
©0013-9351/

Environmental Research 204 (2022) 112146

Available online 29 September 2021
2021 Published by Elsevier Inc.

A new approach to a legacy concern: Evaluating machine-learned Bayesian 
networks to predict childhood lead exposure risk from community 
water systems 

Riley Mulhern a,1,*, Javad Roostaei a,2, Sara Schwetschenau b,3, Tejas Pruthi a, Chris Campbell c, 
Jacqueline MacDonald Gibson d 

a Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel 
Hill, NC, 27599, USA 
b Department of Civil and Environmental Engineering, College of Engineering, Wayne State University, 5050 Anthony Wayne Dr., Detroit, Michigan, 48202, USA 
c Environmental Working Group, 1436 U St. NW, Suite 100, Washington, DC, 20009, USA 
d Department of Environmental and Occupational Health, School of Public Health, Indiana University, 1025 East 7thStreet, Bloomington, IN, 47405, USA   

A R T I C L E  I N F O   

Keywords: 
Bayesian networks 
Drinking water 
Blood lead levels 
Machine learning 
Risk assessment 
Health disparity 

A B S T R A C T   

Lead in drinking water continues to put children at risk of irreversible neurological impairment. Understanding 
drinking water system characteristics that influence blood lead levels is needed to prevent ongoing exposures. 
This study sought to assess the relationship between children’s blood lead levels and drinking water system 
characteristics using machine-learned Bayesian networks. Blood lead records from 2003 to 2017 for 40,742 
children in Wake County, North Carolina were matched with the characteristics of 178 community water systems 
and sociodemographic characteristics of each child’s neighborhood. Bayesian networks were machine-learned to 
evaluate the drinking water variables associated with blood lead levels ≥2 μg/dL and ≥5 μg/dL. The model was 
used to predict geographic areas and water utilities with increased lead exposure risk. Drinking water charac
teristics were not significantly associated with children’s blood lead levels ≥5 μg/dL but were important pre
dictors of blood lead levels ≥2 μg/dL. Whether 10% of water samples exceeded 2 ppb of lead in the most recent 
year prior to the blood test was the most important water system predictor and increased the risk of blood lead 
levels ≥2 μg/dL by 42%. The model achieved an area under the receiver operating characteristic curve of 0.792 
(±0.8%) during ten-fold cross validation, indicating good predictive performance. Water system characteristics 
may thus be used to predict areas that are at risk of higher blood lead levels. Current drinking water regulatory 
thresholds for lead may be insufficient to detect the levels in drinking water associated with children’s blood lead 
levels.   

1. Introduction 

Lead has been used to deliver piped drinking water for millennia due 
to its unique chemical properties, including low melting point, mallea
bility, and relative resistance to corrosion. Despite warnings about the 
negative health effects of lead exposure since antiquity (Hodge, 1981; 
Lessler, 1988; Vuorinen et al., 2019), by the 19th century, 70 percent of 
drinking water mains and service lines in the United States (U.S.) 

contained lead (Rabin, 2008). The effects of increased blood lead levels 
in infants and young children include neurological damage resulting in 
permanent developmental, learning, and IQ deficits (Bellinger et al., 
1987; Canfield et al., 2003; Lanphear et al., 2005; McMichael et al., 
1988; Needleman et al., 1990). Higher blood lead concentrations have 
also been significantly associated with preeclampsia (Poropat et al., 
2018) and excess mortality among adults (Lanphear et al., 2018). 
Despite documented cases of lead poisoning in households served by 
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lead pipes as early as the 1850s (Adams, 1859), plumbers and pipe 
manufacturers continued to promote the use of lead in U.S. drinking 
water systems well into the 20th century (Gray, 1916; Rabin, 2008). 

Lead plumbing was first regulated in the U.S. in 1986 in an amend
ment to the Safe Drinking Water Act which required components used 
for drinking water to contain no more than 8% lead, whereas, previ
ously, fittings and fixtures may have contained 40–50% lead (Maas 
et al., 2005). The subsequent Lead and Copper Rule, promulgated in 
1991 and revised in 2000, 2004, and 2007 requires water sampling for 
lead at a small number of selected individual residences and establishes 
an action level of 15 parts per billion (ppb) (USEPA, 1991, 2000, 2004, 
2007). Under the Lead and Copper Rule action must be taken if more 
than 10% of households tested in a designated year (i.e., the 90th 
percentile of monitoring samples) exceed the action level. If this 
threshold is exceeded, the utility is required to implement system-wide 
corrosion control practices and disseminate educational materials to the 
public. If treatment is inadequate, the water system may be required to 
remove lead service lines. In 2019, revisions to the Lead and Copper 
Rule were proposed that would establish an additional trigger level at 
10 ppb. If 10% of samples exceed the trigger level, utilities would be 
required to perform a corrosion control optimization study as a pre
emptive measure to identify a strategy for lead mitigation (USEPA, 
2019). 

Although the Lead and Copper Rule acknowledges that there is no 
safe level of lead in drinking water, the regulation is principally designed 
to monitor utility corrosion control practices, rather than to be protec
tive of health at the household scale. Corrosion control treatment is 
assessed through sample collection at a limited number of residences, up 
to 100 locations for systems serving greater than 100,000 people (i.e., 
0.1% of homes served). Systems in compliance with the Lead and Copper 
Rule are not required to remove lead service lines. As a result, estimates 
suggest that between 6.1 and 12.8 million lead service lines still exist in 
approximately 30% of all U.S. community water systems, serving be
tween 15 and 21 million people (Cornwell et al., 2016; NRDC, 2021). 
What is more, as many as 77% of all U.S. housing units (over 80 million 
homes) likely contain lead solder joints and virtually all U.S. homes 
contain some brass components with up to 8% lead by weight (Tri
antafyllidou and Edwards, 2012). Thus, even where utilities are in 
compliance with all Lead and Copper Rule provisions, the conditions 
influencing lead release within distribution systems are often poorly 
characterized (Schwetschenau et al., 2020). Legacy lead service lines, 
lead-bearing plumbing components, and low sampling rates can all 
cause unsafe lead levels at individual household taps to remain unde
tected (Riblet et al., 2019; Triantafyllidou and Edwards, 2012). Conse
quently, compliance with the Lead and Copper Rule action level is not 
considered adequately protective for children and formula-fed infants, 
who represent the population most vulnerable to lead exposure (Lam
brinidou et al., 2010; Redmon et al., 2018; Triantafyllidou and Edwards, 
2012). 

Despite the limitations of the Lead and Copper Rule, it remains the 
only regulatory tool available to manage drinking water lead exposure 
from the myriad potential sources of lead in drinking water distribution 
and premise plumbing systems. Therefore, it is critical to develop 
improved risk assessment techniques that can be implemented in 
conjunction with the Lead and Copper Rule framework and that are 
based in an understanding of how system-wide conditions bear upon 
public health outcomes. Detailed mechanistic models relating drinking 
water to children’s blood lead levels are not always practical for 
population-wide predictions given that household drinking water lead 
concentrations are often highly variable and difficult to model accu
rately (Del Toral et al., 2013; Trueman et al., 2016). Thus, new ap
proaches are needed for system-level analysis and risk assessment that 
go beyond Lead and Copper Rule compliance and proactively identify 
and respond to lead exposure risk in community water systems where it 
may otherwise be overlooked. 

Machine learning approaches provide a promising alternative to 

mechanistic models due to the ability to leverage diverse datasets to 
predict increased lead exposure risk without expensive sampling or 
comprehensive household level data. In this work, we tested machine- 
learned Bayesian network models as one possible approach that pro
vides several advantages over traditional statistical techniques. First, by 
using a nonparametric modeling approach, Bayesian networks can 
capture complex and nonlinear relationships and avoid problems of 
multicollinearity (Lee et al., 2019; Sebastiani and Perls, 2008). Addi
tionally, by exploiting conditional independencies between variables in 
the network, Bayesian networks reduce the number of parameters 
required to express the joint probability distribution and thus provide a 
compact means of describing complex data sets (Goldszmidt, 2011). 

Previous applications of Bayesian networks to assess environmental 
health risks include the temporal spread of West Nile Virus (Orme-za
valeta et al., 2006), exposure to Staphylococcus aureus in pasteurized 
milk (Barker, 2013), low birth weight from arsenic exposure in drinking 
water (Zabinski et al., 2016), and transmission of Ebola virus through 
municipal wastewater systems (Zabinski et al., 2018). Francis et al. have 
also demonstrated the benefits of Bayesian networks in predicting pipe 
breaks in drinking water distribution systems (Francis et al., 2014). 
Potash et al. present a promising application of other machine learning 
approaches for predicting risk of lead exposure from household paint 
and dust in Chicago (Potash et al., 2015), but similar tools are needed for 
drinking water. Recent advancements in the use of machine learning and 
Bayesian networks for evaluating lead exposure risk in drinking water 
include predicting water lead contamination in schools in California and 
Massachusetts (Lobo et al., 2021) and in private wells in Virginia (Fasaee 
et al., 2021), but, to our knowledge, this is the first study to apply these 
methods to community water systems using paired drinking water and 
blood lead data. 

Thus, in this study, we tested the use of machine-learned Bayesian 
networks to model the complex probabilistic relationships between 
system-level drinking water characteristics, Lead and Copper Rule 
monitoring data, and children’s blood lead levels. Our specific objec
tives were to:  

1. Evaluate the performance of machine-learned Bayesian network 
models to predict blood lead levels from water system 
characteristics.  

2. Assess the extent to which children’s blood lead levels are associated 
with community water system characteristics. 

This approach will help drinking water and public health managers 
identify and predict increased blood lead risk in community water sys
tem service areas and prioritize interventions where they are most likely 
to be needed. 

2. Methods 

2.1. Summary 

Bayesian networks were leveraged in conjunction with geospatial 
analysis to identify the relationships between water system character
istics, geographic and demographic characteristics and blood lead sur
veillance data in Wake County, North Carolina. Our final data set for 
machine learning included 1) blood lead levels from 40,742 children 
served by community water systems between 2003 and 2017; 2) 
neighborhood demographic and socioeconomic data for each child’s 
address; 3) Lead and Copper Rule monitoring data between 2003 and 
2017 from 178 community water systems in the county; and 4) char
acteristics of each water system including size, infrastructure, and 
treatment train. Each child was paired with the characteristics of the 
water utility he or she was served by in order to identify relationships 
between water system operational parameters, water lead concentra
tions, and children’s blood lead levels. Fig. 1 summarizes the spatial 
relationships between these integrated data sets. Fig. 2 summarizes the 
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steps take to refine the blood lead data set for machine learning. The 
data sources and the integration procedure used are described briefly 
below, with more detailed information available in the Supplemental 
Information (SI), Section S1. 

2.2. Data set integration and compilation 

2.2.1. Blood lead levels, household attributes, and neighborhood 
characteristics 

Children’s blood lead measurements from 2002 to 2017 were ob
tained for Wake County, NC from the NC Department of Health and 
Human Services Childhood Lead Poisoning Prevention Program. These 
data represent 59,483 blood lead test results including the household 
address, birth date, and gender of each child tested. Child ages ranged 
0–73 months. From 2005 to 2017, the NC Childhood Lead Poisoning 
Prevention Program screened approximately one half of all eligible 
North Carolina Children (Angelon-Gaetz and Newman Chelminski, 
2018; NCDHHS, 2021). Although children’s blood lead levels have also 
been shown to exhibit seasonal variation, with higher levels tending to 
occur in the summer months (Haley and Talbot, 2004; Yiin et al., 2000), 
the influence of season could not be assessed as only the year of the 
blood lead test was provided for the machine learning data set. The use 
of these data was approved by the University of North Carolina Insti
tutional Review Board. 

Wake County residential property tax records were used to identify 
the value of each child’s home and the water source used (i.e., private 
well or community system). Children served by private wells, approxi
mately 15%, were removed (Fig. 2). Each household was also matched 
to the demographic and socioeconomic characteristics for the corre
sponding U.S. Census block group from the American Community Sur
vey (2013–2017). The georeferencing procedure and validation method 
for this data set has been described in detail elsewhere (Macdonald 
Gibson et al., 2020). 

In order to develop the machine learned model to predict lead risk 
(see section 2.3), recorded blood lead levels were classified by whether 
they were greater than or equal to two thresholds: 5 μg/dL and 2 μg/dL. 
The 5 μg/dL target was selected as it is the Centers for Disease Control 
and Prevention (CDC) Reference Level for clinically determining 
elevated blood lead, while the 2 μg/dL threshold was chosen as the 

Fig. 1. Spatial relationship among inte
grated datasets. Demographic and socioeco
nomic characteristics are described at the 
Census block group level. For visual clarity, 
only Census tracts are shown on the map 
with multiple block groups contained within 
a Census tract. Census tracts are outlined in 
grey. Community water system service areas 
are shown in blue. Individual households of 
children with blood lead tests in the NC 
Childhood Lead Poisoning Prevention data 
set are shown as green dots. (For interpre
tation of the references to color in this figure 
legend, the reader is referred to the Web 
version of this article.)   

Fig. 2. Steps taken to refine the North Carolina Lead Poisoning Prevention 
Program data set of childhood blood lead tests for machine learning. 
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median blood lead level in the data set (including children receiving 
water from private wells) in order to also detect possible relationships 
with subclinical lead exposures. Subclinical effects are significant as 
they may not result in obvious clinical symptoms but may still result in 
negative neurological outcomes not observed until later during a child’s 
development (National Toxicology Program, 2012). The trend in chil
dren’s blood lead levels served by community water systems is shown in 
Fig. 3, Panel A. As can be seen, there is a decreasing trend in the pro
portion of children with blood lead levels ≥5 μg/dL and ≥ 2 μg/dL over 
time (records from 2002 were removed due to low testing rate in that 
year). 

2.2.2. Water lead levels and water system characteristics 
From the original NC Childhood Lead Poisoning Prevention Program 

data set containing 59,483 records, 41,401 children could be matched to 
178 water systems in Wake County after filtering out children served by 
private wells, children whose water source could not be identified, ad
dresses that could not be unambiguously mapped to a water system, and 
records from 2002 (Fig. 2). The 178 water systems range in size from 
very small groundwater systems serving unincorporated subdivisions 
with fewer than 100 connections to large surface water utilities. While 
most children (85%) were served by two large surface water utilities, 
96% of the water systems in the county have a groundwater source, and 
97% are considered small or very small systems. Additional water lead 
level summary statistics by water system are shown in Figure S1 and 
Table S2. The approximate service area of each water utility was 
determined through publicly available maps of subdivisions and city 
limits in Wake County. For community water systems associated with 

incorporated cities, the full extent of the city limits was used as the 
approximate utility service area. Community water systems associated 
with unincorporated subdivisions were determined to serve the subdi
vision boundaries that share the community water system’s name. A 
flow chart outlining the decision-making logic for determining the ser
vice area of each water system serving unincorporated subdivisions is 
provided in Figure S2. Each child was then mapped to their providing 
water system by identifying the service area containing each child’s 
address. The approximate service areas of all mapped water systems in 
the county are shown in Figure S3. 

Characteristics describing each community water system were ob
tained from public records through the NC Department of Environ
mental Quality public water supply system registry (NCDEQ, 2020) 
which includes source water type (e.g., groundwater, surface water, or 
purchased water), number of service connections, age of the system, 
system infrastructure (e.g., the number of storage tanks, wells, and 
surface water intakes), and relevant treatment processes (e.g., pH 
adjustment, phosphate-based corrosion control, and disinfectant type). 
In addition, the Environmental Working Group’s Tap Water Database 
was used to access the Lead and Copper Rule water quality monitoring 
data for each system, resulting in 13,664 individual sample results from 
2002 to 2017 (EWG, 2019). Samples taken after 2009 were specifically 
identified as being from household taps within the distribution system. 
Pre-2009 samples were assumed to also be from the distribution system, 
although these samples lacked this coding in the database. 

As can be seen in Fig. 3, Panel B, the water lead levels among the 178 
systems analyzed fluctuated over time. Because many water systems in 
the data set qualified for reduced (i.e., triennial) sampling under the 

Fig. 3. Summary of blood and water lead concentrations in Wake County, NC from 2003 to 2017. Panel A: Percent of children that are served by community water 
systems with blood lead levels greater than or equal to 2 μg/dL and 5 μg/dL each year. Panel B: Percent of water systems serving these children for which the 90th 
percentile water sampling result is greater than the specified thresholds (2 ppb, 5 ppb, 10 ppb, and 15 ppb). 
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Lead and Copper Rule, the specific water systems sampled in each year 
varied. This explains some of the inter-year variation in 90th percentile 
lead concentrations seen in Fig. 3, Panel B. For each year of water 
samples collected by each water system, the mean, median, standard 
deviation, and the percentage of samples exceeding selected thresholds 
were calculated and assumed to be representative of interim years when 
water sampling was not conducted for that system. This assumption 
allowed for a balanced panel dataset to be created. The selected 
thresholds included the Lead and Copper Rule action level (15 ppb), the 
proposed trigger level (10 ppb), and three additional thresholds: 1 ppb 
(the lowest reporting limit used in the region), 2 ppb, and 5 ppb. Values 
below the reporting limit for a specific water system were reported as 
non-detects. In the absence of detailed information regarding the 
reporting limit used by each water utility, which ranges from 1 to 5 ppb, 
non-detects were substituted with a value of zero (see SI Section 1 for 
additional detail). This substitution was considered a conservative 
assumption since the potential effect would be to bias water lead levels 
low, so the risk of a Type I error (i.e., if a significant effect of water lead 
levels on blood lead levels were observed where it did not exist) was low. 
These summary statistics and the assumption that they would be 
representative of water quality in interim years between sampling pe
riods allowed system-level water lead level data to be linked to indi
vidual blood lead level results by year. 

2.2.3. Final machine learning data set 
Since water lead sampling did not occur in every year blood lead 

measurements were available, data from the most proximate sample 
year prior to each child’s blood lead test were joined to the blood lead 
result. For example, the town of Cary performed Lead and Copper Rule 
monitoring every three years from 2003 to 2015 (Table S2). A child in 
Cary who had his or her blood tested for lead in 2010 was thus paired 
with the water lead data from 2009 as the most recent prior system-wide 
sampling date. The data set of 41,401 children matched to water systems 
was then restricted further to consider only children for whom the most 
proximate water lead sampling period was within the two years prior of 
the child’s blood lead test, resulting in a final data set of 40,742 unique 
records (Fig. 2). Two years was selected as a reasonable time frame that 
retained the majority of records while eliminating outliers for whom no 
prior or recent water lead concentration data were available (see Section 
S1). Although the half-life of lead in blood has been shown to be only 
1–2 months, elevated blood lead levels in children may require over a 
year to decline (Dignam et al., 2008), and a second half-life of lead in 
blood due to the replenishment of lead stored in the bones can be up to 
four years (ATSDR, 2007). Further, high water lead levels may go un
detected and treatment techniques to reduce water lead exposures may 
not be adjusted annually due to reduced sampling, thus causing water 
lead exposures to be prolonged for children served by some systems. 

The final data set included 60 matched household, demographic, 
socioeconomic, and water system variables for each child. The full list of 
variables can be found in Table S1. Summary statistics for each variable 
are provided in Tables S3, S4 and S5. The data transformation process 
resulted in a flattened database for machine learning that was proposi
tionalized from the multiple relational data sets described in the previ
ous sections (Kramer et al., 2001). As discussed by Maier et al. (2013), 
propositionalization of relational data (i.e., data that violates the as
sumptions of independence and identical distribution (IID)) to define 
variables prior to machine learning has limitations for causal inference, 
but can generally be used for the purposes of predictive inference and 
evaluating statistical associations in complex, relational systems with 
non-IID data without loss of predictive accuracy. 

2.3. Bayesian network theory and model construction 

Bayesian networks are probabilistic graphical models in the form of 
directed acyclic graphs that allow complex joint probability distribu
tions to be graphically represented. The qualitative component of 

Bayesian networks includes a set of random variables, {V1, ...,Vn}, each 
represented graphically as a node and connected by arcs indicating 
statistical dependencies among variables. The quantitative component 
behind the graphical representation is the joint probability distribution 
over V. Bayesian networks enable complex joint probability distribu
tions to be decomposed into the product of the conditional distribution 
of each Vi given its “parent” nodes in the graph (the nodes with arrows 
pointing directly to Vi), represented as Pa(Vi), such that: 

P(V)=
∏

iεV
P(Vi|Pa(Vi))

In this study, Bayesian networks were constructed and evaluated 
using the software BayesiaLab (Changé, France). Upon importing the 
database to the software, continuous variables were discretized using a 
built-in discretization algorithm (R2-GenOpt) that maximizes the vari
ance of the discretized variable explained by its corresponding contin
uous variable (Bayesia, 2021). The data set had no missing values for 
blood lead levels or water system characteristics, but some missingness 
at random for the variables child gender (2.1%), home value (5.7%), and 
year of home construction (6.9%) (Table S3). Missing values were 
inferred using a structural expectation-maximization algorithm which 
uses dynamic imputation with weighted observations to infer missing 
values based on the structure of the network (Conrady and Jouffe, 2015; 
Friedman, 1997). To train the network, we used a series of supervised 
learning algorithms to assess the probability of a child’s blood lead level 
meeting or exceeding 5 μg/dL or 2 μg/dL (referred to as the “target”). 
Based on this probability, the model then classified each child as above 
or below each threshold. Classification models used to distinguish be
tween discrete classes are central to machine learning (Kotsiantis, 2007) 
and are used in a wide range of problem domains, ranging from the 
classification of e-mail as Spam (Guzella and Caminhas, 2009) to med
ical diagnostics, including heart failure (Olsen et al., 2020), breast 
cancer (Hu et al., 2020), and COVID-19 (Li et al., 2020). The use of 
classification models in this study provides similarly useful 
decision-making information regarding lead exposure. 

BayesiaLab includes a variety of built-in machine learning algorithms 
including Naïve Bayes, augmented Naïve Bayes, tree augmented Naïve 
Bayes, Markov blanket, and augmented Markov blanket. These algo
rithms use a greedy search strategy to test linkages between nodes that 
reduce complexity while maximizing predictive capability as measured 
by the minimum description length score (Conrady and Jouffe, 2015). 
The significance of linkages is evaluated in the software using the G-test 
statistic (McDonald, 2014). The structural coefficient α was adjusted in 
BayesiaLab to 0.35 based on visual inspection of the structure/target 
precision ratio (Conrady and Jouffe, 2015). Each algorithm was tested 
separately in BayesiaLab and the highest performing model was selected. 
Performance was evaluated using ten-fold cross-validation to assess the 
area under the receiver operating characteristic (ROC) curve, which 
plots the relationship between the true positive rate and false positive 
rate for different probability thresholds classifying the binary outcome 
of interest (in this case, whether a child’s blood lead level will meet or 
exceed each target). An ROC score of 1 indicates a model that perfectly 
discriminates between each possible outcome, while an ROC score of 
0.50 indicates a useless model, where the predictive ability is no better 
than chance (Carter et al., 2016). The model with the highest ROC score 
was selected as the final model. 

The total effect of each predictor variable was then assessed by 
comparing the prior probability (i.e., the marginal or unconditional 
probability) of a child’s blood lead level exceeding each target to the 
posterior probability (i.e., the conditional probability of the target given 
the values of each predictor node). When calculating the posterior 
probability, information is allowed to flow freely through all connected 
nodes. Therefore, assessing this effect does not assume causality and 
only measures the strength of the association given the other variables in 
the network. The difference in the uncertainty between the prior and 
posterior states of the target given each predictor is known as the mutual 
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information and provides an additional measure of which variables have 
the greatest predictive importance (Conrady and Jouffe, 2015). 

3. Results 

3.1. Association between blood lead levels and drinking water system 
characteristics 

3.1.1. Elevated blood lead levels (5 μg/dL target) 
The prior probability of exceeding the CDC Reference Level of 5 μg/ 

dL in the county was 4.4%, meaning that, without additional informa
tion, any child in the county had a 4.4% chance of having a blood lead 
level ≥5 μg/dL from 2003 to 2017. None of the water system charac
teristics, including treatment, infrastructure, and water lead levels, were 
significantly associated with the 5 μg/dL target in any of the models 
tested. This result indicates that these variables do not share significant 
mutual information with the target and thus do not reduce the uncer
tainty. The highest performing model for the 5 μg/dL threshold used an 
augmented Naïve Bayes structure (Figure S4). The ROC curve is shown 
in Figure S5 and the fully specified marginal probabilities found in 
Table S6. 

The most significant predictors of the CDC Reference Level target 
were blood test year, child age, median household income, home value, 
and the proportion of the Census block group that identified as Black. A 
large effect of blood test year was observed, decreasing from a 19.9% 
probability of exceeding 5 μg/dL in 2003 to 1.06% in 2017. This 
decrease is consistent with a nationwide trend of declining blood Pb 
levels, attributed to policies that decreased or eliminated many major 
lead exposure sources, including gasoline, paint, food cans, and 
plumbing and fixtures (Dignam et al., 2019). In NC, declining blood lead 
also may be partially attributed to the efforts of the North Carolina 
Childhood Lead Poisoning Prevention Program to perform surveillance 
of children’s blood lead levels and to conduct remediation of households 
where children are found to have elevated blood Pb (Angelon-Gaetz and 
Newman Chelminski, 2018). This decrease among Wake County chil
dren can also be observed clearly in Fig. 3A. Children living in neigh
borhoods with a median household income of less than $42,000 per year 
exhibited a 128% increase in the probability, or risk, of reaching or 
exceeding the CDC Reference level compared to children in wealthier 
areas (median household income >$116,000). Addresses within Census 
block groups identifying as over 50% Black were also found to have an 
increase in risk compared to the county’s baseline. For children in 
neighborhoods that were >71% Black, the risk increased by 118%. 
Finally, children living in homes valued less than $186,000 showed a 
65% increase in risk compared to homes valued greater than $532,000. 
These discretizations do not necessarily indicate causal threshold ef
fects, but the inclusion of median household income and home value as 
significant variables by the machine learning algorithm serves to affirm 
previous research showing that increased blood lead levels are often 
associated with socioeconomic factors that reduce a family’s ability to 
mitigate exposures (Gleason et al., 2019; Stark et al., 1982). The sig
nificance of the proportion Black of the child’s Census block group also 
confirms previous research that has pointed out concerning racial in
equities of environmental lead exposure in children (Lanphear et al., 
2002; Macdonald Gibson et al., 2020; Whitehead and Buchanan, 2019). 

The learning algorithm’s exclusion of any water lead concentration 
statistic variables indicates that elevated blood lead levels among the 
sample of children studied in Wake County are not significantly asso
ciated with water lead from community water systems. Our data set was 
weighted toward the two largest water systems in the county, however, 
with 85% of blood lead records associated with these two systems. To 
address this, we restricted the data set to exclude children served by the 
two largest utilities and reran the learning algorithms. In a third itera
tion, the data set was further restricted to evaluate only groundwater 
systems. In these models, blood test year remained the most important 
predictor and water system characteristics and Lead and Copper Rule 

sampling results continued to be insignificant. This suggests that our 
assessment was not controlled by the clustering of children within 
certain water systems and that blood lead levels at or above the CDC 
Reference Level in the county are likely attributable to additional 
household-level exposures such as lead paint and dust. 

3.1.2. Subclinical blood lead levels (2 μg/dL target) 
The prior probability of blood lead levels ≥2 μg/dL in the county was 

38.7%. In contrast to the 5 μg/dL target, multiple water system char
acteristics became significant when predicting the probability of a 
child’s blood lead level reaching or exceeding 2 μg/dL. Other, significant 
variables included the blood lead test year, household attributes, and 
socioeconomic and demographic characteristics of the neighborhood. 
The highest-performing model for evaluating the 2 μg/dL target also 
used an augmented Naïve Bayes structure (Fig. 4). The ROC curve for 
this model is provided in Figure S6. Marginal probabilities of each of the 
nodes in the network are provided in Table S7. The size of the effect of 
each node on the target’s posterior probability can be seen in Fig. 5. The 
width of the bars in Fig. 5 represents the range of the effect (and thus the 
overall importance) of each predictor variable on the target node. The 
variables in Fig. 5 are also ranked according to the amount of mutual 
information each node shares with the target from greatest to least. Each 
of the variables included in Figs. 4 and 5 exhibited statistically signifi
cant associations with the target according to G-tests of independence 
except for the child’s gender which was forced into the model as a 
control based on prior research (Macdonald Gibson et al., 2020). 

As can be seen in Fig. 4, blood test year, home value, median 
household income, and the proportion Black of the Census block group 
continued to be selected as significant predictors of the 2 μg/dL target. 
As before, blood test year had the most mutual information with the 
target and was the greatest overall driver of blood lead risk in the model 
(Fig. 5). The risk of blood lead levels ≥2 μg/dL decreased by 92% from 
2003 to 2017 in the county overall, but children living in lower income 
housing and neighborhoods, as well as children in majority Black 
neighborhoods, continued to exhibit the highest risk even in later testing 
years. The proportion of the Census block group that identified as His
panic was also selected as an important demographic variable for pre
dicting blood lead risk, such that children in neighborhoods with a 
Hispanic population >15% experienced a 25% increase in risk of blood 
lead levels ≥2 μg/dL compared to the county average. The model thus 
highlighted ongoing socioeconomic and racial disparities in childhood 
lead exposures across the county that persist even at subclinical blood 
lead levels. 

Key water system characteristics with an effect on children’s blood 
lead levels included the number of service connections, the age of the 
water system, the number of wells in groundwater systems, and whether 
the system practices treatment techniques that may affect corrosion 
within the distribution system, such as coagulation, phosphate addition, 
and pH adjustment. The disinfectant type (i.e., whether a utility used 
chloramines in the distribution system) was not identified by the algo
rithms tested as a significant predictor. Whether 10% of water samples 
collected by the utility exceeded 2 ppb of lead was also statistically 
significant toward predicting blood lead ≥2 μg/dL. Importantly, the 
algorithms used to learn the model structure did not identify the Lead 
and Copper Rule regulatory thresholds of 15 ppb (the action level) and 
10 ppb (the trigger level) as significant predictors. While these thresh
olds were designed to act as overall indicators of lead exposure risk 
within a water system, our model suggests that these thresholds may not 
be sensitive enough to detect the low water lead levels that may be 
contribute to childhood lead exposure through drinking water. 

Each of these water system characteristics had different sizes and 
directions of effects. The curves shown in Fig. 6 describe the change in 
the posterior probability of the 2 μg/dL target relative to the significant 
water system characteristics. For continuous variables, such as system 
size or the number of wells, the x-axis shows the normalized change in 
the mean of the predictor. For binary variables, the x-axis shows the 
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proportion of children in the county served by community water systems 
that meet the criteria, such as using pH adjustment or exceeding 2 ppb of 
lead in 10% of monitoring samples. Thus, for binary variables, 100% on 
the x-axis indicates the risk of blood lead levels ≥2 μg/dL in the county if 
all children were served by systems that met the criteria, and 0% in
dicates the risk if none of the children were served by systems that met 
the criteria. The y-axis, then, gives the expected probability of blood 
lead levels ≥2 μg/dL with the prior probability of 38.7% shown for 
reference. 

Most of the water system characteristics demonstrated a linear effect. 
For example, increasing the number of interconnected wells within a 
groundwater system (a measure of increasing complexity and mixing of 
source waters that may be treated to varying levels within the distri

bution system) also increased the blood lead risk. Blending of source 
waters has previously been shown to impact the nature of lead release 
within drinking water distribution systems (Tang et al., 2006). Notably, 
children served by utilities that do not practice phosphate-based 
corrosion control (n = 165 (93%) or pH adjustment (n = 70 (39%), 
Table S9) exhibited a decrease in the posterior probability of blood lead 
≥2 μg/dL. This finding does not indicate that these treatment measures 
cause greater lead exposure risk themselves; rather, it suggests that 
water utilities that are not required to implement these treatment 
practices may be at lower risk of drinking water lead exposure by nature 
of having less corrosive source waters or lower frequency of lead-bearing 
plumbing components. Thus, this analysis does not measure the effect of 
corrosion control treatment on blood lead levels—indeed, high risk 

Fig. 4. Final network structure predicting the prob
ability of each child’s blood lead test result being ≥2 
μg/dL. The thickness of arcs corresponds to the 
computed amount of mutual information between 
nodes. The colors of the nodes correspond to spatial 
scales of information shown in Fig. 1: Grey nodes 
represent variables at the Census block group scale; 
green nodes represent household and blood test 
characteristics at the individual address level; blue 
nodes represent water system characteristics at the 
service area scale. (For interpretation of the refer
ences to color in this figure legend, the reader is 
referred to the Web version of this article.)   

Fig. 5. Total effect of each predictor variable on the probability of blood lead level ≥2 μg/dL. Variable names are ranked from highest to lowest mutual information 
with the target. The size of the circles corresponds to the natural log of the mutual information for visual clarity. 
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systems with very corrosive waters would certainly be at even higher 
risk without implementing corrosion control—but highlights the 
inability of corrosion control measures alone to completely eliminate 
lead exposures when corrosive source waters are used and suggests that 
the presence of such measures are an important attribute in assessing the 
overall lead exposure risk for a given system. 

Increasing the number of service connections demonstrated a U- 
shaped effect, where very small (<286 service connections) and very 
large (>132,000 service connections) systems both were associated with 
greater risk of elevated blood lead levels. The reasons for this are not 
clearly elucidated by our model, but may be due to the unique chal
lenges of each size category, such as water age concerns for large sys
tems (Masters et al., 2015) and management and economic difficulties 
for small systems (Ford et al., 2005). Water system age had a small effect 
on blood lead levels, but children served by the newest systems in the 
county (<17 years old) were at slightly lower risk of elevated blood lead 
levels than those receiving water from older systems. Again, the reasons 
for this phenomenon are not captured by this analysis and are likely a 
complex interaction between scale-forming chemistry and system im
provements (Cartier et al., 2013; Nguyen et al., 2011; Xie and Giammar, 
2011). 

Notably, children served by systems that exceeded the water lead 
threshold of 2 ppb in at least 10% of Lead and Copper Rule monitoring 
samples in the most recent year of sampling prior to the child’s blood 
lead test also demonstrated an increase in the risk of blood lead levels ≥
2 μg/dL. The probability of having a blood lead level ≥ 2 μg/dL 
increased to 46.6% among children served by systems that had exceeded 
this water lead threshold within two years of the blood lead test 
compared to 32.9% among children receiving water from systems that 
did not, representing an increase in risk of 42%. This exceedance vari
able also shared the most mutual information with the target out of all 
the water system characteristics included in the model (Fig. 5). Impor
tantly, these systems would be considered fully compliant with all 
provisions of the Lead and Copper Rule. 

Finally, a similar analysis of the effect of geographical clustering in 
our data set as described in Section 3.1.1 was performed for the 2 μg/dL 
target. When the 85% of children served by the two largest utilities were 
removed from the data set, the number of service connections, pH 
adjustment, number of wells, and the age of the water system continued 
to exhibit statistically significant mutual information with the target. 

The action level and trigger level remained insignificant, while children 
who were served by systems where 10% of the Lead and Copper Rule 
compliance monitoring samples exceeded 2 ppb continued to exhibit 
significantly greater risk of increased blood lead levels. From this we 
conclude that the selection of the water system variables in the model 
developed using the complete data set is representative of the nature of 
water lead exposures in the county as a whole, rather than only among 
the two largest systems. 

3.2. Performance of Bayesian networks to predict blood lead levels 

3.2.1. Model validation 
On the full data set, the model achieved an area under the ROC curve 

of 80.47% which can be considered “good” overall predictive perfor
mance (Carter et al., 2016). During ten-fold cross-validation testing, the 
model structure achieved a comparable area under the ROC curve of 
79.22%, indicating that the model is not subject to overfitting, with a 
tight confidence interval of ± 0.8% with different random partitions of 
the data into training and test sets (Figure S6). These scores indicate that 
the model could be expected to correctly rank the risk of a randomly 
chosen child with a blood lead level ≥2 μg/dL above a randomly chosen 
child with a blood lead level less than 2 μg/dL approximately 80% of the 
time on average (Hanley and McNeil, 1982). 

The optimum decision threshold of the model, i.e., the probability 
used to determine if a child’s blood lead level will be ≥2 μg/dL, can be 

Fig. 6. Change in the risk (posterior probability) of 
blood lead levels ≥2 μg/dL among children served by 
community water systems by water system variable. 
The effect of each water system variable is shown 
while accounting for each of the other variables 
included in the network (Fig. 4). The x-axis shows 
either the normalized mean of the water system 
characteristic (for continuous variables) or the pro
portion of children served by systems using the spe
cific treatment technique (for binary variables). 
Increased and decreased risks are shown relative to 
the prior probability in the county.   

Table 1 
Summary of model accuracy, sensitivity, and specificity for predicting whether a 
child’s blood lead level will meet or exceed 2 μg/dL during cross validation with 
varying test thresholds.  

Decision 
threshold 

True 
positives 

True 
negatives 

Sensitivity Specificity Overall 
accuracy 

0.1 15,320 6010 97% 24% 52% 
0.2 14,256 11,908 91% 48% 64% 
0.3 13,177 15,328 84% 61% 70% 
0.4 11,774 17,864 75% 71% 73% 
0.5 9945 20,166 63% 81% 74% 
0.6 7575 22,235 48% 89% 73% 
0.7 4787 23,785 30% 95% 70% 
0.8 2256 24,639 14% 99% 66% 
0.9 605 24,946 4% 100% 63%  
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selected to maximize the sensitivity, specificity, or overall accuracy of 
the model (Table 1). The decision threshold that maximizes the overall 
accuracy of the model is approximately 50%. That is, if a set of model 
inputs yielded a predicted risk of increased blood lead level of 50% or 
greater, then that child would be classified as having ≥ 2 μg/dL of blood 
lead, while if the calculated risk was less than 50%, the child would be 
considered to be below this level. At this threshold, the sensitivity of the 
model (true predicted positives/total actual positives) was 63% and the 
specificity (true predicted negatives/total actual negatives) was 81%. 
Thus, the model performed slightly better for predicting negative cases 
of subclinical blood lead levels than positive cases. The model’s overall 
accuracy, which is the total number of correct predictions (true posi
tives + true negatives) divided by the total number of cases, was 74%. 
However, in predicting childhood blood lead level risk, where the con
sequences of false positives are low compared to the consequences of 
false negatives, it may be desirable to sacrifice overall accuracy for 
improved sensitivity. As can be seen in Table 1, a lower test threshold of 
30%, for example, would ensure that 84% of actual cases of blood lead 
levels ≥2 μg/dL are detected even though the specificity and accuracy at 
this threshold drop to 61% and 70%, respectively. 

3.2.2. Model implementation 
This model can be used to predict the risk of subclinical blood lead 

levels based on geographic, demographic, and water system character
istics to aid future blood lead exposure prevention programs. To illus
trate this use, a new data set was compiled using each household in the 
original data currently served by a community water system. For each 
house, all the predictor variables shown in Fig. 4 were entered into the 
model. The child was assumed to be a boy aged 15–20 months (i.e., the 
demographic group with the highest blood lead levels on average). Once 
these inputs were specified, the model was run to predict the risk of 
having a blood lead level ≥2 μg/dL. In this way, the prediction provides 
an estimate of the highest risk areas for future testing. 

The resulting calculated probabilities averaged across each Census 
block group and across each water system service area are shown in 
Fig. 7. The average predicted increase in blood lead level risk for chil
dren served by each water utility in our data set can be found in 
Table S8. Based on available information associated with each address, 
the model is capable of distinguishing spatial variations in the blood lead 
level risk associated with community water system attributes. Areas at 

higher risk of increased blood lead levels include parts of central 
Raleigh, where a cluster of block groups has a calculated risk of 30–50%, 
and several small unincorporated subdivisions with predicted proba
bilities exceeding 50%. Meanwhile, the cities of Apex, Cary, and Holly 
Springs exhibited a much lower predicted risk, generally less than 15%. 
The 23 water systems with the greatest overall average risk of blood lead 
levels ≥2 μg/dL (>30%) were all small groundwater systems with fewer 
than 500 connections. The majority of these systems implemented pH 
adjustment, but only one used phosphate corrosion inhibitors. Five 
water systems exceeded an average risk of blood lead levels ≥2 μg/dL of 
50%. Overall, 64% of the children in our data set served by these 23 
systems between 2002 and 2017 exhibited blood lead levels ≥2 μg/dL 
compared to a prevalence of only 25% among children served by water 
utilities in the lowest predicted risk category. Thus, Fig. 7 may help 
public health authorities, including the NC Childhood Lead Poisoning 
Prevention Program, prioritize areas for blood lead surveillance follow- 
up and alert drinking water utilities to potential water lead concerns. 

4. Discussion 

The Bayesian network models tested in this study identified a rela
tionship between water system characteristics and blood lead levels at or 
above the regional median of 2 μg/dL. Elevated blood lead concentra
tions (≥5 μg/dL) were found to be more strongly predicted by socio
economic and demographic factors, such as median household income 
and demographic composition of the Census block group of the child’s 
address. These factors have previously been found to be correlated with 
the presence of lead paint and dust in homes, which are typically the 
primary cause of lead poisoning among children served by community 
water systems in the U.S. (Clark et al., 1985; Dixon et al., 2009; Lan
phear et al., 2002). This finding does not necessarily indicate that no 
children served by community water systems experience blood lead 
levels above this level due to drinking water exposures. Indeed, the 
nature of lead release and prevalence of lead-bearing plumbing com
ponents ensure that isolated instances of blood lead levels exceeding 5 
μg/dL attributable to community water systems may still occur even in 
well-managed systems. 

The critical finding of this work was to identify the importance of 
drinking water characteristics toward predicting subclinical blood lead 
levels in children (i.e., blood lead levels at or above the regional median 

Fig. 7. Predicted probabilities of male children aged 15–19 months in Wake County having blood lead levels ≥2 μg/dL associated with exposures from community 
water systems. Panel A shows household level predictions averaged across Census blocks. Panel B shows household level predictions averaged across each 
approximate water system service area. Census blocks or water systems with fewer than three matched addresses were removed from the prediction. 
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of 2 μg/dL for Wake County, NC), even in community water systems not 
in violation of any regulatory provisions. Indeed, the machine-learned 
Bayesian networks indicated that multiple water system characteris
tics, including the system size, age and complexity, treatment charac
teristics, and 90th percentile water lead levels all significantly influence 
the probability of a child served by a community water system having a 
blood lead level ≥2 μg/dL. This supports previous research demon
strating that increased blood lead levels in children can be associated 
with water lead exposures even in populations served by community 
water systems considered not to have lead problems under the Lead and 
Copper Rule (Gleason et al., 2019; Katner et al., 2016; Lanphear et al., 
2002). Although previous work on reducing water lead concentrations 
in community water systems in the U.S. has emphasized the lessons 
learned from high-profile cases such as the Washington D.C. and Flint, 
Michigan lead crises, which identified the catastrophic health effects 
associated with uncontrolled lead release in drinking water systems 
during major system-wide changes (Katner et al., 2016; Roy and 
Edwards, 2019), our findings suggest that the “lead crisis” in U.S. 
drinking water may at once be less overt and more prevalent. 

This result has important implications for mitigating environmental 
lead exposures among children in the U.S. Lead prevention programs 
often focus on mitigation of paint and soil sources of lead, but potentially 
overlook the low, chronic contributions of water lead from community 
water systems when assessing the overall lead exposure risk profile. 
Such conditions can result in the “prevention paradox,” where the 
largest burden of disease occurs in low to moderate risk categories while 
most prevention programs are focused on removing high exposure 
sources. Indeed, in 2012, the National Toxicology Program concluded 
that there was sufficient evidence that blood lead levels in children <5 
μg/dL are associated with a broad range of adverse neurocognitive ef
fects, including increased incidence of attention-related disorders, 
antisocial behaviors, decreased IQ, and poor performance in school 
(National Toxicology Program, 2012). Researchers have also identified a 
nonlinear effect between blood lead levels and IQ loss at low levels of 
exposure, indicating that the first slight increases of blood lead in infants 
and children have disproportionate impacts on neurological functioning 
(Canfield et al., 2003; Lanphear et al., 2005). As a result, the current 
policy focus on children with blood lead levels greater than 5 μg/dL 
alone is estimated to prevent only 20% of the IQ loss from lead among 
children in the U.S. (American Academy of Pediatrics Council on Envi
ronmental Health, 2016; Bellinger, 2012). 

Similarly, the Lead and Copper Rule only requires the highest 
exposure risk sample sites to be selected based on locations that have 
lead service lines or lead solder rather than a representative sample to 
adequately assess population-wide lead exposure risk (Schwetschenau 
et al., 2020), which may still pose a significant health burden. Addi
tionally, while current regulations are responsible for great reductions in 
water lead levels in the last three decades, the Bayesian network model 
for Wake County, NC suggested that the current Lead and Copper Rule 
action level and proposed trigger level are not sensitive enough to detect 
important variations in community water system lead exposure risk that 
are relevant to health today. Future studies are needed to identify a more 
appropriate threshold, but our findings suggest that a 90th percentile 
value of 2 ppb system-wide may be relevant to health on a population 
scale. Indeed, whether 10% of samples exceeded 2 ppb of lead in the 
most recent year of sampling prior to the blood test had a relatively large 
effect on predicting blood lead risk at or above the regional median, 
similar to the size of the effect of the year of house construction (Fig. 5), 
a commonly used predictor of lead exposure from household dust lead 
(Dixon et al., 2009; Gaitens et al., 2009; Gleason et al., 2019). In a 
multivariate regression of a large blood lead level data set in New Jersey, 
Gleason et al. (2019) showed that children served by water systems with 
a 90th percentile water lead concentration ≥2 ppb in the years 
2000–2004 exhibited a 4% increase in geometric mean blood lead levels 
compared to children served by water systems with water lead levels <2 
ppb. The importance of low water lead levels to blood lead risk also 

suggests that a lower water lead reporting limit should be enforced to 
ensure that samples in the 1–5 ppb range are accurately identified for all 
community water systems. 

Even within the current Lead and Copper Rule framework, drinking 
water professionals and regulatory bodies may use the methods pre
sented here and predictions of increased blood lead risk shown in Fig. 7 
to proactively identify systems that may have higher lead exposure risk 
but may otherwise be in compliance. These systems also may need to 
identify plans to control lead in drinking water through lead service line 
replacement, corrosion control optimization, and distribution of water 
filters certified to remove lead. Further, these risks ought to be 
communicated to the public served by these systems so that individuals 
may also make informed decisions around mitigating their own and 
their children’s lead exposure risk. Such efforts to continue to reduce 
water lead levels will help to offset lost economic productivity from lead 
exposure in the U.S. estimated to exceed $50 billion (Trasande and Liu, 
2011). 

Lastly, though these findings have important implications for water 
utilities and public health authorities in North Carolina among other 
regions in the U.S. with similar characteristics, this analysis provides a 
preliminary demonstration of the utility of machine-learned Bayesian 
networks for predicting lead exposure risks and may be improved 
through subsequent research and testing. First, the flattening of the data 
set for machine learning was a necessary manipulation of a complex 
relational database, but the model could potentially be improved using 
probabilistic relational modelling approaches (Getoor et al., 2007). 
Additionally, while machine learning algorithms are a powerful tool to 
identify the conditional probabilities embedded in a data set, how 
continuous variables are discretized depends on the decisions of the 
researcher and can have large impacts on the resulting model structure 
(Uusitalo, 2007). Thus, further study using the data set presented here 
using additional machine learning approaches along with traditional 
statistical approaches is ongoing. Finally, a heat map of increased blood 
lead levels associated with alternative exposures routes such as house
hold paint and dust, private well water supplies (Macdonald Gibson 
et al., 2020), and leaded aviation gasoline (Miranda et al., 2011) would 
likely highlight additional areas of risk not predicted by our model in 
Fig. 7. 

In summary, this work showed a significant relationship among 
water system characteristics and slight increases in blood lead levels in 
children in Wake County, NC. Public health authorities may use the 
machine-learning methods we present to help identify similar relation
ships among system-level drinking water characteristics and individual 
health outcomes. Although water lead exposures are particularly diffi
cult to isolate and regulate, a lower health-based threshold and 
enhanced assessment of population-wide water lead exposure is critical 
to improve policies, prevention programs, and risk communication 
strategies that protect children from lead in drinking water. 

5. Conclusion 

This study is the first to link system-wide drinking water character
istics from multiple water utilities with individual health outcomes 
using machine learning techniques. We demonstrate that elevated blood 
lead levels (i.e., blood lead levels exceeding the CDC Reference Level of 
5 μg/dL) are not generally associated with community drinking water 
systems in Wake County, NC, but that subclinical blood lead levels (i.e., 
blood lead levels ≥2 μg/dL) are strongly associated with community 
water system characteristics. Additionally, we demonstrate that ma
chine learned Bayesian networks can accurately predict individual blood 
lead risk from system-wide water utility characteristics. Our results 
show that pairing public health and drinking water data using machine 
learning techniques can help to reveal the complex relationships be
tween system-wide drinking water characteristics and public health 
outcomes. 
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