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Lead in drinking water continues to put children at risk of irreversible neurological impairment. Understanding
drinking water system characteristics that influence blood lead levels is needed to prevent ongoing exposures.
This study sought to assess the relationship between children’s blood lead levels and drinking water system
characteristics using machine-learned Bayesian networks. Blood lead records from 2003 to 2017 for 40,742
children in Wake County, North Carolina were matched with the characteristics of 178 community water systems
and sociodemographic characteristics of each child’s neighborhood. Bayesian networks were machine-learned to
evaluate the drinking water variables associated with blood lead levels >2 pg/dL and >5 pg/dL. The model was
used to predict geographic areas and water utilities with increased lead exposure risk. Drinking water charac-
teristics were not significantly associated with children’s blood lead levels >5 pg/dL but were important pre-
dictors of blood lead levels >2 pg/dL. Whether 10% of water samples exceeded 2 ppb of lead in the most recent
year prior to the blood test was the most important water system predictor and increased the risk of blood lead
levels >2 pg/dL by 42%. The model achieved an area under the receiver operating characteristic curve of 0.792
(+£0.8%) during ten-fold cross validation, indicating good predictive performance. Water system characteristics
may thus be used to predict areas that are at risk of higher blood lead levels. Current drinking water regulatory
thresholds for lead may be insufficient to detect the levels in drinking water associated with children’s blood lead
levels.

1. Introduction

Lead has been used to deliver piped drinking water for millennia due
to its unique chemical properties, including low melting point, mallea-
bility, and relative resistance to corrosion. Despite warnings about the
negative health effects of lead exposure since antiquity (Hodge, 1981;
Lessler, 1988; Vuorinen et al., 2019), by the 19th century, 70 percent of
drinking water mains and service lines in the United States (U.S.)
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contained lead (Rabin, 2008). The effects of increased blood lead levels
in infants and young children include neurological damage resulting in
permanent developmental, learning, and IQ deficits (Bellinger et al.,
1987; Canfield et al., 2003; Lanphear et al., 2005; McMichael et al.,
1988; Needleman et al., 1990). Higher blood lead concentrations have
also been significantly associated with preeclampsia (Poropat et al.,
2018) and excess mortality among adults (Lanphear et al., 2018).
Despite documented cases of lead poisoning in households served by
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lead pipes as early as the 1850s (Adams, 1859), plumbers and pipe
manufacturers continued to promote the use of lead in U.S. drinking
water systems well into the 20th century (Gray, 1916; Rabin, 2008).

Lead plumbing was first regulated in the U.S. in 1986 in an amend-
ment to the Safe Drinking Water Act which required components used
for drinking water to contain no more than 8% lead, whereas, previ-
ously, fittings and fixtures may have contained 40-50% lead (Maas
et al., 2005). The subsequent Lead and Copper Rule, promulgated in
1991 and revised in 2000, 2004, and 2007 requires water sampling for
lead at a small number of selected individual residences and establishes
an action level of 15 parts per billion (ppb) (USEPA, 1991, 2000, 2004,
2007). Under the Lead and Copper Rule action must be taken if more
than 10% of households tested in a designated year (i.e., the 90th
percentile of monitoring samples) exceed the action level. If this
threshold is exceeded, the utility is required to implement system-wide
corrosion control practices and disseminate educational materials to the
public. If treatment is inadequate, the water system may be required to
remove lead service lines. In 2019, revisions to the Lead and Copper
Rule were proposed that would establish an additional trigger level at
10 ppb. If 10% of samples exceed the trigger level, utilities would be
required to perform a corrosion control optimization study as a pre-
emptive measure to identify a strategy for lead mitigation (USEPA,
2019).

Although the Lead and Copper Rule acknowledges that there is no
safe level of lead in drinking water, the regulation is principally designed
to monitor utility corrosion control practices, rather than to be protec-
tive of health at the household scale. Corrosion control treatment is
assessed through sample collection at a limited number of residences, up
to 100 locations for systems serving greater than 100,000 people (i.e.,
0.1% of homes served). Systems in compliance with the Lead and Copper
Rule are not required to remove lead service lines. As a result, estimates
suggest that between 6.1 and 12.8 million lead service lines still exist in
approximately 30% of all U.S. community water systems, serving be-
tween 15 and 21 million people (Cornwell et al., 2016; NRDC, 2021).
What is more, as many as 77% of all U.S. housing units (over 80 million
homes) likely contain lead solder joints and virtually all U.S. homes
contain some brass components with up to 8% lead by weight (Tri-
antafyllidou and Edwards, 2012). Thus, even where utilities are in
compliance with all Lead and Copper Rule provisions, the conditions
influencing lead release within distribution systems are often poorly
characterized (Schwetschenau et al., 2020). Legacy lead service lines,
lead-bearing plumbing components, and low sampling rates can all
cause unsafe lead levels at individual household taps to remain unde-
tected (Riblet et al., 2019; Triantafyllidou and Edwards, 2012). Conse-
quently, compliance with the Lead and Copper Rule action level is not
considered adequately protective for children and formula-fed infants,
who represent the population most vulnerable to lead exposure (Lam-
brinidou et al., 2010; Redmon et al., 2018; Triantafyllidou and Edwards,
2012).

Despite the limitations of the Lead and Copper Rule, it remains the
only regulatory tool available to manage drinking water lead exposure
from the myriad potential sources of lead in drinking water distribution
and premise plumbing systems. Therefore, it is critical to develop
improved risk assessment techniques that can be implemented in
conjunction with the Lead and Copper Rule framework and that are
based in an understanding of how system-wide conditions bear upon
public health outcomes. Detailed mechanistic models relating drinking
water to children’s blood lead levels are not always practical for
population-wide predictions given that household drinking water lead
concentrations are often highly variable and difficult to model accu-
rately (Del Toral et al., 2013; Trueman et al., 2016). Thus, new ap-
proaches are needed for system-level analysis and risk assessment that
go beyond Lead and Copper Rule compliance and proactively identify
and respond to lead exposure risk in community water systems where it
may otherwise be overlooked.

Machine learning approaches provide a promising alternative to
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mechanistic models due to the ability to leverage diverse datasets to
predict increased lead exposure risk without expensive sampling or
comprehensive household level data. In this work, we tested machine-
learned Bayesian network models as one possible approach that pro-
vides several advantages over traditional statistical techniques. First, by
using a nonparametric modeling approach, Bayesian networks can
capture complex and nonlinear relationships and avoid problems of
multicollinearity (Lee et al., 2019; Sebastiani and Perls, 2008). Addi-
tionally, by exploiting conditional independencies between variables in
the network, Bayesian networks reduce the number of parameters
required to express the joint probability distribution and thus provide a
compact means of describing complex data sets (Goldszmidt, 2011).

Previous applications of Bayesian networks to assess environmental
health risks include the temporal spread of West Nile Virus (Orme-za-
valeta et al., 2006), exposure to Staphylococcus aureus in pasteurized
milk (Barker, 2013), low birth weight from arsenic exposure in drinking
water (Zabinski et al., 2016), and transmission of Ebola virus through
municipal wastewater systems (Zabinski et al., 2018). Francis et al. have
also demonstrated the benefits of Bayesian networks in predicting pipe
breaks in drinking water distribution systems (Francis et al., 2014).
Potash et al. present a promising application of other machine learning
approaches for predicting risk of lead exposure from household paint
and dust in Chicago (Potash et al., 2015), but similar tools are needed for
drinking water. Recent advancements in the use of machine learning and
Bayesian networks for evaluating lead exposure risk in drinking water
include predicting water lead contamination in schools in California and
Massachusetts (Lobo et al., 2021) and in private wells in Virginia (Fasaee
et al., 2021), but, to our knowledge, this is the first study to apply these
methods to community water systems using paired drinking water and
blood lead data.

Thus, in this study, we tested the use of machine-learned Bayesian
networks to model the complex probabilistic relationships between
system-level drinking water characteristics, Lead and Copper Rule
monitoring data, and children’s blood lead levels. Our specific objec-
tives were to:

1. Evaluate the performance of machine-learned Bayesian network
models to predict blood lead levels from water system
characteristics.

2. Assess the extent to which children’s blood lead levels are associated
with community water system characteristics.

This approach will help drinking water and public health managers
identify and predict increased blood lead risk in community water sys-
tem service areas and prioritize interventions where they are most likely
to be needed.

2. Methods
2.1. Summary

Bayesian networks were leveraged in conjunction with geospatial
analysis to identify the relationships between water system character-
istics, geographic and demographic characteristics and blood lead sur-
veillance data in Wake County, North Carolina. Our final data set for
machine learning included 1) blood lead levels from 40,742 children
served by community water systems between 2003 and 2017; 2)
neighborhood demographic and socioeconomic data for each child’s
address; 3) Lead and Copper Rule monitoring data between 2003 and
2017 from 178 community water systems in the county; and 4) char-
acteristics of each water system including size, infrastructure, and
treatment train. Each child was paired with the characteristics of the
water utility he or she was served by in order to identify relationships
between water system operational parameters, water lead concentra-
tions, and children’s blood lead levels. Fig. 1 summarizes the spatial
relationships between these integrated data sets. Fig. 2 summarizes the
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7] wake County NC, USA
Census tracts
Households

025 5 Community water systems

Total number of children included in NC Childhood Lead Poisoning

Prevention Program data set 2002—-2017

59,483

A 4

Remove children served by private wells or unidentifiable water
source

43,982

Remove addresses that could not be clearly mapped to a

corresponding water system service area

41,436

W

Remove records year 2002 due to low testing rate

41,401

A 4

Remove records where the most proximate water system lead

sampling period was >2 years prior to child’s blood lead test date.

40,742

Fig. 2. Steps taken to refine the North Carolina Lead Poisoning Prevention
Program data set of childhood blood lead tests for machine learning.
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Fig. 1. Spatial relationship among inte-
grated datasets. Demographic and socioeco-
nomic characteristics are described at the
Census block group level. For visual clarity,
only Census tracts are shown on the map
with multiple block groups contained within
a Census tract. Census tracts are outlined in
grey. Community water system service areas
are shown in blue. Individual households of
children with blood lead tests in the NC
Childhood Lead Poisoning Prevention data
set are shown as green dots. (For interpre-
tation of the references to color in this figure
legend, the reader is referred to the Web
version of this article.)

Water System:

- Water lead samples

- Treatment train characteristics:
corrosion control system type,
coagulant

- System characteristics: water
source, service area, number of
connections

Neighborhood (census block
group):

- Race proportion Black and
Hispanic

- Median household income
Household:

- Blood Lead concentration

- Year tested

- Child age and gender

- Home value

- Year of home construction

steps take to refine the blood lead data set for machine learning. The
data sources and the integration procedure used are described briefly
below, with more detailed information available in the Supplemental
Information (SI), Section S1.

2.2. Data set integration and compilation

2.2.1. Blood lead levels, household attributes, and neighborhood
characteristics

Children’s blood lead measurements from 2002 to 2017 were ob-
tained for Wake County, NC from the NC Department of Health and
Human Services Childhood Lead Poisoning Prevention Program. These
data represent 59,483 blood lead test results including the household
address, birth date, and gender of each child tested. Child ages ranged
0-73 months. From 2005 to 2017, the NC Childhood Lead Poisoning
Prevention Program screened approximately one half of all eligible
North Carolina Children (Angelon-Gaetz and Newman Chelminski,
2018; NCDHHS, 2021). Although children’s blood lead levels have also
been shown to exhibit seasonal variation, with higher levels tending to
occur in the summer months (Haley and Talbot, 2004; Yiin et al., 2000),
the influence of season could not be assessed as only the year of the
blood lead test was provided for the machine learning data set. The use
of these data was approved by the University of North Carolina Insti-
tutional Review Board.

Wake County residential property tax records were used to identify
the value of each child’s home and the water source used (i.e., private
well or community system). Children served by private wells, approxi-
mately 15%, were removed (Fig. 2). Each household was also matched
to the demographic and socioeconomic characteristics for the corre-
sponding U.S. Census block group from the American Community Sur-
vey (2013-2017). The georeferencing procedure and validation method
for this data set has been described in detail elsewhere (Macdonald
Gibson et al., 2020).

In order to develop the machine learned model to predict lead risk
(see section 2.3), recorded blood lead levels were classified by whether
they were greater than or equal to two thresholds: 5 ug/dL and 2 ug/dL.
The 5 pg/dL target was selected as it is the Centers for Disease Control
and Prevention (CDC) Reference Level for clinically determining
elevated blood lead, while the 2 ug/dL threshold was chosen as the
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median blood lead level in the data set (including children receiving
water from private wells) in order to also detect possible relationships
with subclinical lead exposures. Subclinical effects are significant as
they may not result in obvious clinical symptoms but may still result in
negative neurological outcomes not observed until later during a child’s
development (National Toxicology Program, 2012). The trend in chil-
dren’s blood lead levels served by community water systems is shown in
Fig. 3, Panel A. As can be seen, there is a decreasing trend in the pro-
portion of children with blood lead levels >5 ug/dL and > 2 ug/dL over
time (records from 2002 were removed due to low testing rate in that
year).

2.2.2. Water lead levels and water system characteristics

From the original NC Childhood Lead Poisoning Prevention Program
data set containing 59,483 records, 41,401 children could be matched to
178 water systems in Wake County after filtering out children served by
private wells, children whose water source could not be identified, ad-
dresses that could not be unambiguously mapped to a water system, and
records from 2002 (Fig. 2). The 178 water systems range in size from
very small groundwater systems serving unincorporated subdivisions
with fewer than 100 connections to large surface water utilities. While
most children (85%) were served by two large surface water utilities,
96% of the water systems in the county have a groundwater source, and
97% are considered small or very small systems. Additional water lead
level summary statistics by water system are shown in Figure S1 and
Table S2. The approximate service area of each water utility was
determined through publicly available maps of subdivisions and city
limits in Wake County. For community water systems associated with

A
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incorporated cities, the full extent of the city limits was used as the
approximate utility service area. Community water systems associated
with unincorporated subdivisions were determined to serve the subdi-
vision boundaries that share the community water system’s name. A
flow chart outlining the decision-making logic for determining the ser-
vice area of each water system serving unincorporated subdivisions is
provided in Figure S2. Each child was then mapped to their providing
water system by identifying the service area containing each child’s
address. The approximate service areas of all mapped water systems in
the county are shown in Figure S3.

Characteristics describing each community water system were ob-
tained from public records through the NC Department of Environ-
mental Quality public water supply system registry (NCDEQ, 2020)
which includes source water type (e.g., groundwater, surface water, or
purchased water), number of service connections, age of the system,
system infrastructure (e.g., the number of storage tanks, wells, and
surface water intakes), and relevant treatment processes (e.g., pH
adjustment, phosphate-based corrosion control, and disinfectant type).
In addition, the Environmental Working Group’s Tap Water Database
was used to access the Lead and Copper Rule water quality monitoring
data for each system, resulting in 13,664 individual sample results from
2002 to 2017 (EWG, 2019). Samples taken after 2009 were specifically
identified as being from household taps within the distribution system.
Pre-2009 samples were assumed to also be from the distribution system,
although these samples lacked this coding in the database.

As can be seen in Fig. 3, Panel B, the water lead levels among the 178
systems analyzed fluctuated over time. Because many water systems in
the data set qualified for reduced (i.e., triennial) sampling under the
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Fig. 3. Summary of blood and water lead concentrations in Wake County, NC from 2003 to 2017. Panel A: Percent of children that are served by community water
systems with blood lead levels greater than or equal to 2 ug/dL and 5 ug/dL each year. Panel B: Percent of water systems serving these children for which the 90th
percentile water sampling result is greater than the specified thresholds (2 ppb, 5 ppb, 10 ppb, and 15 ppb).
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Lead and Copper Rule, the specific water systems sampled in each year
varied. This explains some of the inter-year variation in 90th percentile
lead concentrations seen in Fig. 3, Panel B. For each year of water
samples collected by each water system, the mean, median, standard
deviation, and the percentage of samples exceeding selected thresholds
were calculated and assumed to be representative of interim years when
water sampling was not conducted for that system. This assumption
allowed for a balanced panel dataset to be created. The selected
thresholds included the Lead and Copper Rule action level (15 ppb), the
proposed trigger level (10 ppb), and three additional thresholds: 1 ppb
(the lowest reporting limit used in the region), 2 ppb, and 5 ppb. Values
below the reporting limit for a specific water system were reported as
non-detects. In the absence of detailed information regarding the
reporting limit used by each water utility, which ranges from 1 to 5 ppb,
non-detects were substituted with a value of zero (see SI Section 1 for
additional detail). This substitution was considered a conservative
assumption since the potential effect would be to bias water lead levels
low, so the risk of a Type I error (i.e., if a significant effect of water lead
levels on blood lead levels were observed where it did not exist) was low.
These summary statistics and the assumption that they would be
representative of water quality in interim years between sampling pe-
riods allowed system-level water lead level data to be linked to indi-
vidual blood lead level results by year.

2.2.3. Final machine learning data set

Since water lead sampling did not occur in every year blood lead
measurements were available, data from the most proximate sample
year prior to each child’s blood lead test were joined to the blood lead
result. For example, the town of Cary performed Lead and Copper Rule
monitoring every three years from 2003 to 2015 (Table S2). A child in
Cary who had his or her blood tested for lead in 2010 was thus paired
with the water lead data from 2009 as the most recent prior system-wide
sampling date. The data set of 41,401 children matched to water systems
was then restricted further to consider only children for whom the most
proximate water lead sampling period was within the two years prior of
the child’s blood lead test, resulting in a final data set of 40,742 unique
records (Fig. 2). Two years was selected as a reasonable time frame that
retained the majority of records while eliminating outliers for whom no
prior or recent water lead concentration data were available (see Section
S1). Although the half-life of lead in blood has been shown to be only
1-2 months, elevated blood lead levels in children may require over a
year to decline (Dignam et al., 2008), and a second half-life of lead in
blood due to the replenishment of lead stored in the bones can be up to
four years (ATSDR, 2007). Further, high water lead levels may go un-
detected and treatment techniques to reduce water lead exposures may
not be adjusted annually due to reduced sampling, thus causing water
lead exposures to be prolonged for children served by some systems.

The final data set included 60 matched household, demographic,
socioeconomic, and water system variables for each child. The full list of
variables can be found in Table S1. Summary statistics for each variable
are provided in Tables S3, S4 and S5. The data transformation process
resulted in a flattened database for machine learning that was proposi-
tionalized from the multiple relational data sets described in the previ-
ous sections (Kramer et al., 2001). As discussed by Maier et al. (2013),
propositionalization of relational data (i.e., data that violates the as-
sumptions of independence and identical distribution (IID)) to define
variables prior to machine learning has limitations for causal inference,
but can generally be used for the purposes of predictive inference and
evaluating statistical associations in complex, relational systems with
non-IID data without loss of predictive accuracy.

2.3. Bayesian network theory and model construction
Bayesian networks are probabilistic graphical models in the form of

directed acyclic graphs that allow complex joint probability distribu-
tions to be graphically represented. The qualitative component of
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Bayesian networks includes a set of random variables, {V1,...,V,}, each
represented graphically as a node and connected by arcs indicating
statistical dependencies among variables. The quantitative component
behind the graphical representation is the joint probability distribution
over V. Bayesian networks enable complex joint probability distribu-
tions to be decomposed into the product of the conditional distribution
of each V; given its “parent” nodes in the graph (the nodes with arrows
pointing directly to V;), represented as Pa(V;), such that:

P(v)=[[P(vilPa(vy)
eV

In this study, Bayesian networks were constructed and evaluated
using the software BayesiaLab (Changé, France). Upon importing the
database to the software, continuous variables were discretized using a
built-in discretization algorithm (R2-GenOpt) that maximizes the vari-
ance of the discretized variable explained by its corresponding contin-
uous variable (Bayesia, 2021). The data set had no missing values for
blood lead levels or water system characteristics, but some missingness
at random for the variables child gender (2.1%), home value (5.7%), and
year of home construction (6.9%) (Table S3). Missing values were
inferred using a structural expectation-maximization algorithm which
uses dynamic imputation with weighted observations to infer missing
values based on the structure of the network (Conrady and Jouffe, 2015;
Friedman, 1997). To train the network, we used a series of supervised
learning algorithms to assess the probability of a child’s blood lead level
meeting or exceeding 5 pg/dL or 2 ug/dL (referred to as the “target™).
Based on this probability, the model then classified each child as above
or below each threshold. Classification models used to distinguish be-
tween discrete classes are central to machine learning (Kotsiantis, 2007)
and are used in a wide range of problem domains, ranging from the
classification of e-mail as Spam (Guzella and Caminhas, 2009) to med-
ical diagnostics, including heart failure (Olsen et al., 2020), breast
cancer (Hu et al., 2020), and COVID-19 (Li et al., 2020). The use of
classification models in this study provides similarly useful
decision-making information regarding lead exposure.

BayesiaLab includes a variety of built-in machine learning algorithms
including Naive Bayes, augmented Naive Bayes, tree augmented Naive
Bayes, Markov blanket, and augmented Markov blanket. These algo-
rithms use a greedy search strategy to test linkages between nodes that
reduce complexity while maximizing predictive capability as measured
by the minimum description length score (Conrady and Jouffe, 2015).
The significance of linkages is evaluated in the software using the G-test
statistic (McDonald, 2014). The structural coefficient 0 was adjusted in
BayesiaLab to 0.35 based on visual inspection of the structure/target
precision ratio (Conrady and Jouffe, 2015). Each algorithm was tested
separately in BayesiaLab and the highest performing model was selected.
Performance was evaluated using ten-fold cross-validation to assess the
area under the receiver operating characteristic (ROC) curve, which
plots the relationship between the true positive rate and false positive
rate for different probability thresholds classifying the binary outcome
of interest (in this case, whether a child’s blood lead level will meet or
exceed each target). An ROC score of 1 indicates a model that perfectly
discriminates between each possible outcome, while an ROC score of
0.50 indicates a useless model, where the predictive ability is no better
than chance (Carter et al., 2016). The model with the highest ROC score
was selected as the final model.

The total effect of each predictor variable was then assessed by
comparing the prior probability (i.e., the marginal or unconditional
probability) of a child’s blood lead level exceeding each target to the
posterior probability (i.e., the conditional probability of the target given
the values of each predictor node). When calculating the posterior
probability, information is allowed to flow freely through all connected
nodes. Therefore, assessing this effect does not assume causality and
only measures the strength of the association given the other variables in
the network. The difference in the uncertainty between the prior and
posterior states of the target given each predictor is known as the mutual
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information and provides an additional measure of which variables have
the greatest predictive importance (Conrady and Jouffe, 2015).

3. Results

3.1. Association between blood lead levels and drinking water system
characteristics

3.1.1. Elevated blood lead levels (5 pg/dL target)

The prior probability of exceeding the CDC Reference Level of 5 pg/
dL in the county was 4.4%, meaning that, without additional informa-
tion, any child in the county had a 4.4% chance of having a blood lead
level >5 ug/dL from 2003 to 2017. None of the water system charac-
teristics, including treatment, infrastructure, and water lead levels, were
significantly associated with the 5 pg/dL target in any of the models
tested. This result indicates that these variables do not share significant
mutual information with the target and thus do not reduce the uncer-
tainty. The highest performing model for the 5 pg/dL threshold used an
augmented Naive Bayes structure (Figure S4). The ROC curve is shown
in Figure S5 and the fully specified marginal probabilities found in
Table S6.

The most significant predictors of the CDC Reference Level target
were blood test year, child age, median household income, home value,
and the proportion of the Census block group that identified as Black. A
large effect of blood test year was observed, decreasing from a 19.9%
probability of exceeding 5 pg/dL in 2003 to 1.06% in 2017. This
decrease is consistent with a nationwide trend of declining blood Pb
levels, attributed to policies that decreased or eliminated many major
lead exposure sources, including gasoline, paint, food cans, and
plumbing and fixtures (Dignam et al., 2019). In NC, declining blood lead
also may be partially attributed to the efforts of the North Carolina
Childhood Lead Poisoning Prevention Program to perform surveillance
of children’s blood lead levels and to conduct remediation of households
where children are found to have elevated blood Pb (Angelon-Gaetz and
Newman Chelminski, 2018). This decrease among Wake County chil-
dren can also be observed clearly in Fig. 3A. Children living in neigh-
borhoods with a median household income of less than $42,000 per year
exhibited a 128% increase in the probability, or risk, of reaching or
exceeding the CDC Reference level compared to children in wealthier
areas (median household income >$116,000). Addresses within Census
block groups identifying as over 50% Black were also found to have an
increase in risk compared to the county’s baseline. For children in
neighborhoods that were >71% Black, the risk increased by 118%.
Finally, children living in homes valued less than $186,000 showed a
65% increase in risk compared to homes valued greater than $532,000.
These discretizations do not necessarily indicate causal threshold ef-
fects, but the inclusion of median household income and home value as
significant variables by the machine learning algorithm serves to affirm
previous research showing that increased blood lead levels are often
associated with socioeconomic factors that reduce a family’s ability to
mitigate exposures (Gleason et al., 2019; Stark et al., 1982). The sig-
nificance of the proportion Black of the child’s Census block group also
confirms previous research that has pointed out concerning racial in-
equities of environmental lead exposure in children (Lanphear et al.,
2002; Macdonald Gibson et al., 2020; Whitehead and Buchanan, 2019).

The learning algorithm’s exclusion of any water lead concentration
statistic variables indicates that elevated blood lead levels among the
sample of children studied in Wake County are not significantly asso-
ciated with water lead from community water systems. Our data set was
weighted toward the two largest water systems in the county, however,
with 85% of blood lead records associated with these two systems. To
address this, we restricted the data set to exclude children served by the
two largest utilities and reran the learning algorithms. In a third itera-
tion, the data set was further restricted to evaluate only groundwater
systems. In these models, blood test year remained the most important
predictor and water system characteristics and Lead and Copper Rule
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sampling results continued to be insignificant. This suggests that our
assessment was not controlled by the clustering of children within
certain water systems and that blood lead levels at or above the CDC
Reference Level in the county are likely attributable to additional
household-level exposures such as lead paint and dust.

3.1.2. Subclinical blood lead levels (2 pg/dL target)

The prior probability of blood lead levels >2 ug/dL in the county was
38.7%. In contrast to the 5 pg/dL target, multiple water system char-
acteristics became significant when predicting the probability of a
child’s blood lead level reaching or exceeding 2 ug/dL. Other, significant
variables included the blood lead test year, household attributes, and
socioeconomic and demographic characteristics of the neighborhood.
The highest-performing model for evaluating the 2 ug/dL target also
used an augmented Naive Bayes structure (Fig. 4). The ROC curve for
this model is provided in Figure S6. Marginal probabilities of each of the
nodes in the network are provided in Table S7. The size of the effect of
each node on the target’s posterior probability can be seen in Fig. 5. The
width of the bars in Fig. 5 represents the range of the effect (and thus the
overall importance) of each predictor variable on the target node. The
variables in Fig. 5 are also ranked according to the amount of mutual
information each node shares with the target from greatest to least. Each
of the variables included in Figs. 4 and 5 exhibited statistically signifi-
cant associations with the target according to G-tests of independence
except for the child’s gender which was forced into the model as a
control based on prior research (Macdonald Gibson et al., 2020).

As can be seen in Fig. 4, blood test year, home value, median
household income, and the proportion Black of the Census block group
continued to be selected as significant predictors of the 2 ug/dL target.
As before, blood test year had the most mutual information with the
target and was the greatest overall driver of blood lead risk in the model
(Fig. 5). The risk of blood lead levels >2 ug/dL decreased by 92% from
2003 to 2017 in the county overall, but children living in lower income
housing and neighborhoods, as well as children in majority Black
neighborhoods, continued to exhibit the highest risk even in later testing
years. The proportion of the Census block group that identified as His-
panic was also selected as an important demographic variable for pre-
dicting blood lead risk, such that children in neighborhoods with a
Hispanic population >15% experienced a 25% increase in risk of blood
lead levels >2 ug/dL compared to the county average. The model thus
highlighted ongoing socioeconomic and racial disparities in childhood
lead exposures across the county that persist even at subclinical blood
lead levels.

Key water system characteristics with an effect on children’s blood
lead levels included the number of service connections, the age of the
water system, the number of wells in groundwater systems, and whether
the system practices treatment techniques that may affect corrosion
within the distribution system, such as coagulation, phosphate addition,
and pH adjustment. The disinfectant type (i.e., whether a utility used
chloramines in the distribution system) was not identified by the algo-
rithms tested as a significant predictor. Whether 10% of water samples
collected by the utility exceeded 2 ppb of lead was also statistically
significant toward predicting blood lead >2 ug/dL. Importantly, the
algorithms used to learn the model structure did not identify the Lead
and Copper Rule regulatory thresholds of 15 ppb (the action level) and
10 ppb (the trigger level) as significant predictors. While these thresh-
olds were designed to act as overall indicators of lead exposure risk
within a water system, our model suggests that these thresholds may not
be sensitive enough to detect the low water lead levels that may be
contribute to childhood lead exposure through drinking water.

Each of these water system characteristics had different sizes and
directions of effects. The curves shown in Fig. 6 describe the change in
the posterior probability of the 2 ug/dL target relative to the significant
water system characteristics. For continuous variables, such as system
size or the number of wells, the x-axis shows the normalized change in
the mean of the predictor. For binary variables, the x-axis shows the

mm Wondershare
PDFelement



R. Mulhern et al.

Household

attributes Year of home construction

Home value

Median household income

% Hispanic

Neighborhood
sociodemographic
characteristics

% Black .

TARGET: Blood lead level

>=2 pg/dL
Age of water system

No. of wells
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Trial Version

Fig. 4. Final network structure predicting the prob-
ability of each child’s blood lead test result being >2
pg/dL. The thickness of arcs corresponds to the
computed amount of mutual information between
nodes. The colors of the nodes correspond to spatial
scales of information shown in Fig. 1: Grey nodes
represent variables at the Census block group scale;
green nodes represent household and blood test
characteristics at the individual address level; blue
nodes represent water system characteristics at the
service area scale. (For interpretation of the refer-
ences to color in this figure legend, the reader is
referred to the Web version of this article.)
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. Min. Posterior Probability

Fig. 5. Total effect of each predictor variable on the probability of blood lead level >2 pug/dL. Variable names are ranked from highest to lowest mutual information
with the target. The size of the circles corresponds to the natural log of the mutual information for visual clarity.

proportion of children in the county served by community water systems
that meet the criteria, such as using pH adjustment or exceeding 2 ppb of
lead in 10% of monitoring samples. Thus, for binary variables, 100% on
the x-axis indicates the risk of blood lead levels >2 ug/dL in the county if
all children were served by systems that met the criteria, and 0% in-
dicates the risk if none of the children were served by systems that met
the criteria. The y-axis, then, gives the expected probability of blood
lead levels >2 ug/dL with the prior probability of 38.7% shown for
reference.

Most of the water system characteristics demonstrated a linear effect.
For example, increasing the number of interconnected wells within a
groundwater system (a measure of increasing complexity and mixing of
source waters that may be treated to varying levels within the distri-

bution system) also increased the blood lead risk. Blending of source
waters has previously been shown to impact the nature of lead release
within drinking water distribution systems (Tang et al., 2006). Notably,
children served by utilities that do not practice phosphate-based
corrosion control (n = 165 (93%) or pH adjustment (n = 70 (39%),
Table S9) exhibited a decrease in the posterior probability of blood lead
>2 ug/dL. This finding does not indicate that these treatment measures
cause greater lead exposure risk themselves; rather, it suggests that
water utilities that are not required to implement these treatment
practices may be at lower risk of drinking water lead exposure by nature
of having less corrosive source waters or lower frequency of lead-bearing
plumbing components. Thus, this analysis does not measure the effect of
corrosion control treatment on blood lead levels—indeed, high risk

Wondershare
PDFelement



R. Mulhern et al.

& No. of service connections

O Mo. of wells

X Age of water system

O 10% of water samples exceed 2 ppb
V¥V Coagulation

+ Phosphate addition

A pH adjustment

0.45 Increased risk

2 pgidL

Risk of blood lead levels >

Decreased risk
0.30

0% 20% 40% 60% 80% 100%

Normalized variable mean (continuous variables) or Proportion
of children served by water systems using treatment technique
(binary variables)

systems with very corrosive waters would certainly be at even higher
risk without implementing corrosion control—but highlights the
inability of corrosion control measures alone to completely eliminate
lead exposures when corrosive source waters are used and suggests that
the presence of such measures are an important attribute in assessing the
overall lead exposure risk for a given system.

Increasing the number of service connections demonstrated a U-
shaped effect, where very small (<286 service connections) and very
large (>132,000 service connections) systems both were associated with
greater risk of elevated blood lead levels. The reasons for this are not
clearly elucidated by our model, but may be due to the unique chal-
lenges of each size category, such as water age concerns for large sys-
tems (Masters et al., 2015) and management and economic difficulties
for small systems (Ford et al., 2005). Water system age had a small effect
on blood lead levels, but children served by the newest systems in the
county (<17 years old) were at slightly lower risk of elevated blood lead
levels than those receiving water from older systems. Again, the reasons
for this phenomenon are not captured by this analysis and are likely a
complex interaction between scale-forming chemistry and system im-
provements (Cartier et al., 2013; Nguyen et al., 2011; Xie and Giammar,
2011).

Notably, children served by systems that exceeded the water lead
threshold of 2 ppb in at least 10% of Lead and Copper Rule monitoring
samples in the most recent year of sampling prior to the child’s blood
lead test also demonstrated an increase in the risk of blood lead levels >
2 ug/dL. The probability of having a blood lead level > 2 ug/dL
increased to 46.6% among children served by systems that had exceeded
this water lead threshold within two years of the blood lead test
compared to 32.9% among children receiving water from systems that
did not, representing an increase in risk of 42%. This exceedance vari-
able also shared the most mutual information with the target out of all
the water system characteristics included in the model (Fig. 5). Impor-
tantly, these systems would be considered fully compliant with all
provisions of the Lead and Copper Rule.

Finally, a similar analysis of the effect of geographical clustering in
our data set as described in Section 3.1.1 was performed for the 2 ug/dL
target. When the 85% of children served by the two largest utilities were
removed from the data set, the number of service connections, pH
adjustment, number of wells, and the age of the water system continued
to exhibit statistically significant mutual information with the target.

Variable Type
Binary
Il Continuous
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Fig. 6. Change in the risk (posterior probability) of
blood lead levels >2 ug/dL among children served by
community water systems by water system variable.
The effect of each water system variable is shown
while accounting for each of the other variables
included in the network (Fig. 4). The x-axis shows
either the normalized mean of the water system
characteristic (for continuous variables) or the pro-
portion of children served by systems using the spe-
cific treatment technique (for binary variables).
Increased and decreased risks are shown relative to
the prior probability in the county.

The action level and trigger level remained insignificant, while children
who were served by systems where 10% of the Lead and Copper Rule
compliance monitoring samples exceeded 2 ppb continued to exhibit
significantly greater risk of increased blood lead levels. From this we
conclude that the selection of the water system variables in the model
developed using the complete data set is representative of the nature of
water lead exposures in the county as a whole, rather than only among
the two largest systems.

3.2. Performance of Bayesian networks to predict blood lead levels

3.2.1. Model validation

On the full data set, the model achieved an area under the ROC curve
of 80.47% which can be considered “good” overall predictive perfor-
mance (Carter et al., 2016). During ten-fold cross-validation testing, the
model structure achieved a comparable area under the ROC curve of
79.22%, indicating that the model is not subject to overfitting, with a
tight confidence interval of + 0.8% with different random partitions of
the data into training and test sets (Figure S6). These scores indicate that
the model could be expected to correctly rank the risk of a randomly
chosen child with a blood lead level >2 ug/dL above a randomly chosen
child with a blood lead level less than 2 ug/dL approximately 80% of the
time on average (Hanley and McNeil, 1982).

The optimum decision threshold of the model, i.e., the probability
used to determine if a child’s blood lead level will be >2 ug/dL, can be

Table 1

Summary of model accuracy, sensitivity, and specificity for predicting whether a
child’s blood lead level will meet or exceed 2 ug/dL during cross validation with
varying test thresholds.

Decision True True Sensitivity ~ Specificity ~ Overall
threshold positives negatives accuracy
0.1 15,320 6010 97% 24% 52%
0.2 14,256 11,908 91% 48% 64%
0.3 13,177 15,328 84% 61% 70%
0.4 11,774 17,864 75% 71% 73%
0.5 9945 20,166 63% 81% 74%
0.6 7575 22,235 48% 89% 73%
0.7 4787 23,785 30% 95% 70%
0.8 2256 24,639 14% 99% 66%
0.9 605 24,946 4% 100% 63%
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higher risk of increased blood lead levels include parts of central
Raleigh, where a cluster of block groups has a calculated risk of 30-50%,
and several small unincorporated subdivisions with predicted proba-
bilities exceeding 50%. Meanwhile, the cities of Apex, Cary, and Holly
Springs exhibited a much lower predicted risk, generally less than 15%.
The 23 water systems with the greatest overall average risk of blood lead
levels >2 ug/dL (>30%) were all small groundwater systems with fewer
than 500 connections. The majority of these systems implemented pH
adjustment, but only one used phosphate corrosion inhibitors. Five
water systems exceeded an average risk of blood lead levels >2 ug/dL of
50%. Overall, 64% of the children in our data set served by these 23
systems between 2002 and 2017 exhibited blood lead levels >2 pug/dL
compared to a prevalence of only 25% among children served by water
utilities in the lowest predicted risk category. Thus, Fig. 7 may help
public health authorities, including the NC Childhood Lead Poisoning
Prevention Program, prioritize areas for blood lead surveillance follow-
up and alert drinking water utilities to potential water lead concerns.

selected to maximize the sensitivity, specificity, or overall accuracy of
the model (Table 1). The decision threshold that maximizes the overall
accuracy of the model is approximately 50%. That is, if a set of model
inputs yielded a predicted risk of increased blood lead level of 50% or
greater, then that child would be classified as having > 2 ug/dL of blood
lead, while if the calculated risk was less than 50%, the child would be
considered to be below this level. At this threshold, the sensitivity of the
model (true predicted positives/total actual positives) was 63% and the
specificity (true predicted negatives/total actual negatives) was 81%.
Thus, the model performed slightly better for predicting negative cases
of subclinical blood lead levels than positive cases. The model’s overall
accuracy, which is the total number of correct predictions (true posi-
tives + true negatives) divided by the total number of cases, was 74%.
However, in predicting childhood blood lead level risk, where the con-
sequences of false positives are low compared to the consequences of
false negatives, it may be desirable to sacrifice overall accuracy for
improved sensitivity. As can be seen in Table 1, a lower test threshold of
30%, for example, would ensure that 84% of actual cases of blood lead
levels >2 ug/dL are detected even though the specificity and accuracy at
this threshold drop to 61% and 70%, respectively.

4. Discussion

The Bayesian network models tested in this study identified a rela-
tionship between water system characteristics and blood lead levels at or
above the regional median of 2 ug/dL. Elevated blood lead concentra-
tions (>5 pug/dL) were found to be more strongly predicted by socio-
economic and demographic factors, such as median household income
and demographic composition of the Census block group of the child’s
address. These factors have previously been found to be correlated with
the presence of lead paint and dust in homes, which are typically the
primary cause of lead poisoning among children served by community
water systems in the U.S. (Clark et al., 1985; Dixon et al., 2009; Lan-
phear et al., 2002). This finding does not necessarily indicate that no
children served by community water systems experience blood lead
levels above this level due to drinking water exposures. Indeed, the
nature of lead release and prevalence of lead-bearing plumbing com-
ponents ensure that isolated instances of blood lead levels exceeding 5
ug/dL attributable to community water systems may still occur even in
well-managed systems.

The critical finding of this work was to identify the importance of
drinking water characteristics toward predicting subclinical blood lead
levels in children (i.e., blood lead levels at or above the regional median

3.2.2. Model implementation

This model can be used to predict the risk of subclinical blood lead
levels based on geographic, demographic, and water system character-
istics to aid future blood lead exposure prevention programs. To illus-
trate this use, a new data set was compiled using each household in the
original data currently served by a community water system. For each
house, all the predictor variables shown in Fig. 4 were entered into the
model. The child was assumed to be a boy aged 15-20 months (i.e., the
demographic group with the highest blood lead levels on average). Once
these inputs were specified, the model was run to predict the risk of
having a blood lead level >2 ug/dL. In this way, the prediction provides
an estimate of the highest risk areas for future testing.

The resulting calculated probabilities averaged across each Census
block group and across each water system service area are shown in
Fig. 7. The average predicted increase in blood lead level risk for chil-
dren served by each water utility in our data set can be found in
Table S8. Based on available information associated with each address,
the model is capable of distinguishing spatial variations in the blood lead
level risk associated with community water system attributes. Areas at
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Fig. 7. Predicted probabilities of male children aged 15-19 months in Wake County having blood lead levels >2 pug/dL associated with exposures from community
water systems. Panel A shows household level predictions averaged across Census blocks. Panel B shows household level predictions averaged across each
approximate water system service area. Census blocks or water systems with fewer than three matched addresses were removed from the prediction.
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of 2 ug/dL for Wake County, NC), even in community water systems not
in violation of any regulatory provisions. Indeed, the machine-learned
Bayesian networks indicated that multiple water system characteris-
tics, including the system size, age and complexity, treatment charac-
teristics, and 90th percentile water lead levels all significantly influence
the probability of a child served by a community water system having a
blood lead level >2 ug/dL. This supports previous research demon-
strating that increased blood lead levels in children can be associated
with water lead exposures even in populations served by community
water systems considered not to have lead problems under the Lead and
Copper Rule (Gleason et al., 2019; Katner et al., 2016; Lanphear et al.,
2002). Although previous work on reducing water lead concentrations
in community water systems in the U.S. has emphasized the lessons
learned from high-profile cases such as the Washington D.C. and Flint,
Michigan lead crises, which identified the catastrophic health effects
associated with uncontrolled lead release in drinking water systems
during major system-wide changes (Katner et al., 2016; Roy and
Edwards, 2019), our findings suggest that the “lead crisis” in U.S.
drinking water may at once be less overt and more prevalent.

This result has important implications for mitigating environmental
lead exposures among children in the U.S. Lead prevention programs
often focus on mitigation of paint and soil sources of lead, but potentially
overlook the low, chronic contributions of water lead from community
water systems when assessing the overall lead exposure risk profile.
Such conditions can result in the “prevention paradox,” where the
largest burden of disease occurs in low to moderate risk categories while
most prevention programs are focused on removing high exposure
sources. Indeed, in 2012, the National Toxicology Program concluded
that there was sufficient evidence that blood lead levels in children <5
ug/dL are associated with a broad range of adverse neurocognitive ef-
fects, including increased incidence of attention-related disorders,
antisocial behaviors, decreased 1Q, and poor performance in school
(National Toxicology Program, 2012). Researchers have also identified a
nonlinear effect between blood lead levels and IQ loss at low levels of
exposure, indicating that the first slight increases of blood lead in infants
and children have disproportionate impacts on neurological functioning
(Canfield et al., 2003; Lanphear et al., 2005). As a result, the current
policy focus on children with blood lead levels greater than 5 ug/dL
alone is estimated to prevent only 20% of the IQ loss from lead among
children in the U.S. (American Academy of Pediatrics Council on Envi-
ronmental Health, 2016; Bellinger, 2012).

Similarly, the Lead and Copper Rule only requires the highest
exposure risk sample sites to be selected based on locations that have
lead service lines or lead solder rather than a representative sample to
adequately assess population-wide lead exposure risk (Schwetschenau
et al., 2020), which may still pose a significant health burden. Addi-
tionally, while current regulations are responsible for great reductions in
water lead levels in the last three decades, the Bayesian network model
for Wake County, NC suggested that the current Lead and Copper Rule
action level and proposed trigger level are not sensitive enough to detect
important variations in community water system lead exposure risk that
are relevant to health today. Future studies are needed to identify a more
appropriate threshold, but our findings suggest that a 90th percentile
value of 2 ppb system-wide may be relevant to health on a population
scale. Indeed, whether 10% of samples exceeded 2 ppb of lead in the
most recent year of sampling prior to the blood test had a relatively large
effect on predicting blood lead risk at or above the regional median,
similar to the size of the effect of the year of house construction (Fig. 5),
a commonly used predictor of lead exposure from household dust lead
(Dixon et al., 2009; Gaitens et al., 2009; Gleason et al., 2019). In a
multivariate regression of a large blood lead level data set in New Jersey,
Gleason et al. (2019) showed that children served by water systems with
a 90th percentile water lead concentration >2 ppb in the years
2000-2004 exhibited a 4% increase in geometric mean blood lead levels
compared to children served by water systems with water lead levels <2
ppb. The importance of low water lead levels to blood lead risk also
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suggests that a lower water lead reporting limit should be enforced to
ensure that samples in the 1-5 ppb range are accurately identified for all
community water systems.

Even within the current Lead and Copper Rule framework, drinking
water professionals and regulatory bodies may use the methods pre-
sented here and predictions of increased blood lead risk shown in Fig. 7
to proactively identify systems that may have higher lead exposure risk
but may otherwise be in compliance. These systems also may need to
identify plans to control lead in drinking water through lead service line
replacement, corrosion control optimization, and distribution of water
filters certified to remove lead. Further, these risks ought to be
communicated to the public served by these systems so that individuals
may also make informed decisions around mitigating their own and
their children’s lead exposure risk. Such efforts to continue to reduce
water lead levels will help to offset lost economic productivity from lead
exposure in the U.S. estimated to exceed $50 billion (Trasande and Liu,
2011).

Lastly, though these findings have important implications for water
utilities and public health authorities in North Carolina among other
regions in the U.S. with similar characteristics, this analysis provides a
preliminary demonstration of the utility of machine-learned Bayesian
networks for predicting lead exposure risks and may be improved
through subsequent research and testing. First, the flattening of the data
set for machine learning was a necessary manipulation of a complex
relational database, but the model could potentially be improved using
probabilistic relational modelling approaches (Getoor et al., 2007).
Additionally, while machine learning algorithms are a powerful tool to
identify the conditional probabilities embedded in a data set, how
continuous variables are discretized depends on the decisions of the
researcher and can have large impacts on the resulting model structure
(Uusitalo, 2007). Thus, further study using the data set presented here
using additional machine learning approaches along with traditional
statistical approaches is ongoing. Finally, a heat map of increased blood
lead levels associated with alternative exposures routes such as house-
hold paint and dust, private well water supplies (Macdonald Gibson
et al., 2020), and leaded aviation gasoline (Miranda et al., 2011) would
likely highlight additional areas of risk not predicted by our model in
Fig. 7.

In summary, this work showed a significant relationship among
water system characteristics and slight increases in blood lead levels in
children in Wake County, NC. Public health authorities may use the
machine-learning methods we present to help identify similar relation-
ships among system-level drinking water characteristics and individual
health outcomes. Although water lead exposures are particularly diffi-
cult to isolate and regulate, a lower health-based threshold and
enhanced assessment of population-wide water lead exposure is critical
to improve policies, prevention programs, and risk communication
strategies that protect children from lead in drinking water.

5. Conclusion

This study is the first to link system-wide drinking water character-
istics from multiple water utilities with individual health outcomes
using machine learning techniques. We demonstrate that elevated blood
lead levels (i.e., blood lead levels exceeding the CDC Reference Level of
5 pg/dL) are not generally associated with community drinking water
systems in Wake County, NC, but that subclinical blood lead levels (i.e.,
blood lead levels >2 ug/dL) are strongly associated with community
water system characteristics. Additionally, we demonstrate that ma-
chine learned Bayesian networks can accurately predict individual blood
lead risk from system-wide water utility characteristics. Our results
show that pairing public health and drinking water data using machine
learning techniques can help to reveal the complex relationships be-
tween system-wide drinking water characteristics and public health
outcomes.
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