier framework could identify the host sensor suc-
cessfully with a minimum of 96% accuracy in the absence
of synthetic noise. Therefore, we establish that the sensor
intrinsic distortions can be successfully used to identify
them. The framework is being evaluated for other complex
scenarios like receiving target echoes from single and multi-
ple sensors. Further tests to analyze the performance of the
countermeasure framework on data collected under different
scenarios is being evaluated along with other lightweight
fingerprint extraction techniques. We intend to extend collect
more data and to support and classify ten different sensors.
Future work for this project also aims to observe the results
of the proposed method on actual jamming attacks as well
as spoofing attacks. For real time applications, it is desired
that the system’s timing performance is monitored to see
if it meets the requirements for in vehicle deployment. It
is also pertinent that an ensemble classifier is trained and
implemented to detect ultrasonic fingerprints at intermediate
distances, such as between 25cm and 50cm in our current
framework.
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