
Spatial Sigma-Delta Massive MIMO: Improved
Channel Estimation and Achievable Rates

Shilpa Rao1, Hessam Pirzadeh1, Gonzalo Seco-Granados2, and A. Lee Swindlehurst1

1Center for Pervasive Communications and Computing, University of California, Irvine
2Department of Telecommunications and Systems Engineering, Universitat Autonoma de Barcelona

Abstract—Spatial ΣΔsampling has recently been proposed to
improve the performance of massive MIMO systems with low-
resolution quantization for cases where the users are confined to a
certain angular sector, or the array is spatially oversampled. We
derive a linear minimum mean squared error (LMMSE) channel
estimator for theΣΔarray based on an element-wise Bussgang
decomposition that reformulates the nonlinear quantizer oper-
ation using an equivalent linear model plus quantization noise.
Both the case of one- and two-bit quantization is considered. We
then evaluate the achievable rate of theΣΔsystem assuming that
a linear receiver based on the LMMSE channel estimate is used
to decode the data. Our numerical results demonstrate thatΣΔ
architecture is able to achieve superior channel estimates and
sum spectral efficiency compared to conventional low-resolution
quantized massive MIMO systems.

I. INTRODUCTION

Low-resolution quantization has recently been proposed as
a potential method for reducing the energy consumption and
hardware complexity of massive MIMO systems for uplink
communication [1–6]. While the performance degradation
of such systems is small at very low signal-to-noise ratios
(SNRs), the loss grows rapidly with SNR. Performance near
that achievable without any quantization can be obtained if the
resolution is increased to 4-5 bits [7], or if the sampling rate is
increased [8], [9], but these adjustments come with significant
increases in both complexity and the required data rate from
the remote radio head to the baseband processor.
TemporalΣΔADCs combine one-bit quantization with

oversampling [10], [11] to create a noise-shaping effect that
reduces the impact of the coarse ADC. However, the oversam-
pling again increases the fronthaul throughput compared with
standard one-bit quantization. To remedy this issue, recent
work has considered aspatialversion of theΣΔconcept for
massive MIMO [12–16], in which the noise shaping gain is
achieved either by oversampling in space (more closely-spaced
antennas), or by assuming users whose uplink signals arrive
from a given angular sector due to cell sectorization, limited
multipath scattering, or certain small-cell geometries.
In this paper, we derive an improved channel estimator

for spatialΣΔ massive MIMO systems compared to our
initial approach described in [14], which was based on a
vector version of the Bussgang decomposition previously used
in channel estimation for standard one-bit quantization [1].
Instead, in this work we use an element-wise Bussgang
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approach that defines the quantization noise in a way that is
more consistent with the spatialΣΔarchitecture [16]. The
Bussgang decomposition provides an equivalent linear signal-
plus-quantization-noise model that we exploit to derive a linear
minimum mean-squared error (LMMSE) channel estimator.
We derive the solution for both the cases of one- and two-
bit quantization. Using an approach similar to [1], [3], [17],
we then find a lower bound on the uplink rate achieved by a
linear receiver calculated using our LMMSE channel estimate.
A more detailed analysis of the bounds on the achievable rate
and the estimation error are presented in [18]. The simulation
results for channel estimation and spectral efficiency for max-
imal ratio combining (MRC) and zero-forcing (ZF) receivers
are promising and show that theΣΔarchitecture significantly
outperforms standard 1-2 bit quantization.

II. SYSTEMMODEL

We assume an uplink scenario in which anM-antenna base
station (BS) simultaneously receives signals fromK single-
antenna users. Assuming the users synchronously transmitN-
sample pilot sequences, the received signal,X∈CM×N,at
the BS is

X=
√
ρGΦt+N, (1)

whereG ∈CM×K is the channel matrix,Φt∈C
K×N is

the pilot matrix andNis additive zero-mean spatially-white
Gaussian noiseN ∼CN(0,I). We assume that the pilot
sequences are orthogonal and that the minimum number of
pilots are used, so thatN=KandΦtΦ

H
t =KIK. We will

further assume that power control is applied so that all the
user signals are received with the same power. Therefore, the
SNR is equal toρ. Note that sinceΦis unitary, the power of
the pilot symbols is time-invariant:ΦHtΦt=KIK.
We will assume that the uplink signal from each user arrives
viaLcoherent paths that lie within a certain contiguous
angular sector defined byΘ. The BS is equipped with a
uniform linear array (ULA), so thekth column ofG,gk,
representing the channel for thekth user, is given by

gk=
1
√
L
Ahk, (2)

where the elements of hk are i.i.d. asCN(0,1)random
variables, andA∈CM×L is a matrix whoselth column is
the steering vector

al= 1e−j2πδsin(θl)···e−j2πδ(M−1)sin(θl)
T

, (3)
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Fig. 1: A first-order one-bit ΣΔ array steered to direction ψ.

where δ = d/λ is the inter-element antenna spacing and θl, l =
1, . . . , L, lie in the sector

[−Θ
2 ,

Θ
2

]
. Thus, the channel G is

given by G = 1√
L
AH, where H is matrix whose kth column

is given by hk. The above channel model is reflective of a rich
scattering environment where the columns of A are chosen
from a dense sampling of steering vectors from the angular
sector

[−Θ
2 ,

Θ
2

]
. The channel covariance matrix is given by

CG = 1
LAAH , which we assume to be known, where (·)H

denotes the conjugate transpose.

Let Φ =
√
ρ
(
ΦT

t ⊗ IM

)
, g = vec (G) and n = vec (N),

where ⊗ represents the Kronecker product. Vectorizing (1)
creates the MN × 1 data vector

x = vec (X) = Φg + n. (4)

It is easy to see that the covariance matrix of x is

Cx = KρCg + IMN , (5)

where Cg = IK ⊗CG is block-diagonal.

III. CHANNEL ESTIMATION WITH A FIRST-ORDER

SPATIAL ΣΔ ARCHITECTURE

Fig. 1 shows the architecture of a first-order spatial ΣΔ
array. The quantization error from one antenna is phase-shifted
by −ψ prior to being added to the input of the adjacent
antenna, which shifts the error to spatial frequencies away
from the angle-of-arrival (AoA) associated with the angle ψ.
Hence, users in the angular sector around this AoA experience
a high signal-to-quantization-noise ratio (SQNR). The high-
SQNR angular sector can be extended by increasing the spatial
oversampling, or placing the antenna elements closer together.
In practice, however, mutual coupling limits the amount of
spatial oversampling that can be achieved.

We will define r as the MN × 1 vector of inputs to the
quantizers, and y as the MN × 1 vector output of the ΣΔ-
array. Because of the vectorization in (4), the mth element
{xm, rm, ym} of each vector {x, r,y} corresponds to antenna

modM (m), where modM (·) denotes the modulo-M operator.
Defining m′ = modM (m), we thus have

ym = αm′Qm′ (Re(rm)) + jαm′Qm′ (Im(rm)) , (6)

where Qm′ represents the quantization operator and αm′ is an
output gain, both of which may vary with m′. We will see
later that with an appropriate input automatic gain control, the
dependence on m′ can be eliminated. Thus, the output of the
ΣΔ array can be written as

y = Q(r)

= [Q1(r1), . . . ,QM (rM ),Q1(rM+1), . . . ,QM (rMN )]
T

,
(7)

where

r = Ux−Vy,

V = IN ⊗

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0
e−jψ 0 . . . 0 0
e−j2ψ e−jψ . . . 0 0

...

e−j(M−1)ψ e−j(M−2)ψ . . . e−jψ 0

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Vd

,

U = IN ⊗ (IM +Vd)︸ ︷︷ ︸
Ud

.

(8)

A. Equivalent Linear Model

We will describe the operation of the ΣΔ array using an
equivalent linear model given by

y = Γr+ q , (9)

where the quantization “noise” term q is simply defined to be
the difference between the actual output and that predicted by
the linear model defined by the matrix Γ. Different choices
of Γ will lead to different quantization noise models with
different statistical properties. In our initial work on channel
estimation for the ΣΔ array [14], we followed the approach
used in [1] for conventional one-bit quantization and obtained
the matrix Γ as the one that forces r to be uncorrelated with
q, i.e. E

[
rqH

]
= 0. This results in Γ = CyrC

−1
r , where

Cyr = E
[
yrH

]
and Cr = E

[
rrH
]
. We then assumed the

elements of r to be jointly Gaussian, and applied the Bussgang
theorem to obtain the LMMSE channel estimate. However, this
approach produces an equivalent quantization noise q that does
not have a physical interpretation in terms of the hardware
block diagram of Fig. 1, since for example the quantizer input
rm at antenna m is clearly correlated with the quantization
noise qm−1 from the adjacent antenna.

Instead, here we will apply the Bussgang decomposition
one element of y at a time, and define Γ in order to obtain an
equivalent linear model for which the elements of y and r are
only individually uncorrelated [16]: E [rmq̄m] = 0, where (̄·)
indicates conjugation. Assuming as before that the elements
of r are circularly symmetric Gaussian random variables, Γ

!#
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becomes a diagonal matrix with mth diagonal element, γm,
given by

γm =
E [Re (rm)Re (ym)]

E [Re (rm)]
2 = αm′

E [Re (rm)Qm′ (Re(rm))]

E [|Re (rm) |2] .

(10)
We will choose αm′ such that γm = 1, or equivalently such
that Γ = IMN .

Define σ2
rm � E

(|rm|2) and similarly for σ2
ym

and σ2
qm .

For a zero-mean unit-variance Gaussian random variable,
define the optimal quantization levels and intervals as νi
and

(
νloi , νhii

)
, i = 1, . . . , 2b, respectively, where b is the

resolution of the quantizer. We will focus on one and two-
bit quantizers, so that b = 1 and b = 2, respectively. Since
we assume the input to the mth ΣΔ ADC is a circularly
symmetric Gaussian random variable with variance σ2

rm , the
quantization bins are adjusted as follows to span the range of
the input levels:

Qm′
(
rRe
m

)
=

σrm√
2
νi, if rRe

m ∈
(
σrm√
2
νloi ,

σrm√
2
νhii

]
, (11)

where rRe
m � Re (rm) and the quantization thresholds satisfy

νhii = νloi+1, νlo1 = −∞, and νhi2b = ∞. For one-bit ADCs
the levels of the unit quantizer are {−1,+1}, and for two-bit
ADCs, the levels are chosen according to [19]. Using Price’s
theorem [20], we can obtain

E
[
rRe
m Qm′

(
rRe
m

)]
E [|rRe

m |2] =
1√
2π

2b∑
i=2

(νi − νi−1) exp

(
−
(
νloi
)2

2

)
.

(12)
Details for the derivation of (12) can be found in [18]. The
value of αm′ that yields γm = 1 is obtained by substitut-
ing (12) in (10).

It is clear from the above results that αm′ does not depend
on the index m′ since the quantization levels and intervals for
the m′th ADC have been scaled by the standard deviation of
the input in (11), e.g., by means of an automatic gain control at
the input. Thus, we will drop the dependence of α on m′ and
choose the single value α∗ necessary to achieve γm = 1. Note
also that the result in (12) relies on the assumption that rm is
Gaussian. In reality, due to the non-linear feedback structure
of the ΣΔ array, the tails of the distribution of rm are slightly
heavier than a Gaussian, so the ratio on the left hand side
of (12) is slightly greater than the right hand side. For this
reason, we will adopt a slightly larger value for α∗:

α∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
β
√

π
2 , b = 1,

β
√
2π∑4

i=2(νi−νi−1)exp

(
− (νlo

i )
2

2

) , b = 2.
, (13)

where β > 1 is a correction factor. While we could set β = 1
as in [16], better channel estimation results are obtained when
a value slightly larger than one is used. The value of β will
be discussed below.

Substituting Γ = I and r = Ux−Vy into (9), we get

y = x+U−1q . (14)

This model can be interpreted as passing x through a (spatial)
all-pass filter and q through a filter that shapes the quantization
noise away from the AoA corresponding to ψ [16], which is
the spatial analog of the standard temporal ΣΔ approach.

B. LMMSE Channel Estimation
We derive below the LMMSE channel estimate based on the

one-bit or two-bit outputs of the ΣΔ ADC array. The LMMSE
channel estimate is defined by

ĝ = E
[
gyH

] (
E
[
yyH

])−1
y

= CgyC
−1
y y .

(15)

Using the analysis from Appendix A of [18], we can show that
E
[
xqH

] ≈ 0 and E
[
nqH

] ≈ 0, which implies that Cgy ≈
CgΦ

H . In [18], we validate these approximations by showing
the agreement between the theoretical and experimental values
of the channel estimation error and the achievable user rate.
Since we have chosen Γ = I in (9), it is easy to show that

r = x−U−1Vq (16)

and hence that

Cr = Cx +U−1VCqV
HU−H , (17)

where Cq is the covariance matrix of q. Given the inter-
relationship between Cy and Cq , they cannot be computed
in closed form. However, the nature of the signal propagation
in the ΣΔ array allows us to compute them in a recursive
manner.

Since E [rmq̄m] = 0 and E
[
xqH

] ≈ 0, it is straightforward
to show that E [qmq̄m±1] ≈ 0. Thus, Cq is approximately
diagonal with elements given by σ2

qm . Given that U−1V has
the special structure

U−1V = IN ⊗ e−jψ

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0

...
0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦ , (18)

we can generate the following recursion for σ2
rm , σ2

ym
and

σ2
qm , each computed one after the other:

σ2
rm =

⎧⎪⎨
⎪⎩
σ2
xm

, m = kM + 1, k = 0, 1, . . . ,M − 1,

σ2
xm

+ σ2
qm−1

, otherwise.

σ2
ym

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π
2β

2σ2
rm , b = 1,

α2
∗σ

2
rm

∑4
i=1 ν

2
i

(
Ψ
(

σrm√
2
νhii

)
−Ψ

(
σrm√

2
νloi

))
,

b = 2

σ2
qm = σ2

ym
− σ2

rm .
(19)

Here, Ψ(·) is the cumulative distribution function (cdf) of the
standard normal distribution. Once the diagonal matrix Cq is

!$
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computed, we can obtain Cr from (17), and using (14) we
can obtain the covariance matrix of y from

Cy = Cx +U−1CqU
−H . (20)

From the last equality in (19), we can see that for the one-bit
ΣΔ operation to be stable, the quantization noise power must
not become greater than σ2

rm . This requires that we ensure(
π
2β

2 − 1
)
< 1, and hence that 1 ≤ β < 2/

√
π ≈ 1.1284.

We have found that good performance for the one-bit ΣΔ
quantizer can be achieved using a value near the midpoint,
e.g., β ≈ 1.05. For the two-bit ΣΔ case, on the other hand,
there is little dependence on β since increasing the number
of bits results in a quantization error that is more accurately
characterized as Gaussian.

IV. UPLINK ACHIEVABLE RATE ANALYSIS

In the uplink data transmission stage, the K users transmit
their data represented by the K×1 vector s. Using a Bussgang
decomposition on the ΣΔ-quantized received signal, yd,

yd =Q (rd) =
√
ρdGs+ nd +U−1

d qd, (21)

where rd = Ud

(√
ρdGs+ nd

) − Vdyd, ρd is the data
transmission power, nd and qd are the noise and quantization
noise in the data phase, respectively. The matrices Ud and Vd

are defined by taking N = 1 in Eq. (8).

The BS uses a linear receiver W = [w1 · · · wK ] for sym-
bol detection that depends on the LMMSE channel estimate:

ŝ = WHyd =
√
ρdW

HGs+WHnd +WHU−1
d qd. (22)

We can re-write the various components contributing to the
kth detected symbol as

ŝk =
√
ρdE

[
wH

k gk

]
sk +

√
ρd
(
wH

k gk − E
[
wH

k gk

])
sk+

√
ρdw

H
k

∑
i�=k

gisi +wH
k nd +wH

k U−1
d qd,

(23)
where the first term in the above equation corresponds to
the desired signal. The remaining terms correspond to the
receiver uncertainty, the inter-user interference, the additive
noise and the quantization noise, respectively. We will use
the classical approach of assuming worst-case uncorrelated
Gaussian assumption on the terms in (23) to obtain a lower
bound on the achievable rate, which is given by (24) at the
top of the next page. While the achievable rate bounds derived
in [16] assume perfect knowledge of the CSI, our result takes
into account the channel estimation error.

V. SIMULATION RESULTS

This section provides some numerical examples of the (per-
antenna) normalized MSE (NMSE) of the channel estimates
and the resulting sum spectran efficiency (SE) achieved by the
ΣΔ massive MIMO system with both one and two-bit outputs.
In these examples, the BS employs a uniform linear array
(ULA) with inter-element spacing δ = 1/5, the number of
pilot symbols and number of users are both 12 (N = K = 12),
and ρd = ρ. The users are located within a sector centered on
the broadside of the array with an angular spread of Θ = 50◦,

so ψ = 0◦. The number of coherent paths per user is L =
50. The NMSE of the channel estimate is evaluated over 500
independent realizations of the channel. We will evaluate the
performance of the MRC and ZF receivers, given by

WMRC = Ĝ, WZF = Ĝ
(
ĜHĜ

)−1

, (25)

where Ĝ is the LMMSE channel estimate. The sum spectral
efficiency is defined as

SE =
T −N

T

K∑
i=1

Rk, (26)

where T = 200 is length of the coherence interval.

In Fig. 2, we compare the performance of the ΣΔ LMMSE
channel estimator derived in this paper with the standard
one-bit Bussgang LMMSE (BLMMSE) channel estimator
of [1] and the LMMSE channel estimator for standard two-bit
quantization (see [18] for details on implementation of this
approach). For this case, an array of M = 200 antennas is
assumed. At low-to-medium SNRs, the performance of the
ΣΔ channel estimates is very close to that of the unquantized
MMSE channel estimate. At higher SNRs, the NMSE error
floor for the ΣΔ approach is approximately 10dB lower than
that achieved with standard one-bit or two-bit ADCs. Note
that all algorithms are exploiting knowledge of Cg , which
incorporates the a priori information about the users’ angular
sector. The method in [14] fails to provide good channel
estimates beyond an SNR of 0dB.

In Fig. 3, we plot the simulated sum spectral efficiency (SE)
lower bound for the MRC and ZF receivers as a function of
the number of antennas, M for an SNR of 0dB. Fig. 3(a)
shows that the SE of the ΣΔ architecture with only one or
two bits of ADC resolution is essentially equal to that of an
unquantized system, although for MRC the gain compared to
standard one- and two-bit quantization is not as dramatic since
multi-user interference is more of a limiting factor in this case.
Much bigger gains are evident for the case of a ZF receiver,
as shown in Fig. 3(b). For M = 200 antennas, the throughput
bound for the spatial ΣΔ architecture is twice that for regular
one- and two-bit ADCs.

VI. CONCLUSION

In this paper, we used an element-wise Bussgang decom-
position to derive a new LMMSE channel estimator for an
massive MIMO system employing spatial ΣΔ ADCs with 1-2
bits resolution. The simulation results show that, in situations
where the users are confined to a certain angular sector or the
array is spatially oversampled, the spatial ΣΔ approach is able
to achieve significantly better channel estimates and spectral
efficiency than systems employing standard low resolution
quantizers. At low-to-medium SNRs, the performance gap
between the ΣΔ array and a system with infinite-resolution
ADCs is relatively small. The spatial ΣΔ architecture provides
a promising approach for increasing the energy efficiency and
reducing the hardware complexity and fronthaul throughput
requirements of large-scale antenna systems.

!%
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Rk = log2

⎛
⎝1 +

ρd
∣∣E [wH

k gk

]∣∣2
ρdvar

(
wH

k gk

)
+ ρd

∑
i�=k E

[|wH
k gi|2

]
+ E

[∣∣wH
k nd

∣∣2]+ E

[∣∣wH
k U−1

d qd

∣∣2]
⎞
⎠ (24)
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Fig. 2: NMSE of channel estimates.
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Fig. 3: Sum spectral efficiency with (a) MRC (b) ZF receivers.
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